Lowness Properties and Approximations of the Jump

Santiago Figueira * André Nies ${ }^{\dagger} \quad$ Frank Stephan ${ }^{\ddagger}$

Abstract

We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jumptraceable if for each order function h, for each input e one may effectively enumerate a set T_{e} of possible values for the jump $J^{A}(e)$, and the number of values enumerated is at most $h(e) . A^{\prime}$ is well-approximable if can be effectively approximated with less than $h(x)$ changes at input x, for each order function h. We prove that there is a strongly jump-traceable set which is not computable, and that if A^{\prime} is well-approximable then A is strongly jump-traceable. For r.e. sets, the converse holds as well. We characterize jump-traceability and the corresponding strong variant in terms of Kolmogorov complexity, and we investigate other properties of these lowness notions.

1 Introduction

A lowness property of a set A says that A is computational weak when used as an oracle, and hence A is close to being computable. In this article we study and compare some "combinatorial" lowness properties in the direction of characterizing K-trivial sets.

A set is K-trivial when it is highly compressible in terms of Kolmogorov complexity (see Section 2 for the formal definition). In [18], Nies proved that a set is K-trivial if and only if A is low for Martin-Löf-random (i.e. each Martin-Löf-random set is already random relative to A).

Terwijn and Zambella [23] defined a set A to be recursively traceable if there is a recursive bound p such that for every $f \leq_{T} A$, there is a recursive r such that for all x, $\left|D_{r(x)}\right| \leq p(x)$, and $\left(D_{r(x)}\right)_{x \in \mathbb{N}}$ is a set of possible values of f : for all x, we have $f(x) \in D_{r(x)}$.

[^0]They showed that this combinatorial notion characterizes the sets that are low for Schnorr tests.

This property was modified in [19] to jump-traceability. A set A is jump traceable if its jump at argument e, written $J^{A}(e)=\{e\}^{A}(e)$, has few possible values.

Definition 1. A uniformly r.e. family $T=\left\{T_{0}, T_{1}, \ldots\right\}$ of sets of natural numbers is a trace if there is a recursive function h such that $\forall n\left|T_{n}\right| \leq h(n)$. We say that h is a bound for T. The set A is jump-traceable if there is a trace T such that

$$
\forall e\left[J^{A}(e) \downarrow \Rightarrow J^{A}(e) \in T_{e}\right]
$$

We say that A is jump traceable via a function h if, additionally, T has bound h.
Another notion studied in [19] is super-lowness, first introduced in [4, 17].
Definition 2. A set A is ω-r.e. iff there exists a recursive function b such that $A(x)=$ $\lim _{s \rightarrow \infty} g(x, s)$ for a recursive $\{0,1\}$-valued g such that $g(x, s)$ changes at most $b(x)$ times, i.e. $|\{s: g(x, s) \neq g(x, s+1)\}| \leq b(x)$. In this case, we say that A is ω-r.e. via the function g and bound b. A is super-low iff A^{\prime} is ω-r.e.

Recall that a set A is low if $A^{\prime} \leq_{T} \emptyset^{\prime}$. The above definition of A being super-low is equivalent to $A^{\prime} \leq_{t t} \emptyset^{\prime}$. Hence super-lowness, clearly implies lowness.

Both jump-traceable and super-low sets are closed downward under Turing reducibility and imply being generalized low (i.e. $A^{\prime} \leq A \oplus \emptyset^{\prime}$). In [19] it was proved that these two lowness notions coincide within the r.e. sets but that none of them implies the other within the ω-r.e. sets.

In this article, we define the notions of strong jump-traceability and well-approximability of the jump, strengthening super-lowness. In the strong variant of these notions consider all order functions as the bound instead of just some recursive bound. Here, an order function is a slowly growing but unbounded recursive function. Our first two results are:

- There is a non-computable strongly jump-traceable set;
- If A^{\prime} is well-approximable then A is strongly jump-traceable. The converse also holds, if A is r.e.

Our approach is used to study interesting lowness properties related to plain and prefix-free Kolmogorov complexity. We investigate the properties of sets A such that the Kolmogorov complexity relative to A is only a bit smaller than the unrelativized one. We prove some characterizations of jump-traceability and its strong variant in terms of prefix-free (denoted with K) and plain (denoted with C) Kolmogorov complexity, respectively:

- A is jump-traceable if and only if there is a recursive p, growing faster than linearly such that $K(y)$ is bounded by $p\left(K^{A}(y)+c_{0}\right)+c_{1}$, for some constants c_{0} and c_{1};
- A is strongly jump-traceable if and only if $C(x)-C^{A}(x)$ is bounded by $h\left(C^{A}(x)\right)$, for every order function h and almost all x.

Recall that A is low for K iff $K(x) \leq K^{A}(x)+\mathcal{O}(1)$ for each x. Nies [18] showed that this property is equivalent to being K-trivial. In particular, non-computable low for K sets exist. The corresponding property involving C is only satisfied by the computable sets (because it implies being C-trivial by [7], which is the same as computable). The characterization of strongly jump-traceable is via a property that states that C^{A} is very close to C, while not implying computability.

We know that K-triviality implies jump-traceability, but it is unknown whether K triviality implies strong jump-traceability. The reverse direction is also open.

2 Basic definitions

If A is a set of natural numbers then $A(x)=1$ if $x \in A$; otherwise $A(x)=0$. We denote by $A \upharpoonright n$ the string of length n which consists of the bits $A(0) \ldots A(n-1)$.

If A is given by an effective approximation and Ψ is a functional, we write $\Psi^{A}(e)[s]$ for $\Psi_{s}^{A_{s}}(e)$. From a partial recursive functional Ψ, one can effectively obtain a primitive recursive and strictly increasing function α, called a reduction function for Ψ, such that

$$
\forall X \forall e \Psi^{X}(e)=J^{X}(\alpha(e))
$$

For each set A, we want to define $K^{A}(y)$ as the length of a shortest prefix-free description of y using oracle A. An oracle machine is a partial recursive functional $M:\{0,1\}^{\infty} \times\{0,1\}^{*} \mapsto$ $\{0,1\}^{*}$. We write $M^{A}(x)$ for $M(A, x) . M$ is an oracle prefix-free machine if the domain of M^{A} is an antichain under inclusion of strings, for each A. Let $\left(M_{d}\right)_{d \in \mathbb{N}}$ be an effective listing of all oracle prefix-free machines. The universal oracle prefix-free machine U is given by

$$
U^{A}\left(0^{d} 1 \sigma\right)=M_{d}^{A}(\sigma)
$$

and the prefix-free Kolmogorov complexity relative to A is defined as

$$
K^{A}(y)=\min \left\{|\sigma|: U^{A}(\sigma)=y\right\}
$$

where $|\sigma|$ denotes the length of σ. If $A=\emptyset$, we simply write $U(\sigma)$ and $K(y)$. As usual, $U(\sigma)[s] \downarrow=y$ indicates that $U(\sigma)=y$ and the computation takes at most s steps. Schnorr's Theorem states that $A \in\{0,1\}^{\infty}$ is Martin-Löf random iff the initial segments of A have high K-complexity, i.e.

$$
\exists c \forall n K(A \upharpoonright n)>n-c
$$

A set A is K-trivial iff the initial segments of A have low K-complexity, i.e.

$$
\exists c \forall n K(A \upharpoonright n) \leq K(n)+c
$$

We say that $A \leq_{K} B$ iff

$$
\exists c \forall n K(A \upharpoonright n) \leq K(B \upharpoonright n)+c
$$

The Kraft-Chaitin Theorem states that from a recursive sequence of pairs $\left(\left\langle n_{i}, \sigma_{i}\right\rangle\right)_{i \in \mathbb{N}}$ (known as requests) such that $\sum_{i \in \mathbb{N}} 2^{-n_{i}} \leq 1$, we can effectively obtain a prefix-free machine
M such that for each i there is a τ_{i} of length n_{i} with $M\left(\tau_{i}\right) \downarrow=\sigma_{i}$, and $M(\rho) \uparrow$ unless $\rho=\tau_{i}$ for some i.

If we drop the condition of the domain of M^{A} being an antichain, we obtain a similar notion, called plain Kolmogorov complexity and denoted by C. Hence, $C^{A}(y)$ will denote the length of the shortest description of y using oracle A, when we do not have the restriction on the domain.

A binary machine is a partial recursive function $\tilde{M}:\{0,1\}^{*} \times\{0,1\}^{*} \mapsto\{0,1\}^{*}$. Let \tilde{U} be a binary universal function given as

$$
\tilde{U}\left(0^{d} 1 \sigma, x\right)=\tilde{M}_{d}(\sigma, x),
$$

where $\left(\tilde{M}_{d}\right)_{d \in \mathbb{N}}$ is an enumeration of all partial recursive functions of two arguments. We define the plain conditional Kolmogorov complexity $C(y \mid x)$ as the length of the shortest description of y using \tilde{U} with string x as the second argument, that is,

$$
C(y \mid x)=\min \{|\sigma|: \tilde{U}(\sigma, x)=y\} .
$$

Let str : $\mathbb{N} \rightarrow\{0,1\}^{*}$ be the standard enumeration of the strings. The string $\operatorname{str}(n)$ is that binary sequence $b_{0} b_{1} \ldots b_{m}$ for which the binary number $1 b_{0} b_{1} \ldots b_{m}$ has the value $n+1$. Thus, $\operatorname{str}(0)=\lambda, \operatorname{str}(1)=0, \operatorname{str}(2)=1, \operatorname{str}(3)=00, \operatorname{str}(4)=01$ and so on.

3 Strong jump-traceability

Recall that an r.e. set A is promptly simple if A is co-infinite and there is a recursive function p and an effective approximation $\left(A_{s}\right)_{s \in \mathbb{N}}$ of A such that, for each e,

$$
\left|W_{e}\right|=\infty \Rightarrow \exists s \exists x\left[x \in W_{e, s+1} \backslash W_{e, s} \wedge x \in A_{p(s)}\right] .
$$

In this section, we introduce a stronger version of jump-traceability and we prove that there is a promptly simple (hence non-recursive) strongly jump-traceable set. We also prove that there is no maximal order function as bound for jump-traceability.

Definition 3. A computable function $h: \mathbb{N} \rightarrow \mathbb{N}^{+}$is an order function if h is nondecreasing and unbounded.

Notice that any reduction function is an order function.
Definition 4. A set A is strongly jump-traceable iff for each order function h, A is jump traceable via h.

Clearly, strong jump-traceability implies jump-traceability and it is not difficult to see that strong jump-traceability is closed downward under Turing reducibility.

Proposition 5. $\{A: A$ is strongly jump-traceable $\}$ is closed downward under Turing reducibility.

Proof. Suppose A is strongly jump-traceable, $B \leq_{T} A$. We prove that B is jump-traceable via the given order function h. Let Ψ be the functional such that $\Psi^{A}(x)=J^{B}(x)$ for all x and let α be the reduction function such that $J^{A}(\alpha(x))=\Psi^{A}(x)$. We know that A is jumptraceable via a trace $\left(T_{i}\right)_{i \in \mathbb{N}}$ with bound \tilde{h}, where $\tilde{h}(z)=h(\min \{y: y \in \mathbb{N} \wedge \alpha(y+1) \geq z\})$. Observe that, since α is an order function, \tilde{h} also is. Clearly,

$$
J^{B}(e)=J^{A}(\alpha(e)) \downarrow \Rightarrow J^{B}(e) \in T_{\alpha(e)} .
$$

Now, $\tilde{h}(\alpha(e))=h(y)$ for some y such that $\alpha(y)<\alpha(e)$ or $y=0$. Then $y \leq e$ and $\tilde{h}(\alpha(e))=h(y) \leq h(e)$. Hence $\left(T_{\alpha(i)}\right)_{i \in \mathbb{N}}$ is a trace for the jump of B with bound h.

Clearly each computable set A is strongly jump-traceable, because we can trace the jump by

$$
T_{e}= \begin{cases}\left\{J^{A}(e)\right\} & \text { if } J^{A}(e) \downarrow ; \\ \emptyset & \text { otherwise }\end{cases}
$$

In Theorem 7 below we show the existence of a non-computable strongly jump-traceable set. We need the following result, proven in [16, Theorem 2.3.1]:

Lemma 6. The function $m(x)=\min \{C(y): y \geq x\}$ is unbounded, non-decreasing and for every order function f there is an x_{0} such that $m(x)<f(x)$ for all $x \geq x_{0}$. Also, $m(x)=\lim _{s \rightarrow \infty} m_{s}(x)$, where $m_{s}(x)=m(s, x)=\min \left\{C_{s}(y): s \geq y \geq x \vee y=0\right\}$ is recursive and $m_{s}(x) \geq m_{s+1}(x)$, for all x and s.

Observe that here $\lambda x, s . C_{s}(x)$ is the standard recursive approximation from above of $C(x)$ (that is $\lambda s . C_{s}(x) \rightarrow C(x)$ when $s \rightarrow \infty$ and $\left.C_{s}(x) \geq C_{s+1}(x)\right)$.

Theorem 7. There exist a promptly simple strongly jump-traceable set.
Proof. We construct a promptly simple set A in stages satisfying the requirements

$$
P_{e}:\left|W_{e}\right|=\infty \Rightarrow \exists s \exists x\left[x \in W_{e, s+1} \backslash W_{e, s} \wedge x \in A_{s+1}\right] .
$$

These requirements will ensure that A is promptly simple. Each time we enumerate an element into A in order to satisfy P_{e}, we may destroy $J^{A}(k)$, and then our trace for the jump of A will grow. Hence, we must enumerate elements into A in a controlled way, and sometimes we should restrain from putting elements into A. Since for any order function h there has to be a trace for J^{A} bounded by h, we will work with the function m defined in Lemma 6, which grows slower than any order function. The rule will be that during the construction, P_{e} may destroy $J^{A}(k)$ at stage s only if $e<m_{s}(k)$. (Observe that the restriction on P_{e} imposed rule may strengthen as s grows, because we may have $m_{s}(k)>m_{s+1}(k)$.) In this way, we will guarantee that size of our trace for $J^{A}(e)$ will be bounded by $m(e)$, which will suffice because $m \leq h$ from some point on. As we will see, the exact choice of the trace for J^{A} with bound h depends on h, and is made in a nonuniform way.

Construction of \mathbf{A}. Let m_{s} be the non-decreasing, unbounded function defined in Lemma 6.

Stage 0: set $A_{0}=\emptyset$ and declare P_{e} unsatisfied for all e.
Stage $s+1$: choose the least $e \leq s$ such that

- P_{e} yet not satisfied;
- There exists x such that $x \in W_{e, s+1} \backslash W_{e, s}, x>2 e$ and for all k such that $m_{s}(k) \leq e$, if $J^{A}(k)[s]$ is defined then x is greater than the use of $J^{A}(k)[s]$.

If such e exists, put least such x for e into A_{s+1}. We say that P_{e} receives attention at stage $s+1$, and declare P_{e} satisfied. Otherwise, $A_{s+1}=A_{s}$. Finally, define $A=\bigcup_{s} A_{s}$.
Verification. Clearly, P_{e} receives attention at most once. So we can use below the fact that every requirement influences the enumeration of A at most once.

To show that A is strongly jump-traceable, fix a recursive order function h. We will prove that there exists an r.e. trace T for J^{A} as in Definition 1. Let h be any order function. By Lemma 6, there exists k_{0} such that for all $k \geq k_{0}, m(k) \leq h(k)$. Define the recursive function

$$
f(k)= \begin{cases}\min \left\{s: m_{s}(k) \leq h(k)\right\} & \text { if } k \geq k_{0} \\ 0 & \text { otherwise }\end{cases}
$$

For $k \geq k_{0}$ and $s \geq f(k), m_{s}(k)$ will be below $h(k)$, so $J^{A}(k)$ may change because P_{e} receives attention, for $e<m_{s}(k) \leq h(k)$. Since each P_{e} receives attention at most once, $J^{A}(k)$ can change at most $h(k)$ times after stage $f(k)$. So

$$
T_{k}= \begin{cases}\left\{J^{A}(k)[s]: J^{A}(k)[s] \downarrow \wedge s \geq f(k)\right\} & \text { if } k \geq k_{0} ; \\ \left\{J^{A}(k)\right\} & \text { if } J^{A}(k) \downarrow \wedge k<k_{0} ; \\ \emptyset & \text { otherwise. }\end{cases}
$$

is as required.
Fix e such that W_{e} is infinite and let us see that P_{e} is met. Let s such that

$$
\forall k\left[m(k) \leq e \Rightarrow m_{s}(k)=m(k)\right]
$$

and $s^{\prime}>s$ such that no P_{i} receives attention after stage s^{\prime} for any $i<e$. Then, by the construction, no computation $J^{A}(k), m(k) \leq e$ can be destroyed after stage s^{\prime}. So there is $t>s^{\prime}$ such that for all k where $m_{t}(k) \leq e$, if $J^{A}(k)$ converges then the computation is stable from stage t on. Choose $t^{\prime} \geq t$ such that there is $x \in W_{e, t^{\prime}+1} \backslash W_{e, t^{\prime}}, x>2 e$ and x is greater than the use of all converging $J^{A}(k)$ for all k where $m_{t^{\prime}}(k) \leq e$. Now either P_{e} was already satisfied or P_{e} receives attention at stage $t^{\prime}+1$. In either case P_{e} is met.

Next we study the size of the trace bound for jump-traceability. Given an order function h, it is always possible to find a jump-traceable set A for which h is too small to be a bound for any trace for the jump of A.

Theorem 8. For any order function h there is an r.e. set A and an order function \tilde{h} such that A is jump-traceable via \tilde{h} but not via h.

Proof. We will define an auxiliary functional Ψ and we use α, the reduction function for Ψ (i.e. $\Psi^{X}(e)=J^{X}(\alpha(e))$ for all X and e), in advance by the Recursion Theorem. At the same time, we will define an r.e. set A and a trace \tilde{T} for J^{A}. Finally, we will verify that there is an order function \tilde{h} as stated.

Let $T(0), T(1), \ldots$ be an enumeration of all the traces with bound h, so that

$$
T(e)=\left\{T(e)_{0}, T(e)_{1}, \ldots\right\}
$$

the e-th such trace, is as in Definition 1. Requirement P_{e} tries to show that J^{A} is not traceable via the trace $T(e)$ with bound h, that is,

$$
P_{e}: \exists x \Psi^{A}(x) \notin T(e)_{\alpha(x)}
$$

and requirement N_{e} tries to stabilize the jump when it becomes defined, i.e.

$$
N_{e}:\left[\exists^{\infty} s J^{A}(e)[s] \downarrow\right] \Rightarrow J^{A}(e) \downarrow
$$

The strategy for a single procedure P_{e} consists of an initial action and a possible later action.

Initial action at stage $s+1$:

- Choose a new candidate $x_{e}=\langle e, n\rangle$, where n is the number of times that P_{e} has been initialized. Define $\Psi^{A}\left(x_{e}\right)[s+1]=0$ with large use.

Action at stage $s+1$:

- Let $x_{e}=\langle e, n\rangle$ be the current candidate. Put y into A_{s+1}, where y is the use of the defined $\Psi^{A}\left(x_{e}\right)[s]$. Notice that in the construction this action will not affect $J^{A}(i)[s]$ for $i<e$ because of the choice of y;
- Define $\Psi^{A}\left(x_{e}\right)[s+1]=\Psi^{A}\left(x_{e}\right)[s]+1$ with use $y^{\prime}>y$ and greater than the use of all defined computations of $J^{A}(i)[s+1]$ for $i<e$.

We say that P_{e} requires attention at stage $s+1$ if $\Psi^{A}\left(x_{e}\right)[s] \in T(e)_{\alpha\left(x_{e}\right)}[s]$ and we say that N_{e} requires attention at stage $s+1$ if $J^{A}(e)[s]$ becomes defined for the first time.
Construction of A. We define $\tilde{T}=\left\{\tilde{T}_{0}, \tilde{T}_{1}, \ldots\right\}$ by stages. The s-th stage of \tilde{T}_{i} will be denoted by $\tilde{T}_{i}[s]$. We start with $A_{0}=\emptyset$ and $\tilde{T}_{i}[0]=\emptyset$ for all i. At stage $s+1$ we consider the procedures N_{j} for $j \leq s$ and P_{j} for $j<s$. We also initialize the new P_{s}. We look at the least procedure requiring attention in the order

$$
P_{0}, N_{0}, \ldots, P_{s}, N_{s}
$$

If there is no one, do nothing. Otherwise, suppose P_{e} is the first one. We let P_{e} take action at $s+1$, changing A below the use of $\Psi^{A}\left(x_{e}\right)[s]$ and redefining $\Psi^{A}\left(x_{e}\right)[s+1]$ without affecting N_{i} for $i<e$. We keep the other computations of P_{j} with the new definition of A, for $j \neq i$ and large use. If N_{e} is the least procedure requiring attention, there is y such that $J^{A}(e)[s] \downarrow=y$. We put y into $\tilde{T}_{e}[s+1]$ and initialize P_{j} for $e<j \leq s$. In this case, we say that N_{e} acts.
Verification. Let us prove that P_{e} is met. Take s such that all $J^{A}(i)$ are stable for $i<e$. Suppose x_{e} is the actual candidate of P_{e}. Since P_{e} is not going to be initialized again, x_{e} is the last candidate it picks. Each time $\Psi^{A}\left(x_{e}\right)[t] \in T(e)_{\alpha\left(x_{e}\right)}[t]$ for $t>s, P_{e}$ acts and changes the definition of $\Psi^{A}\left(x_{e}\right)$ to escape from $T(e)_{\alpha\left(x_{e}\right)}$. Since $\left|T(e)_{\alpha\left(x_{e}\right)}\right| \leq h\left(\alpha\left(x_{e}\right)\right)$, there is $s^{\prime}>s$ such that $T(e)_{\alpha\left(x_{e}\right)}\left[s^{\prime}\right]=T(e)_{\alpha\left(x_{e}\right)}$. By construction, $\Psi^{A}\left(x_{e}\right)\left[s^{\prime}+1\right] \notin T(e)_{\alpha\left(x_{e}\right)}$ and $\Psi^{A}\left(x_{e}\right)\left[s^{\prime}+1\right]$ is stable.

We say that N_{e} is injured at stage $s+1$ if we put y into A_{s+1} and y is less or equal than the use of $J^{A}(e)[s]$. We define $c_{P}(k)$ as a bound for the number of initializations of P_{r}, for $r \leq k$; and define $c_{N}(k)$ as a bound for the number of injuries to N_{r}, for $r \leq k$. Since P_{0} is initialized just once and makes at most $h(\langle 0,0\rangle)$ changes in $A, c_{P}(0)=1$ and $c_{N}(0)=h(\langle 0,0\rangle)$. The number of times that P_{k+1} is initialized is bounded by the number of times that N_{r} acts, for $r \leq k$, so

$$
c_{P}(k+1)=c_{P}(k)+c_{N}(k) .
$$

Each time N_{r} is injured, for $r \leq k$ then N_{k+1} may also be injured; additionally, N_{k+1} may be injured each time P_{k+1} changes A. The latter occurs at most $h(\langle k+1, i\rangle)$ for the i-th initialization of P_{k+1}. Hence

$$
c_{N}(k+1)=2 c_{N}(k)+\sum_{i \leq c_{P}(k+1)} h(\langle k+1, i\rangle) .
$$

Once N_{e} is not injured anymore, if $J^{A}(e) \downarrow$ then $J^{A}(e) \in \tilde{T}_{e}$. Since the number of changes of $J^{A}(k)$ is at most the number of injuries to N_{e}, we define the function $\tilde{h}(e)=c_{N}(e)$ which is clearly an order function and it constitutes a bound for the trace $\left(\tilde{T}_{i}\right)_{i \in \mathbb{N}}$.

It is open if there is minimal bound for jump-traceability. That is, given an order function h, is there a set A and an order function \tilde{h} such that A is jump-traceable via h but not via \tilde{h}. If this fails for some order function h, then strong jump traceability is the same as jump traceability for that single order function.

4 Well-approximability of the jump

We strengthen the notion of super-lowness and study the relationship to strongly jumptraceability.

Definition 9. A set D is well-approximable iff for each order function b, D is ω-r.e. via b.

Clearly, if A^{\prime} is well-approximable, then A is super low. It is not difficult to see that well-approximability of the jump is closed downward under Turing reducibility.

Proposition 10. $\left\{A: A^{\prime}\right.$ is well approximable $\}$ is closed downward under Turing reducibility.

Proof. Suppose A is such that A^{\prime} is well-approximable, and let $B \leq_{T} A$. We prove that B^{\prime} is well-approximable via the given order function b. Define Ψ and α as in Proposition 5. We know that there is a recursive $\{0,1\}$-valued g such that $A^{\prime}(x)=\lim _{s \rightarrow \infty} g(x, s)$ and $g(x, s)$ changes at most $\tilde{b}(x)$ times, where $\tilde{b}(z)=b(\min \{y: y \in \mathbb{N} \wedge \alpha(y+1) \geq z\})$. Then

$$
\lim _{s \rightarrow \infty} g(\alpha(x), s)=A^{\prime}(\alpha(x))=B^{\prime}(x)
$$

and $g(\alpha(x), s)$ changes at most $\tilde{b}(\alpha(x))$ times. As in Proposition $5, \tilde{b}(\alpha(x)) \leq b(x)$.
We next prove that if A is r.e. then A is strongly jump-traceable iff A^{\prime} is well-approximable. We first need the following lemmas.

Lemma 11. Let f and \hat{f} be order functions such that $f(x) \leq \hat{f}(x)$ for almost all x.
(i) If A is jump-traceable via f then A is jump traceable via \hat{f};
(ii) If A is well-approximable via f then A is well-approximable via \hat{f}.

Proof. Assume

$$
\exists x_{0} \forall x\left[x \geq x_{0} \Rightarrow f(x) \leq \hat{f}(x)\right]
$$

For (i), suppose T is a trace for J^{A} with bound f. We can define the trace \hat{T} :

$$
\hat{T}_{x}= \begin{cases}T_{x} & \text { if } x \geq x_{0} \\ \left\{J^{A}(x)\right\} & \text { otherwise }\end{cases}
$$

Hence, if $x \geq x_{0}$ then $\left|\hat{T}_{x}\right|=\left|T_{x}\right| \leq f(x) \leq \hat{f}(x)$, and if $x<x_{0}$ then $1=\left|\hat{T}_{x}\right| \leq \hat{f}(x)$.
For (ii), suppose A is well-approximable via the $\{0,1\}$-valued $g(x, s)$ which changes at most $f(x)$ times. Define

$$
\hat{g}(x, s)= \begin{cases}g(x, s) & \text { if } x \geq x_{0} \\ A(x) & \text { otherwise }\end{cases}
$$

If $x \geq x_{0}$ then $\hat{g}(x, s)$ changes at most $f(x) \leq \hat{f}(x)$ times, and if $x<x_{0}$ then \hat{g} does not change at all.

Lemma 12. There exists a recursive γ such that for all r.e. A:
(i) If A is jump-traceable via an order function h then A is super-low via the order function $b(x)=2 h(\gamma(x))+2$;
(ii) If A is super-low via an order function b then A is jump-traceable via the order function $h(x)=\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor$.

Proof. We follow the proof of [19, Theorem 4.1], together with Lemma 11.
(i) \Rightarrow (ii). Suppose A is jump-traceable via h. By [19] A is super-low via a $\{0,1\}$-valued recursive g such that $g(x, s)$ changes at most $2 h(\alpha(x))+2$ times. Here, α is a reduction function (hence primitive recursive) which depends on A. The diagonal γ of the Ackermannfunction satisfies $\gamma(x) \geq \alpha(x)$ for almost all x [20, Volume 2, Theorem VIII.8.10]. Since h is an order function, $2(h \circ \gamma)+2$ also is, and $2 h(\gamma(x))+2 \geq 2 h(\alpha(x))+2$ for almost all x. By Lemma 11, A is super-low via $b(x)=2 h(\gamma(x))+2$.
(ii) $\Rightarrow(\mathrm{i})$. Suppose A is super-low via an order function b and the $\{0,1\}$-valued function g. Again following [19], there is a trace for J^{A} via $\left\lfloor\frac{1}{2}(b \circ \gamma)\right\rfloor$, for a primitive recursive α which depends on g. As we did in the previous implication, $\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor \geq\left\lfloor\frac{1}{2} b(\alpha(x))\right\rfloor$ for almost all x. Thus A is jump-traceable via $h(x)=\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor$.

Theorem 13. Let A be an r.e. set. Then the following are equivalent:
(i) A is strongly jump-traceable;
(ii) A^{\prime} is well-approximable.

Proof. (i) \Rightarrow (ii). Given an order function b, let us prove that A is super-low via b. By part (i) of Lemma 12, it suffices to define an order function h such that $2 h(\gamma(x))+2 \leq b(x)$ for almost all x. If $b(x) \geq 4$ then define $h(\gamma(x))=\left\lfloor\frac{b(x)-2}{2}\right\rfloor$ and if $b(x)<4$, define $h(\gamma(x))=1$. Since γ can be taken strictly monotone, the above definition is correct and we can complete it to make h an order function.
(ii) \Rightarrow (i). Given an order function h, we will prove that A is jump-traceable via h. By part (ii) of Lemma 12, it suffices to define an order function b such that $\left\lfloor\frac{1}{2} b(\gamma(x))\right\rfloor \leq h(x)$ for almost all x. The argument is similar to the previous case.

Later, in Corollary 18, we will improve this result and we will see that, in fact, the implication (ii) \Rightarrow (i) holds for any A.

We finish this section by proving that the prefixes $D \upharpoonright n$ of a well-approximable set D have low Kolmogorov complexity, of order logarithmic in n. Hence D is not MartinLöf random and furthermore, the effective Hausdorff dimension is 0 . The latter is just equivalent of saying that there is no $c>0$ such that $c n$ is a linear lower bound for the prefix-free Kolmogorov complexity of $D \upharpoonright n$ for almost all n.

Theorem 14. If D is well-approximable then for almost all $n, K(D \upharpoonright n) \leq 4|n|$.
Proof. Suppose $D(n)=\lim _{s \rightarrow \infty} g(n, s)$, where g is recursive and changes at most n times. Given n, there is a unique s and some $m<n$ such that $g(m, s) \neq g(m+1, s)$ but $g(q, t)=g(q, t+1)$ for all $t>s$ and $q<n$. That is, s is the time when g converges on below n and m is the place where the last change takes place. The stage s can be
computed from m and the number k of stages with $g(m, t+1) \neq g(m, t)$. So one can compute $D \upharpoonright n$ from m, n, k. Since $k, m \leq n$, one can, for almost all n, code m, n, k in a prefix-free way in $4|n|$ many bits. This is done by using a prefix of the form $1^{q} 0$ followed by $2 q$ bits representing $n, 2 q$ bits representing m and $2 q$ bits representing k as binary numbers; here q is just the smallest number such that $2 q$ bits are enough. Since $k, m \leq n$ and since $2 q \leq|n|+c$ for some constant c and since the additionally necessary coding needed to transform the above representation into a program for U is bounded by a constant, we have that there is a constant d such that

$$
\forall n K(D \upharpoonright n) \leq 3|n|+|n| / 2+d
$$

and then the relation $K(D \upharpoonright n) \leq 4|n|$ holds for almost all n. In fact, using binary notation to store q instead of $1^{q} 0$, it would even give

$$
K(D \upharpoonright n) \leq 3(|n|+\log (|n|))
$$

for almost all n.

5 Traceability and plain Kolmogorov complexity

We give a characterization of strong jump-traceability in terms of plain Kolmogorov complexity and we show that if A^{\prime} is well-approximable then A is strongly jump-traceable for any set A.

Theorem 15. If A^{\prime} is well-approximable then for every order function h and almost all x, $C(x) \leq C^{A}(x)+h\left(C^{A}(x)\right)$.

Proof. The idea of the proof is the following. Let h be any order function. Suppose q_{x} is a minimal A-program for x. We know that there is a c such that $C(x) \leq\left|q_{x}\right|+2 C\left(x \mid q_{x}\right)+c$. Since $\left|q_{x}\right|=C^{A}(x)$, we only need to show that $2 C\left(x \mid q_{x}\right)+c \leq h\left(\left|q_{x}\right|\right)$ for almost all x. Given q_{x} and the value of $C\left(x \mid q_{x}\right)$, we can find a program p_{x} of length $C\left(x \mid q_{x}\right)$ which describes x with the help of q_{x}, that is $\tilde{U}\left(p_{x}, q_{x}\right)=x$. It can be shown that there is a recursive $\{0,1\}$-valued approximation of the bits of p_{x} which changes few times (in the proof, this is done with the help of the functional $\Psi)$. Hence, x can be described by the values of $C\left(x \mid q_{x}\right), q_{x}$ and p_{x}. We can represent p_{x} with the number of changes of the mentioned $\{0,1\}$-valued approximation. This will show $C\left(x \mid q_{x}\right) \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$, which is sufficient to get the desired upper bound on $2 C\left(x \mid q_{x}\right)+c$.

Here are the details. Let $\Psi^{A}(m, n, q)$ be a functional which does the following:
(i) Compute $x=U^{A}(q)$. If $U^{A}(q) \uparrow$ then $\Psi^{A}(m, n, q) \uparrow$;
(ii) Find the first program p such that $|p|=n$ and $\tilde{U}(p, q)=x$. If there is no such p then $\Psi^{A}(m, n, q) \uparrow ;$
(iii) In case $m \notin[1, n]$ then $\Psi^{A}(m, n, q) \uparrow$. Otherwise, if the m-th bit of p is 1 then $\Psi^{A}(m, n, q) \downarrow$, else $\Psi^{A}(m, n, q) \uparrow$.

Let α be a reduction function such that $J^{A}(\alpha(m, n, q))=\Psi^{A}(m, n, q)$. Choose an order function b such that $b(\alpha(n, n, q)) \leq n h(|q|)$ for all n, q. We can approximate $A^{\prime}(x)$ with a $\{0,1\}$-valued recursive function which changes at most $b(x)$ times.

Let q_{x} be a minimal A-program for x, that is, $U^{A}\left(q_{x}\right)=x$ and $\left|q_{x}\right|=C^{A}(x)$. Let $n_{x}=C\left(x \mid q_{x}\right)$. Then $\Psi^{A}\left(m, n_{x}, q_{x}\right) \downarrow$ iff the m-th bit of p_{x} is 1 , where p_{x} is the first program such that $\left|p_{x}\right|=n_{x}$ and $\tilde{U}\left(p_{x}, q_{x}\right)=x$.

Since A^{\prime} is ω-r.e. via b,

$$
p_{x}=A^{\prime}\left(\alpha\left(1, n_{x}, q_{x}\right)\right) \ldots A^{\prime}\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right)
$$

changes at most

$$
\begin{aligned}
n_{x} \max \left\{b\left(\alpha\left(m, n_{x}, q_{x}\right)\right): 1 \leq m \leq n_{x}\right\} & \leq n_{x} b\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right) \\
& \leq n_{x}^{2} h\left(\left|q_{x}\right|\right)
\end{aligned}
$$

many times. Since $\tilde{U}\left(p_{x}, q_{x}\right)=x$ and we can describe p_{x} with n_{x}, q_{x} and the number of changes of $A^{\prime}\left(\alpha\left(1, n_{x}, q_{x}\right)\right) \ldots A^{\prime}\left(\alpha\left(n_{x}, n_{x}, q_{x}\right)\right)$, we have

$$
\begin{align*}
n_{x}=C\left(x \mid q_{x}\right) & \leq 2\left|n_{x}\right|+\left|n_{x}^{2} h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1) \\
& \leq 4\left|n_{x}\right|+\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1) \tag{1}
\end{align*}
$$

To finish, let us prove that for almost all $x, n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$. Since $C(x) \leq\left|q_{x}\right|+$ $2 n_{x}+\mathcal{O}(1)$, this upper bound of n_{x} will imply that

$$
\begin{aligned}
C(x) & \leq\left|q_{x}\right|+h\left(\left|q_{x}\right|\right) \\
& =C^{A}(x)+h\left(C^{A}(x)\right)
\end{aligned}
$$

for almost all x, as we wanted. Hence, let us see that $n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$ for almost all x. There is a constant N such that for all $n \geq N, 8|n| \leq n$. We know that for almost all x, q_{x} satisfies $\left|h\left(\left|q_{x}\right|\right)\right| \geq N$. Suppose x has this property. Then either $n_{x} \leq\left|h\left(\left|q_{x}\right|\right)\right|$ or $4\left|n_{x}\right| \leq n_{x} / 2$. In the second case $n_{x}-4\left|n_{x}\right| \geq n_{x} / 2$ and by (1), $n_{x} / 2 \leq\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$. So, in both cases, we have $n_{x} \leq 2\left|h\left(\left|q_{x}\right|\right)\right|+\mathcal{O}(1)$.

Lemma 16. For all $x \in\{0,1\}^{*}$ and $d \in \mathbb{N}$,

$$
|\{y: C(x, y) \leq C(x)+d\}| \leq \mathcal{O}\left(d^{4} 2^{d}\right)
$$

Proof. Chaitin [6] proved that

$$
\forall d, n \in \mathbb{N}|\{\sigma:|\sigma|=n \wedge C(\sigma) \leq C(n)+d\}| \leq \mathcal{O}\left(2^{d}\right)
$$

Let c be such that $\forall x C(x) \leq s t r^{-1}(x)+c$. Consider the partial recursive function $f(x, y, d)$ which enumerates all strings z such that $C(z) \leq \operatorname{str}^{-1}(x)+d+c$ until it finds $z=y$. If z
was the i-th string to appear in the enumeration, then $f(x, y, d)$ is the number i written in binary with initial zeroes such that $|f(x, y, d)|=\operatorname{str}^{-1}(x)+d+c+1$. Notice that it is always possible to write $f(x, y, d)$ in this way because there are at most $2^{s t r^{-1}(x)+d+c+1}$ such strings z. If no such z exists, then $f(x, y, d) \uparrow$. Let x and d be given. Consider y such that $C(x, y) \leq C(x)+d$. Since $C(x, y) \leq \operatorname{str}^{-1}(x)+d+c$ then $f(x, y, d) \downarrow$ and

$$
\begin{aligned}
C(f(x, y, d)) & \leq C(x, y)+2|d|+\mathcal{O}(1) \\
& \leq C(x)+d+2|d|+\mathcal{O}(1) \\
& \leq C\left(\operatorname{str}^{-1}(x)+d+c+1\right)+d+4|d|+\mathcal{O}(1)
\end{aligned}
$$

The last inequality holds because we can compute the string x from the numbers $\operatorname{str}^{-1}(x)+$ $d+c+1$ and d. Let $n=s t r^{-1}(x)+d+c+1$ and $d^{\prime}=d+4|d|+\mathcal{O}(1)$. For fixed x and d, the mapping $y \mapsto f(x, y, d)$ is injective and thus

$$
\begin{aligned}
|\{y: C(x, y) \leq C(x)+d\}| & \leq\left|\left\{\sigma:|\sigma|=n \wedge C(\sigma) \leq C(n)+d^{\prime}\right\}\right| \\
& \leq \mathcal{O}\left(2^{d^{\prime}}\right)=\mathcal{O}\left(d^{4} 2^{d}\right)
\end{aligned}
$$

This completes the proof.
Theorem 17. The following are equivalent:
(i) A is strongly jump-traceable;
(ii) For every order function h and almost every $x, C(x) \leq C^{A}(x)+h\left(C^{A}(x)\right)$.

Proof. For any function f, let $\hat{f}(y)=y+f(y)$ for all y.
(i) \Rightarrow (ii). Let h_{0} be a given order function. It is sufficient to show that $C(x) \leq \hat{h}\left(C^{A}(x)\right)+$ $\mathcal{O}(1)$ for almost all x, where $h=\left\lfloor h_{0} / 2\right\rfloor$. Let α be a reduction function such that $J^{A}(\alpha(x))=U^{A}(\operatorname{str}(x))$. Let T be a trace for J^{A} with bound g such that $g(\alpha(x)) \leq$ $h(|\operatorname{str}(x)|)$. Let $m \in \mathbb{N}$ be such that $U^{A}(\operatorname{str}(m))=y$ and $|\operatorname{str}(m)|=C^{A}(y)$. Since $y \in T_{\alpha(m)}$, we can code y with m and a number not greater than $g(\alpha(m))$ (representing the time in which y is enumerated into $T_{\alpha(m)}$), using at most

$$
|\operatorname{str}(m)|+g(\alpha(m)) \leq C^{A}(y)+h\left(C^{A}(y)\right)
$$

many bits. Then $\forall y C(y) \leq \hat{h}\left(C^{A}(y)\right)+\mathcal{O}(1)$.
(ii) \Rightarrow (i). Since there are at most $2^{n}-1$ programs of length $<n, \forall n \exists x[|x|=n \wedge n \leq C(x)]$. Let c be a constant such that

$$
\forall x\left[J^{A}(|x|) \downarrow \Rightarrow C^{A}\left(x, J^{A}(|x|)\right) \leq|x|+c\right] .
$$

This last inequality holds because, given x, we can compute $J^{A}(|x|)$ relative to A.

Let h be any order function and let us prove that A is jump-traceable via h. Define the order function g such that for almost all $e, 3^{g(e+c)} \leq h(e)$. By hypothesis, for almost all x, if $J^{A}(|x|) \downarrow$ then

$$
\begin{aligned}
C\left(x, J^{A}(|x|)\right) & \leq \hat{g}\left(C^{A}\left(x, J^{A}(|x|)\right)\right) \\
& \leq|x|+g(|x|+c)+c .
\end{aligned}
$$

Define the trace

$$
T_{e}=\{y: \forall x[|x|=e \Rightarrow C(x, y) \leq e+g(e+c)+c]\} .
$$

It is clear that for almost all e, if $J^{A}(e) \downarrow$ then $J^{A}(e) \in T_{e}$, because given x such that $|x|=e$, we have $C\left(x, J^{A}(e)\right) \leq e+g(e+c)+c$. To verify that for almost all $e,\left|T_{e}\right| \leq h(e)$, suppose $y \in T_{e}$. Take $x,|x|=e$ and $C(x) \geq e$. Then

$$
\begin{aligned}
C(x, y) & \leq e+g(e+c)+c \\
& \leq C(x)+g(e+c)+c .
\end{aligned}
$$

By Lemma 16, for almost all e there are at most $3^{g(e+c)} \leq h(e)$ such y 's in T_{e}.
In [19], it was proven that there is a super-low which is not jump-traceable (namely, a super-low Martin-Löf random set). In contrast, from Theorem 15 and Theorem 17 we can conclude that the strong version of super-lowness implies strong jump-traceability.

Corollary 18. If A^{\prime} is well-approximable then A is strongly jump-traceable.

6 Variations on K-triviality

Throughout this section, let $p: \mathbb{N} \rightarrow \mathbb{N}$ be strictly increasing such that in addition $\lim _{n} p(n)-n=\infty$. We call p an estimation function if, in addition, $p(n)=\lim _{s} p_{s}(n)$ where $p_{s+1}(n) \leq p_{s}(n)$, and the function $\lambda s, n \cdot p_{s}(n)$ is recursive. An example of such a function is $q(n)=n+5 \cdot \min \{K(m): m \geq n\}$ with the approximation $q_{s}(n)=n+5 \cdot \min \left\{K_{s}(m)\right.$: $s \geq m \geq n\}$. Recall that A is K-trivial iff

$$
\exists c \forall n K(A \upharpoonright n) \leq K(n)+c .
$$

Nies [18] showed that A is K-trivial if and only if A is low for K, i.e. $\exists c \forall x K(x) \leq$ $K^{A}(x)+c$. In this section we weaken the notion of lowness for K :

Definition 19. (i) A set A is weakly p-low iff $\forall n K(A \upharpoonright n) \leq p\left(K(n)+c_{0}\right)+c_{1}$ for some constants c_{0} and c_{1}. Let $\mathcal{K}[p]$ denote the class of such sets.
(ii) A set A is p-low iff $\forall y K(y) \leq p\left(K^{A}(y)+c_{0}\right)+c_{1}$ for some constants c_{0} and c_{1}. Let $\mathcal{M}[p]$ denote the class of such sets.

Proposition 20. (i) If $A \in \mathcal{M}[p]$ and $B \leq_{T} A$, then $B \in \mathcal{M}[p]$.
(ii) If $A \in \mathcal{K}[p]$ and $B \leq_{K} A$ or $B \leq_{w t t} A$, then $B \in \mathcal{K}[p]$.
(iii) Suppose p is an estimation function. Then no random set is in $\mathcal{K}[p]$.
(iv) If $A, B \in \mathcal{K}[p]$ and A, B are r.e., then

$$
A \oplus B=\{2 x: x \in A\} \cup\{2 x+1: x \in B\} \in \mathcal{K}[p] .
$$

(v) $\mathcal{M}[p] \subseteq \mathcal{K}[p]$.

Proof. (i). Since $B \leq_{T} A$, there exists a constant c_{2} such that for each string $y, K^{A}(y) \leq$ $K^{B}(y)+c_{2}$. Then

$$
\begin{aligned}
K(y) & \leq p\left(K^{A}(y)+c_{0}\right)+c_{1} \\
& \leq p\left(K^{B}(y)+c_{0}+c_{2}\right)+c_{1} .
\end{aligned}
$$

(ii). This is trivial for \leq_{K}. Now suppose $B=\Gamma^{A}$ for a weak truth-table reduction Γ with recursive bound f. Without loss of generality, we may assume f strictly increasing. Given $A \upharpoonright f(n)$ we can compute n and $B \upharpoonright n$, and then there is a constant c_{2} such that for all n,

$$
\begin{aligned}
K(B \upharpoonright n) & \leq K(A \upharpoonright f(n))+c_{2} \\
& \leq p\left(K(f(n))+c_{0}\right)+c_{1}+c_{2} .
\end{aligned}
$$

Since f is recursive, we have $K(f(n)) \leq K(n)+\mathcal{O}(1)$, and hence $B \in \mathcal{K}[p]$.
(iii). Assume $\forall n K(A \upharpoonright n)>n-c$ and $A \in \mathcal{K}[p]$ via constants c_{0} and c_{1}. Define the strictly increasing recursive function $\tilde{p}(0)=p_{0}(0)$ and $\tilde{p}(k+1)=p_{0}(j)$, where $j=$ $\min \left\{i: i>k \wedge p_{0}(i)>\tilde{p}(k)\right\}$. Since $\tilde{p} \geq p, A \in \mathcal{K}[\tilde{p}]$. Define the Kraft-Chaitin set $\left\{\left\langle i, n_{i}\right\rangle: i \in \mathbb{N}^{+} \wedge n_{i}=\tilde{p}\left(i+d+c_{0}\right)+c_{1}+c\right\}$ for M_{d} with d given in advance by the Recursion Theorem. Then $K\left(n_{i}\right) \leq i+d$ and hence $\tilde{p}\left(K\left(n_{i}\right)+c_{0}\right) \leq \tilde{p}\left(i+d+c_{0}\right)$. Finally,

$$
\begin{aligned}
K\left(A \upharpoonright n_{i}\right) & \leq \tilde{p}\left(K\left(n_{i}\right)+c_{0}\right)+c_{1} \\
& \leq \tilde{p}\left(i+d+c_{0}\right)+c_{1}=n_{i}-c,
\end{aligned}
$$

and this is a contradiction.
(iv). Ignoring constants, for each n,

$$
\begin{aligned}
K(A \oplus B \upharpoonright n) & \leq K(A \oplus B \upharpoonright 2 n) \\
& \leq \max \{K(A \upharpoonright n), K(B \upharpoonright n)\} \\
& \leq p(K(n)) .
\end{aligned}
$$

In the second inequality we used [12, Theorem 6.4].
(v). Again ignoring constants, for all n,

$$
\begin{aligned}
K(A \upharpoonright n) & \leq p\left(K^{A}(A \upharpoonright n)\right) \\
& \leq p\left(K^{A}(n)\right) \\
& \leq p(K(n)) .
\end{aligned}
$$

This completes the proof.
The following proposition shows a connection between jump-traceability and p-lowness. In Theorem 17 we proved a similar result, relating strong jump-traceability and plain Kolmogorov complexity.

Proposition 21. (i) Suppose p is a recursive function. There is a constant c such that if $A \in \mathcal{M}[p]$ via constants c_{0} and c_{1} then A is jump-traceable via $h(x)=$ $2^{p\left(2|x|+c_{0}+c\right)+c_{1}+1} ;$
(ii) There is a reduction function α such that if A is jump-traceable via h then $A \in \mathcal{M}[p]$ for $p(z)=3 z+2\left|h\left(\alpha\left(2^{z+1}\right)\right)\right|$.

Proof. For (i), we know that there is a constant c such that $K^{A}\left(J^{A}(x)\right) \leq 2|x|+c$ because we can compute $J^{A}(x)$ from x and the oracle A. Define the trace

$$
T_{x}=\left\{U(\sigma):|\sigma| \leq p\left(2|x|+c_{0}+c\right)+c_{1}\right\} .
$$

Clearly $\left|T_{x}\right| \leq 2^{p\left(2|x|+c_{0}+c\right)+c_{1}+1}$. Let $y=J^{A}(x)$. By hypothesis $K(y) \leq p\left(K^{A}(y)+c_{0}\right)+c_{1}$ and then $K(y) \leq p\left(2|x|+c+c_{0}\right)+c_{1}$. Hence $y \in T_{x}$.

For (ii), let α be a reduction function such that $J^{A}(\alpha(x))=U^{A}(\operatorname{str}(x))$. Let T be a trace for J^{A} with bound h and let us define the trace

$$
\tilde{T}_{n}=\bigcup_{x:|\operatorname{str}(x)|=n} T_{\alpha(x)} .
$$

Notice that

$$
\begin{aligned}
\left|\tilde{T}_{n}\right| & \leq \sum_{x:|s t r(x)|=n} h(\alpha(x)) \\
& \leq 2^{n} h\left(\alpha\left(2^{n+1}\right)\right),
\end{aligned}
$$

since α is increasing. Let $m \in \mathbb{N}$ be such that $U^{A}(\operatorname{str}(m))=y$ and $|\operatorname{str}(m)|=K^{A}(y)$. Since $y \in T_{\alpha(m)}$, we know that $y \in \tilde{T}_{|s t r(m)|}$, hence we describe y by saying " y is the i-th element enumerated into $\tilde{T}_{|s t r(m)|}$ ". If we code $|\operatorname{str}(m)|$ in unary and we code i with

$$
\begin{aligned}
2|i| & \leq 2\left|2^{|s \operatorname{tr}(m)|} h\left(\alpha\left(2^{|s \operatorname{tr}(m)|+1}\right)\right)\right| \\
& \leq 2|\operatorname{str}(m)|+2\left|h\left(\alpha\left(2^{|\operatorname{str}(m)|+1}\right)\right)\right|
\end{aligned}
$$

many bits, we have $K(y) \leq p\left(K^{A}(y)\right)+\mathcal{O}(1)$, for $p(z)=3 z+2\left|h\left(\alpha\left(2^{z+1}\right)\right)\right|$.

Corollary 22. A is jump-traceable iff there exists a recursive function p (of the type considered in this section) such that $A \in \mathcal{M}[p]$.

Figueira, Stephan and Wu [14, Proposition 6] used a universal machine which has the property that there is an approximation K_{s} of K from above with $K_{x}(x)=K(x)$ for all $x \in X$ where $X=\{x: \forall y>x(K(y)>K(x))\}$. For the following example, such a universal machine is assumed. The next example shows that there is a set in $\mathcal{M}[q]$ where q is as defined at the beginning of Section 6 which is not K-trivial. Note that r differs from the function in Lemma 6 only by using K instead of C and has the same properties as the function given there.

Example 23. Let $r(n)=\min \{K(m): m \geq n\}$ and $q(n)=n+5 \cdot r(n)$. Then there is a set $A \in \mathcal{M}[q] \backslash \Delta_{2}^{0}$.

Proof. Note that the set $X=\left\{x: \forall y>x \forall t\left(K_{t}(y)>K_{x}(x)\right)\right\}$ is co-r.e. and that it has a co-r.e. subset Y of the form $\left\{y_{0}, y_{1}, \ldots\right\}$ such that, for all $n, y_{n}=K\left(y_{n+1}\right)=K_{y_{n+1}}\left(y_{n+1}\right)$. As $K(0)>0$ one might have the undesirable property that $y_{n+1}<y_{n}$ for some n. But as there are only finitely many numbers x with $K(x)>x$, one simply adds to the construction of Y the condition that y_{0} is taken to be the first element of X larger than these finitely many exceptions and so one has the additional property that $y_{n+1}>y_{n}$ for all n.

Now one defines a partition I_{0}, I_{1}, \ldots of the natural numbers into intervals such that $\left|I_{x}\right|=K_{x}\left(K_{x}(x)\right)$ and $\max \left(I_{x}\right)+1=\min \left(I_{x+1}\right)$. Note that none of these intervals is empty as $K_{x}\left(K_{x}(x)\right)>0$ for all x which is due to the fact that a prefix-free universal machine is undefined on the empty input.

Having the partition, one defines a partial-recursive function ψ in stages s where one does the following algorithm where ψ is everywhere undefined before stage 0 . The set E will be chosen such that its characteristic function is a suitable extension of ψ and let ψ_{s} denote the approximation to ψ before stage s.

- Find the least x, y such that $x \leq s, y \in I_{x}, \psi(y)$ is undefined and either (1) $x \notin Y_{s}$ or (2) there is a string $\sigma \in\{0,1\}^{\max \left(I_{x}\right)+1}$ such that $K_{s}(\sigma)<K_{s}(x)+0.5 \cdot \log \left(\left|I_{x}\right|\right)$ and σ is consistent with ψ_{s}, that is, $\psi_{s}(z)=\sigma(z)$ for all $z \in \operatorname{domain}\left(\psi_{s}\right) \cap\left\{0,1, \ldots \max \left(I_{x}\right)\right\}$.
- In the case that no x, y were found, let $\psi_{s+1}=\psi_{s}$.
- In the case that x, y were found according to condition (1), let $\psi_{s+1}(y)=0$ and let $\psi_{s+1}(z)=\psi_{s}(z)$ for all $z \neq y$.
- In the case that x, y were found according to condition (2), let $\psi_{s+1}(y)=1-\sigma(y)$ and let $\psi_{s+1}(z)=\psi_{s}(z)$ for all $z \neq y$.

Now let A be a set whose characteristic function extends ψ and which is low for Ω. Such a set A exists since ψ defines a Π_{1}^{0} class and Downey, Hirschfeldt, Miller and Nies [11] showed every Π_{1}^{0} class (of sets) has a member which is low for Ω.

Reviewing the construction of ψ, condition (1) enforces that ψ is defined on the complete interval I_{x} if $x \notin Y$ and condition (2) enforces that if $x=y_{n}$ and n is large enough then the

Kolmogorov complexity of $A \upharpoonright \max \left(I_{y_{n}}\right)$ is at least $K\left(y_{n}\right)+\log \left(\left|I_{y_{n}}\right|\right) / 2$. To see this, one should have in mind that $x \rightarrow \max \left(I_{x}\right)$ is a recursive injective function, that $K_{y_{n}}\left(y_{n}\right)=$ $K\left(y_{n}\right)$ and that the number of σ of length $\max \left(I_{y_{n}}\right)+1$ with $K(\sigma) \leq K\left(y_{n}\right)+\log \left(\left|I_{y_{n}}\right|\right) / 2$ is bounded by a function proportional to $\sqrt{\left|I_{y_{n}}\right|}$. So there will for all sufficiently large n remain some elements in $I_{y_{n}}$ where ψ is undefined. As the intervals $I_{y_{n}}$ are of unbounded length, this enforces that for sufficiently large n the value of $K\left(A \upharpoonright \max \left(I_{y_{n}}\right)\right)$ is at least $K\left(y_{n}\right)+\log \left(\left|I_{y_{n}}\right|\right) / 2$ while on the other hand $K\left(\max \left(I_{y_{n}}\right)\right)$ is only a constant above $K\left(y_{n}\right)$. So A is not K-trivial. Since every low for Ω set is either K-trivial or not Δ_{2}^{0}, A is also not Δ_{2}^{0}, that is, not limit-recursive.

Now it is shown that the set A constructed satisfies $K^{A}(x) \leq q(K(x))+c_{0}$ for some constant c_{0} and all x. This needs some facts about the sequence y_{0}, y_{1}, \ldots and the complexities of these strings relative to A.

For ease of notation, U^{A} denotes the universal prefix-free machine relative to A and $U=U^{\emptyset}$ the unrelativized one. Let a_{n} be an input of shortest length such that $U^{A}\left(a_{n}\right)=y_{n}$ and let b_{n} be an input of length y_{n-1} such that $U\left(b_{n}\right)=y_{n}$.

Now consider all the n such that $\left|a_{n}\right| \leq y_{n-1}-2 y_{n-2}$. Then one has a prefix-free machine V^{A} and a partial-recursive coding function θ such that

- $V^{A}\left(b_{n-1} a_{n}\right)$ computes $\Omega_{y_{n}} \upharpoonright y_{n-1}-y_{n-2}-c_{1}$;
- $U\left(\theta\left(b_{n-1} \Omega \upharpoonright y_{n-1}-y_{n-2}-c_{1}\right)\right)$ computes $\min \left\{s: \Omega_{s} \upharpoonright\left(y_{n-1}-y_{n-2}-c_{1}\right)=\Omega \upharpoonright\right.$ $\left.\left(y_{n-1}-y_{n-2}-c_{1}\right)\right\}$.
where the constant c_{1} is so large that θ can be chosen such that $\left|\theta\left(b_{n-1} d\right)\right| \leq y_{n-1}$ for all $d \in\{0,1\}^{y_{n-1}-y_{n-2}-c_{1}}$. As a consequence, the computation $U\left(\theta\left(b_{n-1} \Omega \upharpoonright y_{n-1}-y_{n-2}-c_{1}\right)\right)$ needs less than y_{n} steps. Thus, $V^{A}\left(b_{n-1} a_{n}\right)$ computes $\Omega \upharpoonright y_{n-1}-y_{n-2}-c_{1}$ and $\left|b_{n-1} a_{n}\right|=$ $y_{n-2}+\left|a_{n}\right| \leq y_{n-1}-y_{n-2}$. Since Ω is random relative to A, this can happen only for finitely many n and one has that $\left|a_{n}\right|>y_{n-1}-2 y_{n-2}$ for almost all n.

Now assume that $n>1$ and $\left|a_{n}\right|>y_{n-1}-2 y_{n-2}$. Let $E_{n}=\left\{e: U^{A}(e)\right.$ needs at least $\min \left(I_{y_{n}}\right)$ and at $\operatorname{most} \min \left(I_{y_{n+1}}\right)-1$ steps $\}$. Note that for $e \in E_{n}, b_{n}$ is that string of length y_{n-1} for which $U\left(b_{n}\right)$ terminates last within the computation-time of $U^{A}(e)$ and $y_{n}=U\left(b_{n}\right)$. So one has a constant c_{2} and for each e a prefix-free input d of length $|e|+K\left(y_{n-1}\right)+c_{2}$ such that $U^{A}(d)=y_{n}$. This gives that there is a constant c_{3} with

$$
\sum_{e \in E_{n}} 2^{-|e|-c_{2}-K\left(y_{n-1}\right)}<2^{c_{3}-\left|a_{n}\right|}
$$

what using $\left|a_{n}\right|>y_{n-1}-2 y_{n_{2}}$ can be transformed to

$$
\sum_{e \in E_{n}} 2^{y_{n-1}-c_{2}-c_{3}-3 y_{n-2}-e}<1 .
$$

There is a partial-recursive function g such that $g\left(b_{n}\right)=\left|I_{y_{0}} \cup I_{y_{1}} \cup \ldots \cup I_{y_{n}}\right|$. Now one can construct a prefix-free machine which on input $b d$ with $U(b)$ being defined and $|d|=g\left(b_{n}\right)$ enumerates requests of weight at most 2^{-b-d} with the additional constraint that, in the
case that $b=b_{n}$ and d is the restriction of A to $I_{y_{0}} \cup I_{y_{1}} \cup \ldots \cup I_{y_{n}}$, the requests are just an enumeration of the set

$$
\left\{\langle | b_{n}\left|+g\left(b_{n}\right)+|e|+c_{2}+c_{3}+3 y_{n-2}-y_{n-1}, U^{A}(e)\right\rangle: e \in E_{n}\right\} .
$$

Recall that the weight of a request $\langle i, j\rangle$ is 2^{-i}. So the sum of the weights of all requests is at most 1. Note from b_{n} and d one can compute $y_{0}, y_{1}, \ldots, y_{n}$ and A on $I_{y_{0}} \cup I_{y_{1}} \cup \ldots \cup I_{y_{n}}$ so that the enumeration is effective. By the inequality

$$
\sum_{e \in E_{n}} 2^{y_{n-1}-c_{2}-c_{3}-3 y_{n-2}-e}<1
$$

from above one has that the bound on the weight of the requests is kept. Assume that $|e|=K^{A}(x)$ and $U^{A}(e)=x$ and x is so large that $e \in E_{n}$ for an n satisfying that $g\left(b_{n}\right) \leq 2 y_{n-2}$ and that n does not fall under the finitely many exceptions considered above. Then there is a request of the form $\langle | e\left|+g\left(b_{n}\right)+c_{2}+c_{3}+3 y_{n-2}, x\right\rangle$. It follows from the Kraft-Chaitin Theorem that there is a constant c_{4} with $K^{A}(x) \leq|e|+5 y_{n-2}+c_{4}$ for the n with $e \in E_{n}$.

As for almost all $n,\left|a_{n}\right|>y_{n-1}-2 y_{n-2}$ and as one can compute y_{n} relative to A from y_{n-2} plus an upper bound on y_{n}, one has that for almost all n and every e with $U^{A}(e)$ needing more than y_{n} steps that $|e|>y_{n-1}-3 y_{n-2}-c_{5}$ for some constant c_{5}. Since r grows slower than every unbounded and nondecreasing recursive function and $y_{n-1}-3 y_{n-2}-c_{5}>$ $y_{n-1} / 2$ for almost all n, there is a constant c_{6} such that $r(e) \geq r\left(y_{n}\right)-c_{6}=y_{n-2}-c_{6}$ where c_{6} is independent of e, n as long as $e \in E_{n}$. So one has that $K\left(U^{A}(e)\right) \leq|e|+5 r(|e|)+c_{4}+5 c_{6}$.

One can now cover the case the $x=U^{A}(e)$ the finitely many x where $U^{A}(e)$ needs at $\operatorname{most} \min \left(I_{y_{n+1}}\right)-1$ steps for some of the finitely many exceptional n in the case distinction above by taking c_{0} to be sufficiently much larger than $c_{4}+5 c_{6}$ and obtains that

$$
\forall x K(x) \leq K^{A}(x)+5 r\left(K^{A}(x)\right)+c_{0}=q\left(K^{A}(x)\right)+c_{0}
$$

what completes the proof.
One should note that the real difficulty of this construction stems from the fact that the constructed set has to be p-low and not only weakly p-low. For estimation functions, the construction of weakly p-low sets is quite straight-forward. Note that the resulting set is not K-trivial as it is Turing complete.

Proposition 24. Let p be an estimation function. Then there is a Turing complete r.e. set A which is weakly p-low and also satisfies the corresponding property for C : there are constants c_{K}, c_{C} such that $K(A \upharpoonright x) \leq p(K(x))+c_{K}$ and $C(A \upharpoonright x) \leq p(C(x))+c_{C}$ for all x.

Proof. For defining an enumeration of A, fix a one-one enumeration b_{0}, b_{1}, \ldots of the halting problem and approximations C_{s}, K_{s} to C, K. Let $A_{0}=\emptyset$. At stage $s+1$, let a_{m} be the m-th nonelement of A_{s} in ascending order. Now the set A_{s+1} is computed as follows.

- Let n be the minimum of all m such that one of the following conditions holds:
$-a_{m}>s ;$
$-b_{s} \leq m$;
- $p_{s}\left(K_{s}(k)\right)-K_{s}(k) \leq m$ for some k with $a_{m} \leq k \leq s$;
- $p_{s}\left(C_{s}(k)\right)-C_{s}(k) \leq m$ for some k with $a_{m} \leq k \leq s$.
- Let $A_{s+1}=A_{s} \cup\left\{x: a_{n} \leq x \leq s\right\}$.

The so constructed set A satisfies the following properties:

- A is coinfinite and r.e.;
- A is Turing complete;
- $K(A \upharpoonright x) \leq p(K(x))+c_{K}$ for some constant c_{K} and all x;
- $C(A \upharpoonright x) \leq p(C(x))+c_{C}$ for some constant c_{C} and all x.

The first property states the obvious fact that A is r.e. by the construction. The other fact that A is co-infinite needs some more thought. Assume by way of contradiction that $|\bar{A}|=m$ for some finite number m. Let $a_{0}, a_{1}, \ldots, a_{m-1}$ denote the nonelements of A in ascending order and assume that s is so large that the following conditions hold:

- if $b_{t} \leq m$ then $t<s$;
- for all $x \in A-A_{s}$ there is no $k \geq x$ and no $e \geq \min \{C(k), K(k)\}$ such that $p(e)-e \leq m$;
- if $x \leq a_{m-1}+1$ then $x \in A \Leftrightarrow x \in A_{s}$.

Then one can see that the parameters $a_{0}, a_{1}, \ldots, a_{m-1}$ chosen in the definition of step s coincide with the m least nonelements of A and are just not enumerated. Furthermore, a_{m} is also defined as the next nonelement of A_{s}. Note that $a_{m} \leq s$ as $s \notin A_{s}$. Now one can see that a_{m} is not enumerated into A_{s+1} because the n selected is larger than m : for all $m^{\prime}<m, n \neq m^{\prime}$ because otherwise $a_{0}, a_{1}, \ldots, a_{m-1}$ would not remain outside A; furthermore, $n \neq m$ as the first and second item in the conditions on s together with the facts that p_{s} approximates p from above and $a_{m} \leq s$ imply that m does not satisfy the search-conditions. So $a_{m} \notin A_{s+1}$ and one can show by induction that $a_{m} \notin A_{t}$ for all $t>s$, this contradicts the assumption that $|\bar{A}|=m$. Therefore, A is coinfinite.

The second property follows from the construction. If a_{0}, a_{1}, \ldots are the nonelements of A in ascending order, then $b_{s} \leq m$ implies $s \leq a_{m}$. Thus m is in the halting problem iff $m \in\left\{b_{0}, b_{1}, \ldots, b_{a_{m}}\right\}$ and so the halting problem is Turing reducible to A.

The third property can be seen as follows: Given x and the shortest description σ for x with respect to a fixed prefix-free universal machine, let n be the number of nonelements of A below x. Then one can construct a prefix-free machine which from input $1^{n} 0 \sigma$ first
evaluates the universal machine on σ to get the value x and then searches for a stage s such that A_{s} contains all but n elements below x. Having this x and s, the machine outputs $A_{s} \upharpoonright x$. If σ and n are chosen correctly, then the output is correct. Thus one has that $K(A \upharpoonright x)$ is at most $K(x)+n+c_{K}$ where the constant c_{K} comes from translating the given prefix-free coding of $K(A \upharpoonright x)$ of length $K(x)+n+1$ for some machine into inputs for the universal machine. Furthermore, for all sufficiently large $s, K_{s}(x)+n \leq p_{s}\left(K_{s}(x)\right)$ as otherwise the marker a_{n-1} would move. Therefore $K(x)+n \leq p(K(x))$ and A is weakly p-low.

The fourth property can be proven analogously; here the constructed machine is not prefix-free and σ is the shortest input producing x with respect to some fixed universal plain machine, nevertheless σ and n can of course still be recovered from $1^{n} 0 \sigma$. The rest of the proof follows the previous item but is working with C in place of K. This completes the proof of the whole result.

For any estimation function p and the above constructed $A \in \mathcal{K}[p], \Omega \leq_{T} A$ and thus $A \notin \mathcal{M}[p]$ by Proposition 20 (i) and (iii). Thus the inclusion from Proposition 20 (v) is strict.

Corollary 25. For all estimation functions $p, \mathcal{M}[p] \subset \mathcal{K}[p]$.
Proposition 26. For every estimation function p there is a whole Turing degree outside Δ_{2}^{0} contained in $\mathcal{K}[p]$.

Proof. For any estimation function p one can consider the estimation function q given as $q(n)=n+\log (p(n)-n) / 2$. Then one can construct a r.e. set A as in Proposition 24 which is in $\mathcal{K}[q]$.

The set A is not recursive. Thus, due to Yates's version of the Friedberg-Muchnik Splitting Theorem [20, Theorem IX.2.4 and Exercise IX.2.5], one can construct a partialrecursive $\{0,1\}$-valued function ψ with domain A such that $\psi^{-1}(0), \psi^{-1}(1)$ form a recursively inseparable pair, that is, ψ does not have a total extension. Actually, given a one-one enumeration a_{0}, a_{1}, \ldots of A, this function ψ can be inductively defined on this domain by taking $\psi\left(a_{s}\right)$ in $\{0,1\}$ such that $\psi\left(a_{s}\right)$ differs from $\varphi_{e, s}\left(a_{s}\right)$ for the least e where either $e=s$ or $\varphi_{e, s}\left(a_{s}\right)$ is defined and $\psi\left(a_{t}\right)=\varphi_{e, s}\left(a_{t}\right)$ for all $t<s$ with $a_{t} \in \operatorname{domain}\left(\varphi_{e, s}\right)$.

Every total extension B of ψ is in $\mathcal{K}[p]$ as given any n and any x, the number m of places below x where ψ is undefined satisfies $m<q(K(x))-K(x)$. Let $x_{1}, x_{2}, \ldots, x_{m}$ be these places. Let σ be the shortest input such that the universal machine for K computes x. Then one can code $B \upharpoonright x$ by $1^{m} 0 B\left(x_{1}\right) B\left(x_{2}\right) \ldots B\left(x_{m}\right) \sigma$ and thus has that $K(B \upharpoonright x)$ is below $p(K(x))$. As one can take B to have hyperimmune-free Turing degree [20, Theorem V.5.34] and as $\mathcal{K}[p]$ is closed under wtt-reducibility, one has that a whole Turing degree outside Δ_{2}^{0} is contained in $\mathcal{K}[p]$.

Note that the above result also holds with C in place of K, the proof is exactly the same. So given an estimation function p, one can construct a hyperimmune-free Turing degree only consisting of sets E satisfying $C(E \upharpoonright x) \leq p(E(x))$ for all x up to an additive constant. Unfortunately, it is not guaranteed that this degree is also strongly jump-traceable, it is
even a bit unlikely, as only the use of total E-recursive functions but not of the jump is recursively bounded in the case of a set E of hyperimmune-free degree.

References

[1] Klaus Ambos-Spies, Carl G. Jockusch and Robert Shore, An algebraic decomposition of the recursively enumerable degrees and classes equal to the promptly simple degrees, Transactions of the American Mathematical Society 281:109-128, 1984.
[2] Marat M. Arslanov, On some generalizations of the Fixed-Point Theorem, Soviet Mathematics (Iz. VUZ), Russian, 25(5):9-16, 1981, English translation, 25(5):1-10, 1981.
[3] Marat M. Arslanov, M-reducibility and fixed points, Complexity problems of mathematical logic, Collection of scientific Works, Russian, Kalinin, pages 11-18, 1985.
[4] Mark Bickford and Charlie F. Mills, Lowness properties of r.e. sets, Manuscript, UW Madison, 1982.
[5] Cristian Calude, Peter Hertling, Bakhadyr Khoussainov and Yongge Wang, Recursively enumerable reals and Chaitin's Ω number, in STACS 1998, Lecture Notes in Computer Science 1373:596-606, 1998.
[6] Gregory Chaitin, A theory of program size formally identical to information theory, Journal of the Association for Computing Machinery 22:329-340, 1975.
[7] Gregory Chaitin. Information-theoretical characterizations of recursive infinite strings, Theoretical Computer Science, 2:45-48, 1976.
[8] Gregory Chaitin, Information, Randomness 8 Incompleteness, 2nd edition, Series in Computer Science 8, World Scientific, River Edge, NJ, 1990.
[9] Nigel Cutland, Computability, an introduction to recursive function theory, Cambridge University Press, Cambridge, 1980.
[10] Rod Downey and Denis Hirschfeldt, Algorithmic Randomness and Complexity, Springer-Verlag, in preparation.
[11] Rod Downey, Denis Hirschfeldt, Joseph Miller and André Nies, Relativizing Chaitin's halting probability, manuscript, 2005.
[12] Rod Downey, Denis Hirschfeldt, André Nies and Frank Stephan, Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences, World Scientific, River Edge, NJ, pages 103-131, 2003.
[13] Rod Downey and Geoffrey L LaForte, Presentations of computably enumerable reals, Theoretical Computer Science, to appear.
[14] Santiago Figueira, Frank Stephan and Guohua Wu, Randomness and universal machines, CCA 2005, Second International Conference on Computability and Complexity in Analysis, Fernuniversität Hagen, Informatik Berichte 326:103-116, July 2005.
[15] Bjørn Kjos-Hanssen, Wolfgang Merkle and Frank Stephan, Kolmogorov complexity and the Recursion theorem, Manuscript, 2005.
[16] Ming Li and Paul Vitányi, An introduction to Kolmogorov complexity and its applications, Second Edition, Springer, Heidelberg, 1997.
[17] Jeanleah Mohrherr, A refinement of low n and high n for the r.e. degrees, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32(1):5-12, 1986.
[18] André Nies. Lowness properties and randomness, Advances in Mathematics, 197:274305, 2005.
[19] André Nies, Reals which compute little, CDMTCS Research Report 202, The University of Auckland, Dec. 2002.
[20] Piergiorgio Odifreddi, Classical recursion theory Volume 1, North-Holland, Amsterdam 1989, Volume 2, Elsevier, Amsterdam 1999.
[21] Robert I. Soare, Recursively enumerable sets and degrees, Springer, Heidelberg, 1987.
[22] Robert Solovay, Draft of a paper (or series of papers) on Chaitin's work, unpublished manuscript, 215 pages, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1975.
[23] Sebastiaan Terwijn and Domenico Zambella, Algorithmic randomness and lowness, The Journal of Symbolic Logic, 66:1199-1205, 2001.
[24] Yongge Wang, Randomness and Complexity, PhD Dissertation, University of Heidelberg, 1996.

[^0]: *Department of Computer Science, FCEyN, University of Buenos Aires, Argentina
 ${ }^{\dagger}$ Department of Computer Science, The University of Auckland, New Zealand
 ${ }^{\ddagger}$ Departments of Computer Science and Mathematics, National University of Singapore, Singapore

