Seminario 2009

 

Maria Chudnovsky
"Packing Seagulls"

 

Hadwiger's conjecture is a well known open problem in graph theory. It states that every graph with chromatic number k, contains a certain structure, called a "clique minor" of size k. An interesting special case of the conjecture, that is still wide open, is when the graph G does not contain three pairwise non-adjacent vertices. In this case, it should be true that G contains a clique minor of size t where t = \lceil |V(G)|/2 \rceil. This remains open, but Jonah Blasiak proved it in the subcase when |V(G)| is even and the vertex set of G is the union of three cliques. Here we prove a strengthening of Blasiak's result: that the conjecture holds if some clique in G contains strictly more than |V(G)|/4 vertices.

This is a consequence of a result about packing "seagulls". A seagull in G is an induced three-vertex path. Deciding if a graph contains k pairwise disjoint seagulls is NP-complete in general (this is a result of Dor and Tarsi), but for graphs with no three pairwise non-adjacent vertices, there is a nice theorem, and a polynomial time algorithm.

This is joint work with Paul Seymour.


Bio:

Maria Chudnovsky (http://www.columbia.edu/~mc2775/) está pasando unos días como profesora invitada en el Departamento de Matemática de la Facultad y es Profesora Asociada de Columbia University (USA). A pesar de su corta edad, ha publicado muy importantes trabajos en las principales revistas de Combinatoria y Teoría de Grafos, y es una de las figuras de más renombre a nivel internacional en nuestra área. Su trabajo más importante (en coautoría con N. Robertson, P. Seymour y R. Thomas), la resolución de la Conjetura de los Grafos Perfectos, abierta por más de 40 años, ha sido publicado en 2006 en el Annals of Mathematics. .

 

 <<