
Turing’s unpublished algorithm
for normal numbers

Verónica Becher∗ Santiago Figueira∗ Rafael Picchi∗

Abstract

In an unpublished manuscript Alan Turing gave a computable construction to
show that absolutely normal real numbers between 0 and 1 have Lebesgue measure
1; furthermore, he gave an algorithm for computing instances in this set. We complete
his manuscript by giving full proofs and correcting minor errors. While doing this,
we recreate Turing’s ideas as accurately as possible. One of his original lemmas
remained unproved but we have replaced it with a weaker lemma that still allows us
to maintain Turing’s proof idea and obtain his result.

1 Introduction

In this paper we reconstruct Alan Turing’s manuscript entitled “A note on normal num-
bers” which remained unpublished until 1992, when it was included in the “Collected works
of Alan Turing” edited by J.L. Britton [15, pp. 117–119, with notes of the editor in pp.
263–265]. The original manuscript is in Turing’s archive in King’s College, Cambridge,
and a scanned version of it is available on the Web from www.turingarchive.org.

Our motivation for this work was to explore and make explicit the techniques used by
Turing in relation to normal numbers, especially because there are still no known general
methods to prove normality of given real numbers nor there are fast algorithms to construct
absolutely normal numbers (see [3, 12, 13]).

In his manuscript Turing states two theorems here transcribed as Theorems 1 and 2.
The first gives a computable construction to show that almost all real numbers are abso-
lutely normal. A non-constructive proof of this result was given by Émile Borel in 1909 [5].
A constructive, but not effectively based proof was given by Sierpiński in 1917 [14], when
computability theory was still undeveloped. Turing’s and Sierpiński’s constructions not
only differ in terms of computability but they are based on different (though equivalent)
definitions of absolute normality (see Definition 4). In modern terms, Theorem 1 proves
that the set of reals in (0, 1) that are not absolutely normal are included in an effectively
null set, and Turing gives an explicit convergence bound for this fact.
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We denote with µ (A) the Lebesgue measure of a set A ⊆ R and P(A) is the power set
of A.

Theorem 1 (Turing’s first theorem). There is a computable function
c : N× N → P((0, 1)) such that

1. c(k, n) is a finite union of intervals with rational endpoints;

2. c(k, n + 1) ⊆ c(k, n);

3. µ (c(k, n)) > 1− 1/k.

and for each k, E(k) =
⋂

n c(k, n) has measure 1 − 1/k and consists entirely of absolutely
normal reals.

The function c is computable in the sense that given k and n we can compute a1 < b1 <
a2 < b2 < · · · < am < bm (m depending on k and n) such that ai, bi are rationals in (0, 1)
and c(k, n) = (a1, b1) ∪ · · · ∪ (am, bm). 1

Our proof of Theorem 1 is indeed a completion of Turing’s. But one of his original lem-
mas, a constructive version of the Strong Law of Large Numbers (see Lemma 7), remained
unproved. We substituted it with a weaker version (Lemma 8) that still allows to preserve
Turing’s proof idea and obtain his result.

Turing’s second theorem gives an affirmative answer to the then outstanding question
of whether there are computable normal numbers.

Theorem 2 (Turing’s second theorem). There is an algorithm that, given k ∈ N and an
infinite sequence θ ∈ {0, 1}∞, produces an absolutely normal real number α ∈ (0, 1) in the
scale of 2. For a fixed k these numbers α form a set of Lebesgue measure at least 1− 2/k,
and so that the first n digits of θ determine α to within 2−n.

The proof of Theorem 2 follows from the observation that there is a computable real
outside the effectively null set constructed in Theorem 1, and Turing gives an explicit
algorithm to compute such a number. Although Turing’s strategy is mainly correct2, a
literal interpretation would not lead to the stated aim. We reinforce Turing’s inductive
construction with a stronger inductive hypothesis, and provide the missing correctness
proof.

Both, Turing’s intended algorithm and our reconstruction of it, have an explicit con-
vergence to normality (see Remark 23). The time complexity is double exponential in n,
where n is the length of the initial segment of the real number α ∈ (0, 1) output by the
algorithm on input n (see Remark 24).

Although nowadays it is known that there are absolutely normal numbers with lower
complexity, they are still not feasible. A simple exponential complexity bound for com-
puting an absolutely normal number follows from the work of Ambos-Spies, Terwjin and

1Turing denotes this set by Ec(k,n).
2For a different appraisal on this point see in [15] the editor’s note number 7 in page 119, elaborated

in page 264.
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Zheng [2] on reals that are random with respect to polynomial-time martingales (i.e., no
polynomial-time computable martingale succeeds on such a real; for a survey see [1]). On
the one hand, one can formulate a quadratic-time computable martingale which succeeds
on all reals in [0, 1] that are not absolutely normal. Therefore, being n2-computably ran-
dom already implies being absolutely normal. On the other hand, they show that there

exist n2-computably random sequences in E = Deterministic Time(2linear in n). Hence,
one can conclude that there are absolutely normal numbers in E.

In a strong sense, the problem of giving concrete examples of absolutely normal num-
bers, raised by Borel in [5] as soon as he introduced the definition of normality, still remains
open (see [12]). Existing examples are not fully satisfactory from a definitional perspective
in the sense of Borel [7], because they are defined just by some construction, and we know
no other singular properties of these numbers; we do not have any symbolic definition other
than their construction method (which, as we said before, is still not feasible).

The problem of giving examples of numbers that are normal to a given scale has been
more successfully tackled. There are fast algorithms to produce particular instances, having
suitable analytic formulations in terms of series. For instance, Champernowne’s number [8]
and its generalization given by Copeland and Erdös [9], the Stoneham and the Korobov
classes, and their recent generalization by Bailey and Crandall [3] in connection to pseu-
dorandom generators.

For an account and references to existing work on normal numbers see Kuipers and
Niederreiter [13], Harman’s book [11] or his more recent article [12].

2 Definitions

Whenever possible, we keep the notation used by Turing. Let t be an integer greater than
or equal to 2. The elements in {0, . . . , t − 1} are referred to as digits in the scale of t. A
word in the scale of t is a finite sequence of digits in the scale of t. The set of all words of
length r in the scale of t is denoted by {0, . . . , t− 1}r. The length of a word w is denoted
by |w|. The digits of a word w are denoted by w(i) for 0 ≤ i < |w|. A word γ occurs in a
word w at position i, 0 ≤ i < |γ|, if w(i) w(i + 1) . . . w(i + |γ| − 1) = γ. A word γ occurs
in w if it occurs at some position.

With bαc and dαe we denote the floor and ceiling of a real α. For each real number α
we consider the unique fractional expansion in the scale of t of the form

α = bαc+
∞∑

n=1

ant
−n

where the integers an are in {0, . . . , t− 1}, and an < t− 1 infinitely many times. this last
condition over an is introduced to ensure a unique representation of very rational number.

We use #A for the number of elements of a set A.

Definition 3. Let α be any real in (0, 1). We denote by S(α, t, γ, R) the number of occur-
rences of the word γ in the first R digits after the fractional point in the expansion of α

3



written the scale of t:

S(α, t, γ, R) = #{i : α(i) α(i + 1) . . . α(i + |γ| − 1) = γ}.

Turing uses the following definition of normality given by Borel in [5, 6] as a character-
izing property of absolutely normal numbers.

Definition 4. α is normal in the scale of t if for every word γ in the scale of t,

lim
R→∞

S(α, t, γ, R)

R
=

1

t|γ|
.

α is absolutely normal if it is normal to every scale t ≥ 2.

In [5] Borel defines normality of real numbers as follows: α ∈ R is simply normal in the
scale of t if for every digit d ∈ {0, . . . , t− 1},

lim
R→∞

S(α, t, d, R)

R
=

1

t
.

α is absolutely normal if it is simply normal to every scale t ≥ 2. Based just on digits instead
of words, this definition of absolute normality seems weaker than that in Definition 4. A
nice proof of their equivalence can be read in Harman’s book [11, Theorem 1.3, pp. 5–7].

Throughout this paper we will consistently use the following convention:

Convention 5. R ∈ N will be used for denoting the length of prefixes after the fractional
point; n will be a natural number, generally between 0 and R; t ∈ N, t ≥ 2 will denote a
scale; γ will denote a word in the scale of t; r will be the length of γ; ε ∈ R will denote a
(small) real used to bound certain deviations from expected values.

3 Turing’s first theorem

Given k ∈ N large enough, Turing gives a uniform method to construct a set E(k) of
points in (0, 1) that are absolutely normal such that µ(E(k)) = 1−1/k. E(k) is an infinite
countable intersection of certain recursively defined sets of intervals c(k, n) containing the
reals that are candidates to be absolutely normal. Given k and n, a real α is in the
set c(k, n) if the initial segment of the fractional expansion of α of length R expressed
in each scale up to T , every word with length up to L occurs the expected number of
times plus or minus εR, where R, T , L, and ε are computable functions of k and n (see
Definitions 17 and 20). The sets c(k, n) are defined as a finite boolean combination of
intervals with rational endpoints, and they are tailored to have Lebesgue measure equal to
1− 1/k + 1/(k + n).

In Turing’s manuscript, the proof that the sets c(k, n) have this desired measure depends
on an unproved constructive version of the Strong Law of Large Numbers 3, here transcribed

3There is a footnote in Turing’s manuscript but no text for this footnote.
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as Turing’s Unproved Lemma 7. This lemma gives an upper bound for the number of words
of a given length for which a certain word occurs too often or too seldom. We have not
been able to prove Turing’s bound verbatim, but in Lemma 8 we provide an alternative
bound, less sharp than Turing’s but still allowing for the same construction. From his
lemma Turing derives some bounds on the Lebesgue measure of some auxiliary sets of real
numbers, necessary for his construction. In Propositions 14 and 16 we give our version of
them.

3.1 Unproved Turing’s Lemma

Definition 6. Let t, γ and r as in Convention 5.

1. S(w, γ) is the number of occurrences of γ in w;

2. P (t, γ, n,R) = {w ∈ {0, . . . t− 1}R : S(w, γ) = n};

3. N(t, γ, n,R) = #P (t, γ, n,R).

The symbolic expression of the function N is not a simple one because of the possible
“overlapping” of different occurrences of γ when |γ| > 1; for instance, the word γ = 00
occurs once in 1100, twice in 1000 and three times in 0000. However, in any scale t, the
symbolic expression for the function N considering the exact number of occurrences of a
given digit is simple: The number of words of length R in the scale of t with exactly n
occurrences of the digit d in assigned places is (t− 1)R−n. Hence, the number of words of
length R in the scale of t with exactly n occurrences of the digit d in some place is

N(t, d, n, R) =

(
R

n

)
(t− 1)R−n (1)

and of course ∑
0≤n≤R

N(n, d, n, R) = tR. (2)

Unproved Turing’s Lemma 7. Let t, γ and r be as in Convention 5, and let δ ∈ R be
such that δ tr

R
< 0.3. Then, ∑

|n−R/tr|>δ

N(t, γ, n,R) < 2tRe−
δ2tr

4R .

The rest of the present section is devoted to prove Lemma 8, our substitution of the
unproved Turing’s Lemma 7. The auxiliary results, Lemmas 9 and 12, appear below in
this section.

Lemma 8. Let t, γ and r be as in Convention 5 and let ε such that 6/bR/rc ≤ ε ≤ 1/tr.
Then, ∑

|n−R/tr|≥εR

N(t, γ, n,R) < 2tR+2r−2r e−
trε2R

6r .
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Proof. We shall fix a bijection between words of length r in the scale of t with digits in
the scale of tr corresponding to the change of scale. We write (γ)tr to denote the digit d
corresponding to γ in the scale of tr.

Lemma 9 ensures that, for any digit p in the scale of t, whenever 6/R ≤ ε ≤ 1/t,∑
n≥R/t+εR

N(t, p, n, R) < tRe−tε2R/6. (3)

The idea is to use (3) with t̃ = tr, R̃ = R/r, and the digit d = (γ)t̃. By the second part of
Lemma 12, which relates sums of N(t, γ, n,R) and sums of N(tr, d, n, bR/rc), we have∑

n≥R/tr+εR

N(t, γ, n,R) ≤ tr−1r
∑

n≥R̃/t̃+εR̃

N(t̃, d, n, bR̃c).

Since bR̃c = R̃ − x/r for some x ∈ {0, . . . , r − 1} and since bR̃c ≤ R̃, applying (3) we
obtain ∑

n≥R/tr+εR

N(t, γ, n,R) ≤ tr−1r
∑

n≥bR̃c/t̃+εbR̃c

N(t̃, d, n, bR̃c)

≤ tr−1r t̃bR̃c e−t̃ε2bR̃c/6

= tr−1r t̃R̃−x/re−ε2 t̃(R̃−x/r)/6

= tR+r−1r e
−ε2trR

6r e
ε2trx

6r t−x

≤ tR+r−1r e−
ε2trR

6r (4)

To check the last inequality observe that, since ε ≤ 1/tr, the expression eε2trx/(6r)t−x is at
most 1 (indeed, ε/(6r) ≤ ln t because ε is at most 1/2 and 6r ln t is at least 4).

The other sum is trickier. Lemma 9 ensures that for any digit p in the scale of t,
whenever 6/R ≤ ε ≤ 1/t, ∑

n≤R/t−εR

N(t, p, n, R) < tRe−tε2R/6. (5)

By the first part of Lemma 12 and the definitions of d, t̃ and R̃ used above, we know∑
n≤R/tr−εR

N(t, γ, n,R) ≤ tr−1r
∑

n≤R̃/t̃−εR̃

N(t̃, d, n, bR̃c)

≤ tr−1r
∑

n≤R̃/t̃−εR̃

N(t̃, d, n, dR̃e). (6)

Let R = bR̃cr + x where x ∈ {0, . . . , r − 1}. If x 6= 0, since dR̃e = R̃ + (r − x)/r there
is y ∈ {1, . . . , r − 1} such that dR̃e = R̃ + y/r, and if x = 0 then y = 0 also satisfies the
condition. Thus

dR̃e
t̃

− εdR̃e =
R̃

t̃
+

y

t̃r
− εR̃− εy

r
≥ R̃

t̃
− εR̃, (7)
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where the last inequality holds because y/(t̃r) ≥ εy/r when ε ≤ 1/tr. From (6), using (7)
and (5), we get ∑

n≤R/tr−εR

N(t, γ, n,R) ≤ tr−1r
∑

n≤dR̃e/t̃−εdR̃e

N(t̃, d, n, dR̃e)

≤ tr−1t̃dR̃er e−t̃ε2dR̃e/6

= tR+r−1r e−trε2dR̃e/6 ty

≤ tR+2r−2r e−
trε2R

6r . (8)

The last inequality follows from the fact that ty ≤ tr−1 and dR̃e ≥ R̃. Joining (4) and (8),
we obtain the desired upper bound.

Lemma 9 (adapted from Harman [11, page 5, Lemma 1.1]). Let d be a digit in the scale
of t, t ≥ 2. Assuming R > 6t and with ε such that 6/R ≤ ε ≤ 1/t, both∑

n≥R/t+εR

N(t, d, n, R) and
∑

n≤R/t−εR

N(t, d, n, R) are at most tRe−tε2R/6.

Proof. Since t, d and R are fixed, we write N(n) for N(t, d, n, R). Recalling from (1) the
symbolic expression for N(n),

N(n)

N(n + 1)
=

(n + 1)(t− 1)

R− n
. (9)

For all n ≤ R/t we have N(n) > N(n − 1) and for all n > R/t, N(n) ≤ N(n − 1). It is
not difficult to see that the quotients in (9) increase as n increases.

Let a = R/t − εR and b = R/t + εR. The strategy is to “shift” the first sum to the
right by m = bεR/2c positions, and the second sum to the left by m + 1 positions.

Let us compute the stated upper bound for the first sum. For any n

N(n) =
N(n)

N(n + 1)
· N(n + 1)

N(n + 2)
· . . . · N(n + m− 1)

N(n + m)
·N(n + m) (10)

and for each i such that
i ≤ bac+ m− 1 (11)

we have

N(i)

N(i + 1)
≤ N(bac+ m− 1)

N(bac+ m)

=
(bac+ m)(t− 1)

R− bac −m + 1

<
(R/t− εR/2)(t− 1)

R−R/t + εR/2

= 1− εt/2

1− 1/t + ε/2
.
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Since ε ≤ 1/t, we conclude

N(i)

N(i + 1)
< 1− εt/2 < e−tε/2. (12)

If n ≤ a then n ≤ bac and hence i = n + m− 1 satisfies condition (11). Since the greatest
quotient among the ones which appear in equation (10) is the last one, we can apply (12)
to each factor in (10) to obtain

N(n) < e−tεm/2 N(n + m)

≤ e−tε(εR/2−1)/2 N(n + m)

= e−tε2R/4+tε/2 N(n + m)

≤ e−tε2R/6 N(n + m) (13)

where we use the definition of m, and in the last inequality (13) we have ε2tR/6 ≤ ε2tR/4−
εt/2, since εR ≥ 6. Hence by (2) we have∑

n≤a

N(n) < e−tε2R/6
∑
n≤a

N(n + m) ≤ tRe−tε2R/6.

To bound the second sum, we use the same strategy, but now we shift the sum to the left
by m + 1 positions. For any n,

N(n) =
N(n)

N(n− 1)
· N(n− 1)

N(n− 2)
· . . . · N(n−m)

N(n−m− 1)
·N(n−m− 1) (14)

(with these ratios increasing as n− i decreases), and for each i such that

i ≥ dbe −m (15)

we have

N(i)

N(i− 1)
≤ N(dbe −m)

N(dbe −m− 1)

=
R− dbe+ m + 1

(dbe −m)(t− 1)

≤ R−R/t− εR/2 + 1

(R/t + εR/2)(t− 1)

< 1− εt/3.

The last inequality is just equivalent to εt− 2/t− ε < 1− 6
εtR

and since εt ≤ 1 and ε > 0
it is sufficient to prove that 1− 2/t < 1− 6

εtR
, which clearly holds for ε > 3/R. Therefore,

N(i)

N(i− 1)
< e−tε/3. (16)
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If n ≥ b, then n ≥ dbe and hence i = n − m satisfies condition (15). Since the greatest
quotient among those which appear in equation (14) is the last one, we can apply (16) to
each factor in (14) to obtain, as in (13)

N(n) < e−tε(m+1)/3N(n−m− 1) ≤ e−
tε2R

6 N(n−m− 1)

and from this and (2), ∑
n≥b

N(n) < tRe−tε2R/6.

This completes the proof.

Definition 10. Let t, γ and r be as in Convention 5. For j ∈ {0, . . . , r − 1} we define

1. Sj(w, γ) as the number of occurrences of γ in w at positions of the form r · q + j (i.e.
congruent to j modulo r);

2. Pj(t, γ, n,R) = {w ∈ {0 . . . t− 1}R : Sj(w, γ) = n}.

Lemma 11. Let t, γ and r as in Convention 5 and let w ∈ P (t, γ, n,R). There is j ∈
{0, . . . , r−1} such that w ∈ Pj(t, γ,m,R) for some m ≤ n/r and there is j ∈ {0, . . . , r−1}
such that w ∈ Pj(t, γ,m,R) for some m ≥ n/r.

Proof. Suppose w ∈ P (t, γ, n,R), i.e., γ has n occurrences in w. For each j ∈ {0, . . . , r−1}
let nj ≥ 0 be the number of occurrences of γ in w at positions congruent to j modulo
r. Then, w ∈ Pj(t, γ, nj, R), and clearly

∑
0≤nj≤r−1 nj = n. This equality implies that

nj ≤ n/r for some j, and not all njs can be strictly smaller than n/r.

The next lemma relates sums of N(t, γ, n,R) and sums of N(tr, d, n, bR/rc), where
d = (γ)tr .

Lemma 12. Let t, γ and r be as in Convention 5 and let d be the digit corresponding to
the word γ in the scale of tr. Then,∑

n≤a

N(t, γ, n,R) ≤ tr−1r
∑

m≤a/r

N(tr, d, m, bR/rc), and

∑
n≥a

N(t, γ, n,R) ≤ tr−1r
∑

m≥a/r

N(tr, d, m, bR/rc).

Proof. For any j = 0, . . . , r − 1 we define a map fj which transforms words of length R
written in the scale of t into words of length bR/rc written in the scale of tr as follows: let
w ∈ {0, . . . , t− 1}R and let k = bR/rc. We split w into k − 1 blocks of length r

b1 = w(j) . . . w(j + r − 1);

b2 = w(j + r) . . . w(j + 2r − 1);
...

bk−1 = w(j + r(k − 2)) . . . w(j + (k − 1)r − 1);
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and complete the last segment w(j+r(k−1)) . . . w(l), where l = min(j+rk−1, R−1), into
a block bk of length r by adding a word u in the scale of t in such a way that if l < R− 1
(i.e., u is not the empty word), then bk is different from γ (for example, take u to be the
least such word in lexicographic order).

bk = w(j + r(k − 1)) . . . w(l) u.

The blocks bi get transformed into single digits in the scale of tr; set

fj(w) = (b1)tr . . . (bk)tr .

Let us now compute the cardinality of f−1
j [fj(w)]. If v is another word of length R in the

scale of t, then fj(v) = fj(w) if and only if

v(j) . . . v(j + kr − 1) = b1 . . . bk.

Thus, v may differ from w in at most the positions 0, . . . , j− 1 and j + kr, . . . , R− 1; their
number is R − kr − 1 ≤ r − 1. Hence, there are at most tr−1 words in f−1

j [fj(w)]. This
implies that

#Pj(t, γ,m,R) ≤ tr−1N(tr, d, m, k).

Suppose w has exactly n occurrences of γ. By the first part of Lemma 11 we know that
for all n there is j ∈ {0, . . . , r−1} and m ≤ bn/rc such that w ∈ Pj(t, γ,m,R). Therefore,

⋃
n≤a

P (t, γ, n,R) ⊆
⋃

0≤j<r

⋃
m≤a/r

Pj(t, γ,m,R)

∑
n≤a

N(t, γ, n,R) = #
⋃

0≤n≤a

P (t, γ, n,R)

≤
∑
j<r

∑
m≤a/r

#Pj(t, γ,m,R)

≤ tr−1r
∑

m≤a/r

N(tr, d, m, bR/rc).

This completes the proof of the first part. The second part is similar, applying the last
assertion in Lemma 11.

3.2 The sets c(k, n)

Definition 13. We denote by B(ε, γ, t, R) the set of reals α ∈ (0, 1) such that

|S(α, t, γ, R)−R/tr| < εR.

Proposition 14. Let t, γ and r be as in Convention 5 and let ε and R be such that
6/bR/rc ≤ ε ≤ 1/tr. Then

µ (B(ε, γ, t, R)) > 1− 2t2r−2r e−
trε2R

6r .
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Proof. Let B(ε, γ, t, R) = (0, 1) \ B(ε, γ, t, R). Observe that if a real α ∈ (0, 1) belongs
to B(ε, γ, t, R) then every real β ∈ (0, 1) such that the first R digits of α (written in the
scale of t) coincide with the first R digits of β (written in the scale of t) also belongs to
B(ε, γ, t, R), which means that the interval

[0.α � R 000 . . . , 0.α � R (t− 1)(t− 1)(t− 1) . . . ] .

of measure t−R is included in B(ε, γ, t, R). Here α � R denotes the first R digits of the
fractional expansion of α in the scale of t. Then

B(ε, γ, t, R) =
⋃

|n−R/tr|≥εR

⋃
w∈P (t,γ,n,R)

[0.w000 . . . , 0.w(t− 1)(t− 1)(t− 1) . . . ]

Since the intervals in the right hand side are disjoint for different words w, we have:

µ
(
B(ε, γ, t, R)

)
= t−R

∑
|n−R/tr|≥εR

N(t, γ, n,R) < 2 t2r−2r e−
trε2R

6r . (17)

For the last equation apply Lemma 8. The proof is completed by taking complements.

Definition 15. For any ε, T , L and R, let

A(ε, T, L, R) =
⋂

2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...,t−1}r

B(ε, γ, t, R).

Since each B(ε, γ, t, R) is a finite union of intervals with rational endpoints, then so is
each of the sets A(ε, T, L, R).

Proposition 16. For any ε, T , L and R, such that 6/bR/Lc ≤ ε ≤ 1/TL,

µ (A(ε, T, L, R)) > 1− 2 L T 3L−1 e−
ε2R
3L .

Proof. Let A and B denote the complements of the sets A, B, respectively, in the interval
(0, 1).

µ
(
A(ε, T, L, R)

)
≤
∑

2≤t≤T

∑
1≤r≤L

∑
γ∈{0,...,t−1}r

µ
(
B(ε, γ, t, R)

)
.

Observe that in the third summand there are tr many γs and that∑
2≤t≤T

∑
1≤r≤L

tr =
∑

2≤t≤T

tL+1 − 1

t− 1
≤ TL+1.

The upper bound for µ
(
B(ε, γ, t, R)

)
in (17) yields the following uniform upper bound in

terms of the present parameters ε, T, R, L:

µ
(
B(ε, γ, t, R)

)
< 2 T 2L−2L e−

2ε2R
3L

11



valid for all 2 ≤ t ≤ T , 1 ≤ r ≤ L and γ ∈ {0, . . . , t− 1}r. Indeed, from 1 ≤ r ≤ L, we get
2r/L ≤ 2 ≤ tr; hence, ε2R/(3L) ≤ ε2Rtr/(6r), which gives

µ
(
B(ε, γ, t, R)

)
< 2 t2r−2r e−

trε2R
6r < 2 T 2L−2 e−

ε2R
3L .

Hence we obtain,

µ
(
A(ε, T, L, R)

)
< 2 L T 3L−1 e−

ε2R
3L .

The proof is completed by taking complements.

We now define A(ε, T, L, R) for specific values of its parameters.

Definition 17. Let Ak = A(ε, T, L, R) for R = k, L =
√

ln k/4, T = eL and ε = 1/TL.

Proposition 18. There is k0 such that for all k ≥ k0, µ (Ak) ≥ 1− 1
k(k−1)

.

Proof. Let R, T , L and ε be the functions of k given in Definition 17. Observe that
TL = 16

√
k. Since ε ≥ 6/bR/Lc for all k ≥ 2, the hypothesis of Proposition 16 is satisfied.

We now prove that

2LT 3L−1 e−
ε2R
3L ≤ 1

k(k − 1)

for large enough k. It suffices to prove T 3Lk2 ≤ e
ε2R
3L because 2L ≤ T . This is equivalent

to
1/ε2 · (9L2 ln T + 6L ln k) ≤ k.

Since 1/ε2 = T 2L = 8
√

k, 9L2 ln T = (9/64)(ln k)3/2 and 6L ln k = (3/2)(ln k)3/2, (17)
reduces to

(105/64)
8
√

k(ln k)3/2 ≤ k

which can be proved to hold for any k ≥ 1.

Remark 19. Observe that the assignment of Definition 17 gives initial values of T smaller
than 2 and initial values of L smaller than 1. This implies that the initial intersections in

Ak = A(ε, T, L, R) =
⋂

2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...,t−1}r

B(ε, γ, t, R)

will have an empty range. However, as k increases, these variables will take greater and
greater values.

One can give different assignments for L = L(k), T = T (k) and ε = ε(k), where
limk L(k) = ∞, limk T (k) = ∞ and limk ε(k) = 0 and such that L ≥ 1, T ≥ 2 and
Proposition 18 is verified for suitable large k.

From now on let k0 be the value determined in Proposition 18 (or Remark 19).
Turing defines c(k, n) as intersections of finitely many Aks and he restricts these sets

so that they have measure exactly 1− 1/k + 1/(k + n).

12



Definition 20. The computable function c : N×N → P((0, 1)), is defined as follows. For
any k ≥ k0 let c(k, 0) = (0, 1) and

c(k, n + 1) = Ak+n+1 ∩ c(k, n) ∩ (βn, 1)

where (βn, 1) is an interval so that µ (c(k, n + 1)) = 1− 1/k + 1/(k + n + 1).

Remark 21. It is worth noting that some interval (βn, 1) as above always exists and it is
unique. This is because

µ (Ak+n+1 ∩ c(k, n)) ≥ 1− 1/k + 1/(k + n + 1).

Since c(k, n) and Ak+n+1 are finite unions of intervals with rational endpoints, their respec-
tive measures are effectively computable; βn is rational and it can be determined effectively.
Hence c(k, n) may be represented by a finite union of disjoint intervals (a1, b1)∪· · ·∪(am, bm)
such that ai, bi ∈ Q ∩ (0, 1), ai < bi < ai+1 and such that (a1, b1, a2, b2, . . . , am, bm) is com-
putable from k and n.

3.3 Proof of Turing’s first theorem

Proof of Theorem 1. We first prove that the set
⋂

k≥k0
Ak contains only absolutely normal

numbers. Assume α ∈
⋂

k≥k0
Ak and α is not normal to the scale of t. This means that

lim
R→∞

S(α, t, γ, R)

R
6= 1

tr

for some word γ of length r in the scale of t. Hence there is δ > 0 and there are infinitely
many Rs such that

|S(α, t, γ, R)−R/tr| > Rδ. (18)

Let T (k), L(k) and ε(k) be the assignments of Definition 17 or Remark 19. Now fix k1 ≥ k0

large enough such that T (k1) ≥ t, L(k1) ≥ r and ε(k1) ≤ δ. This is always possible because
T (k) →∞, L(k) →∞ ε(k) → 0 when k →∞. For any k ≥ k1, α ∈ Ak, and by Definition
15, α ∈ B(ε(k), γ, t, k). By Definition 13 we have

|S(α, t, γ, k)− k/tr| < kε(k) ≤ kδ.

for any k ≥ k1. Now, any R ≥ k1 satisfying (18) leads to a contradiction.
Clearly, conditions 1, 1 and 1 of Theorem 1 follow from the definition of c(k, n) (see

Definition 20). Since E(k) ⊆
⋂

i≥k Ai, by the argument given above, we conclude that if
k ≥ k0, any real number in E(k) is absolutely normal. By condition 1 and the fact that
µ (c(k, n)) = 1− 1/k + 1/(k + n), we get

µ (E(k)) = lim
n→∞

µ (c(k, n)) = 1− 1/k.

This completes the proof.
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4 Turing’s second theorem

The idea of Turing’s algorithm is to recursively select for each integer n > 0 an interval In

with dyadic rational endpoints such that

1. In+1 ⊂ In

2. µ (In) = 2−(n+1)

3. µ (E(k) ∩ In) > 0.

The intersection of these intervals,
⋂
n

In, contains exactly one number which must be

absolutely normal. The correctness of the algorithm relies on the fact that at each stage
n the measure µ (E(k) ∩ In) is big enough to allow to proceed with the stage n + 1 and
never run out of measure (i.e. keeping µ (E(k) ∩ In) > 0). If we can do this forever, that
is for all n, then we have an effective procedure to determine every digit of an absolutely
normal number.

A literal reading of the algorithm that appears in Turing’s manuscript does not give
a correct algorithm. We reconstruct it by introducing suitable changes, but keeping the
strategy. Turing uses exactly the same sets c(k, n) that appear in Theorem 1 (see Defini-
tion 20), where µ (c(k, n)) = 1 − 1/k + 1/(k + n + 1). We refine them to have Lebesgue
measure 1 − 1/k + 1/k22n+1 (see Definition 22). This modification respects the strategy
since for each k,

lim
n→∞

1− 1/k + 1/(k + n + 1) = lim
n→∞

1− 1/k + 1/k22n+1 = 1− 1/k,

and it still holds that E(k) =
⋂
n≥0

c(k, n).

Let k0 be as determined in Proposition 18 (or Remark 19).

Definition 22. We redefine the computable function c : N × N → P((0, 1)), as follows.
For any k ≥ k0 let c(k, 0) = (0, 1) and for n > 0

c(k, n) = Ak22n+1 ∩ c(k, n− 1) ∩ (βn, 1);

where (βn, 1) is an interval so that µ (c(k, n)) = 1− 1/k + 1/k22n+1.

The reader may verify that it is always possible to find such a βn for k ≥ k0, because
µ (Ak22n+1) ≥ 1 − 1/(k22n+1)(k22n+1 − 1), hence µ (Ak22n+1 ∩ c(k, n− 1)) > 1 − 1/k +
1/k22n+1.

Proof of Theorem 2. The following algorithm constructs a real α in (0, 1) in the scale of 2.
It depends on an infinite sequence θ ∈ {0, 1}∞ used as oracle to possibly determine some
digits of α, and on a fixed parameter k large enough (k ≥ k0 and k ≥ 4).

14



Start with I−1 = (0, 1).

At stage n ≥ 0:

– Split the interval In−1 into two halves I0
n and I1

n. That is, say In−1 =
(an−1, bn−1), then let

I0
n =

(
an−1,

an−1 + bn−1

2

)
and I1

n =

(
an−1 + bn−1

2
, bn−1

)
.

– If µ (c(k, n) ∩ I0
n) > 1/k22n and µ (c(k, n) ∩ I1

n) > 1/k22n then

∗ Let α(n) = θ(n).

∗ Let In =

{
I0
n if θ(n) = 0;

I1
n otherwise.

– Else, if µ (c(k, n) ∩ I1
n) ≤ 1/k22n then

∗ Let In = I0
n.

∗ Let α(n) = 0.

– Else

∗ Let In = I1
n.

∗ Let α(n) = 1.

At each stage n, In is either the left half of In−1 (denoted I0
n) or the right half of it

(denoted I1
n). As we mentioned in Remark 21, c(k, n) is computable. Therefore we can

compute its measure, and also compute the measures of both c(k, n)∩ I0
n and c(k, n)∩ I1

n.
All these measures are rational numbers in (0, 1).

The above algorithm defines α =
⋂
n

In bit by bit, i.e. at stage n the n-th bit of α is

defined. To prove that α is absolutely normal, we show α ∈ E(k) =
⋂
n

c(k, n). We prove,

by induction on n, that for every n ≥ 0,

µ (c(k, n) ∩ In) > 1/k22n. (19)

For n = 0, observe that by Definition 22, c(k, 0) = (0, 1) and then

µ (c(k, 0) ∩ I0) = 1/2 > 1/k.

For the induction, assume (19) holds. Since c(k, n + 1) ⊆ c(k, n) we have

c(k, n + 1) ∩ In = (c(k, n) ∩ In) \ ((c(k, n) \ c(k, n + 1)) ∩ In)

µ (c(k, n + 1) ∩ In) = µ (c(k, n) ∩ In)− µ ((c(k, n) \ c(k, n + 1)) ∩ In)

≥ µ (c(k, n) ∩ In)− µ (c(k, n) \ c(k, n + 1)) . (20)
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Using (19) and that µ (c(k, n) \ c(k, n + 1)) = 1/k22n+1−1/k22(n+1)+1, from (20) we obtain

µ (c(k, n + 1) ∩ In) > 1/k22n − (1/k22n+1 − 1/k22n+3) > 2/k22(n+1).

It is impossible that both µ
(
c(k, n + 1) ∩ I0

n+1

)
and µ

(
c(k, n + 1) ∩ I1

n+1

)
be less than or

equal to 1/k22(n+1). It follows that at least one of the sets c(k, n + 1) ∩ I i
n+1, i ∈ {0, 1},

has measure greater than 1/k22(n+1). The algorithm picks as In+1 the set I i
n+1 which

fulfills this condition, with the oracle used to decide in case both sets verify it. Hence,
at every stage n, c(k, n) ∩ In is non-empty, so there are absolutely normal numbers in it;
furthermore, by construction all reals in c(k, n) ∩ In have a fractional expansion starting
with α(0) α(1) . . . α(n).

We now prove that, for a fixed k, these real numbers α form a set of Lebesgue measure
at least 1− 1/k. Consider the inductively defined set M(k, n + 1) consisting of all possible
intervals

(
m

2n+1 ,
m+1
2n+1

)
, with m = 0, 1, . . . 2n+1 − 1, as we allow the first n + 1 digits of θ to

run through all possibilities. I.e., having deleted those intervals that would be discarded
by the algorithm up to stage n. Notice that the algorithm discards the interval

(
m

2n+1 ,
m+1
2n+1

)
when µ

(
c(k, n) ∩

(
m

2n+1 ,
m+1
2n+1

))
≤ 1/k22n.

Let M : N× N → P((0, 1)). M(k, 0) = (0, 1), and for n ≥ 0,

M(k, n + 1) =
⋃

Im ⊆ M(k, n)
µ (c(k, n) ∩ Im) > 1/k22n

Im

where Im =
(

m
2n+1 ,

m+1
2n+1

)
, for m = 0, 1, . . . , 2n+1 − 1.

Then, µ (E(k) ∩M(k, n + 1)) = µ (E(k) ∩M(k, n))−

−
2n−1∑
m=0

µ
(
E(k) ∩ (M(k, n) \M(k, n + 1)) ∩

(
m
2n , m+1

2n

))
.

Since it is impossible that both halves of
(

m
2n , m+1

2n

)
are included in M(k, n+1), we have

µ
(
E(k) ∩ (M(k, n) \M(k, n + 1)) ∩

(
m
2n , m+1

2n

))
≤ 1/k22n, so that

µ (E(k) ∩M(k, n + 1)) ≥ µ (E(k) ∩M(k, n))− 1/k2n

≥ µ (E(k) ∩M(k, n− 1))− 1/k2n−1 − 1/k2n

...

≥ µ (E(k) ∩M(k, 1))− 1/k

n∑
i=1

1/2n

> µ (E(k))− 1/k = 1− 2/k.

where the last inequality follows because c(k, 0) = (0, 1) and k > 2, so M(k, 1) = (0, 1
2
) ∪

(1
2
, 1); henceforth, E(k)∩M(k, 1) = E(k). We conclude µ

(
E(k) ∩

⋂
n

M(k, n)

)
≥ 1−2/k.

This completes the proof.
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Remark 23 (Convergence to normality). The algorithm outputs the real α ∈
⋂

n≥0 c(k, n).
By Definitions 22 and 17, c(k, n) ⊆ Ak22n+1 and

Ak22n+1 =
⋂

2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...t−1}r

{α ∈ (0, 1) : |S(α, t, γ, R)−R/tr| < εR}

with , R = k22n+1, L =
√

ln R/4, T = eL, ε = T−L. This gives an explicit convergence to
absolute normality of α: for each initial segment of α of length R = k22n+1 expressed in
each scale up to T = eL all words of length up to L =

√
ln R/4 occur with the expected

frequency plus or minus e−L2
.

Remark 24 (Complexity of the algorithm). The algorithmic complexity of computing the
n-th digit of α comes exclusively from the computation of µ (c(k, n) ∩ I i

n), i = 0, 1. The
naive way to obtain this is by constructing c(k, n) = Ak22n+1 ∩c(k, n−1)∩ (βn, 1) and leads
to a double exponential time algorithm. In Turing’s manuscript there are no properties
that would allow for a faster computation, like exploring the relation between the sets
Ak22n+1 and Ak22n+2 .

Remark 25 (Absolutely normal reals in every Turing degree). It follows from the algo-
rithm that, for a fixed k ∈ N, by taking particular sequences θ ∈ {0, 1}∞ one obtains
particular absolutely normal numbers, computable in θ. In [10] we use a variation of
Turing’s algorithm that queries the oracle infinitely many times in a controlled way: the
algorithm intercalates the oracle digits in fixed positions of the absolutely normal number
being constructed. One obtains absolutely normal numbers in each Turing degree (in fact,
in each 1-degree). This result can be based either in the reconstruction of Turing’s idea
presented here, or in our algorithm [4] inspired by Sierpiński’s work [14].
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[7] Émile Borel. La définition en mathématiques. In François Le Lionnais, editor, Les
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