
Model Theory of XPath on Data Trees.

Part II: Binary Bisimulation and Definability

Sergio Abriola Maŕıa Emilia Descotte Santiago Figueira

University of Buenos Aires

Abstract

We study the expressive power of the downward and vertical fragments of XPath equipped
with (in)equality tests over data trees. We show definability theorems (which provide condi-
tions under which a class of pointed data trees can be defined by a node expression or by a
set of node expressions) and separation theorems (which provide conditions under which two
disjoint classes of pointed data trees can be separated by a class definable by a node expression
or a set of node expressions). To do so, we introduce a notion of saturation, and show that
over saturated data trees, the already known notion of (unary) bisimulation coincides with
logical equivalence.

Both for the downward and vertical fragments, we introduce new notions of binary bisim-
ulations, which relate two pairs of nodes of data trees. We show that over finitely branching
data trees, these notions correspond to the idea of ‘indistinguishability by means of path ex-
pressions’. We show a characterization theorem, which states that a first-order formula with
two free variables is expressible in the downward fragment of XPath with (in)equality tests
if and only if it is binary-bisimulation-invariant and represents a ‘forward property’. Using
the new tool of binary bisimulations, together with suitable modifications of saturation, we
show definability and separation theorems, this time with respect to classes of two-pointed
data trees (with some restrictions) and in the context of path expressions as the language of
description.

1 Introduction

The abstraction of an XML document is a data tree, i.e. a tree whose every node contains a tag or
label (such as LastName) from a finite domain, and a data value (such as Smith) from an infinite
domain. For instance, Figure 1 depicts a data tree whose labels are a or b and whose data values
are integers.

XPath is the most widely used query language for XML documents; it is an open standard
and constitutes a World Wide Web Consortium (W3C) Recommendation [5]. XPath has syntactic
operators to navigate the tree using the ‘child’, ‘parent’, ‘sibling’, etc. accessibility relations, and
can make tests on intermediate nodes. Core-XPath [14] is the fragment of XPath 1.0 containing
only the navigational behavior of XPath. It can express properties on nodes with respect to the
underlying tree structure of the XML document, such as

nodes with a child labeled a and a child labeled b. (1)

It can also express properties on paths along the tree such as

downward paths of length two starting in a node
with label a and ending in a node with label b.

(2)

The first types of formulas are evaluated on individual nodes and are called node expressions.
In the data tree of Figure 1, condition (1) is true at node x and false at node u. Formulas of the
second kind are evaluated on pairs of nodes and are called path expressions. In the same

1

a, 0

a, 1 b, 2

a, 0 a, 1 b, 0

x

y z

u v w

Figure 1: A data tree T with a and b as labels and integers as data values. Nodes x, y, z, u, v, w are
names for nodes. They are not part of the data tree; they are mentioned here only for explanatory
purposes.

example, condition (2) is true at (x,w) because there is a path with the condition expressed in (2)
connecting x and w, but false at (x, u) because there is no way to connect x and u with a path
satisfying the condition (2). However, Core-XPath [14] cannot express conditions on the actual
data contained in the attributes, such as the node expression

nodes with two children with same label a but different data value (3)

(which in our example is true only at z), or the path expression

downward paths of length one whose starting and end point have the same data value (4)

(which is true nowhere). But Core-Data-XPath [3] —here called XPath=— can. Indeed, XPath=

is the extension of Core-XPath with (in)equality tests between attributes of elements in an XML
document. Here we study two main fragments of XPath=: the downward fragment (containing
only the ‘child’ axis) and the vertical fragment (containing both the ‘child’ and the ‘parent’
axes). Whilst (2) and (4) above describe downward paths, we will see that the latter (4) cannot
be formalized using only ‘child’, and needs the ‘parent’ axis. Of course, not all paths should be
downward. An example of a path that is not necessarily downward could be:

paths of length one whose starting and end point have label a, (5)

which can be either downward or upward. In general, vertical XPath= allows us express paths of
the form go up and check some condition, then go down and check this other condition, etc.

In a recent paper [10], the expressive power of XPath= was studied, from a logical and modal
model theoretical point of view. Bisimulations are a classic tool of modal logics to determine
equivalence between relational models. A node x of a data tree T and a node x′ of a data
tree T ′ are said to be bisimilar if they satisfy some special (depending of the studied fragment)
back-and-forth conditions over the structure of the data tree. Of course, different logics have
different definitions of bisimulations. For non-modal logics, such as first-order logic, the notions of
bisimulation are typically stated in terms of Ehrenfeucht-Fräıssé games. In [10] suitable notions of
bisimulations were given both for the downward and the vertical fragment of XPath=. It is shown
that if x and x′ are bisimilar then they satisfy exactly the same node expressions, and that the
converse is also true for trees whose every node has only finitely many children. Hence, bisimulation
coincides with logical equivalence, i.e., with indistinguishability by means of node expressions. It
is also shown a van Benthem-like characterization theorem for the downward fragment of XPath=,
which states that it coincides with the bisimulation-invariant fragment of first-order logic with one
free variable (over the adequate signature). For the case of the vertical fragment of XPath= this
characterization fails.

This article is a natural continuation of [10], as we develop new tools and delve in some aspects
of the model theory of the downward and vertical fragments of XPath=. In the first part we show a

2

definability theorem with respect to node expressions, which answers the basic question of when a
class of pointed data trees is definable by a set of node expressions, or by a single node expression,
over the downward and the vertical fragments. Our main result in this part is the analog of the
classic first-order definability theorem (see, e.g. [4, Cor. 6.1.16]), which can be stated as follows:

A class of models K is definable by means of a set of first-order formulas if and only if
K is closed under ultraproducts and isomorphisms, and the complement of K is closed
under ultrapowers. Also, K is definable by a single first-order formula if and only if
both K and its complement are closed under ultraproducts and isomorphisms.

As a corollary, we obtain the analog of the classic first-order separation theorem (see, e.g. [4, Cor.
6.1.17]), which says:

Let K1 and K2 be two disjoint classes of models such that K1 is closed under isomor-
phisms and ultraproducts and K2 is closed under isomorphisms and ultrapowers. Then
there exists a class K that is definable by a set of first-order formulas, contains K1, and
is disjoint from K2. Furthermore, if both K1 and K2 are closed under isomorphisms
and ultraproducts, then such K is definable by a single first-order formula.

Though we take as motivation the current relevance of XML documents (which of course are finite)
and the logics for reasoning over them, we do not restrict ourselves to the finite case. Indeed, an
infinite set of node expressions may force all its data tree models to be infinite. Hence, since we
aim at working with arbitrary sets of node expressions, we must consider arbitrary (i.e. finite or
infinite) data trees.

Our definability and separation theorems for XPath= themselves are shown using rather known
techniques. The main contribution of this part, however, is to devise and calibrate the adequate
notions to be used in the XPath= setting, and to study the subtle interaction between them:

• Bisimulation: already introduced in [10], it is the counterpart of isomorphisms in the classical
theorem for first-order logic. It is known that if two (possibly infinite) data trees are bisimilar
then they are logically equivalent (that is, they are not distinguishable by an XPath= node
expression) but that the converse is not true in general.

• Saturation: we define and study the new notion of XPath=-saturation. We show that
for XPath=-saturated data trees, being bisimilar is the same as being logically equivalent.
It is also shown that a 2-saturated data tree (regarded as a first-order structure) is al-
ready XPath=-saturated.

• Ultraproducts: contrary to other adaptations of the classical first-order definability theorem
to modal logics, in our case we have to adjust also the notion of ultraproduct, and so we work
with a variant of it called quasi-ultraproduct. The reason is that we must not abandon the
universe of data trees, as these are the only allowed models of XPath=.

In the second part of our work we start a model theoretical study of path expressions of XPath=.
We introduce a new kind of binary bisimulation for both the downward and the vertical fragment,
which captures, over finitely branching trees, when two pairs of nodes (instead of single nodes, as
in [10]) are indistinguishable by means of path expressions (instead of by node expressions). Our
binary bisimulations subsume, in fact, the already known unary bisimulation, since over finitely
branching trees, (x, x) is binary-bisimilar to (x′, x′) if and only if x is unary-bisimilar to x′. The
definitions of binary bisimulations require more rules than the unary ones, but they all have the
flavor of back-and-forth conditions. Furthermore, these rules are slightly simpler than those for
the unary bisimulation.

We show a characterization theorem for the path expressions of the downward fragment
of XPath=: a first-order formula ϕ(x, y) with two free variables is expressible by a path expression
in the downward fragment of XPath= if and only if ϕ(x, y) is binary-bisimulation-invariant and

3

represents a forward property (that is, a property that holds only for pairs (u, v) where v is a
descendant of u).

Finally we show restricted definability theorems with respect to path expressions, which answer
the question of when a class of two-pointed data trees (satisfying some further conditions) is
definable by a set of path expressions, or by a single path expression, over the downward and the
vertical fragments of XPath=. We show separation results over such classes of two-pointed data
trees in the expected way. We adapt some of the tools developed for single-node pointed data
trees, and we use the binary bisimulations as the main ingredient. The major obstacle in this case
is to deal with the absence of complementation and intersection in the of language XPath= path
expressions.

1.1 Related work

There are many works in the literature studying the expressive power of Core-XPath (see e.g. [15,
18, 25]). All these consider the navigational fragment of XPath. A first step towards the study of
the expressive power of XPath when equipped with (in)equality test over data trees, is the recent
paper [10], and its full version [9]. The present development is a natural continuation of that work.

The notion of bisimulation was introduced independently by van Benthem [26] in the context
of modal correspondence theory, by Milner [19] and Park [22] in concurrency theory, and by Forti
and Honsell [13] in non-wellfounded set theory (see [24] for a historical outlook). With respect to
our notions of binary bisimulations, we can mention the recent work [12], where some notions of
bisimulations are given for some fragments of Tarsky’s calculus of binary relations, with the aim
of understanding the expressive power of the calculus of relations as a database query language
for binary relation structures.

The classical result of definability for first-order logic was adapted to the context of many
modal logics, where the notion of isomorphism is replaced by the weaker concept of bisimulation
(the one which turns to be adequate for the chosen modal logic). Thus, definability theorems were
established for the basic modal logic [7], for temporal logics with since and until operators [16],
for negation-free modal languages [17], etc. A global counterpart was studied in [8], and a general
framework stating sufficient conditions for an arbitrary (modal) logic L to verify it was given in [1].
One of those requirements is that the models of L are closed under ultraproducts, which is true for
the aforementioned logics, but not for XPath=. Indeed, models of XPath= are data trees, which
may not remain connected under ultraproducts. Hence one cannot expect to use that framework
in this case. The Separation theorem for the basic modal logic was shown by de Rijke in [7], and
it was studied for other specific modal logics such as the temporal logic [16]. For more general
modal logics, Separation was studied in [1], but again, XPath= does not fit in here.

In [26] van Benthem characterizes the basic modal logic as the bisimulation invariant fragment
of first-order logic. Van Benthem’s original result over arbitrary structures was proved to hold for
finite structures by Rosen [23]. The proof was then simplified and unified by Otto [20, 21], and
later expanded by Dawar and Otto [6] to other classes of structures. We follow the ideas of [20]
to show the characterization result for binary bisimulations in the downward fragment.

1.2 Outline

The paper is organized as follows, In §2 we introduce the formal syntax and semantics of the down-
ward and vertical fragments of XPath=, together with notions of (unary) bisimulations from [10, 9].
Suitable notions of saturation for both fragments are given in §3.1, where it is also shown that for
saturated trees bisimilarity coincides with logical equivalence. In §3.2 we explain the connection
between XPath= and first-order logic, and we introduce the idea of quasi-ultraproducts for the
downward and vertical fragments. In §3.3 and §3.4 we state the theorems on definability and
separation, respectively.

In §4 we start our study of path expressions, which is divided in the downward fragment (§4.1)
and the vertical fragment (§4.2). For the downward fragment, we begin with some needed facts

4

(§4.1.1), and we then define the notions of logical equivalence to be used (§4.1.2). The definitions
of binary bisimulations for the downward fragment are given in §4.1.3, where it is also shown
their coincidence to the logical equivalence for path expressions. The characterization theorem is
given in §4.1.4. For the vertical fragment, we first show some needed facts in §4.2.1, and then
introduce the definition of binary bisimulation in §4.2.2, where, again, it is shown that it matches
logical equivalence. In §5 we introduce the needed changes to the notions of saturation and quasi-
ultraproducts for the case of two-pointed data trees, and we state the theorems of definability and
separation for the scenario of path expressions, over a restricted class of two-pointed data trees. In
this section some proofs are not given since they are analogous to those of §3.3 and §3.4. However,
it is explained in detail how to express, in the language of path expression, the needed operations
of complementation and intersection, provided the universe of two-pointed data trees is restricted.
Finally, in §6 we show some simple applications of our definability theorems, and we close in §7
with some conclusions and future work.

The following table summarizes the organizational structure of the paper and points out the
main results:

Node expressions Path expressions

Downward Vertical Downward Vertical
Bisimulation notion [9, §3.1.2] [9, §3.2.4] §4.1.3 §4.2.2

Characterization [9, §4.1] Fails [9, §4.2]
§4.1.4

Thm. 52
Fails

Def. saturation §3.1 §3.1 §5.1 §5.1

Def. quasi-ultraprod. §3.2 §3.2 §5.2 §5.2

Definability
§3.3

Thms. 20,21,22
§3.3

Thms. 25,26,27
§5.3

Thms. 67,68
§5.3

Separation
§3.4

Thms. 28,29
§3.4

§5.3
Thms. 69,70

§5.3

2 Preliminaries

2.1 Data trees

Let Trees(A) be the set of ordered and unranked (finite or infinite) trees over an arbitrary alphabet
A. We say that T is a data tree if it is a tree from Trees(A × D), where A is a finite set of
labels and D is an infinite set of data values. For instance, the tree T of Figure 1 belongs to
Trees({a, b}×N). A data tree is finitely branching if every node has finitely many children. For
any given data tree T , we denote by T its set of nodes. We use letters x, y, z, u, v, w as variables
for nodes. Given a node x ∈ T of T , we write label(x) ∈ A to denote the node’s label, and
data(x) ∈ D to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x
n→y if y is a descendant of

x at distance n. In particular,
1→ is the same as →, and

0→ is the identity relation. We denote

by x
≤m→ y the fact that x

n→y for some n ≤ m. (
n→y) denotes the sole ancestor of y at distance n

(assuming it has one).

2.2 Vertical and Downward XPath with data tests

We work with a simplification of XPath, stripped of its syntactic sugar. We consider fragments of
XPath that correspond to the navigational part of XPath 1.0 with data equality and inequality.
XPath= is a two-sorted language, with path expressions (that we write α, β, γ) expressing
properties of paths, and node expressions (that we write ϕ,ψ, η), expressing properties of nodes.
The vertical XPath, notated XPath=(↑↓) is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε, ↑, ↓}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A

5

We call downward XPath, notated XPath=(↓), to the syntactic fragment which only uses the
navigation axis ↓, but not ↑. An XPath=(↑↓)-formula [resp. XPath=(↓)-formula] is either a
node expression or a path expression of XPath=(↑↓) [resp. XPath=(↓)].

Semantics of XPath=(↑↓) in a given data tree T are defined as follows:

[[↓]]T = {(x, y) | x→y}
[[↑]]T = {(x, y) | y→x}
[[ε]]T = {(x, x) | x ∈ T}

[[αβ]]T = {(x, z) | (∃y ∈ T) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }
[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }
[[a]]T = {x ∈ T | label(x) = a}

[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[〈α〉]]T = {x ∈ T | (∃y ∈ T) (x, y) ∈ [[α]]T }
[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}
[[〈α 6= β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

Example 1. Some examples of node expressions over the data tree of Figure 1:

• ϕ1 = 〈↓[a]〉 ∧ 〈↓[b]〉 expresses property (1), i.e. “nodes with a child labeled a and a child
labeled b”, and [[ϕ1]]T = {x, z}.

• ϕ2 = 〈↓[a] 6= ↓[a]〉 expresses property (4), i.e. “nodes with two children with same label a
but different data value”, and [[ϕ2]]T = {z}

• ϕ3 = 〈ε 6= ↑[〈ε 6= ↑〉]〉 expresses “nodes with a data value different from the one of his parent,
who, in turn, has a data value different from his parent”, and [[ϕ3]]T = {u, v, w}.

• ϕ4 = 〈ε 6= ↓↓[ϕ3]〉 expresses “nodes with a downward path of length 2, with all distinct data
values”, and [[ϕ4]]T = {x}.

Example 2. Some examples of path expressions over the data tree of Figure 1:

• α1 = [a]↓↓[b] expresses property (2), i.e. “downward paths of length two starting in a node
with label a and ending in a node with label b”, and [[α1]]T = {(x,w)}.

• α2 = [a]↓[a] ∪ [a]↓↓[a] expresses “downward paths of length one or two, starting and ending
in a node with label a”, and [[α2]]T = {(x, y), (x, u), (x, v)}.

• α3 = ↓[〈ε = ↑〉] expresses property (4), i.e. “downward paths of length one whose starting
and end point have the same data value”, and [[α3]]T = ∅. Notice that we needed to use the
‘parent’ relation. As we will see next, this is unavoidable.

• α4 = [a]↓[a] ∪ [a]↑[a] expresses property (5) “paths of length one whose starting and end
point have label a”, and [[α4]]T = {(x, y), (y, x)}.

For a data tree T and u, v ∈ T , we say that T , u is a pointed data tree, and that T , u, v
is a two-pointed data tree. For a node expression ϕ, we write T , u |= ϕ to denote u ∈ [[ϕ]]T ,
and in that case we say that T , u satisfies ϕ or that ϕ is true at T , u. In the same way, for a
path expression α, we write T , u, v |= α to denote (u, v) ∈ [[α]]T , and we say that T , u, v satisfies
α or that α is true at T , u, v. We say that the node expressions ϕ,ψ of XPath= are equivalent
(notation: ϕ ≡ ψ) iff [[ϕ]]T = [[ψ]]T for all data trees T . Similarly, path expressions α, β of XPath=

are equivalent (notation: α ≡ β) iff [[α]]T = [[β]]T for all data trees T .

6

Let Th↑↓(T , u) [resp. Th↓(T , u)] be the set of all XPath=(↑↓)-node expressions [resp. XPath=(↓)-
node expressions] true at T , u. Similarly, let Th↑↓(T , u, v) [resp. Th↓(T , u, v)] be the set of all
XPath=(↑↓)-path expressions [resp. XPath=(↓)-path expressions] true at T , u, v.

In terms of expressive power of node expressions, it is easy to see that ∪ is unessential (see [10,
§2.2]): every XPath= node expression ϕ has an equivalent ϕ′ with no ∪ in its path expressions. It
is enough to use the following equivalences to eliminate occurrences of ∪:

〈α ? β〉 ≡ 〈β ? α〉
〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉

〈γ ? β(α ∪ α′)β′〉 ≡ 〈γ ? βαβ′〉 ∨ 〈γ ? βα′β′〉

where ? ∈ {=, 6=}. Observe also that 〈α〉 ≡ 〈α = ε〉 ∨ 〈α 6= ε〉, so we can restrict ourselves to the
fragment without formulas of the form 〈α〉.

For the case of path expressions, there is no such possible elimination of ∪. Indeed the path
expression α2 of Example 2 cannot be restated without using ∪. The reason of this is that there
are no intersections or complementations of path expressions (in §4 and §5 we will study this
issue).

2.3 Equivalences and syntactic measures

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′. We say that T , u and T ′, u′ are equivalent for
XPath=(↑↓) [resp. equivalent for XPath=(↓)] (notation: T , u ≡↑↓ T ′, u′ [resp. T , u ≡↓ T ′, u′])
iff for all node expressions ϕ ∈ XPath=(↑↓) [resp. ϕ ∈ XPath=(↓)], we have T , u |= ϕ iff T ′, u′ |= ϕ.

We write dd(ϕ) to denote the downward depth of ϕ, which measures ‘how deep’ the formula
can see, and it is defined as follows:

dd(a) = 0 dd(λ) = 0
dd(ϕ ∧ ψ) = max{dd(ϕ),dd(ψ)} dd(εα) = dd(α)

dd(¬ϕ) = dd(ϕ) dd([ϕ]α) = max{dd(ϕ),dd(α)}
dd(〈α〉) = dd(α) dd(↓α) = 1 + dd(α)

dd(〈α� β〉) = max{dd(α),dd(β)}

where a ∈ A, � ∈ {=, 6=}, and α is any path expression or the empty string λ. Let `-XPath=(↓)
be the fragment of XPath=(↓) consisting of all node expressions ϕ with dd(ϕ) ≤ `.

We say that T , u and T ′, u′ are `-equivalent for XPath=(↓) (notation: T , u ≡↓` T ′, u′) iff
for all node expression ϕ ∈ `-XPath=(↓), we have T , u |= ϕ iff T ′, u′ |= ϕ.

For the vertical fragment of XPath=, we need to define both the maximum distance r going
downward and the maximum distance s going upward that the formula can reach. We call the
pair (r, s) the vertical depth of a formula (notation: vd(ϕ)). The nesting depth of a formula
ϕ (notation: nd(ϕ)) is the maximum number of nested [] appearing in ϕ.

vd(a) = (0, 0) vd(λ) = (0, 0)
vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)} vd(εα) = vd(α)

vd(¬ϕ) = vd(ϕ) vd([ϕ]α) = max{vd(ϕ), vd(α)}
vd(〈α〉) = vd(α) vd(↓α) = max{(0, 0), vd(α) + (1,−1)}

vd(〈α� β〉) = max{vd(α), vd(β)} vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}

nd(a) = 0 nd(αβ) = max{nd(α),nd(β)}
nd(ϕ ∧ ψ) = max{nd(ϕ),nd(ψ)} nd(ε) = 0

nd(¬ϕ) = nd(ϕ) nd([ϕ]) = 1 + nd(ϕ)
nd(〈α〉) = nd(α) nd(↓) = 0

nd(〈α� β〉) = max{nd(α),nd(β)} nd(↑) = 0

where, a ∈ A, � ∈ {=, 6=}, the operations ‘+’ and ‘max’ are performed component-wise, and α is
any path expression or the empty string λ.

7

a, 1

a, 2

a, 1

a, 1

a, 2

a, 2

a, 3

a, 1

a, 2

a, 1

a, 1

a, 2

Figure 2: Two data trees and an XPath=(↓)-bisimulation between them (represented by dotted
lines).

Let (r, s, k)-XPath=(↑↓) be the set of node expressions ϕ in XPath=(↑↓) with vd(ϕ) ≤ (r, s)
and nd(ϕ) ≤ k. Let T , u and T ′, u′ be pointed data trees. We say that T , u and T ′, u′ are

(r, s, k)-equivalent for XPath=(↑↓) (notation: T , u ≡↑↓r,s,k T ′, u′) if they satisfy the same node
expressions of (r, s, k)-XPath=(↑↓).

2.4 Bisimulations

In [10] the notions of downward and vertical bisimulations are introduced. We reproduce them
here, as they are key concepts for our results.

Let us start with the notions of bisimulation for the downward fragment of XPath=. We say
that u ∈ T and u′ ∈ T ′ are bisimilar for XPath=(↓) (or ↓-bisimilar; notation: T , u↔↓ T ′, u′)
iff there is a relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

• Zag: If xZx′, x′
n→v′ and x′

m→w′ then there are v, w ∈ T such that x
n→v, x

m→w and items 1,
2 and 3 above are verified.

See Figure 2, taken from [10] for an example of a ↓-bisimulation. Notice that all pairs of leaves
can be in a downward bisimulation relation as long as they have the same label.

There is also a notion of step-by-step bisimulation for the downward fragment. We say that
u ∈ T and u′ ∈ T ′ are `-bisimilar for XPath=(↓) (notation: T , u↔↓` T ′, u′) if there is a family
of relations (Zj)j≤` in T × T ′ such that uZ`u

′ and for all j ≤ `, x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZjx
′ then label(x) = label(x′).

• Zig: If xZjx
′, x

n→v and x
m→w with n,m ≤ j then there are v′, w′ ∈ T ′ such that x′

n→v′,
x′

m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Zj−n+i (

i→v′) for all 0 ≤ i < n, and

8

3. (
i→w)Zj−m+i (

i→w′) for all 0 ≤ i < m.

• Zag: If xZjx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j then there are v, w ∈ T such that x

n→v,

x
m→w and items 1, 2 and 3 above are verified.

The following result of [10] establishes the connection between bisimulation and equivalence
for the downward fragment:

Theorem 3. 1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse is not true in general, but it
holds when T and T ′ are finitely branching.

2. T , u↔↓` T ′, u′ iff T , u ≡↓` T ′, u′.

Let us turn to bisimulation notions for the vertical fragment of XPath=. We say that u ∈ T
and u′ ∈ T ′ are bisimilar for XPath=(↑↓) (or ↑↓-bisimilar; notation: T , u↔↑↓ T ′, u′) iff there
is a relation Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′),

• Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈ T ′ such that y′
n→x′, y′m→z′, data(z) =

data(x)⇔ data(z′) = data(x′), and zZz′.

• Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are y, z ∈ T such that y
n→x, y

m→z, data(z) =
data(x)⇔ data(z′) = data(x′), and zZz′.

The notion of step by step bisimulation for XPath=(↑↓) is as follows: We say that u ∈ T and

u′ ∈ T ′ are (r, s, k)-bisimilar for XPath=(↑↓) (notation: T , u↔↑↓r,s,k T ′, u′) if there is a family

of relations (Z k̂
r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T × T ′ such that uZk

r,su
′ and for all r̂ + ŝ ≤ r + s, k̂ ≤ k, x ∈ T

and x′ ∈ T ′ we have that the following conditions hold.

• Harmony: If xZ k̂
r̂,ŝx

′ then label(x) = label(x′).

• Zig: If xZ k̂
r̂,ŝx

′, y
n→x and y

m→z with n ≤ ŝ and m ≤ r̂ + n then there are y′, z′ ∈ T ′ such

that y′
n→x′, y′m→z′, and the following hold

1. data(z) = data(x)⇔ data(z′) = data(x′),

2. if k̂ > 0, zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂ + n−m, ŝ′ = ŝ− n+m.

• Zag: If xZ k̂
r̂,ŝx

′, y′
n→x′ and y′

m→z′ with n ≤ ŝ and m ≤ r̂ + n then there are y, z ∈ T such

that y
n→x, y

m→z, and items (1) and (2) above are verified.

The following result of [10] establishes the connection between bisimulation and equivalence
for the vertical fragment:

Theorem 4. 1. T , u↔↑↓ T ′, u′ implies T , u ≡↑↓ T ′, u′. The converse is not true in general, but
it holds when T and T ′ are finitely branching.

2. T , u↔↑↓r,s,k·(r+s+2) T
′, u′ implies T , u ≡↑↓r,s,k T ′, u′.

3. T , u ≡↑↓r,s,k T ′, u′ implies T , u↔↑↓r,s,k T ′, u′.

9

2.5 Connection to first order logic

We fix the signature σ with binary relations and ∼, and a unary predicate Pa for each a ∈ A.
Any data tree T can be seen as a first-order σ-structure, where

 T = {(x, y) ∈ T 2 | x→ y in T };
∼T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

If ϕ(x) is a first-order formula with a free variable x, we use T |= ϕ[a], as usual, to denote that
ϕ is true in T under the valuation which maps x to a ∈ T . In [10] is shown a truth preserving
translation Trx mapping XPath=(↑↓)-node expressions into first-order σ-formulas with one free
variable x. The following translation is slightly more clear than the one described in [10], and it
also considers translation of path expressions (resulting in first-order formulas with two variables):

Trx(a) = Pa(x) (a ∈ A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃y)Trx,y(α) (y a fresh variable)

Trx(〈α = β〉) = (∃y)(∃z)
(
y ∼ z ∧ Trx,y(α) ∧ Trx,z(β)

)
(y, z fresh variables)

Trx(〈α 6= β〉) = (∃y)(∃z)
(
y 6∼ z ∧ Trx,y(α) ∧ Trx,z(β)

)
(y, z fresh variables)

Trx,y(ε) = (x = y)

Trx,y(↓) = (x y)

Trx,y(↑) = (y x)

Trx,y(αβ) = (∃z)
(
Trx,z(α) ∧ Trz,y(β)

)
(z a fresh variable)

Trx,y(α ∪ β) = Trx,y(α) ∨ Trx,y(β)

Trx,y([ϕ]) = Trx(ϕ) ∧ (x = y).

It is easy to see that the above translation is truth preserving:

Proposition 5. If ϕ is a node expression of XPath=(↑↓) then T , u |= ϕ iff T |= Trx(ϕ)[u]. If α
is a path expression of XPath=(↑↓) then T , u, v |= α iff T |= Trx,y(α)[u, v].

3 Definability via node expressions

3.1 Saturation

In [10] it is shown that the reverse implication of Theorem 3 holds over finitely branching trees.
However, it does not hold in general. In this section we introduce notions of saturation for the
downward and vertical fragments of XPath, and show that the reverse implication of Theorem 3
is true over saturated data trees.

Saturation for the downward fragment. Let 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 be tuples of sets
of XPath=(↓)-node expressions. Given a data tree T and u ∈ T , we say that 〈Σ1, . . . ,Σn〉 and
〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at T , u if there exist v0 → v1 → · · · →
vn ∈ T and w0 → w1 → · · · → wm ∈ T such that u = v0 = w0 and

1. for all i ∈ {1, . . . , n}, T , vi |= Σi;

2. for all j ∈ {1, . . . ,m}, T , wj |= Γj ; and

3. data(vn) = data(wm) [resp. data(vn) 6= data(wm)].

10

We say that 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-finitely satisfiable [resp. 6=↓n,m-finitely
satisfiable] at T , u if for every finite Σ′i ⊆ Σi and finite Γ′j ⊆ Γj , we have that 〈Σ′1, . . . ,Σ′n〉 and

〈Γ′1, . . . ,Γ′m〉 are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at T , u.

Definition 6. We say that a data tree T is ↓-saturated if for every n,m ∈ N, every pair of
tuples 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 of sets of XPath=(↓)-node expressions, every u ∈ T , and
? ∈ {=, 6=}, the following is true:

if 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are ?↓n,m-finitely satisfiable at T , u then 〈Σ1, . . . ,Σn〉
and 〈Γ1, . . . ,Γm〉 are ?↓n,m-satisfiable at T , u.

Proposition 7. Any finitely branching data tree is ↓-saturated.

Proof. Suppose by contradiction that there is u ∈ T and tuples 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉
of sets of XPath=(↓)-node expressions which are finitely =↓n,m-satisfiable at T , u but not =↓n,m-

satisfiable at T , u (the case for T being 6=↓n,m-satisfiable is analogous). Let

P = {(v, w) ∈ T 2 | u n→v ∧ um→w ∧ data(v) = data(w)}.

Observe that P is finite because T is finitely branching. It is clear that if (v, w) ∈ P , so that
u = v0 → v1 → · · · → vn = v ∈ T , and u = w0 → w1 → · · · → wm = w ∈ T then either

1. there is i ∈ {1, . . . , n} such that T , vi 6|= Σi, or

2. there is j ∈ {1, . . . ,m} such that T , wj 6|= Γj .

We will define sets (Σi,v,w)1≤i≤n and (Γj,v,w)1≤j≤m, each one of them with at most one element, as
follows: If case 1 holds, assume i0 is the least such number and define Σi0,v,w as {ρ} for some node
expression ρ ∈ Σi0 such that T , vi0 6|= ρ, define Σi,v,w = ∅ for any i ∈ {1, . . . , n} \ {i0}, and define
Γj,v,w = ∅ for any j ∈ {1, . . . ,m}. If case 1 does not hold then case 2 holds, so assume j0 is the
least such number and define Γj0,v,w as {ρ} for some node expression ρ ∈ Γj0 such that T , wj0 6|= ρ,
define Γj,v,w = ∅ for any j ∈ {1, . . . ,m}\{j0}, and define Σi,v,w = ∅ for any i ∈ {1, . . . , n}. Finally,
define the finite sets Σ′i =

⋃
(v,w)∈P Σi,v,w and Γ′j =

⋃
(v,w)∈P Γj,v,w. By construction, we have

Σ′i ⊆ Σi, Γ′j ⊆ Γj and 〈Σ′1, . . . ,Σ′n〉 and 〈Γ′1, . . . ,Γ′m〉 are not =↓n,m-satisfiable at T , u which is a
contradiction.

Proposition 8. Let T and T ′ be ↓-saturated data trees, and let u ∈ T and u′ ∈ T ′. If T , u ≡↓
T ′, u′, then T , u↔↓ T ′, u′.

Proof. We show that Z, defined by xZx′ iff T , x ≡↓ T ′, x′ is a ↓-bisimulation between T , u and
T ′, u′. Clearly uZu′, and Harmony holds. We only need to show that Zig and Zag are satisfied.
We see only Zig, as Zag is analogous.

Suppose xZx′, x = v0 → v1 → · · · → vn and x = w0 → w1 → · · · → wm are paths on T , and
data(vn) = data(wm) (the case data(vn) 6= data(wm) is shown analogously). For i ∈ {1, . . . , n},
let Σi = Th↓(T , vi), and for j ∈ {1, . . . ,m}, let Γj = Th↓(T , wj). Furthermore, let Σ′i be a finite
subset of Σi, and let Γ′j be a finite subset of Γj . Define

ϕ = 〈↓[∧Σ′1]↓ . . . ↓ [∧Σ′n] = ↓[∧Γ′1]↓ . . . ↓ [∧Γ′m]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↓ T ′, x′, we conclude that
T ′, x′ |= ϕ. Hence 〈Σ′1, . . . ,Σ′n〉 and 〈Γ′1, . . . ,Γ′m〉 are =↓n,m-satisfiable at x′. This holds for any

finite sets Σ′i ⊆ Σi and Γ′j ⊆ Γj , and so 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-finitely satisfiable

at x′. Since T ′ is ↓-saturated, 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable at T ′, x′, so
there are paths x′ = v′0 → v′1 → · · · → v′n and x′ = w′0 → w′1 → · · · → w′m on T ′ such that

i. data(v′n) = data(w′m).

11

ii. For all 1 ≤ i ≤ n, T ′, v′i |= Th↓(T , vi). This implies T , vi ≡↓ T ′, v′i: suppose by the way of
contradiction that T ′, v′i |= ϕ but T , vi 6|= ϕ. Then, T , vi |= ¬ϕ, and thus T ′, v′i |= ¬ϕ, a
contradiction.

iii. For all 1 ≤ j ≤ m, T ′, w′j |= Th↓(T , wj), i.e T , wj ≡↓ T ′, w′j .

By the definition of Z, conditions i, ii and iii above imply items 1, 2 and 3 of the Zig clause for
↓-bisimulation.

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that the set
of XPath=(↑↓)-node expressions Γ is =↑↓n,m-satisfiable [resp. 6=↑↓n,m-satisfiable] at T , u if there

exist v, w ∈ T such that v
n→u, v

m→w, w |= Γ and data(u) = data(w) [resp. data(u) 6= data(w)].
We say that Γ is =↑↓n,m-finitely satisfiable [resp. 6=↑↓n,m-finitely satisfiable] at T , u if for every

finite Γ′ ⊆ Γ, we have that Γ′ is =↑↓n,m-satisfiable [resp. =↑↓n,m-satisfiable] at T , u.

Definition 9. We say that a data tree T is ↑↓-saturated if for every set of XPath=(↑↓)-node
expressions Γ, every u ∈ T , every n,m ∈ N, and ? ∈ {=, 6=}, the following is true:

if Γ is ?↑↓n,m-finitely satisfiable at T , u then Γ is ?↑↓n,m-satisfiable at T , u.

Proposition 10. Let T and T ′ be ↑↓-saturated data trees, and let u ∈ T and u′ ∈ T ′. If
T , u ≡↑↓ T ′, u′, then T , u↔↑↓ T ′, u′.

Proof. We show that Z ⊆ T × T ′, defined by xZx′ iff T , x ≡↑↓ T ′, x′ is a ↑↓-bisimulation between
T , u and T ′, u′. Clearly uZu′, and Harmony also holds, so we only need to show that Zig and
Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose xZx′, y
n→x and y

m→z are in T , and data(x) = data(z) (the case data(x) 6= data(z)
can be shown analogously). Let Γ = Th↑↓(T , z), and let Γ′ be a finite subset of Γ. Define

ϕ = 〈ε = ↑n ↓m [∧Γ′]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↑↓ T ′, x′, we conclude
that T ′, x′ |= ϕ. Hence Γ′ is =↑↓n,m-satisfiable at x′. This holds for any finite set Γ′ ⊆ Γ, and

so Γ is =↑↓n,m-finitely satisfiable at x′. Since T ′ is ↑↓-saturated, Γ is =↑↓n,m-satisfiable at x′, and

thus there are y′
n→x′ and y′

m→z′ on T ′ such that data(x′) = data(z′) and T ′, z′ |= Th↑↓(T , z), i.e
T , z ≡↑↓ T ′, z′. By the definition of Z, we have zZz′ and hence the Zig clause for ↑↓-bisimulation
is verified.

3.2 Weak Data Trees and Quasi-ultraproducts

For reasons that will become clearer later on, we will need to work with σ-structures which are
slightly more general than data trees.

Definition 11. A σ-structure T is a weak data tree if ∼ is an equivalence relation; there is
exactly one node r with no u such that u r (r is called root of T); for all nodes x 6= r there is
exactly one y such that y x; and for each n ≥ 0 the relation has no cycles of length n.

Observe that a weak data tree need not be connected, and that the class of weak data trees is
elementary, i.e. definable by a set of first-order σ-sentences (with equality). For a weak data tree
T and u ∈ T , let T |u denote the substructure of T induced by {v ∈ T | u ∗ v}. Observe that in
this case T |u is a data tree.

The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓). It is stated
in terms of first-order because models are weak data trees.

Proposition 12. Let T be a weak data tree and let r ∗ u in T .

1. If ϕ is a XPath=(↓)-node expression then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

12

2. If r is the root of T and ϕ ∈ XPath=(↑↓) then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

Observe that the condition of r being the root in the second item is needed. Suppose for
example we are on the data tree with only 2 nodes, the root r and its child u, with same data
value. Consider now ϕ = 〈ε = ↑〉. Clearly T |= Trx(ϕ)[u], but T |u 6|= Trx(ϕ)[u].

IfM is a first-order σ-structure and A ⊆M , we denote by σA the language obtained by adding
to σ constant symbols for each a ∈ A. M can be seen as a σA structure by interpreting the new
symbols in the obvious way. Let ThA(M) be the set of all σA-sentences true in M. Let κ be a
cardinal. We recall the definition of κ-saturated first-order structures:

Definition 13. We say that the σ-structure M is κ-saturated if for all A ⊆ M and all n, if
|A| < κ and Γ(x1, . . . , xn) is a set of σA-formulas with free variables among x1, . . . , xn such that
Γ(x1, . . . , xn) ∪ ThA(M) is satisfiable, then Γ(x1, . . . , xn) is realized in M.

We now show that 2-saturated data trees are already both downward and vertical saturated.
For technical reasons we state these results in the more general setting of weak data trees.

Proposition 14. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a ↓-saturated data tree.

2. If r is the root of T then T |r is a ↑↓-saturated data tree.

Proof. Let T ′ = T |r and let u ∈ T ′. For item 1, let 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 be tuples
of sets of XPath=(↓)-node expressions. Suppose 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-finitely

satisfiable at T ′, u (the case for 6=↓n,m-finitely satisfiable is analogous). We show that 〈Σ1, . . . ,Σn〉
and 〈Γ1, . . . ,Γm〉 are =↓n,m-satisfiable at T ′, u. Consider the following first-order σ{u}-formula
with free variables x̄ = x1, . . . , xn and ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u x1 ∧
n−1∧
i=1

xi xi+1 ∧ u y1 ∧
m−1∧
j=1

yj yj+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

∆(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪
n⋃

i=1

Trxi
(Σi) ∪

m⋃
j=1

Tryj
(Γj).

Let ∆′(x̄, ȳ) be a finite subset of ∆(x̄, ȳ). Since 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉 are =↓n,m-finitely
satisfiable at T ′, u, then ∆′(x̄, ȳ) is satisfiable and, by item 1 of Proposition 12, consistent with
Th{u}(T). By compactness, ∆(x̄, ȳ) is satisfiable and consistent with Th{u}(T). By 2-saturation,
we conclude that ∆(x̄, ȳ) is realizable in T , say at v̄ = v1, . . . , vn and w̄ = w1, . . . , wm. Thus we
have:

i. u v1 · · · vn and u w1 · · · wm in T , and hence in T ′;

ii. for all i ∈ {1, . . . , n}, T |= Trxi
(Σi)[vi], and for all j ∈ {1, . . . ,m}, T |= Tryj

(Γj)[wj]; by
item 1 of Proposition 12 this implies that T ′ |= Trxi

(Σi)[vi] and T ′ |= Tryj
(Γj)[wj];

iii. vn ∼ wm in T , and hence in T ′.

Since Tr is truth preserving, we have that for all i ∈ {1, . . . , n}, T ′, vi |= Σi, and for all j ∈
{1, . . . ,m}, T ′, wi |= Γi. Together with i and iii we conclude that 〈Σ1, . . . ,Σn〉 and 〈Γ1, . . . ,Γm〉
are =↓n,m-satisfiable at T ′, u.

For item 2, let Γ be a set of XPath=(↑↓)-node expressions. Suppose Γ is =↑↓n,m-finitely satisfiable

at T ′, u (the case for 6=↑↓n,m-finitely satisfiable is analogous). We show that Γ are =↑↓n,m-satisfiable
at T ′, u.

13

Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . . ∃xn)(∃y0 . . . ∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧
i=0

xi xi+1 ∧
m−1∧
j=0

yj yj+1 ∧ xn ∼ ym].

Define the following set of first-order σ{u}-formulas: ∆(y) = {ϕ(y)}∪Try(Γ). Let ∆′(y) be a finite

subset of ∆(y). Since Γ is =↑↓n,m-finitely satisfiable at T ′, u, then ∆′(y) is satisfiable and, by item 2
of Proposition 12, consistent with Th{u}(T). By compactness, ∆(y) is satisfiable and consistent
with Th{u}(T). By 2-saturation, we conclude that ∆(y) is realizable in T , say at w. Thus we
have:

iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′.

v. T |= Try(Γ)[w]; by item 2 of Proposition 12 this implies that T ′ |= Try(Γ)[w];

vi. u ∼ w in T , and hence in T ′.

Since Tr is truth preserving, we have that T ′, w |= Γ. Together with iv and vi we conclude that Γ
is =↑↓n,m-satisfiable at T ′, u.

In what follows, we introduce the notion of quasi-ultraproduct, a variant of the usual notion
of first-order model theory, which will be needed for the definability theorems.

Let I 6= ∅, let U be an ultrafilter over I and let (Ti)i∈I be a family of data trees. As usual,
we denote with

∏
U Ti the ultraproduct of (Ti)i∈I modulo U . Observe that by the fundamental

theorem of ultraproducts (see e.g. [4, Thm. 4.1.9]),
∏

U Ti is a weak data tree σ-structure —though
it may not be a data tree because it may be disconnected, as it is shown next:

Example 15. For i ∈ N, let Ti as any data tree of height at least i, and let ui as any node of Ti at
distance i from the root of Ti. Let ϕn(x) be the first-order property “x is at distance at least n
from the root”. It is clear that Tm |= ϕn[um] for every m ≥ n. Let u∗ be the ultralimit of (ui)i∈I
modulo U . Since {m | m ≥ n} ∈ U for any non-principal U , we conclude that

∏
U Ti |= ϕn[u∗] for

every n, and so u∗ is disconnected from the root of
∏

U Ti.
Let (Ti, ui)i∈I be a family of pointed data trees. The ultraproduct of such pointed data trees

is defined, as usual, by (
∏

U Ti, u∗), where u∗ is the ultralimit of (ui)i∈I modulo U .

Definition 16. Suppose (Ti, ui)i∈I is a family of pointed data trees, ri is the root of Ti, U is an
ultrafilter over I, T ∗ =

∏
U Ti, and u∗ and r∗ are the ultralimits of (ui)i∈I and (ri)i∈I modulo U

respectively.

1. The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data tree (T ∗|u∗, u∗).

2. The ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pair (T ∗|r∗, u∗).

Observe that both T ∗|u∗ and T ∗|r∗ are data trees. However, while u∗ is in the domain of the
former, it may not be in the domain of the latter (cf. Example 15). Hence, in general, pointed
data trees are not closed under ↑↓-quasi ultraproduct. Let k ≥ 0, let T be a data tree and let
u ∈ T . We say that T , u is a k-bounded pointed data tree if u is at distance at most k from
the root of T . In particular, if r is the root of T (as it is often the case) then T , r is a 0-bounded
pointed data tree. The following proposition states that k-bounded data trees are closed under
↑↓-quasi ultraproducts.

Proposition 17. Let (Ti, ui)i∈I be a family of k-bounded pointed data trees. Then the ↑↓-quasi
ultraproduct of (Ti, ui)i∈I is a k-bounded pointed data tree.

14

Proof. Let (T ↑↓, u∗) be the ↑↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . By definition it is clear
that T ↑↓ is a data tree. To see that u∗ ∈ T ↑↓, let

ϕ(x) = (∃r) [¬(∃y)y r ∧ [r = x ∨ r x ∨∨
1≤i<k

(∃z1 . . . ∃zi)[r z1 ∧ zi−1 x ∧
∧

1≤j<i−1

zj zj+1]]],

which is a first-order formula for “r is the root and x is at distance at most k from r”. Since for
every i ∈ I we have Ti |= ϕ[ui], we conclude that T ↑↓ |= ϕ[u∗] and hence u∗ is at distance at most
k from the root of T ↑↓.

As a particular case one has the notion of ↓-quasi ultrapower and ↑↓-quasi ultrapower of
a family of pointed data trees. Observe that if (T ↑↓, u∗) is the ↑↓-quasi ultrapower of (T , u)i∈I
then u∗ belongs to the domain of T ↑↓ and so (T ↑↓, u∗) is a pointed data tree.

3.3 Definability

In this section we state the main results. If K is a class of pointed data trees, we denote its
complement by K. We begin with the downward fragment.

Lemma 18. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↓ T ′, u′. Then
there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such that
(T ↓, u∗)↔↓ (T ′↓, u′∗)

Proof. It is known that there is a suitable ultrafilter U such that
∏

U T and
∏

U T ′ are ω-saturated
(see e.g. [2, Lemma 2.7.3]). By item 1 Proposition 14, T ↓ = (

∏
U T)|u∗ and T ↓ = (

∏
U T ′)|u′∗

are ↓-saturated data trees. By hypothesis T , u ≡↓ T ′, u′, and hence T ↓, u∗ ≡↓ T ′↓, u′∗. Finally,
by Proposition 8, T ↓, u∗↔↓ T ′↓, u′∗.

Lemma 19. Let K be a class of pointed data trees and let Σ be a set of XPath=(↓)-node expressions
finitely satisfiable in K. Then Σ is satisfiable in some ↓-quasi ultraproduct of pointed data trees
in K.

Proof. Let I = {Σ0 ⊂ Σ | Σ0 is finite} and for each ϕ ∈ Σ, let ϕ̂ = {i ∈ I | ϕ ∈ i}. Then the
set E = {ϕ̂ | ϕ ∈ Σ} has the finite intersection property: {ϕ1, . . . , ϕn} ∈ ϕ̂1 ∩ · · · ∩ ϕ̂n. By the
Ultrafilter Theorem (see [4, Proposition 4.1.3]) E can be extended to an ultrafilter U over I.

Since Σ is finitely satisfiable in K, for each i ∈ I there is (Ti, ui) ∈ K such that Ti, ui |= i.
Let (T ↓, u∗) be the ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U . We show that T ↓, u∗ |= Σ: let
ϕ ∈ Σ. Then ϕ̂ ∈ E ⊆ U and ϕ̂ ⊂ {i ∈ I | Ti, ui |= ϕ}. Hence {i ∈ I | Ti, ui |= ϕ} ∈ U , which
implies that

∏
U Ti |= Trx(ϕ)[u∗], where u∗ is the ultralimit of (ui)i∈I . Since T ↓ = (

∏
U Ti)|u∗, by

item 1 of Proposition 12 we conclude that T ↓, u∗ |= ϕ.

Theorem 20. Let K be a class of pointed data trees. Then K is definable by a set of XPath=(↓)-
node expressions iff K is closed under ↓-bisimulations and ↓-quasi ultraproducts, and K is closed
under ↓-quasi ultrapowers.

Proof. For (⇒), suppose that K is definable by a set of XPath=(↓)-node expressions. By Theo-
rem 3 it is clear that K is closed under ↓-bisimulations. By the fundamental theorem of ultraprod-
ucts together with item 1 of Proposition 12 it is clear that K is closed under ↓-quasi ultraproducts.
It is also clear that the fundamental theorem of ultraproducts and the fact that any XPath=(↓)-
node expression is expressible in first-order imply that T , u ≡↓ T ↓, u∗ for any (T ↓, u∗) ↓-quasi
ultrapower modulo U , and therefore that K is closed under ↓-quasi ultrapowers.

For (⇐), suppose K is closed under bisimulations and ↓-quasi ultraproducts, and K is closed
under ↓-quasi ultrapowers. We show that Γ =

⋂
(T ,u)∈K Th↓(T , u) defines K. It is clear that if

(T , u) ∈ K then T , u |= Γ.
Now suppose that T , u |= Γ and consider Σ = Th↓(T , u). Let ∆ be a finite subset of Σ, and

assume that ∆ is not satisfiable in K. Then ¬ ∧ ∆ is true in every pointed data tree of K, so

15

¬ ∧∆ ∈ Γ. Therefore T , u |= ¬ ∧∆ which is a contradiction because ∆ ⊆ Σ. This shows that Σ
is finitely satisfiable in K.

By Lemma 19, Σ is satisfiable in some ↓-quasi ultraproduct of pointed data trees in K, and
since K is closed under ↓-quasi ultraproducts, Σ is satisfiable in K. Then there exists (T ′, u′) ∈ K
such that T ′, u′ |= Σ and therefore T , u ≡↓ T ′, u′. By Lemma 18, there exist ↓-quasi ultrapowers
(T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such that (T ↓, u∗)↔↓ (T ′↓, u′∗). Since
K is closed under ↓-bisimulations, (T ↓, u∗) ∈ K. Suppose (T , u) ∈ K. Since K is closed under
↓-quasi ultrapowers, (T ↓, u∗) ∈ K, and this is a contradiction. Hence we conclude (T , u) ∈ K.

Theorem 21. Let K be a class of pointed data trees. Then K is definable by an XPath=(↓)-node
expression iff both K and K are closed under ↓-bisimulations and ↓-quasi ultraproducts.

Proof. For (⇒) suppose that K is definable by an XPath=(↓)-node expression. By Theorem 3
it is clear that K and K are closed under bisimulations. By the fundamental theorem of ultra-
products together with item 1 of Proposition 12 it is clear that K and K are closed under ↓-quasi
ultraproducts.

For (⇐) suppose K and K are closed under bisimulations and ↓-quasi ultraproducts. Then, by
Theorem 20, there exist sets Γ1 and Γ2 of XPath=(↓)-node expression defining K and K respec-
tively. Consider the set of XPath=(↓)-node expressions Γ1 ∪ Γ2. This set is clearly inconsistent
and so, by compactness, there are finite sets ∆1 and ∆2 such that ∆i ⊆ Γi (i = 1, 2) and

T , u |= ∧∆1 → ¬∧∆2 (6)

for any pointed data tree (T , u). We show that ϕ = ∧∆1 defines K. On the one hand, it is clear
that if (T , u) ∈ K then T , u |= ϕ. On the other hand, suppose that T , u |= ϕ. From (6) we
conclude T , u |= ¬ ∧∆2 and so T , u 6|= Γ2. Then (T , u) /∈ K as we wanted to prove.

Like Theorem 21, the following result characterizes when a class of pointed data trees is defin-
able by a single XPath=(↓)-node expression. However, instead of using the rather abstract notion
of ↓-quasi ultraproducts, it uses the perhaps more natural notion of `-bisimulation.

Theorem 22. Let K be a class of pointed data trees. Then K is definable by a node expression
of XPath=(↓) iff K is closed by `-bisimulations for XPath=(↓) for some `.

Proof. (⇒) is a direct consequence of Theorem 3. Let us see (⇐). We know [10, Corollary 3.2]

that {T ′, u′ | T , u ≡↓` T ′, u′} is definable by an XPath=(↓)-node expression χ`,T ,u of downward
depth ≤ `. We show that

ϕ =
∨

(T ,u)∈K

χ`,T ,u

defines K. In [10, Proposition 3.1] it is shown that ≡↓` has finite index, and therefore the above
disjunction is equivalent to a finite one. On the one hand, if (T ′, u′) ∈ K then it is clear that
T ′, u′ |= χ`,T ′,u′ and so T ′, u′ |= ϕ. On the other hand, we have T ′, u′ |= ϕ iff there is (T , u) ∈ K
such that T ′, u′ |= χ`,T ,u iff there is (T , u) ∈ K such that T , u↔↓` T ′, u′. Hence since K is closed

under↔↓` , if T ′, u′ |= ϕ we have (T ′, u′) ∈ K.

We turn to the vertical fragment.

Lemma 23. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↑↓ T ′, u′. Then
there exist ↑↓-quasi ultrapowers (T ↑↓, u∗) and (T ′↑↓, u′∗) of (T , u) and (T ′, u′) respectively such
that (T ↑↓, u∗)↔↑↓ (T ′↑↓, u′∗)

Proof. The proof is analogous to the proof of Lemma 18 but using item 2 instead of item 1 of
Proposition 14 and Proposition 10 instead of Proposition 8.

16

Lemma 24. Let K be a class of k-bounded pointed data trees and let Σ be a set of XPath=(↑↓)-
node expressions finitely satisfiable in K. Then Σ is satisfiable in some ↑↓-quasi ultraproduct of
pointed data trees in K.

Proof. The proof is analogous to the proof of Lemma 19 but taking ↑↓-quasi ultraproducts instead
of ↓-quasi ultraproducts and using item 2 instead of item 1 of Proposition 12. To apply this
Proposition, one has to note that u∗ ∈ T ↑↓ since the Ti, ui are k-bounded pointed.

In the next two theorems, the universe of pointed data trees is restricted to those which are
k-bounded (for any fixed k). Therefore, the operations of closure and complement must be taken
with respect to this universe.

Theorem 25. Over k-bounded pointed data trees: K is definable by a set of XPath=(↑↓)-node
expressions iff K is closed under ↑↓-bisimulations and ↑↓-quasi ultraproducts, and K is closed under
↑↓-quasi ultrapowers.

Proof. The proof is analogous to the proof of Theorem 20 but replacing pointed data trees for
k-bounded pointed data trees and every occurrence of ↓ for ↑↓. Also, for (⇒), one has to use
item 2 instead of item 1 of Proposition 12 and for (⇐), Lemmas 24 and 23 instead of Lemmas 19
and 18.

Theorem 26. Over k-bounded pointed data trees: K is definable by an XPath=(↑↓)-node expres-
sion iff both K and K are closed under ↑↓-bisimulations and ↑↓-quasi ultraproducts.

As in Theorem 22, one can also restate Theorem 26 in terms of (r, s, k)-bisimulations for
XPath=(↑↓).

Theorem 27. Let K be a class of pointed data trees. Then K is definable by a node expression
of XPath=(↑↓) iff K is closed by (r, s, k)-bisimulations for XPath=(↑↓) for some r, s, k.

3.4 Separation

The theorem of Separation for first-order is closely related to Definability: it provides conditions
to separate two disjoint classes of models K1 and K2 by means of a first-order formula, i.e. to
find a class K, definable by a first-order formula or by a single formula, such that K1 ⊆ K and
K ∩K2 = ∅.

Theorem 28. Let K1 and K2 be two disjoint classes of pointed data trees such that K1 is closed
under ↓-bisimulations and ↓-quasi ultraproducts and K2 is closed under ↓-bisimulations and ↓-
quasi ultrapowers. Then there exists a third class K which is definable by a set of XPath=(↓)-node
expressions, contains K1 and is disjoint from K2.

Proof. Let K = {(T ′, u′) | there is (T , u) ∈ K1 such that T , u ≡↓ T ′, u′}. Clearly, K1 ⊆ K. We
first show that K ∩K2 = ∅. Suppose that there is a pointed model (T ′, u′) ∈ K ∩K2. Then, there
exists (T , u) ∈ K1 such that T , u ≡↓ T ′, u′ and, by Lemma 18, there exist ↓-quasi ultrapowers
(T ↓, u∗) and (T ′↓, u′∗) of (T , u) and (T ′, u′) respectively such that T ↓, u∗↔↓ T ′↓, u′∗. Since K1 is
closed under ↓-quasi ultraproducts and ↓-bisimulations and K2 is closed under ↓-quasi ultrapowers,
(T ′↓, u′∗) ∈ K1 ∩K2 which is a contradiction.

To conclude the proof, we show that K is definable by a set of XPath=(↓)-node expressions. By
Theorem 20, it is enough to check that K is closed under ↓-bisimulations and ↓-quasi ultraproducts
and K is closed under ↓-quasi ultrapowers. Clearly, K is closed under ↓-bisimulations, as ↔↓
implies ≡↓. Now, let (T ′i , u′i)i∈I be a family of pointed data trees contained in K. Then, for all i ∈
I, there is (Ti, ui) ∈ K1 such that Ti, ui ≡↓ T ′i , u′i. By the fundamental theorem of ultraproducts,
if U is an ultrafilter over I and T ∗, u∗, T ′∗, u′∗ are the ultraproducts of the families (Ti, ui)i∈I and
(T ′i , u′i)i∈I respectively, then (T ∗, u∗) ≡↓ (T ′∗, u′∗), and by Proposition 12 (T ↓, u∗) ≡↓ (T ′↓, u′∗).
Now, since K1 is closed under ↓-quasi ultraproducts, (T ′↓, u′∗) ∈ K which proves that K is closed
under ↓-quasi ultraproducts. Finally, let (T ′, u′) ∈ K. Suppose that (T ′↓, u′∗), some ↓-quasi
ultrapower of (T ′, u′), belongs to K. By the fundamental theorem of ultraproducts, (T ′↓, u′∗) ≡↓
(T ′, u′). So, since K is closed under ≡↓, (T ′, u′) ∈ K, which is a contradiction.

17

Theorem 29. Let K1 and K2 be two disjoint classes of pointed data trees closed under ↓-
bisimulations and ↓-quasi ultraproducts. Then there exists a third class K which is definable by an
XPath=(↓)-node expression, contains K1 and is disjoint from K2.

Proof. By Theorem 28, there exists a class K ′ definable by a set of XPath=(↓)-node expressions
Γ1, containing K1 and disjoint from K2. Observe that as a consequence of Theorem 3, such K ′ is
closed under ↓-bisimulations and ↓-quasi ultraproducts. Using Theorem 28 again for K2 and K ′,
we have another class K ′′ also definable by a set of XPath=(↓)-node expressions Γ2, containing
K2 and disjoint from K ′.

Now consider the set of XPath=(↓)-node expressions Γ1∪Γ2. This set is clearly inconsistent and
so, by compactness, there are finite sets ∆1 and ∆2 such that ∆i ⊆ Γi (i = 1, 2) and

∧
∆1 ∧

∧
∆2

is unsatisfiable. Now let K = {T , u | T , u |=
∧

∆1}. This K satisfies the desired properties, as
K1 ⊂ K ′ ⊂ K and K2 ∩K ⊂ K ′′ ∩K = ∅.

The same proofs apply for the case of XPath=(↑↓), using the corresponding notions of bisim-
ulations and quasi ultraproducts and Lemmas 23 and 25 instead of Lemmas 18 and 20, with
the proviso that the universe of data trees are restricted to those which are k-bounded (and so
operations of closure and complement must be taken with respect to this universe).

4 Binary bisimulations

We introduce notions of binary bisimulations for the downward and vertical fragments. These no-
tions are suitable in the sense that they capture the idea of indistinguishability by path expressions.
For the case of the downward fragment, we show a van Benthem-like characterization theorem.

4.1 Downward

4.1.1 Some facts about path expressions over XPath=(↓)

The proofs of Theorem 3 or Theorem 4 of [10] assume that node expressions of XPath=(↓) do not
contain any ∪. Indeed, as explained at the end of §2.2, any ∪ of a path expression can be simulated
with a ∨ within a suitable node expression. However, we have seen that it is not true that any
XPath=(↓)-path expression is equivalent to a ∪-free one. Hence, in our context of studying a
notion of binary bisimulation which captures the idea of indistinguishability by path expressions,
we need to develop first some results that allow us to deal with the ∪ operator. Another difference
with respect of the previous work is that there are no intersection nor complementation of path
expressions. As we will see next, under certain contexts, we can define them within the language
of XPath=(↓).

Definition 30. If α is of the form α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕn], we say that it is in simple normal
form, and we say that the length of α (notation: len(α)) is n.

Fact 31. For each ∪-free XPath=(↓) path expression α there is an XPath=(↓) path expression β
in simple normal form such that dd(β) = dd(α) and for all data tree T , we have [[α]]T = [[β]]T .

Fact 32. If α is a ∪-free XPath=(↓) path expression then T , x, y |= α implies x
n→y in T , where

n = len(α).

The ∪ operator is unessential for distinguishing two pairs of nodes:

Lemma 33. If T , x, y |= α and T ′, x′, y′ 6|= α then there is a ∪-free XPath=(↓) path expression α̃
with dd(α̃) ≤ dd(α) such that T , x, y |= α̃ and T ′, x′, y′ 6|= α̃.

Proof. We show it by induction on α. The only interesting case is when α = α1 ∪ α2. Since
T , x, y |= α then there is i ∈ {1, 2} such that T , x, y |= αi. Since T ′, x′, y′ 6|= α then T ′, x′, y′ 6|= αi.
By inductive hypothesis there is α̃i which is ∪-free and such that T , x, y |= α̃i and T ′, x′, y′ 6|=
α̃i.

18

The following lemma gives us a restricted form of negation for path expressions:

Lemma 34. Let x
n→y in T and x′

n→y′ in T ′. If α is an ∪-free XPath=(↓) path expression such
that T , x, y |= α and T ′, x′, y′ 6|= α then there is a ∪-free path expression α such that dd(α) = dd(α)
and T , x, y 6|= α and T ′, x′, y′ |= α.

Proof. By Fact 31 we can assume that α is in simple normal form, say α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓
[ϕn]. Let x = x0→x1→ . . .→xn = y and x′ = x′0→x′1→ . . .→x′n = y′. Since T , x, y |= α and
T ′, x′, y′ 6|= α there is i such that xi |= ϕi and x′i 6|= ϕi. One can check that α = ↓i[¬ϕi]↓n−i is as
we wanted.

The following lemma simplifies many of the proofs, and it will be used frequently and without
mention.

Lemma 35. If α is a XPath=(↓) path expression, it is equivalent to a XPath=(↓) path expression
of the form β1 ∪ · · · ∪ βn, with the βi in simple normal form.

Definition 36. If α = [ϕ0] ↓ [ϕ1] ↓ . . . ↓ [ϕi] and β = [ψ0] ↓ [ψ1] ↓ . . . ↓ [ψi] are XPath=(↓) path
expressions of the same length in simple normal form, we define the intersection of α and β as

α ∩ β := [ϕ0 ∧ ψ0] ↓ [ϕ1 ∧ ψ1] ↓ . . . ↓ [ϕi ∧ ψi]. (7)

Fact 37. If α and β are XPath=(↓) path expressions in simple normal form of the same length,
then dd(α∩β) = max{dd(α),dd(β)}, and for every data tree T , we have [[α∩β]]T = [[α]]T ∩ [[β]]T .

4.1.2 Equivalence for XPath=(↓) path expressions

For a data tree T , let us define

D(T) = {(u, v) ∈ T 2 | u ∗→v},

and for ` ≥ 0,

D`(T) = {(u, v) ∈ T 2 | u≤`→v}.

We say that (x, y) ∈ D(T) and (x′, y′) ∈ D(T ′) are equivalent for XPath=(↓) path
expressions (notation: T , x, y ≡↓ T ′, x′, y′) if for all XPath=(↓) path expressions α, we have
T , x, y |= α iff T ′, x′, y′ |= α. We say that (x, y) ∈ D`(T) and (x′, y′) ∈ D`(T ′) are `-equivalent

for XPath=(↓) path expressions (notation: T , x, y ≡↓` T ′, x′, y′) if for all XPath=(↓) path
expressions α with dd(α) ≤ `, we have T , x, y |= α iff T ′, x′, y′ |= α.

Of course, one could have defined T , x, y ≡↓ T ′, x′, y′ even for pairs (x, y) /∈ D(T) or for
pairs (x′, y′) /∈ D(T ′). For instance, if x is not an ancestor of y then T , x, y does not verify any
path expression, and so one could say that T , x, y ≡↓ T ′, x′, y′ only when x′, y′ does not verify
any path expression (in other words, when x′ is not an ancestor of y′, i.e. (x′, y′) /∈ D(T)). We
restricted ≡ to D(T)×D(T ′) for reasons of clarity when comparing logical equivalence with binary
bisimulations, as we will see next.

Notice that if T , x, y ≡↓ T ′, x′, y′ and x
n→y then T , x, y |= ↓n and hence T ′, x′, y′ |= ↓n, which

means x′
n→y′ in T ′. The same holds in case T , x, y ≡↓` T ′, x′, y′ when n ≤ `.

Lemma 38. Let u
m→v in T and u′

n→v′ in T ′, and let n,m ≤ `. If T , u, v 6≡↓` T ′, u′, v′ then there
is a ∪-free XPath=(↓) path expression α such that dd(α) ≤ `, T , u, v |= α and T ′, u′, v′ 6|= α.

Proof. If n 6= m then T , u, v |= ↓m and T ′, u′, v′ 6|= ↓m. Suppose that n = m and that there is an
XPath=(↓) path expression α, dd(α) ≤ `, such that T , u, v |= α and T ′, u′, v′ 6|= α. By Lemma 33,
α can be taken ∪-free and we are done. The same argument applies in case T , u, v 6|= α and
T ′, u′, v′ |= α, via Lemma 34.

Proposition 39. ≡↓` has finite index in the context of path expressions, that is, there are finitely
many non-equivalent path expressions of downward depth at most `.

19

Proof. Let qr be the quantifier rank of a fist order formula, i.e., the depth of nesting of its
quantifiers. It can be easily shown by induction that for any path expression α of XPath=(↓)
with bounded downward depth and unnecessary uses of ε (recall that αεβ ≡ αβ) we have that
qr(Trx,y(α)) is bounded. It is a well-known result of first order that there are finitely many
nonequivalent formulas of bounded quantifier rank. Hence there are finitely many nonequivalent
node expressions of bounded downward depth.

Corollary 40. Suppose u
n→v, with n ≤ `. Then {T ′, u′, v′ | T , u, v ≡↓` T ′, u′, v′} is definable by

an `-XPath=(↓) path expression γ`,T ,u,v.

Proof. Let
A = {α | T , u, v |= α, α is ∪-free and dd(α) ≤ `}.

First, observe that by Fact 31, each α ∈ A can be written in simple normal form, and all of them
have the same length. Hence it makes sense to take the intersection between finitely many elements
of A. Second, notice that by Proposition 39 there are finitely many non-equivalent α ∈ A, and
hence the infinite intersection β =

⋂
A is equivalent to a finite one.

It is clear by Fact 37 that dd(β) ≤ ` and that T , u, v |= β. Let us show that

T ′, u′, v′ |= β iff T , u, v ≡↓` T
′, u′, v′.

The right-to-left direction is straightforward. For the left-to-right direction, suppose by contradic-
tion that T ′, u′, v′ |= β and T , u, v 6≡↓` T ′, u′, v′. By hypothesis, T , u, v |= ↓n (where n ≤ `), and
thus, since T ′, u′, v′ |= β, we have T ′, u′, v′ |= ↓n. By Lemma 38, there is a ∪-free XPath=(↓) path
expression γ such that dd(γ) ≤ ` and T , u, v |= γ and T ′, u′, v′ 6|= γ. Since γ ∈ A and T ′, u′, v′ |= β
then T ′, u′, v′ |= γ, which is a contradiction.

4.1.3 Binary bisimulation for XPath=(↓)

We introduce a new notion of binary bisimulation between pairs of nodes (x, y) in one data-tree T
and pairs of nodes (x′, y′) in another data tree T ′. For simplicity we only define binary bisimulation
as a relation in D(T) ×D(T ′). But it can be naturally extended to T 2 × T ′2 if the definition of
≡ is likewise extended.

We say that (t, u) ∈ D(T) is bisimilar to (t′, u′) ∈ D(T ′) for XPath=(↓) (notation: T , t, u↔↓
T ′, t′, u′) if there is a relation Z ⊆ D(T)×D(T ′) such that (t, u)Z(t′, u′) and for all x, y ∈ T and
x′, y′ ∈ T ′ we have:

• Harmony: if (x, y)Z(x′, y′) then label(x) = label(x′).

• Equidistance: if (x, y)Z(x′, y′) then there is k such that x
k→y and x′

k→y′.

• Split: if (x, y)Z(x′, y′), x
n→zm→y and x′

n→z′m→y′ then (x, z)Z(x′, z′) and (z, y)Z(z′, y′).

• Zig: if (x, y)Z(x′, y′), x
n→v and x

m→w then there are v′, w′ ∈ T ′ such that: x′
n→v′; x′m→w′;

(x, v)Z(x′, v′); (x,w)Z(x′, w′); and data(v) = data(w) iff data(v′) = data(w′).

• Zag: if (x, y)Z(x′, y′), x′
n→v′ and x′

m→w′ then there are v, w ∈ T such that: x
n→v; x

m→w;
(x, v)Z(x′, v′); (x,w)Z(x′, w′); and data(v) = data(w) iff data(v′) = data(w′).

See Figure 3 for an example of a binary-bisimulation for XPath=(↓).
We say that (t, u) ∈ D`(T) is `-bisimilar to (t′, u′) ∈ D`(T ′) for XPath=(↓) (notation:

T , t, u↔↓` T ′, t′, u′) if there is a family of relations (Zj)j≤` inDj(T)×Dj(T ′) such that (t, u)Z`(t
′, u′)

and for all j ≤ `, (x, y) ∈ Dj(T) and (x′, y′) ∈ Dj(T ′) we have:

• Harmony: if (x, y)Zj(x
′, y′) then label(x) = label(x′).

• Equidistance: if (x, y)Zj(x
′, y′) then there is k ≤ j such that x

k→y and x′
k→y′.

20

a, 1

a, 2 a, 1

a, 1

a, 2 a, 1

u

v w

u

v w

Figure 3: A XPath=(↓) binary bisimulation Z between the same data tree T . Pairs (u, u)Z(u, u),
(v, v)Z(v, v), (w,w)Z(w,w), (w,w)Z(v, v) and (v, v)Z(w,w) are not shown.

• Split: if (x, y)Zj(x
′, y′), x

n→zm→y and x′
n→z′m→y′ then (x, z)Zj(x

′, z′) and (z, y)Zj−n(z′, y′).

• Zig: if (x, y)Zj(x
′, y′), x

n→v and x
m→w, with n,m ≤ j, then there are v′, w′ ∈ T ′ such

that: x′
n→v′, x′m→w′, (x, v)Zj(x

′, v′), (x,w)Zj(x
′, w′), and data(v) = data(w) iff data(v′) =

data(w′).

• Zag: if (x, y)Zj(x
′, y′), x′

n→v′ and x′
m→w′, with n,m ≤ j, then there are v, w ∈ T such that:

x
n→v, x

m→w, (x, v)Zj(x
′, v′), (x,w)Zj(x

′, w′), and data(v) = data(w) iff data(v′) = data(w′).

Notice that, because of the Split condition, the rules Zig and Zag for binary bisimulations
only require Z to relate (x, v) and (x′, v′) on one hand and (x,w) and (x′, w′) on the other, instead
of relating all nodes along the path from x to v to the corresponding nodes in the path from x′ to
v′, and the same for the paths from x to w and x′ to w′.

For a data tree T and u ∈ T , let T |u denote the subtree of T induced by {v ∈ T | (∃n) u
n→v}.

Observe that the root of T |u is u. The following results are straightforward consequences of the
definition of binary bisimulation:

Proposition 41. If (u, v) ∈ D(T) then T , u, v↔↓ (T |u), u, v.

Proposition 42. If T is a subtree of T ′ and (u, v) ∈ D(T) then T , u, v↔↓ T ′, u, v.

For a data tree T and u ∈ T , let T |`u denote the subtree of T induced by {v ∈ T | (∃n ≤
`) u

n→v}.

Proposition 43. If (u, v) ∈ D`(T) then T , u, v↔↓` (T |`u), u, v.

Proof. Define the family (Zj)j≤`, Zj ⊆ Dj(T |`u) ×Dj(T) as following: given j ≤ `, if x
≤j→y and

u
`−j→x, then (x, y)Zj(x, y) (observe that j = `− (`− j); intuitively, start with a Z` which matches

all identical pairs of nodes in D(T |`u), then consider Z`−1 the subset where the first coordinate
of the pairs must be at a downward distance of 1 from u, and so on). The reader can check that
T , u, v and (T |`u), u, v are `-bisimilar via this family of relations.

Proposition 44. Suppose T and T ′ have height at most `, (u, v) ∈ D`(T), and (u′, v′) ∈ D`(T ′).

Then T , u, v↔↓` T ′, u′, v′ iff T , u, v↔↓ T ′, u′, v′.

We now show that in the new context of path expressions of XPath=(↓) we have an analog of
Theorem 3 for binary bisimulations and path equivalence, i.e.,↔↓ coincides with ≡↓ on finitely
branching data trees, and↔↓` always coincides with ≡↓` .

Theorem 45. 1. T , u, v ↔↓ T ′, u′, v′ implies T , u, v ≡↓ T ′, u′, v′. The converse also holds
when T and T ′ are finitely branching.

21

2. T , u, v↔↓` T ′, u′, v′ iff T , u, v ≡↓` T ′, u′, v′.

Item 2 of the above theorem is a consequence of the next two propositions. Item 1 can be
shown analogously (the set P that will appear in the proof of Proposition 47 for showing Zig is
finite when T ′ is finitely branching, and its version over T for showing Zag is finite when T is
finitely branching).

Proposition 46. If T , t, u↔↓` T ′, t′, u′ then T , t, u ≡↓` T , t′, u′.

Proof. We actually show that if T , t, u↔↓` T ′, t′, u′ via (Zi)i≤` then for all 0 ≤ n ≤ j ≤ `, for all
ϕ with dd(ϕ) ≤ j, and for all α with dd(α) ≤ j:

1. If (x, x)Zj(x
′, x′) then T , x |= ϕ iff T ′, x′ |= ϕ,

2. If (x, y)Zj(x
′, y′) then T , x, y |= α iff T ′, x′, y′ |= α.

We show 1 and 2 by induction on |ϕ|+ |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A. By Harmony, label(x) = label(x′)

and then T , x |= ϕ iff T ′, x′ |= ϕ. The Boolean cases for ϕ are straightforward.
Suppose ϕ = 〈α = β〉. We will show T , x |= ϕ ⇒ T ′, x′ |= ϕ, so assume T , x |= ϕ. Suppose

there are v, w ∈ T and n,m ≤ j such that x
n→v, x

m→w, T , x, v |= α, T , x, w |= β and data(v) =

data(w). By Zig, there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′, (x, v)Zj(x

′, v′), (x,w)Zj(x
′, w′)

and data(v′) = data(w′). By inductive hypothesis 2 (twice), T ′, x′, v′ |= α and T ′, x′, w′ |= β.
Hence T ′, x′ |= ϕ. The implication T ′, x′ |= ϕ⇒ T , x |= ϕ is analogous. The case ϕ = 〈α 6= β〉 is
shown similarly.

Let us now analyze item 2. We only show the ‘only if’ direction, as the ‘if’ is analogous. The
base case is when α ∈ {ε, ↓}. If α = ε, we have:

T , x, y |= α iff x
0→y

iff x′
0→y′ (Equidistance)

iff T ′, x′, y′ |= α

If α =↓, we have the same argument but with
1→ instead of

0→. For the inductive step, suppose
α = βγ and assume T , x, y |= α. Then there is z ∈ T such that x

n→zm→y, T , x, z |= β and T , z, y |=
γ. By Split we have (x, z)Zj(x

′, z′) and (z, y)Zj−n(z′, y′) Observe that dd(β) ≤ dd(α) ≤ j and

dd(γ) ≤ dd(α) − n ≤ j − n. where z′ is the only node such that x′
n→z′m→y′ (observe that by

Equidistance, x′
n+m→ y′). By inductive hypothesis 2 (again, twice), we conclude T ′, x′, z′ |= β

and T ′, z′, y′ |= γ, and hence T ′, x′, y′ |= α.
Suppose α = α1 ∪ α2 and assume T , x, y |= α. We have T , x, y |= αi for some i ∈ {1, 2}. By

inductive hypothesis we have T ′, x′, y′ |= αi, and so T ′, x′, y′ |= α
Finally, suppose α = [ϕ] and assume T , x, y |= α. By semantics we have x = y and T , x |= ϕ.

By inductive hypothesis, T ′, x′ |= ϕ, and by Equidistance we have x′ = y′. Hence we conclude
T ′, x′, y′ |= α.

Proposition 47. If T , t, u ≡↓` T ′, t′, u′ then T , t, u↔↓` T ′, t′, u′.

Proof. Fix (t, u) ∈ D`(T) and (t′, u′) ∈ D`(T ′) such that T , t, u ≡↓` T ′, t′, u′. Define (Zj)j≤` by

(x, y)Zj(x
′, y′) iff T , x, y ≡↓j T

′, x′, y′

for all (x, y) ∈ D`(T) and all (x′, y′) ∈ D`(T ′). We show that (Zj)j≤` is an `-bisimulation between
T , u, v and T ′, u′, v′.

By hypothesis, (t, u)Z`(t
′, u′). To check all the rules of `-bisimulation for XPath=(↓), suppose

x
k→y for some k ≤ j, and assume (x, y)Zj(x

′, y′). To see Harmony, let a = label(x) and let

22

α = [a]↓k, of downward depth k ≤ j. It is clear that T , x, y |= α, and so T , x′, y′ |= α, which
means that label(x′) = a. The implication label(x′) = a⇒ label(x) = a is seen analogously.

For Equidistance, since T , x, y |= ↓k, then T ′, x′, y′ |= ↓k, and so x′
k→y′. The implication

x′
k→y′ ⇒ x

k→y is seen analogously.
Let us see Split. Suppose x

n→zm→y and x′
n→z′m→y′, where k = m+ n ≤ j. We prove that:

1. T , x, z ≡↓j T ′, x′, z′ and

2. T , z, y ≡↓j−n T ′, z′, y′.

To see 1, assume by contradiction that α is path expression with dd(α) ≤ j such that T , x, z |=
α and T ′, x′, z′ 6|= α (the other case is analogous). Observe that len(α) = n. Now, T , x, y |= α↓m

and T ′, x′, y′ 6|= α↓m. But dd(α↓m) = max{dd(α),m+ len(α)} ≤ j, so, since T , x, y ≡↓j T ′, x′, y′,
we have T ′, x′, y′ |= α ↓m, a contradiction.

To see 2, assume by contradiction that α is a path expression with dd(α) ≤ j − n such that
T , z, y |= α and T ′, z′, y′ 6|= α (the other case is analogous). Observe that len(α) = m. Now,
T , x, y |=↓n α and T ′, x′, y′ 6|= ↓nα. But dd(↓nα) = n + dd(α) ≤ n + j − n = j, so, since

T , x, y ≡↓j T ′, x′, y′, we have T ′, x′, y′ |=↓n α, a contradiction.

Finally, let us show Zig (the case for Zag is analogous). Suppose x
n→v, x

m→w, where n,m ≤ j,
and data(v) = data(w) (the case 6= is analogous).

Let P ⊆ T ′2 be defined by:

P = {(v′, w′) | x′ n→v′ ∧ x′m→w′ ∧ data(v′) = data(w′)}.

Observe that T , x |= 〈↓n=↓m〉. Hence T , x, y |= [〈↓n=↓m〉]↓k and so T ′, x′, y′ |= [〈↓n=↓m〉]↓k,
which implies T ′, x′ |= 〈↓n=↓m〉. Therefore P 6= ∅.

We next show that there exists (v′, w′) ∈ P such that T , x, v ≡↓j T ′, x′, v′ and T , x, w ≡↓j
T ′, x′, w′, and hence Zig is satisfied by Zj .

Suppose by way of contradiction that for all (v′, w′) ∈ P , either T , x, v 6≡↓j T ′, x′, v′ or

T , x, w 6≡↓j T ′, x′, w′. Because of Lemma 38, for all (v′, w′) in P , either there exists a ∪-free path
expression αv′,w′ such that dd(αv′,w′) ≤ j and T , x, v |= αv′,w′ but T ′, x′, v′ 6|= αv′,w′ , or there
exists a path expression βv′,w′ such that dd(βv′,w′) ≤ j and T , x, w |= βv′,w′ but T ′, x′, w′ 6|= βv′,w′ .

Call A the set of pairs of the first type, and B the set of pairs of the second type.

α =

{⋂
(v′,w′)∈A αv′,w′ if A 6= ∅;
↓n otherwise.

and β =

{⋂
(v′,w′)∈B βv′,w′ if B 6= ∅;
↓m otherwise.

Now, by Proposition 39, there are only finitely many non-equivalent path expressions of down-
ward depth at most `, so the intersections that define α and β can be considered finite. Notice
that by Fact 31 we may take all the αv′,w′ involved in simple normal form, and they will all have
the same length (namely, n, the distance from x to v). An analog argument holds for the βv′,w′

expressions. Therefore, it makes sense to take the operation ∩ among all the αv′,w′ and among

all the βv′,w′ . Let ψ = 〈α = β〉. By construction, T , x |= ψ, and so T , x, y |= [ψ]↓k. Further-

more, since A or B are nonempty, T ′, x′ 6|= ψ, and so T ′, x′, y′ 6|= [ψ]↓k. Since dd(ψ) ≤ j (by
Fact 37) and k ≤ j we have dd([ψ]↓k) = max{dd(ψ), k} ≤ j. Hence T , x, y 6≡j T ′, x′, y′, which is
a contradiction. This concludes the proof.

The following corollary shows that binary downward bisimulations subsume unary ones.

Corollary 48. T , x ≡↓ T ′, x′ iff T , x, x ≡↓ T ′, x′, x′. Thus, if T and T ′ are finitely branching,
then T , x↔↓ T ′, x′ iff T , x, x↔↓ T ′, x′, x′.

23

Proof. The second part follows from the first part, item 1 of Theorem 45 and the corresponding
result for nodes [10].

For the left-to-right implication, let T , x ≡↓ T ′, x′. Take α = [ϕ0] ↓ . . . ↓ [ϕn] (we can assume α
has this form from Lemma 33 and Fact 31). Suppose T , x, x |= α and let us see that T , x′, x′ |= α
(the other implication is analogous). We have n = 0 and thus α = [ϕ0], so T , x |= ϕ0. Then
T ′, x′ |= ϕ0, and T ′, x′, x′ |= [ϕ0].

For the right-to-left implication, assume T , x, x ≡↓ T ′, x′, x′. In particular, T , x, x |= [ϕ] iff
T ′, x′, x′ |= [ϕ]. Since T , x, x |= [ϕ] iff T , x |= ϕ and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ, we arrive to
T , x |= ϕ iff T ′, x′ |= ϕ, as we wanted.

4.1.4 Characterization for XPath=(↓) paths

In this section we show that for each formula ϕ(x, y) of first order, over the appropriate signature
and with two free variables x and y: there is a path expression α of XPath=(↓) such that Trx,y(α) is
equivalent to ϕ(x, y) if and only if ϕ is a ‘forward property’ (defined below), and it is bisimulation-
invariant over data trees. We begin with some definitions.

We say that ϕ(x, y) ∈ FO(σ) is↔↓-invariant (resp.↔↓` -invariant) if for all data trees T and

T ′, u ∗→v (resp. u
≤`→v) in T , u′

∗→v′ (resp. u′
≤`→v′) in T ′, and T , u, v↔↓ T ′, u′, v′ (resp. T , u, v↔↓`

T ′, u′, v′) we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].
A first-order σ-formula ϕ(x, y) is said to be a forward property if for every σ-structure A

and u, v ∈ A, we have that A |= ϕ(u, v) implies u ∗ v in A. By Compactness, ϕ(x, y) is a forward
property iff there is k such that A |= ϕ(u, v) implies u ≤k v in A. In this case we say that ϕ(x, y)
is a k-forward property.

Recall that for a data tree T and u ∈ T , we denote by T |`u the subtree of T induced by

{v ∈ T | (∃n ≤ `) u
n→v}. Let k ≤ `. We say that a first-order formula ϕ(x, y) with two free

variables is (k, `)-local whenever T |= ϕ[u, v] iff T |`u |= ϕ[u, v] for all (u, v) ∈ Dk(T).
We now state some lemmas that will be used for the proof.

Lemma 49. Let ϕ(x, y) ∈ FO(σ) be↔↓-invariant over [finite] data trees. Then for each k there
is ` (large enough, depending on the quantifier rank of ϕ and k) such that ϕ is (k, `)-local.

Proof. A straightforward modification of the proof in [10, Prop 6.2], which, in turn, follows Otto’s
idea [20].

Lemma 50. If ϕ(x, y) ∈ FO(σ) is a k-forward property,↔↓-invariant over [finite] data trees and

(k, `)-local, then ϕ(x, y) is↔↓` -invariant.

Proof. Since ϕ(x, y) is k-forward, it suffices to show that for T , u, v and T ′, u′, v′ such that

T , u, v↔↓` T ′, u′, v′ and u
≤k→v (and so u′

≤k→v′) we have T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].
Now for such T , u, v and T ′, u′, v′ we have

T , u, v↔↓` T
′, u′, v′ iff (T |`u), u, v↔↓` (T ′|`u′), u′, v′ (Prop. 43)

iff (T |`u), u, v↔↓ (T ′|`u′), u′, v′. (Prop. 44)

By (k, `)-locality, we have T |= ϕ[u, v] iff T |`u |= ϕ[u, v]. By↔↓-invariance, T |`u |= ϕ[u, v] iff
T ′|`u′ |= ϕ[u′, v′] and by (k, `)-locality again, T |= ϕ[u, v] iff T ′ |= ϕ[u′, v′].

Lemma 51. If ϕ(x, y) ∈ FO(σ) is a k-forward property which is↔↓` -invariant over [finite] data
trees, then there is an XPath=(↓) path expression δ such that dd(δ) ≤ ` and for all [finite] data
trees T and u, v ∈ T we have T , u, v |= δ iff T |= ϕ[u, v].

Proof. By Corollary 40, for every T , u, v, with u
≤`→v, there is an `-XPath=(↓) path expression

γ`,T ,u,v such that T , u, v ≡↓` T ′, u′, v′ iff T ′, u′, v′ |= γ`,T ,u,v. Let

δ =
⋃

T |=ϕ[u,v]

γ`,T ,u,v.

24

Since γ`,T ,u,v ∈ `-XPath=(↓) and, by Proposition 39, ≡↓` has finite index, it follows that δ is
equivalent to a finite union.

We now show that ϕ ≡ Trx,y(δ). Let us see that ϕ |= Trx,y(δ). Suppose T |= ϕ[u, v]. Since

ϕ(x, y) is a k-forward property, we have u
n→v for some n ≤ k ≤ `. Since T , u, v |= γ`,T ,u,v,

we have T , u, v |= δ and so T |= Trx,y(δ)[u, v]. Let us now see that Trx,y(δ) |= ϕ. Assume
T |= Trx,y(δ)[u, v], and so T , u, v |= δ. Then there exists T ′, u′, v′ such that T ′ |= ϕ[u′, v′] and

T , u, v |= γ`,T ′,u′,v′ . By the property of γ`,T ′,u′,v′ , we have T , u, v ≡↓` T ′, u′, v′ and since ϕ is

↔↓` -invariant (and hence ≡↓` -invariant by Theorem 45 we conclude T |= ϕ[u, v].

The main result has two readings: one classical, and one restricted to finite models.

Theorem 52 (Characterization). Let ϕ(x, y) ∈ FO(σ). The following are equivalent:

(i) ϕ is a forward property↔↓-invariant over [finite] data trees.

(ii) ϕ is expressible in XPath=(↓).

Observe that the condition on ϕ to be a forward property is necessary. Indeed, if ϕ(x, y)
is universally valid then it is trivially↔↓-invariant over [finite] data trees, but it is clearly not
XPath=(↓)-expressible, as its semantics include pairs of nodes with arbitrarily large distance be-
tween them, or even pairs (x, y) where y is not descendant of x.

Proof of Theorem 52. The implication (ii) ⇒ (i) follows straightforwardly from Theorem 45. The
proof of (i)⇒ (ii) goes as in the proof of [10, Th. 6.1], by Lemma 49, Lemma 50, and Lemma 51.

4.2 Vertical

4.2.1 Some facts about path expressions over XPath=(↑↓)

We use the following definitions introduced in [10]. We say that a path expression α of XPath=(↑↓)
is downward [resp. upward] if it is of the form ↓n [ϕ] [resp. [ϕ]↑n] for some n ≥ 0, with
ϕ ∈ XPath=(↑↓). We say that a path expression α↑↓ is in up-down form if either α↑↓ = ε,
α↑↓ = β↑, α↑↓ = β↓, or α↑↓ = β↑β↓, where β↑ is upward and β↓ is downward. We say that a
node or path expression in XPath=(↑↓) is in up-down normal form if every path expression
contained in it is up-down and every data test is of the form 〈ε ? α↑↓〉, where α↑↓ is up-down and
? ∈ {=, 6=}.

Proposition 53. [9, Prop. 12] Given a XPath=(↑↓) node expression ϕ, there is ϕ↑↓ in up-down
normal form such that ϕ ≡ ϕ↑↓.

Proposition 54. [9, Lem. 13] Given a ∪-free XPath=(↑↓) path expression α, there is α↑↓ in
up-down normal form such that α ≡ α↑↓.

We say that a path expression α is in ∪-NF (union normal form) if α = β1 ∪ β2 ∪ · · · ∪ βn
and the βi are in up-down normal form (and thus ∪-free).

Proposition 55. For all path expressions α in XPath=(↑↓), there is α′ in ∪-NF such that α ≡ α′.

Proof. We proceed by structural induction over α. If α = ε or α = ↓ or α = ↑, the result holds
trivially. If α = [ϕ], with ϕ a node expression, we can take, by Proposition 53, a node expression ψ
in up-down normal form (and therefore ∪-free) with ψ ≡ ϕ. Finally, for the concatenation α = βγ,
we can assume by induction that β ≡ β1 ∪ · · · ∪ βm, and γ ≡ γ1 ∪ · · · ∪ γn, with βi, γi being in
up-down normal form. The conclusion follows from the fact that

(β1 ∪ · · · ∪ βm)(γ1 ∪ · · · ∪ γn) ≡ β1γ1 ∪ β1γ2 ∪ · · · ∪ β1γn ∪ β2γ1 ∪ · · · ∪ βmγn

and the application of Proposition 54 on the ∪-free path expressions βiγj .

25

From now on, we only consider the fragment of XPath=(↑↓) where all path expressions are in
∪-NF and all node expressions are in up-down normal form. Observe that, by Proposition 53 and
Proposition 55, this fragment is semantically equivalent to full XPath=(↑↓).

Lemma 56. Let y
n→x, y

m→z in T and y′
n→x′, y′m→z′ in T ′. If α is an XPath=(↑↓) path expression

(in ∪-NF) such that T , x, z |= α and T ′, x′, z′ 6|= α then there is a path expression α in up-down
form such that T , x, z 6|= α and T ′, x′, z′ |= α.

Proof. Let α = β1 ∪ β2 ∪ · · · ∪ βn, with βi = [ϕi]↑ni↓mi [ψi]. Let βj be such that T , x, z |= βj .
Since for all i we have T ′, x′, z′ 6|= βi, we have that either T ′, x′ 6|= 〈↑nj↓mj 〉 (recall that both

y
n→x, y

m→z, and y′
n→x′, y′m→z′), or T ′, x′ 6|= ϕj , or T ′, z′ 6|= ψj . So either T ′, x′ |= ¬〈↑nj↓mj 〉 or

T ′, x′ |= ¬ϕj or T ′, z′ |= ¬ψj . In the first case, let α = [¬〈↑nj↓mj 〉]↑n↓m, in the second case, let
α = [¬ϕj]↑n↓m, and in the third case, let α = ↑n↓m[¬ψj].

4.2.2 Binary bisimulation for XPath=(↑↓)

Let T and T ′ be data trees. We say that (u, v) ∈ T 2 is bisimilar to (u′, v′) ∈ T ′2 for XPath=(↑↓)
(notation: T , u, v↔↑↓ T ′, u′, v′) if there is a relation Z ⊆ T 2 × T ′2 such that (u, v)Z(u′, v′) and
for all x, y ∈ T and x′, y′ ∈ T ′ we have:

• Harmony: if (x, y)Z(x′, y′) then label(x) = label(x′).

• Reverse: (x, y)Z(x′, y′) iff (y, x)Z(y′, x′).

• Split-Zig: If (x, y)Z(x′, y′), then for all z such that z
m→x, z n→y, there is z′ such that

z′
m→x′, z′ n→y′ , (x, z)Z(x′, z′), and (z, y)Z(z′, y′).

• Split-Zag: If (x, y)Z(x′, y′), then for all z′ such that z′
m→x′, z′ n→y′, there is z such that

z
m→x, z n→y, (x, z)Z(x′, z′), and (z, y)Z(z′, y′).

• Zig: If (x, y)Z(x′, y′), then for all z, w such that z
m→x, z n→w, there are z′, w′ such that

z′
m→x′, z′ n→w′, (z, w)Z(z′, w′), and data(x) = data(w) iff data(x′) = data(w′).

• Zag: If (x, y)Z(x′, y′), then for all z′, w′ such that z′
m→x′, z′ n→w′, there are z, w such that

z
m→x, z n→w, (z, w)Z(z′, w′), and data(x) = data(w) iff data(x′) = data(w′).

Observe that any of Split-Zig or Split-Zag imply that (x, y)Z(x′, y′) ⇒ (x, x)Z(x′, x′), and
this property in conjunction with Reverse implies that (x, y)Z(x′, y′) ⇒ (y, y)Z(y′, y′). We call
these two implications Endpoints. See Figure 4 for an (incomplete) example of a XPath=(↑↓)
bisimulation.

We say that (x, y) ∈ T 2 and (x′, y′) ∈ T ′2 are equivalent for XPath=(↑↓) path expressions
(notation: T , x, y ≡↑↓ T ′, x′, y′) if for all XPath=(↑↓) path expressions α, we have T , x, y |= α iff
T ′, x′, y′ |= α.

Again, in the context of path expressions of XPath=(↑↓) we have an analog of Theorem 4 for
binary bisimulations and path equivalence.

Theorem 57. T , u, v↔↑↓ T ′, u′, v′ implies T , u, v ≡↑↓ T ′, u′, v′. The converse also holds when T
and T ′ are finitely branching.

Proof. We first show that if T , u, v↔↑↓ T ′, u′, v′ then T , u, v ≡↑↓ T ′, u′, v′. We actually show that
if T , u, v↔↑↓ T ′, u′, v′ via Z, then:

1. If (x, x)Z(x′, x′), then T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ].

2. If (x, y)Z(x′, y′), then T , x, y |= α iff T ′, x′, y′ |= α.

26

a, 3

a, 1 a, 2 a, 2

a, 3

a, 2 a, 1

u

t wv

u′

v′ w′

T T ′

Figure 4: Part of a XPath=(↑↓) binary bisimulation Z between T and T ′. Not shown: bisimulation
of the all the reverse and singleton paths, and of the other two pairs of leaves in T .

We show 1 and 2 by structural induction on |ϕ|+ |α|. We start with the Item 1. The base case
for item 1 is ϕ = a, for some label a. Suppose T , x, x |= [a]. By Harmony, since (x, x)Z(x′, x′),
label(x) = label(x′), so T ′, x′, x′ |= [a]. The case for T ′, x′, x′ |= [a] is identical. The boolean cases
for ϕ are straightforward.

Now suppose ϕ = 〈ε = α↑↓〉, and further assume that α↑↓ = [ψ1]↑m↓n[ψ2] (the cases with
data inequality are analogous). Observe that by inductive hypothesis, it is enough to check
T , x, x |= [〈ε = ↑m↓n[ψ2]〉] iff T ′, x′, x′ |= [〈ε = ↑m↓n[ψ2]〉]. We show the left-to-right implication,
as the reverse is analogous. So, suppose T , x, x |= 〈ε = ↑m↓n[ψ2]〉. There exist z, w such that

z
m→x, z

n→w, T , x, w |= ↑m↓n[ψ2], and data(x) = data(w). By Zig, there are z′, w′ such that

z′
m→x′, z′ n→w′, (x, z)Z(x′, z′), (z, w)Z(z′, w′), and data(x′) = data(w′). By inductive hypothesis,

since (z, w)Z(z′, w′) and T , z, w |= ↓n[ψ2] we have T ′, z′, w′ |= ↓n[ψ2]. Since also T ′, x′, z′ |= ↑m,
we conclude T ′, x′, w′ |= ↑m↓n[ψ2], and therefore (because data(x′) = data(w′)), T ′, x′, x′ |= 〈ε =
↑m↓n[ψ2]〉, as we wanted.

We now proceed to Item 2. We only show the left-to-right direction, as the reverse is analogous.
The base case is when α ∈ {ε, ↑, ↓}. If α = ε then T , x, y |= α iff x = y. Thus, taking z = x
(and thus m = n = 0) in Split-Zig, it follows that x′ = y′ and therefore T ′, x′, y′ |= α. If α = ↑
then T , x, y |= α implies y→x. Now, T , y, x |= ↓, and, from Split-Zig we deduce, T , y′, x′ |= ↓.
Therefore we conclude T , x′, y′ |= α, as we wanted. If α = ↓, we proceed as before.

Finally, for the general case where α = α↑↓. Suppose without loss of generality that T , x, y |=
[ϕ]↑m↓n[ψ]. Then, there exists z such that T , x, z |= [ϕ]↑m and T , z, y |= ↓n[ψ]. Since z

m→x and

z
n→y, by Split-Zig, we have a corresponding z′ such that z′

m→x′ and z′
n→y′, (x, z)Z(x′, z′), and

(z, y)Z(z′, y′). If m = n = 0, then x = y, and the problem consists of the already considered case
T , x, x |= [ϕ]. If m 6= 0 or n 6= 0, then |[ϕ]↑m| < |α| and |↓n[ψ]| < |α|, and thus, since (x, z)Z(x′, z′)
and (z, y)Z(z′, y′), we can use the inductive hypothesis to conclude that T ′, x′, z′ |= [ϕ]↑m and
T ′, z′, y′ |= ↓n[ψ], and therefore T ′, x′, y′ |= [ϕ]↑m↓n[ψ], as we wanted.

We now show that if T and T ′ are finitely branching, then T , u, v ≡↑↓ T ′, u′, v′ implies
T , u, v↔↑↓ T ′, u′, v′. Let T , u, v ≡↑↓ T ′, u′, v′. Define the relation Z by:

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′.

We show that Z is a bisimulation between T , u, v and T ′, u′, v′.
First of all, by construction, it holds that (u, v)Z(u′, v′).
To prove Harmony, let (x, y)Z(x′, y′). We will see that if label(x) = a then label(x′) = a

(the other implication is analogous). Note that, since T is a tree, there are m,n such that

27

T , x, y |= ↑m↓n. Also, if label(x) = a, T , x, y |= [a]↑m↓n. Therefore, since T , x, y ≡↑↓ T ′, x′, y′, we
have T ′, x′, y′ |= [a]↑m↓n, and thus label(x′) = a = label(x).

Now we check Reverse. Let (x, y)Z(x′, y′). Observe first that it is enough to check that
(x, y)Z(x′, y′) ⇒ (y, x)Z(y′, x′) . Now, let β be a path expression, which we can assume to be in
up-down normal form β = [ψ] ↑n ↓m[ϕ], such that T , y, x |= β. Then, T , x, y |= [ϕ] ↑m ↓n[ψ],
and, since (x, y)Z(x′, y′), this implies that T ′, x′, y′ |= [ϕ] ↑m ↓n[ψ]. In turn, this implies that
T ′, y′, x′ |= [ψ] ↑n ↓m[ϕ] = β, as we wanted.

Now we check Split-Zig (Split-Zag is analogous). Let (x, y)Z(x′, y′). We prove that if z
m→x

and z
n→y then there is z′ in T ′ such that z′

m→x′, z′ n→y′, (x, z)Z(x′, z′), and (z, y)Z(z′, y′). We
have T , x, y |= ↑m↓n, and then so does T ′, x′, y′ |= ↑m↓n. In particular, there exists z′ such that

z′
m→x′, z′ n→y′. To verify (x, z)Z(x′, z′), we see that if α is a path expression such that T , x, z |= α,

then T ′, x′, z′ |= α (the other implication is analogous). Observe that T , x, y |= α↓n, which

implies that T ′, x′, y′ |= α↓n. As there is only one w such that w
n→y′, namely z′, we conclude

that T ′, x′, z′ |= α, as we wanted. To verify (z, y)Z(z′, y′), we see that if α is a path expression
such that T , z, y |= α, then, T ′, z′, y′ |= α (the other implication is analogous). Now, T , z, y |= α
implies T , x, y |= ↑mα, and then T ′, x′, y′ |= ↑mα. Since T ′ is a tree, this in turn implies that
T ′, z′, y′ |= α, as we wanted.

For the last step, we check that Zig holds (Zag is analogous). Suppose T , x, y ≡↑↓ T ′, x′, y′
(that is, (x, y)Z(x′, y′)). Let z, w be such that z

m→x, z
n→w, and assume that data(x) = data(w)

(the case for 6= is analogous). We want to see that there are z′, w′ in T ′ such that z′
m→x′,

z′
n→w′, data(x′) = data(w′), and (z, w)Z(z′, w′). By Split-Zig, let z′ ∈ T ′ such that z′

m→x′
and (x, z)Z(x′, z′). Let

P = {w′ ∈ T ′ | z′ n→w′ and data(x′) = data(w′)}.

Notice that P is finite since T ′ is finitely branching. We show that there is w′ ∈ P such that
(z, w)Z(z′, w′). By Split-Zig we had T , x, z ≡↑↓ T ′, x′, z′, and thus T , x, z |= [〈ε = ↑m↓n〉]↑m

implies T ′, x′, z′ |= [〈ε = ↑m↓n〉]↑m, and so there is w′ such that z′
n→w′ and data(x′) = data(w′).

Hence P 6= ∅.
Now, suppose by the way of contradiction that for all w′ ∈ P , we have T , z, w 6≡↑↓ T ′, z′, w′.

That is, for every w′ ∈ P , there exists a path expression, which we can assume is in up-down form
αw′ = [ϕw′]↑aw′↓bw′ [ψw′], such that either

1. T , z, w |= αw′ and T ′, z′, w′ 6|= αw′ , or

2. T , z, w 6|= αw′ and T ′, z′, w′ |= αw′ .

First we are going to see that we can assume that αw′ is of the form [ϕw′]↓n[ψw′]. First of all,
observe that since T , x, z ≡↑↓ T ′, x′, z′, by Endpoints we have that (z, z)Z(z′, z′). Now suppose
by the way of contradiction that ↑aw′↓bw′ holds in T , z, w but not in T ′, z′, w′ (the other case is

analogous). Since z
n→w, it must be that bw′−aw′ = n. Since also z′

n→w′ but T ′, z′, w′ 6|= ↑aw′↓bw′ ,
we have T ′, z′, z′ 6|= [〈↑aw′↓bw′ 〉], or, equivalently, T ′, z′, z′ |= [¬〈↑aw′↓bw′ 〉]. But then T , z, z |=
[¬〈↑aw′↓bw′ 〉], and this implies that T , z, w 6|= ↑aw′↓bw′ , a contradiction. So we can assume without
loss of generality that always ↑aw′↓bw′ = ↓n.

Now, by Lemma 56, we can always assume that case 1 applies. We take

α = [
∧

w′∈P
ϕw′]↓n[

∧
w′∈P

ψw′]↑n

and observe that T , z, z |= α but T ′, z′, z′ 6|= α, a contradiction.

Corollary 58. T , x ≡↑↓ T ′, x′ iff T , x, x ≡↑↓ T ′, x′, x′. Thus, if T and T ′ are finitely branching,
then T , x↔↑↓ T ′, x′ iff T , x, x↔↑↓ T ′, x′, x′.

28

Proof. The proof is similar to that of Corollary 48. For the second part we use that if T and T ′
are finitely branching, then↔↑↓ and ≡↑↓ coincide (Theorem 57)

Assume first that x ≡↑↓ x′. Suppose that T , x, x |= α and let us prove that T ′, x′, x′ |= α (the
other implication is analogous). Without loss of generality we can assume that α = [ϕ]↑m↓n[ψ]. So
n = m, T , x |= ϕ, and T , x |= ψ. Since T , x ≡↑↓ T ′, x′, we conclude that T ′, x′, x′ |= [ϕ]↑m↓n[ψ].

For the other implication, assume x, x ≡↑↓ x′, x′. In particular, T , x, x |= [ϕ] iff T ′, x′, x′ |= [ϕ].
As T , x, x |= [ϕ] iff T , x |= ϕ and T ′, x′, x′ |= [ϕ] iff T ′, x′ |= ϕ, we get T , x |= ϕ iff T ′, x′ |= ϕ, as
we wanted.

5 Definability via path expressions

5.1 Saturation

Saturation for the downward fragment. Let Σ and Γ be sets of XPath=(↓)-path expressions.
Given a data tree T and u ∈ T , we say that Σ and Γ are =↓-satisfiable [resp. 6=↓-satisfiable]
at T , u if there exist v, w ∈ T such that T , u, v |= Σ, T , u, w |= Γ, and data(v) = data(w)
[resp. data(v) 6= data(w)]. We say that Σ and Γ are =↓-finitely satisfiable [resp. 6=↓-finitely
satisfiable] at T , u if for every finite Σ′ ⊆ Σ and finite Γ′ ⊆ Γ, we have that Σ′ and Γ′ are
=↓-satisfiable [resp. 6=↓-satisfiable] at T , u.

Definition 59. We say that a data tree T is binary ↓-saturated if for every pair of sets Σ,Γ of
XPath=(↓)-path expressions, every u ∈ T , and ? ∈ {=, 6=}, the following is true:

if Σ and Γ are ?↓-finitely satisfiable at T , u then Σ and Γ are ?↓-satisfiable at T , u.

Proposition 60. Let T and T ′ be ↓-saturated data trees, and let u, v ∈ T and u′, v′ ∈ T ′. If
T , u, v ≡↓ T ′, u′, v′, then T , u, v↔↓ T ′, u′, v′.

Proof. We show that Z, defined by (x, y)Z(x′, y′) iff T , x, y ≡↓ T ′, x′, y′ is a ↓-bisimulation between
T , u, v and T ′, u′, v′. Clearly (u, v)Z(u′, v′), and Harmony also holds. For Equidistance, if

(x, y)Z(x′, y′), assume x
k→y. Then, since (x, y) ≡↓ (x′, y′), T , x, y |=↓k iff T ′, x′, y′ |=↓k. For

Split, let (x, y)Z(x′, y′), x
n→zm→y, and x′

n→z′m→y′. We check first that (x, z)Z(x′, z′): T , x, z |=
α ⇔ T , x, y |= α ↓m⇔ T ′, x′, y′ |= α ↓m⇔ T ′, x′, z′ |= α. The proof is similar for checking
(z, y)Z(z′, y′): T , z, y |= α⇔ T , x, y |=↓n α⇔ T ′, x′, y′ |=↓n α⇔ T ′, z′, y′ |= α.

We now need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.
Suppose (x, y)Z(x′, y′), x

m→a, x
n→b and data(a) = data(b) (the case with data(a) 6= data(b) is

analogous). Let

Σ = {α | T , x, a |= α and α is ∪-free} and Γ = {α | T , x, b |= α and α is ∪-free}.

That is, Σ and Γ are the ∪-free theories of T , x, a and T , x, b, respectively. Furthermore, let Σ′

be a finite subset of Σ, and let Γ′ be a finite subset of Γ. Observe that, being in XPath=(↓), all
path expressions in Γ and Σ are of the same length, and thus we have a notion of intersection as
in Equation 7.

Now define ϕ = 〈∩Σ′ = ∩Γ′〉. Observe that, from Split, (x, y) ≡↓ (x′, y′) implies (x, x) ≡↓
(x′, x′) implies (Corollary 48) x ≡↓ x′. Now, it is clear that T , x |= ϕ, and thus T ′, x′ |= ϕ.

Therefore, there exist a′, b′ such that T ′, x′, a′ |= Σ′ (in particular, x′
m→a′), T ′, x′, b′ |= Γ′ (in

particular, x′
n→b′), and data(a′) = data(b′). Hence Σ′ and Γ′ are =↓-satisfiable at x′, for any finite

sets Σ′,Γ′ and thus Σ and Γ are =↓-finitely satisfiable at x′. Since T ′ is ↓-saturated, this implies
that Σ and Γ are =↓-satisfiable at x′, for some a′ and b′.

Finally, we see that T ′, x′, a′ |= Σ implies that Th↓(T , x, a) = Th↓(T ′, x′, a′) and thus (x, a) ≡↓
(x′, a′) (the case for (x, b) ≡↓ (x′, b′) is analogous). We are only going to prove that T ′, x′, a′ |=
α⇒ T , x, a |= α, as the other implication is clear. Suppose by way of contradiction that there is
an α, which by Lemma 33 can be assumed to be ∪-free, such that T ′, x′, a′ |= α but T , x, a 6|= α.
Then, by Lemma 34, there is a ∪-free path expression ᾱ such that T ′, x′, a′ 6|= ᾱ and T , x, a |= ᾱ.
Then, since T ′, x′, a′ |= Σ , we have that T ′, x′, a′ |= ᾱ, a contradiction.

29

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that the set
of XPath=(↑↓)-path expressions Γ is =↑↓-satisfiable [resp. 6=↑↓-satisfiable] at T , u if there exist

v, w ∈ T such that v
∗→u, v

∗→w, T , u, w |= Γ and data(u) = data(w) [resp. data(u) 6= data(w)]. We
say that Γ is =↑↓-finitely satisfiable [resp. 6=↑↓ -finitely satisfiable] at T , u if for every finite
Γ′, we have that Γ′ is =↑↓-satisfiable [resp. =↑↓-satisfiable] at T , u.

Definition 61. We say that a data tree T is binary ↑↓-saturated if for every set of XPath=(↑↓)-
path expressions Γ, every u ∈ T and ? ∈ {=, 6=}, the following is true:

if Γ is ?↑↓-finitely satisfiable at T , u then Γ is ?↑↓-satisfiable at T , u.

Proposition 62. Let T and T ′ be binary ↑↓-saturated data trees, and let u, v ∈ T and u′, v′ ∈ T ′.
If T , u, v ≡↑↓ T ′, u′, v′, then T , u, v↔↑↓ T ′, u′, v′.

Proof. We show that Z ⊆ T 2 × T ′2, defined by

(x, y)Z(x′, y′) iff T , x, y ≡↑↓ T ′, x′, y′

is a ↑↓-bisimulation between T , u, v and T ′, u′, v′. Clearly (u, v)Z(u′, v′). Harmony, Reverse,
Split-Zig, and Split-Zag hold with the same proofs as in the second part of the proof of Theo-
rem 57.

We now need to show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose (x, y)Z(x′, y′), s
a→x, s

b→y, z
m→x, z

n→w, and data(x) = data(w) (the case 6= is anal-

ogous). We want to see that there are z′, w′ ∈ T ′ such that z′
m→x′, z′ n→w′, (z, w)Z(z′, w′), and

data(x′) = data(w′). Let

Γ = {β | T , x, w |= β and β is of the form [ϕ] ↑m↓n [ψ], for some ϕ and ψ},

and let Γ′ be a finite subset of Γ. If β1 = [ϕ1] ↑m↓n [ψ1] and β2 = [ϕ2] ↑m↓n [ψ2], we will define
β1 ∩ β2 = [ϕ1 ∩ ϕ2] ↑m↓n [ψ1 ∩ ψ2].

Now, define
α = [〈ε = ∩Γ′〉] ↑a↓b .

It can be seen that T , x, y |= α, and thus, since by definition of Z we have T , x, y ≡↑↓ T ′, x′, y′,
we conclude T ′, x′, y′ |= α. This implies that there are p′, q′ such that p′

m→x′, p′ n→q′, data(x′) =
data(q′), and T ′, x′, q′ |= Γ′. Therefore, Γ is =↑↓-finitely satisfiable at T ′, x′. Since T ′ is binary ↑↓-
saturated, this implies that Γ is =↑↓-satisfiable at T ′, x′, and therefore there exist nodes z′, w′ ∈ T ′
such that t

m→x′, t n→w′, data(x′) = data(w′), and T ′, x′, w′ |= Γ.
It remains to prove that Th↑↓(T , x, w) = Th↑↓(T ′, x′, w′), as this property in conjunction with

Split-Zig will imply that (z, w)Z(z′, w′).
First we prove that Th↑↓(T , x, w) ⊂ Th↑↓(T ′, x′, w′). Let β ∈ Th↑↓(T , x, w). Without loss of

generality, we can assume that β is ∪-free, and thus of the form β = [ϕ] ↑j↓k [ψ]. Since z′
m→x′

and z′
n→w′, T ′, x′, w′ |= β iff T ′, x′, w′ |= γ, with γ = [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ]. But γ ∈ Γ, and thus

T ′, x′, w′ |= γ.
We now see that Th↑↓(T ′, x′, w′) ⊂ Th↑↓(T , x, w). Suppose by way of contradiction that

there is a β (which can be assumed to be ∪-free) such that β = [ϕ] ↑j↓k [ψ] and T ′, x′, w′ |= β

but T , x, w 6|= β. As z
m→x and z

n→w, T , x, w |= β iff T , x, w |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ], and as

z′
m→x′ and z′

n→w′, we also have T ′, x′, w′ |= β iff T ′, x′, w′ |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ]. So from our
supposition we have T , x, w 6|= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ]. Since T , x, w |=↑m↓n, it must be that either
T , x, w |= [¬(ϕ ∧ 〈↑j↓k〉)] ↑m↓n or T , x, w |=↑m↓n [¬ψ]. But since T ′, x′, w′ |= Γ, this implies that
either T ′, x′, w′ |= [¬(ϕ ∧ 〈↑j↓k〉)] ↑m↓n or T ′, x′, w′ |=↑m↓n [¬ψ], which contradicts the fact that
T ′, x′, w′ |= [ϕ ∧ 〈↑j↓k〉] ↑m↓n [ψ].

So we have (x,w)Z(x′, w′). As z
m→x and z

n→w, we can use Split-Zig to finally obtain
(z, w)Z(z′, w′), as we wanted.

30

5.2 Weak Data Trees and Quasi-ultraproducts

The following proposition shows the ‘local’ aspect of XPath=(↓) and XPath=(↑↓) for paths,
whereas Proposition 12 showed it for nodes. It is stated in terms of first-order because mod-
els are weak data trees.

Proposition 63. Let T be a weak data tree and let both r ∗ u and r ∗ v in T .

1. If α is a XPath=(↓)-path expression then T |= Trx,y(α)[u, v] iff T |r |= Trx,y(α)[u, v].

2. If r is the root of T and α ∈ XPath=(↑↓) then T |= Trx,y(α)[u, v] iff T |r |= Trx,y(α)[u, v].

We now show that 2-saturated data trees are already both binary ↓-saturated and binary ↑↓-
saturated. For technical reasons we state these results in the more general setting of weak data
trees.

Proposition 64. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a binary ↓-saturated data tree.

2. If r is the root of T then T |r is a binary ↑↓-saturated data tree.

Proof. The proof goes as the proof of Proposition 14.

Let (Ti, ui, vi)i∈I be a family of two-pointed data trees. The ultraproduct of such two-pointed
data trees is defined, as usual, by (

∏
U Ti, u∗, v∗), where u∗ and v∗ are the ultralimits of (ui)i∈I

and (ui)i∈I modulo U , respectively.

Example 65. For i ∈ N, let Ti be any data tree of height at least i, and let ui, vi be any pair of
nodes of Ti at distance i from each other. Let ρn(x, y) be the first-order property “x is at distance
at least n from y”. It is clear that Tm |= ρn[um, vm] for every m ≥ n. Let u∗ and v∗ be the
ultralimits of (ui)i∈I and (vi)i∈I modulo U . Since {m | m ≥ n} ∈ U for any non-principal U , we
conclude that

∏
U Ti |= ρn[u∗, v∗] for every n, and so u∗ is disconnected from v∗ in

∏
U Ti.

Hence, in general, two-pointed data trees are not closed under ↑↓-quasi ultraproduct.
Let k ≥ 0, let T be a data tree and let u, v ∈ T . We say that (T , u, v) is a k-bounded

two-pointed data tree if u, v are at distance at most k from the root of T . In particular, if r is
the root of T then (T , r, r) is a 0-bounded two-pointed data tree.

Let n ≥ 0, let T be a data tree and let u, v ∈ T . We say that a two-pointed data tree T , u, v is
n-two-pointed if the minimum distance between u and v is at most n. That is, if w is the first

common ancestor of u and v (i.e. the closest common ancestor), and w
c→u,w d→v, then c+ d ≤ n.

Definition 66. Suppose (Ti, ui, vi)i∈I is a family of n-two-pointed data trees, ri is the root of Ti,
U is an ultrafilter over I, T ∗ =

∏
U Ti, and u∗, v∗ and r∗ are the ultralimits of (ui)i∈I , (vi)i∈I ,

and (ri)i∈I modulo U respectively. Then

1. If ui
∗→vi, the ↓-quasi ultraproduct of (Ti, ui, vi)i∈I modulo U is the n-two-pointed data

tree (T ∗|u∗, u∗, v∗).

2. If (Ti, ui, vi)i∈I is also a family of k-bounded data trees, the ↑↓-quasi ultraproduct of
(Ti, ui, vi)i∈I modulo U is the k-bounded n-two-pointed data tree (T ∗|r∗, u∗, v∗).

Observe that in the definition of ↑↓-quasi ultraproduct, u∗ and v∗ are effectively in T ∗|r∗ for
similar reasons as those in Proposition 17.

31

5.3 Definability and separation

We begin with the downward fragment and we state our definability results of two-pointed data
trees. Since the language of path expressions does not have complementation or negation, we
will deal with a restricted class of data trees. We work with n-two-pointed data trees which

are forward, that is, data trees of the form T , u, v where u
≤n→v. If α, β are XPath=(↓)-path

expressions, we say that α ≡n β if for every forward n-two-pointed data tree T , u, v we have
T , u, v |= α iff T , u, v |= β. For a path expression α = [ϕ0]↓ . . . ↓[ϕi] in simple normal form, we
define the complement (over the class of forward n-two-pointed data trees) as

∼n α =

{
> if i > n;⋃

0≤j≤i ↓
j [¬ϕj]↓i−j ∪

⋃
0≤j≤n,i 6=j ↓

j otherwise.

(We represent ε as ↓0, and > as
⋃

0≤j≤n ↓
j .) ∼n α is thus true for all downward paths of a length

at most n and different to that of α, and for paths of the same length as α but that do not satisfy
some intermediate node expression [ϕj]. So for every forward n-two-pointed data tree T , u, v, we
have T , u, v |= α iff T , u, v 6|=∼n α, that is, ∼n α works as a kind of path expression negation over
this restricted class of data trees. Notice that it is not possible to negate path expressions without
a restriction on the class of data trees.

Recall that for XPath=(↓) expressions α, β in simple normal form and of the same length we
have defined the intersection α ∩ β in Definition 36. We extend this definition of intersection to
path expressions in simple normal form, and of length at most n. Let α and β be path expressions
in simple normal form, with len(α) = i, len(β) = j. We define α ∩n β as ⊥ (we let ⊥ to be
[〈ε 6= ε〉]) in case i 6= j and as in (7) of Definition 36 otherwise. It is clear that for every forward
n-two-pointed data tree T , u, v, we have T , u, v |= α ∩n β iff T , u, v |= α and T , u, v |= β. These
observations allow us to extend, over the class of forward n-two-pointed data trees, the operations
of complement and intersection to any XPath=(↓)-path expression:

α ≡n ⊥ (α in simple normal form and len(α) > n)

∼n (α ∪ β) ≡n (∼n α) ∩n (∼n β) (α, β in simple normal form and len(α), len(β) ≤ n)

∼n (α ∩n β) ≡n (∼n α) ∪ (∼n β) (idem)

(α ∪ β) ∩n γ ≡n (α ∩n γ) ∪ (β ∩n γ) (idem)

α ∩n β ≡n β ∩n α (idem)

Therefore, when restricted to n-two pointed data trees, we can pretend to have complementation
and intersection of path expressions with the standard meaning and within the language. This
allows us to prove the results of definability for path expressions using the obvious modifications
to the proofs of Theorems 20 and 21. It is important to remark that these results are true only
when restricting the universe to forward n-two-pointed data trees. In what follows, the universe
is restricted to such data trees, and the operations of closure and complement must be taken with
respect to this universe.

Theorem 67. Over n-two-pointed data trees: A class K is definable by a set of XPath=(↓)-path
expressions iff K is closed under ↓-bisimulations and ↓-quasi ultraproducts, and K is closed under
↓-quasi ultrapowers.

Theorem 68. Over n-two-pointed data trees: A class K is definable by an XPath=(↓)-path ex-
pression iff both K and K are closed under ↓-bisimulations and ↓-quasi ultraproducts.

Theorems 28 and 29 can also be straightforwardly adapted.

Theorem 69. Over n-two-pointed data trees: Let K1 and K2 be two disjoint classes such that K1

is closed under ↓-bisimulations and ↓-quasi ultraproducts and K2 is closed under ↓-bisimulations
and ↓-quasi ultrapowers. Then there exists a third class K which is definable by a set of XPath=(↓)-
path expressions, contains K1, and is disjoint from K2.

32

Theorem 70. Over n-two-pointed data trees: Let K1 and K2 be two disjoint classes closed under
↓-bisimulations and ↓-quasi ultraproducts. Then there exists a third class K which is definable by
an XPath=(↓)-path expression, contains K1, and is disjoint from K2.

Let us move to the vertical fragment. Not having complementation or intersection is more
cumbersome in this case. We will state definability theorems restricted to classes of special two-
pointed data trees which we denote n,m, k-two-pointed data trees. These are two-pointed data
trees T , u, v such that if w is the first common ancestor of u and v (i.e. the closest common ancestor)

then w
n→u, w

m→v, and w is at distance k from the root of T . Observe that any n,m, k-two-pointed
data tree is k + max{n,m}-bounded.

If α, β are XPath=(↑↓)-path expressions, we say that α ≡n,m,k β if for every n,m, k-two-
pointed data tree T , u, v we have T , u, v |= α iff T , u, v |= β. The following equivalences, which
are straightforward to verify, allows us to express in XPath=(↑↓) the complementation ∼n,m,k and
intersection ∩n,m,k over the class of n,m, k-two-pointed data trees.

[ϕ]↑n
′
↓m

′
[ψ] ≡n,m,k

{
[ϕ]↑n↓m[ψ] if n− n′ = m−m′ and n ≤ n′ ≤ n+ k

⊥ otherwise (where ⊥ := [〈ε 6= ε〉] ↑n↓m)

∼n,m,k ([ϕ]↑n↓m[ψ]) ≡n,m,k ([¬ϕ]↑n↓m) ∪ (↑n↓m[¬ψ])

([ϕ]↑n↓m[ψ]) ∩n,m,k ([ϕ′]↑n↓m[ψ′]) ≡n,m,k [ϕ ∧ ϕ′]↑n↓m[ψ ∧ ψ′]
∼n,m,k (α ∩n,m,k β) ≡n,m,k (∼n,m,k α) ∪ (∼n,m,k β)

(α ∪ β) ∩n,m,k γ ≡n,m,k (α ∩n,m,k γ) ∪ (β ∩n,m,k γ)

α ∩n,m,k β ≡n,m,k β ∩n,m,k α

In the last three equivalencies, α is of the form [ϕ]↑n↓m[ψ] for some ϕ and ψ, and β is of the form
[ϕ′]↑n↓m[ψ′] for some ϕ′ and ψ′.

In the first equivalence, the condition n− n′ = m −m′ means that the navigation via ↑n
′
↓m

′

could actually connect the same nodes as ↑n↓m, assuming the tree extends sufficiently upwards
and a common ancestor is reached. The condition n ≤ n′ assures that the upward portion of the
navigation reaches at least the first common ancestor of the nodes, and the condition n′ ≤ n+ k

means that ↑n
′

reaches at most up to the root of the tree, and not higher. Notice that if any of

these conditions do not hold, the path expression ↑n
′
↓m

′
is always false in the context of n,m, k-

two-pointed data trees. If the three conditions hold simultaneously, then T , u, v |= ↑n
′
↓m

′
for any

n,m, k-two-pointed data tree T , u, v.
The reader can check that, as expected, we arrive to results of definability and separation for

XPath=(↑↓) path expressions, as in Theorems 67, 68, 69, and 70, but over the class of n,m, k-
two-pointed data trees and using the notions of ↑↓-bisimulation and ↑↓-quasi ultraproducts.

6 Applications

We list some simple applications of our theorems of definability:

A class of pointed data trees definable in first-order (over data trees) but not definable
by a set of XPath=(↑↓)-node expressions. Let K be the class of pointed data trees (T , u)
where u is the root of T and T has some node labeled a. On the one hand, K is definable by a
first-order σ-formula over the class of data trees. On the other, K is closed under XPath=(↑↓)-
bisimulations but not closed under ↑↓-quasi ultraproducts: for i ∈ N define Ti as any tree of height
i whose only node labeled a is at distance i from the root, and define ui as the root of Ti. By
an argument similar to the one used in Example 15 one can show that if (T ↑↓, u∗) is any ↑↓-quasi
ultraproduct of (Ti, ui)i∈N then no node of T ↑↓ has label a. By Theorem 25, K is not definable
by a set of XPath=(↑↓)-node expression.

33

A class of pointed data trees definable by a single XPath=(↑↓)-node expression but
not definable by set of XPath=(↓)-node expressions. Let dist3(x) be the property stating
that there are nodes y, z so that x→y→z and x, y, z have pairwise distinct data values. It can
be checked that the XPath=(↑↓)-node expression ϕ4 = 〈ε 6= ↓↓[〈ε 6= ↑[〈ε 6= ↑〉]〉]〉 from Example 1
expresses dist3(x). Figure 2 shows that K is not closed under ↓-bisimulations and hence, by
Theorem 20, K is not definable by a set of XPath=(↓)-node expressions.

A class of pointed data trees definable by set of XPath=(↑↓)-node expressions but
not definable by single XPath=(↑↓)-node expression. Let K be the class of pointed data
trees (T , u), where u is the root of T , and for all v ∈ T we have dist3(v). On the one hand, K
is definable by the set of XPath=(↑↓)-node expressions {¬〈↓n [¬ϕ4]〉 | n ≥ 0}. On the other, for
i ∈ N, let (Ti, ui) be any pointed data tree not in K, of height at least i+ 1, where ui is the root
of Ti, and such that for all v ∈ Ti at distance at most i from ui we have dist3(v). Let (T ↑↓, u∗) be
any ↑↓-quasi ultraproduct of (Ti, ui)i∈N. One can see that all nodes of v ∈ T ↑↓ satisfy dist3(v), and
so (T ↑↓, u∗) ∈ K. Therefore K is not closed under ↑↓-quasi ultraproducts and by Theorem 26, K
is not definable by an XPath=(↑↓)-node expression.

A class of two-pointed data trees definable by a single XPath=(↑↓)-path expression but
not definable by set of XPath=(↓)-path expressions. Let K be the class of two-pointed
data trees T , u, v such that v is a child of u and they have the same data value. On the one hand,
this class is definable by the path expression α3 = ↓[〈ε = ↑〉] of Example 2. On the other hand, the
auto bisimulation on T shown in Figure 3 shows that K is not closed under binary bisimulations
for XPath=(↓)’, since T , u, w is bisimilar to T , u, v but data(u) 6= data(v). Thus, by Theorem 68,
K is not definable by a set of XPath=(↓) path expressions.

A class of two-pointed data trees definable in first-order (over data trees) but not
definable by a set of XPath=(↑↓)-path expressions. Let K be the class of two-pointed data
trees T , u, v such that u and v are both children of the root of T , and they have the same data
value. It is straightforward that this property is definable by a σ-first-order formula over the class
of data trees. On the other, the auto bisimulation between T and T ′ shown in Figure 4 shows that
K is not closed under binary bisimulations for XPath=(↑↓), as T , v, w is bisimilar to T ′, v′, w′ but
data(v′) 6= data(w′). Thus, by the corresponding theorem of definability, K is not definable by a
set of XPath=(↑↓) path expressions.

7 Conclusions

In this work we introduced new tools for showing definability and separation results for the down-
ward and vertical fragments of XPath with (in)equality tests over data trees, here called XPath=.
The general road to prove these theorems themselves was somewhat similar to the one used for
the basic modal logic BML (namely, a detour to first-order), but the new concepts (and their
interactions) needed to be used in the context of XPath= are more sophisticated. The notions of
↓-saturation and ↑↓-saturation are more refined than the usual notions of BML, as they need to
take care of the (in)equality tests over the data. Another difference with respect to the models
of BML, namely Kripke models, is that models of XPath= are trees (in particular, connected)
and so they are not closed under ultraproducts. Thus arose the notions of ↓-quasi and ↑↓-quasi
ultraproducts. These are variants of the classical first-order ultraproducts, and are, of course,
absent in the BML framework.

We also introduced new notions of binary bisimulation for both the downward and vertical
XPath=, which consist of a relation Z linking pairs (x, y) in some data tree with pairs (x′, y′) in
some other. In order to maintain the structure of the pairs (x, y) and (x′, y′) in the bisimulation
Z, more rules were needed than in the case of unary bisimulations. Binary bisimulations were
shown to match, within finitely branching data trees, to logical equivalences in terms of path
expressions, i.e., a bisimulation links (x, y) with (x′, y′) if and only if (x, y) and (x′, y′) satisfy the

34

same path expressions. They supersede unary bisimulations, in that they keep all the information
of the latter (but they carry more). Furthermore, binary bisimulations are robust in the sense that
they allow us to show the essential theorems of definability and separation using the language of
path expressions, and evaluating in pairs of nodes. Finally, a characterization theorem à la van
Benthem was shown for the case of downward XPath=—for the case of vertical it is known to be
false for unary bisimulations, and so as well for binary ones.

An interesting question is what can be said about other fragments of XPath= such as XPath=(↓↓∗)
(‘child’ and ‘descendant’ axes) or XPath=(↓↑↓∗↑∗) (‘child’, ‘parent’, ‘descendant’ and ‘ancestor’
axes). As it is mentioned in [10, §5], the bisimulation notions of these two fragments correspond
to those for XPath=(↓) and XPath=(↑↓) respectively. However, in the case of XPath=(↓↓∗) and
XPath=(↓↑↓∗↑∗), the connection to first-order logic is not clear, as we cannot express transitive
closure.

We can also try to relax the restrictions in the classes of two-pointed data trees used to show
definability and separation for the language of path expressions. Though it seems difficult to work
with a broader class in the case of downward, it would still be possible to obtain stronger results
for the case of vertical.

Another question is to investigate the size of shortest node or path expressions distinguishing
two nodes or two pairs of nodes, respectively, in a data tree, following the ideas in [11], where the
notion of bisimulation plays a central role.

Finally, one can devise XPath= as a querying language over graph-structured databases (graph
data is everywhere these days: from social media like Facebook and Twitter, to biological databases
and the Semantic Web). What can we say when we consider general data graphs instead of data
trees? It is easy to see that the notion of unary and even binary downward bisimulation could be
suitable in this case. However, the notions of bisimulations for the vertical fragment rely heavily
in the existence of the up-down normal form, which does not hold in data graphs (not even in
DAGs). An interesting study would be to develop notions of bisimulations and understand the
model theory of the vertical XPath= in the context of data graphs.

Acknowledgements

This work was partially supported by grant ANPCyT-PICT-2013-2011, ANPCyT-PICT-2011-
0365, UBACyT 20020110100025 and the FP7-PEOPLE-2011-IRSES Project “Mobility between
Europe and Argentina applying Logics to Systems” (MEALS) and the Laboratoire International
Associé “INFINIS”.

References

[1] C. Areces, F. Carreiro, and S. Figueira. Characterization, definability and separation via
saturated models. Theoretical Computer Science, 537:72–86, 2014.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[3] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees
and XML reasoning. Journal of the ACM, 56(3):1–48, 2009.

[4] C.C. Chang and H.J. Keisler. Model theory. Studies in logic and the foundations of mathe-
matics. North-Holland, 1990.

[5] J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath.

[6] A. Dawar and M. Otto. Modal characterisation theorems over special classes of frames. Annals
of Pure and Applied Logic, 161(1):1–42, 2009.

35

http://www.w3.org/TR/xpath

[7] M. de Rijke. Modal model theory. Technical Report CS-R9517, CWI, Amsterdam, 1995.

[8] M. de Rijke and H. Sturm. Global definability in basic modal logic. Essays on non-classical
logic, 1:111, 2001.

[9] D. Figueira, S. Figueira, and C. Areces. Model theory of XPath on data trees. Part I: Bisim-
ulation and characterization. Submitted, http://www.glyc.dc.uba.ar/santiago/papers/
xpath-part1.pdf.

[10] D. Figueira, S. Figueira, and C. Areces. Basic model theory of XPath on data trees. In
International Conference on Database Theory, pages 50–60, 2014.

[11] S. Figueira and D. Goŕın. On the size of shortest modal descriptions. In Advances in Modal
Logic, volume 8, pages 114–132, 2010.

[12] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, and S. Vansum-
meren. Similarity and bisimilarity notions appropriate for characterizing indistinguishability
in fragments of the calculus of relations. Journal of Logic and Computation, 2014. Published
online.

[13] M. Forti and F. Honsell. Set theory with free construction principles. Annali Scuola Normale
Superiore, Pisa, X(3):493–522, 1983.

[14] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. ACM
Transactions on Database Systems, 30(2):444–491, 2005.

[15] M. Gyssens, J. Paredaens, D. Van Gucht, and G.H.L. Fletcher. Structural characterizations
of the semantics of XPath as navigation tool on a document. In PODS, pages 318–327. ACM,
2006.

[16] N. Kurtonina and M. de Rijke. Bisimulations for temporal logic. Journal of Logic, Language
and Information, 6:403–425, 1997.

[17] N. Kurtonina and M. de Rijke. Simulating without negation. Journal of Logic and Compu-
tation, 7:503–524, 1997.

[18] M. Marx and M. de Rijke. Semantic characterizations of navigational XPath. SIGMOD
Record, 34(2):41–46, 2005.

[19] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980.

[20] M. Otto. Elementary proof of the van Benthem-Rosen characterisation theorem. Technical
Report 2342, Fachbereich Mathematik, Technische Universität Darmstadt, 2004.

[21] M. Otto. Bisimulation invariance and finite models. In Logic Colloquium’02, volume 27 of
Lecture Notes in Logic, pages 276–298, 2006.

[22] D. Park. Concurrency and automata on infinite sequences. In Theoretical Computer Science,
volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer, 1981.

[23] E. Rosen. Modal logic over finite structures. Journal of Logic, Language and Information,
6(4):427–439, 1997.

[24] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on Pro-
gramming Languages and Systems, 31(4), 2009.

[25] B. ten Cate. The expressivity of XPath with transitive closure. In Stijn Vansummeren, editor,
PODS, pages 328–337. ACM, 2006.

[26] J. van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit van Amsterdam,
1976.

36

http://www.glyc.dc.uba.ar/santiago/papers/xpath-part1.pdf
http://www.glyc.dc.uba.ar/santiago/papers/xpath-part1.pdf

	Introduction
	Related work
	Outline

	Preliminaries
	Data trees
	Vertical and Downward XPath with data tests
	Equivalences and syntactic measures
	Bisimulations
	Connection to first order logic

	Definability via node expressions
	Saturation
	Weak Data Trees and Quasi-ultraproducts
	Definability
	Separation

	Binary bisimulations
	Downward
	Some facts about path expressions over XPath= ("3223379)
	Equivalence for XPath= ("3223379) path expressions
	Binary bisimulation for XPath= ("3223379)
	Characterization for XPath= ("3223379) paths

	Vertical
	Some facts about path expressions over XPath= ("3222378 "3223379)
	Binary bisimulation for XPath= ("3222378 "3223379)

	Definability via path expressions
	Saturation
	Weak Data Trees and Quasi-ultraproducts
	Definability and separation

	Applications
	Conclusions

