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Resumen

Algoritmos de procesamiento de imágenes para la reconstrucción del desar-

rollo embrionario del pez cebra

Algunos procesos biológicos fundamentales, como el desarrollo embrionario, se han con-

servado a lo largo de la evolución y son comunes a especies pertenecientes a diferentes

posiciones filogenéticas. Aún hoy, esos procesos no son totalmente entendidos. La

comprensión de la morfodinámica celular, que produce tejidos u órganos, puede ser

alcanzada por la reconstrucción y análisis de la forma y posición celular durante el

desarrollo embrionario de un animal.

Esta tesis estudia una serie de algoritmos de procesamiento de imágenes que permiten

segmentar y seguir los núcleos y membranas celulares durante el desarrollo embrionario

del pez cebra. Este pez ha sido ampliamente estudiado como organismo modelo para

comprender el desarrollo embrionario, expresión genética y mecanismos de regeneración

y reparación de tejidos en vertebrados.

Para lograr este objetivo, el embrión es previamente marcado con protéınas fluo-

rescentes que se adhieren a los núcleos y membranas celulares. Usando un microscopio

láser, se obtiene una serie temporal de imágenes volumétricas del embrión a escala sub-

celular. La posición de cada célula se obtiene procesando las imágenes por medio de la

transformada de Hough. Se segmenta la forma de las membranas y núcleos por medio

ecuaciones en derivadas parciales. El movimiento celular se estima usando técnicas de

flujo óptico. El seguimiento celular se obtiene combinando información previamente

adquirida con restricciones biológicas. Los resultados son manualmente validados y

reconstruyen durante 6 horas la formación del cerebro del pez cebra en la fase somı́tica

(7-8) con todas las células seguidas desde la finalización de la fase esfera con un error

menor a 2%. Esta reconstrucción abre el camino a una investigación sistemática y

cuantitativa del comportamiento celular y origen clonal de los órganos y cerebro.
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Abstract

Image processing algorithms for zebrafish development reconstruction.

Some fundamental biological processes such as embryonic development have been pre-

served during evolution and are common to species belonging to different phylogenetic

positions, but are nowadays largely unknown. The understanding of cell morphody-

namics leading to the formation of organized spatial distribution of cells such as tissues

and organs can be achieved through the reconstruction of cells shape and position dur-

ing the development of a live animal embryo.

We design in this work a workflow of image processing methods to automatically seg-

ment and track cells nuclei and membranes during the development of a zebrafish

embryo, which has been largely validates as model organism to understand vertebrate

development, gene function and healing-repair mechanisms in vertebrates. The embryo

is previously labeled through the ubiquitous expression of fluorescent proteins addressed

to cells nuclei and membranes, and temporal sequences of volumetric images are ac-

quired with laser scanning microscopy. Cells position is detected by processing nuclei

images through the Hough transform. Membranes and nuclei shapes are reconstructed

by using a PDEs based variational techniques. Cells movement is estimated using op-

tical flows methods. Cells tracking is performed by combining informations previously

detected on cells shape and position with biological regularization constraints. Our

results are manually validated and reconstruct the formation of zebrafish brain at 7-8

somite stage with all the cells tracked starting from late sphere stage with less than

2% error for at least 6 hours. Our reconstruction opens the way to a quantitative and

systematic investigation of cellular behaviors, of clonal origin and clonal complexity of

brain organs.

Key words: Morphogenesis, Organogenesis, Zebrafish development, Cell identifica-

tion, Cell segmentation, Cell tracking, Motion estimation, Image processing, Confocal
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microscopy, 3D Hough transform, Surjective surface, Optical flow.
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Introduction

The work done in this thesis is devoted to the cell morphodynamical “reconstruction”

of the cell lineage tree underlying the processes of animal embryogenesis. This is a

fundamental issue for bio-medical research. Such a goal can be achieved through the

automated tracking of cell nuclei and identification of cell divisions from 3D+time in

vivo imaging [1]. The full reconstruction of the cell lineage tree from the egg cell to

the adult stage has only been achieved for the worm Caenorhabditis elegans. However,

in that case, the total cell number in the adult is less than one thousand and the cell

lineage is largely invariant.

We designed a set of strategies, methods and algorithms to “sequence” the cell

lineage tree as a branching process annotated in space and time.

In this work we focus on the zebrafish, a model organisms largely studied by the

community with the objective to have a animal development reference. The phy-

logenetic position, ease of breeding, observation and the possibility of using certain

strategies of genetic engineering are taken into account in the choice of model.

The zebrafish has a very large cell number, this challenge has not been taken up

so far for vertebrate organisms. Nevertheless, recent advances in imaging strategies

open the way to in toto 3D plus time imaging providing data suitable for in vivo cell

tracking and cell morphodynamics reconstruction. The zebrafish (Danio rerio) is a

vertebrate model that has been chosen for its transparency allowing in vivo inspection

at the cellular level deep into the tissues by confocal laser scanning microscopy [2].

The zebrafish exhibits typical vertebrate differentiated cell types and has been largely

validated for investigations related to humans including cancerogenesis and a number

of genetic diseases [3]. Achieving the automated reconstruction of the zebrafish embryo

cell morphodynamics is highly relevant for investigating stem cells populations, early

steps of cancerogenesis or drug effects in vivo. Such a goal requires engineering live
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zebrafish embryos to highlight sub-cellular structures to be imaged by time lapse laser

scanning microscopy, designing image processing algorithms and computational meth-

ods. We define in this thesis a workflow of image processing algorithms to: filtering

the noise in the 3d images; identifying the 3D location of cell nuclei; segmenting the

nucleus and membrane of the zebrafish cells; estimate cell movements; identify cell

divisions and track the cells. This precious data could be processed to measure the the

cell proliferation and cell death rate in time and space; cell density; understand the

monoclonal groups of cells and cell differentiation.

The chapters on this thesis focus on the image processing algorithms developed in

this research (see figure 1). These algorithms build a workflow (or steps) of image pro-

cessing algorithms where images are acquired, transformed from raw data coming from

the microscope to filtered and enhanced data where is possible to detect and segment

each cell nucleus and membrane. Then, consecutive images are transformed to vector

field images representing the motion and deformation of sub-cellular structures that

allow us to to track the cells. The tracing of cells could be backtracked towards its

earlier 3D fate map.

This work is organized as follows:

Chapter 1: We introduce the zebrafish animal, their characteristics, properties and

the different embryo stages. This chapter is important to understand the problem of

dealing with live embryos and understand the process of morphogenesis and organo-

genesis.

Chapter 2: We shown the microscopy system used to acquire the 3d + time mul-

tichannel images, we explain how the H2B/mCherry fusion protein and farnesylated

eGFP allow us to dye the membranes and nuclei with fluorescents colors. Then, we

compare the confocal and the multi-photon laser scanning microscope, later then we

present the image parameters used and how they determine the image quality.

Chapter 3: We compare multiple denoising algorithms that filter noise intrinsically

linked to the acquisition method. These filters favours intra-region smoothing while
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inhibiting inter-region smoothing, this imply that edges, like membranes, are preserved

and small aberration or non homogeneous distribution of fluorescent labeling are fil-

tered out.

Figure 1: This figure depict a workflow of image processing algorithms that is developed
in this thesis. Each subject is explain in a different chapter. Arrows indicate the
dataflow, inputs and outputs of each step. In green the introductory chapters that are
important to understand the problem. In yellow the actual research developed in this
work.
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Chapter 4 An algorithm based on the Hough transform is used to detect the sperical

shape of cell nuclei. This algorithm is used to identify and count the number of cells in

the images. This is a critical step because the segmentation and tracking rely on the

position of each cell.

Chapter 5: An algorithm based on Subjective Surfaces perform an fully automatic

membranes and nuclei segmentation. Later is studied the stability condition of the

algorithm and a preliminary algorithm validation comparing the segmentation results

with a gold standard. Also is explain how is possible to detect cells divisions, given

that during mitosis two nuclei are inside a single cell membrane.

Chapter 6: Migration of cells is a crucial issue to describe vertebrate development

and explore the relations between cell mechanical activities and the formation of macro-

scopic structures. In this chapter, we studied different methods that calculate the op-

tical flow of consecutive images. Motion estimation using registration is the first step

towards the understanding of cells and tissues biomechanics. An evaluation protocol

has been set up in order to measure the error produced by a given algorithm. Evalua-

tion relies on a reference, a gold standard of cells trajectories. The difference between

this reference and the cell trajectories built by registration is the error measurement.

Four non-rigid registration methods used in the biomedical field have been tested using

as dataset artificial and real images.

Chapter 7: A cell lineage tree can be interpreted as a binary tree where the first cell

of the embryo is represented by the root node and the relationship of mother cells and

the two daughter cells are represented by edges. In this chapter we develop an algo-

rithm that link the same cell at consecutive time steps. The cell divisions are identified

and new born cells are related with their mother cell. The tracking algorithm follows

three phases: the first phase use strong local constraints for restricting the unknown

tracking graph; the second phase minimize a heuristic elastic functional, combining

information extracted from images with biological regularization constraints to mea-

sure the correctness of cell matching at consecutive time steps; the last phase minimize

false-positive and false-negative errors looking at the whole biological coherence of the
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lineage tree identifying discontinuities in cell trajectories and cells that lived for only

a few times. The tracking results are manually validated and errors are classified. The

exploitation of the virtual embryo opens the way to in silico experimental embryology

to follow the formation and transformation of 4D morphogenetic fields, backtracking a

3D morphogenetic section towards its earlier 3D fate map.





Chapter 1

Zebrafish embryogenesis
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Some fundamental biological processes such as metabolism, cell cycle, embryonic

development and genes expression have been preserved during evolution and are com-

mon to species belonging to different phylogenetic positions. Animal models are widely

studied in many scientific fields, such as Developmental Biology, to understand biolog-

ical mechanisms common also to humans but still widely unknown. The zebrafish

(Danio rerio) is a small tropical freshwater fish largely validates as powerful experi-

mental system to understand vertebrate development, gene function and healing/repair

mechanisms in vertebrates. At early stage of embryogenesis the zebrafish shares indeed

with other vertebrates the basic organization of the body [4]. The nervous system

and the skin come from the ectoderm, the gut form a tube of endoderm, while the

mesoderm forms the musculoskeletal and vascular systems. The observation and the

manipulation of zebrafish embryos are easy, because embryos are robust, transparent

and develop externally to the mother. The observation is also very fast, if compared

with those of others widely studied animal models, e.g. mice. Considering an optimal

temperature of incubation, 28.5◦C, zebrafish embryo proceeds indeed from the zygote

to the larval stage (first and last stage of embryonic development) in only three days.

Moreover, embryos can be easily genetically modified to express fluorescent proteins

[5, 6], allowing the observation of internal cellular structures. Mutations to express

human diseases can be generated using a variety of techniques, to perform fast and low

cost tests of medical treatments and drugs [3]. The combination of all these features

makes the zebrafish one of animal models most studied in the scientific community.

Among other things, its genome has been fully sequenced and a database containing

a wide range of information about zebrafish genetics, genomics, and development has

been created [7].

1.1 Zebrafish embryo development

In the course of embryonic development a single, undifferentiated egg-cell undergoes

characteristic changes - cell division, migration, differentiation and interaction-, giving

rise to organized morphogenetic patterns such as tissues and organs. Following Kimmel

et al. [8], in the case of zebrafish the embryogenesis can be subdivided in seven broad

periods of development: zygote, cleavage, blastula, gastrula, segmentation, pharyngula,
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Figure 1.1: Zebrafish in the adult stage. The fish is named for the horizontal strips
covering the side of its body. Left image: male animal. Right image: female animal.

and hatching (shown in figure 1.2). Periods of subdivision are related to particular

developmental processes occurring during the embryogenesis and can be further divided

in stages. Stages are usually named depending on the shape of embryo. In this section

we describe the main morphological features of zebrafish embryogenesis periods. Stages

are shown in Figures 1.3 – 1.10.

1.1.1 Zygote Period (0-3/4 h)

The zygote is designated as the period of time between the egg fertilisation and the first

cell division, that occurs about 40 minutes later. The newly fertilised egg measures

about 700µ in diameter and is composed by a disc of blastoderm (blastodisc) on the

top of a noncellular mass of nutrients (yolk) (Fig. 1.3). We can distinguish between

an animal and a vegetal pole (left and right of Fig. 1.3), which nearly identify the

anteroposterior axis of the embryo body (from the future head to the future tail).

1.1.2 Cleavage Period (0.7-2.2 h)

As suggested by the name, in the cleavage period the original zygote divides six times,

synchronously, about every 15 minutes, at regular orientations and without changes

in the total mass. (Fig. 1.5). At the end of the period the cells number has been
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Figure 1.2: The stages differentiated the spatio-temporal evolution with morphological
criteria. The figure represent some of these stages of zebrafish [8]
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Figure 1.3: Zebrafish embryo in the zygote period at 1 cell stage. Yolk-free cytoplasm
are segregated to the animal pole (AP), clearly identified on the left. The opposite side
identifies the vegetal pole (VP). Figure modified from Steve Baskauf bioimages page
[9].

Figure 1.4: The stages of the zebrafish development begins with the zygote period, in
which the zygote reaches its morula stage and then reaches the 2 cell stage. Figures
from [10]
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increased to 64 (see figure 1.5). It is possible to identify an enveloping layer (EVL)

of outer, marginal cells, so called as they are close to the margin of blastodisc, and

nonmarginal, deep cells, completely surrounded by EVL and marginal cells.

Figure 1.5: Within about 0.75 to 2.25 hours, it reaches the cleveage period where it
will divide into the 64 cell stage. Meroblastic cleavage occurs in the zebrafish. Figures
from [10]

1.1.3 Blastula Period (2 1/4 - 5 1/4 h)

With the term blastula is designed the period between the seventh cleavage and the

beginning of gastrulation (Fig. 1.6). The blastula is marked by three important events.

The midblastula transition (MBT), the formation of the yolk syncytial layer (YSL) and

the beginning of epiboly. The MBT occurs around the tenth mitotic division (Fig. 1.6)

and is characterised by the beginning of genes transcription. As a consequence cells

start to divide asynchronous and cell cycle lengthens. The YSL is formed by marginal

cells which collapse and release their nuclei into the yolk. Further division of such

cells are noncytoplasmic, and the yolk remains a unique, syncytial cell. Both cells
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of blastodisc and YSL spread over the yolk, starting the process of epiboly. Epiboly

continues during the subsequent period of gastrulation until covering entirely the yolk

with a thin cells layer. The outermost, EVL cells, increase considerably their number

and change shape, becoming flat, thin and large, organized as epithelial sheet.

Figure 1.6: Views of embryos during the blastula period. Between 2.25 and 5.25 hours,
the embryo reaches the blastula stage. After the mid-blastula transition stage. Figures
from [10]

1.1.4 Gastrula Period (5 1/4 - 10 h)

The gastrula period is characterized by complex cells movements giving rise to the

primary germ layers. Consequently to movements of DEL cells involution, at about

50% of epiboly appears a thick anular region - named germ ring -, all around the margin

of blastodisc (Fig. 1.7). The germ ring is composed by both hypoblastic (close to the

yolk) and epiblastic cells. Hypoblast will give rise to endoderm and mesoderm, epiblast

to ectoderm. After the germ ring formation epiboly arrests until the formation of the

embryonic shield, an accumulation of cells in a particular position along the germ ring,

as shown in Fig. 1.7. The dorsoventral (from the back to the belly) and mediolateral
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Figure 1.7: Zebrafish embryo development during the gastrula period. Gastrulation
begins between 5.25 10.33 hours. The tailbud begins to form and 2 somites can be
observed. Figures from [10].

axes are well defined for the first time. Then the epiboly continues until covering

completely the yolk. At the same time the anterior axial region of hypoblast migrates

towards the animal pole (Fig. 1.7) to form the prechordal plate. General movements

of convergence to the dorsal midline make it thicker than the ventral one. The dorsal

epiblast thickens anteriorly to form the precursor of brain, the neural plate, while its

posterior cells will contribute to form the spinal cord. At 100% of epiboly, on the vegetal

pole, appers the tail bud. Hypoblastic cells of future prechordal plate accumulate close

the the animal pole to form a bulge of gland cells.

1.1.5 Segmentation Period (10-24 h)

During the segmentation period occur many important events, as cells start to dif-

ferentiate morphologically and organogenesis begins. Somites, which will give rise to

muscles and vertebral cartilage, develop sequentially on the dorsal side of the embryo.

The neural plate, the primordium of the central nervous system, thickens to forms the

so-called neural keel. Optic primordium become visible (Fig.1.8). At about 16 hours of

development (14-19 somites stage) the tail start to stretch such elongating the embryo,

which until this stage of development had maintained, in general, a spherical shape

with a diameter of 700 − 800µm. It is now possible to distinguish four region of the

brain, telencephalon, diencephalon, midbrain and hindbrain. Otic placodes can be seen

near to the hindbrain. The neural keel starts to round to form the neural tube and

the notochord beneath it, forming the primary longitudinal skeletal axis of the body,
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became distinguishable. Then the embryo elongates and the tail become more evident.

Otic placodes form the otic vesicle and the neural tube is almost formed along the

whole length of trunk. Neurons start to develop axons and blood cells are forming.

Near to the trunk somites have developed pioneers of muscles that produces muscular

contractions and some body movements appears.

Figure 1.8: Zebrafish embryo development at the segmentation period. Betwen 10.33
and 24 hours, segmentation begins to happen. This the period in which the folding
of the embryo begins to occur and the formation of the somites begins to continue.
The embryo begins to elongate and the neural cord and notochord continue to develop.
During this stage, the dermis, vertebrae and skeletal muscle are formed as well. Figures
from [10].

1.1.6 Pharyngula Period (24-48 h)

The pharingula period corresponds to the second day of development of zebrafish em-

bryo (see figure 1.9). The period is named for the formation of primordium of six phar-

ingeal arches. Since the beginning the notochord is already well developed, somites

are formed and the brain is divided in 5 clearly recognizable lobes. Pigment cells dif-
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ferentiate and pigmentation appears first in pigmented epithelium of retina, then in

melanophores on the dorsolateral side of embryo, rapidly progressing and becoming a

prominent feature. Anyway, also at the end of period, lateral strips are still not com-

plete. The circulatory system forms. The hearth become visible and start to beat. At

first it is visible as a straight tube in the most anterior region of the yolk, then it folds

to form the atrium and the ventricle. Blood circulates through carotid artery and car-

dinal veins and aortic arches appear. The median and pectoral fins form and become

gradually more prominent. The tail lengthens, the head shortens and straightens out.

Figure 1.9: Pharyngula period, which occurs between 24-48 hours. During this time
period, the notochord is fully developed, the pectoral fins begin development and the
cirgulatory system can be observed along with a heart beat. Figures from [10].

1.1.7 Hatching Period (48-72 h)

At the last period of embryonic development the organogenesis is nearly complete

except for the gut. The pectoral fins continue to grow and show cartilage and blood

vessels. The mouth appears in the pharyngeal region, lying at first between the eyes,

in the back of the head. Subsequently, following the formation of the jaw, the mouth

moves anteriorwards. In the first and second pharyngeal arch (mandibular and hyoid

arch) is indeed possible to observe the formation of cartilage and muscular tissues. The

remaining four pharyngeal arches have function of support for the gills and are called

branchial arches. Each gill homes an aortic arch, allowing the exchange of oxygen

between the blood and the external environment. In this period forms also a fifth

branchial arch but it does not give rise to formation of gills and it has only function
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of support. The formation of branchial arches in cartilage appears about twelve hours

after the first two pharyngeal arches.

Figure 1.10: The hatching period in which the olfactor palcodes are fully developed,
the pectoral fins are elongated and the development of cartilage begins. This stage
usually occurs between 48 and 72 hours. Figures from [10].
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Live-cell Imaging techniques are widely used, especially in the field of Biological

Imaging, to provide critical insight into the fundamental nature of cells and tissues.

Recent advances in both fluorescent proteins and laser-scanning microscopy open the

way for studying and understanding mechanism that were previously impossible to

observe. In toto 3D + time imaging, in which every cell in a living embryo can be

traced through space and time during its development, may become a standard tech-

nique for small transparent embryos such as zebrafish. After a short introduction on

the fluorescent proteins, in this chapter we describe the imaging techniques used for

acquiring our experimental dataset, the confocal and the multi-photon laser scanning

microscopy. Particular attention is devoted to the main drawbacks of these imaging

techniques. They influence and the typology of data to be examined, impose phys-

ical limits to the dataset dimensionality and resolution, to the image contrast, the

signal-to-noise ratio and the specimen survival.

2.1 Fluorescent proteins

The first fluorescent protein which has been observed was the GFP (green fluorescent

protein), so called as it has the property of emitting green light if illuminated with

ultraviolet light. Although the GFP has been isolated from the jellyfish Aequorea vic-

toria [11] in 1970s, the significant potential as a molecular probe was not realized until

several years later, in 1994, when the GFP was used as marker for gene expression

in E. coli and C. elegans [12]. Since these early studies, green fluorescent protein has

been engineered and modified to produce a vast number of fluorescent proteins, with

a fluorescence emission between the blue and the yellow. Others longer wavelength

fluorescent proteins, emitting in the orange and red spectral regions, have been devel-

oped from the marine anemone, Discosoma striata. Fluorescent proteins are nowadays

widely used as in vivo reporter molecules in biological research, such that the discovery

and the development of GFP earned M. Chalfie, O. Shimomura and R. Y. Tsien the

2008 Nobel Prize in Chemistry.
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2.2 Imaging

Live-cell imaging can be performed with two similar techniques, the Confocal Laser

Scanning Microscopy and the Multi Photon Laser Scanning Microscopy (CLSM and

MPLSM, respectively). These imaging methods are based on the detection of fluores-

cent signal emitted by a sample previously modified to express fluorescent proteins.

Both techniques allow in vivo 3D + time imaging, providing serial optical sections

of intact, living specimen. The current generation of microscopes generally have the

capability to simultaneously detect the light emitted at two or more different frequen-

cies, allowing the simultaneous observation of several internal structures with a reduced

dose of irradiation absorbed by the sample. Live-cell imaging is nevertheless always

characterized by the the best compromise between the quality of images (spatial and

temporal resolution) and the damage-survival of sample. A spatial resolution allowing

the detection of finest details is de facto in contrast with an high temporal resolution

able to accurately follow any changes into the specimen. Furthermore, the exposition

to an excessive level of illumination irreparably damages the cells making them useless

for further observations. We first describe in next paragraphs the main principles of

Confocal Laser Scanning Microscopy and the physical constraints of imaging process.

We than show how the most part of drawbacks of such technique can be solved by

using more than one photon to excite fluorescent proteins in the sample, as done in

the MPLSM.

2.2.1 Confocal Laser Scanning Microscopy

In a confocal microscope a spot of laser beam is focused into a volume element (ideally

diffraction limited) of a fluorescent sample (fig. 2.1). The light emitted by the focused

volume element is then detected and amplified by a photo-multiplier tube. The laser

beam is scanned across the specimen and each volume element is associated with a

discrete fluorescence intensity and represents one voxel in the resulting image. By

scanning along the xy plane and varying the depth in z are obtained several slices that,

recombined, provide three-dimensional, volumetric images. Time-lapse sequences of

three-dimensional data can be acquired giving rise to tetra-dimensional images. The

laser source is emitted at a particular frequency, selected so as to excite the fluorescent

proteins in the sample. It is then focused by electronic lens and further filtered by a
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dicroic mirror. Interfering intensity from outside the focused volume element is removed

by a pinhole located in a conjugate focal plane to the specimen [13]. Excitation sources

can be provided by the argon ion laser, which emits at wavelengths of 488nm and 514nm

and by the argon/krypton mixed gas laser. It emits instead at wavelengths of 488nm,

568nm and 647nm, that cover many of the commonly used fluorophores.

A series of physical factors limit the spatial and the temporal resolution achievable

in a Confocal Laser Scanning System, such as in a Multi Photon Laser Scanning Micro-

scope. First of all, due to typology of acquisition, which requires a scanning along every

plane of imaged volume, the temporal resolution depends on the spatial resolution and

Figure 2.1: Diagram of a single-photon confocal microscope
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on the imaged field and vice versa. The higher is the temporal resolution, the lower

will be that spatial and the dimensionality of dataset. Furthermore, the resolution is

theoretically limited by the diffraction theory. A point-like object is represented by an

Airy pattern whose spatially distributed intensity is given by the Point Spread Func-

tion (PSF). The properties of PSF either in the image plane or in the axial direction

are the most important factors that limit the resolution of a microscope. The generally

accepted criterion for the minimum resolvable detail, the Rayleigh criterion, states that

two points are resolved when the first minimum of an Airy disk falls on the maximum

of the other. Following this criterion, the lateral (Rlateral) and axial (Raxial) resolution

of confocal microscopy applications can be defined as

Rlateral =
0.46λ

NA
Raxial =

1.4λn

NA2
(2.1)

where λ represents the wavelength of the emitted light, n the index of refraction of

medium in which the lens works and NA the numerical aperture of the instrument.

If compared to that in a wide field microscope, Rlateral is reduced by about a 30%, as

the emitting fluorophores are already located in a small focused volume. But because

the axial resolution is generally higher than the lateral, 3D images are usually acquired

in a non-uniform grid, with a spacing in z direction greater than on the xy plane.

As a consequence objects spatially close in the specimen can appear non-resolved,

superimposed in z, as shown in Fig. 2.2,2.3. Moreover, the resolution predicted by the

diffraction theory concerns ideal conditions. In the field of live-cell imaging, samples

are thick and inhomogeneous. Spatially closed points can be truly resolved depending

on the image contrast, which is affected by the number of photons detected and by

the corresponding signal-to-noise ratio. Further limits in image contrast and resolution

are related to the pixelation. To conclude, the radiation intensity and duration of

exposure of live specimen, that if increased could improve the signal-to-noise ratio,

are restricted by photobleaching and photodamage. As previously introduced, live-cell

imaging is marked by a tricky compromise between antithetic requirements.
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2.2.2 Multi Photon Laser Scanning Microscopy

The MPLSM [14] is similar to confocal laser-scanning microscopy (CLSM). In both

a laser beam is scanned across a focal plane in a fluorescence-stained specimen, and

the light emitted by the excited sample is detected by a photomultiplier tube which

Figure 2.2: Example images of 071221aF experiment in the optical plane (XY). The
images were acquired at a depth of 150µm and 10 hours post fertilisation of the egg.
The depth of this image corresponds to the line fuchsia in figures 2.3. The full section
of the nuclei image(a) and membrane (b) shows that the embryo is fully capture at this
depth. On (c), the detail of the nuclei, which corresponds to the rectangle in yellow
dots (a), shows structures at good resolution. (d) presents a detail of cell membranes
in the same area.
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amplifies the signal and produces digital images (Fig. 2.4). The main difference is that

the excitation of fluorophores in the sample is produced, in the MPLSM, by the nearly

simultaneous absorption (within 10−18s) of two (or more) photons, each at a wave-

length higher than the wavelength required for single photon excitation. In the most

commonly diffused case of a two photon microscope the wavelength is about doubled

and the energy halved. As a consequence the fluorescent light emission depends on the

square of the excitation intensity and only in the focal volume there is sufficient inten-

sity for the process to occur. Emitted light falls down rapidly outside the focal point. In

such a way the out-of-focus fluorescence is intrinsically limited and, unlike in confocal

microscopy, it is not necessary to use spatial filtering as a small pinhole. A draw-

back is that multiphoton excitation requires a very large instantaneous flux of infrared

Figure 2.3: Example images of 071221aF experiment in a plane parallel to the optical
axis (YZ) (blue dots in figure 2.2 (a) and (b)). The images were acquired between 0
and 300 µm depth at 10 hpf. The image of volume nuclei (a) and membrane (b) shows
that it crosses most of the animal tissue. We note that the signal to noise ratio tends to
decrease with depth. Thumbnails (c) and (d) corresponding to the rectangles in yellow
dot (a) and (b) show a detail of the image of the nuclei and cell membranes along the
optical axis. The axial resolution is nearly the double than the lateral and some nuclei
appear not resolved along z direction.
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photons and thus the use of a laser more expensive and complex than lasers suitable

for confocal microscopy (e.g. the titanium-doped sapphire (Ti:Sapphire)). The laser

produces pulses extraordinarily brief (100fs) at high frequency (usually 80− 100MH)

to ensure very high instantaneous energy but with a low average value to avoid sample

damage. Because of the longer wavelength of excitation, the theoretical resolution of

TPLSM is worse than that of CLSM by approximately a factor of two [15]. But con-

sidering that the confocal microscopy does not approaches its theoretical resolution,

likewise the MPLSM, the resolution is de facto comparable [16]. The two-photon imag-

ing provides indeed an higher signal-to-noise ratio and consequently an higher contrast

because of the intrinsic removal of out-of-focus signal. Conversely, the infrared light

used in MPLSM penetrates deeper into scattering specimens than commonly used vis-

ible light, allowing to image two or three times deeper [17]. Moreover, the infrared

light produces only a small photodamage to cells if compared with the phototoxicity

at higher frequency. In a comparison with a confocal excitation, photodamage and

photobleaching are further reduced as limited to the focal plane. As shown in Fig.

Figure 2.4: Diagram of a two-photon microscope
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Figure 2.5: Comparison between confocal and multi photon laser scanning microscopy.
In CLSM fluorescence, and consequently photodamage and photobleaching, occur
throughout the whole thickness of sample along the path of the excitation beam. In
multi-photon fluorescence (right) the phenomenon is limited to a small focused volume.

2.5, in the CLSM the specimen is conversely damaged in its whole thickness at every

single scan. The reduced phototoxicity and dye bleaching, together with the ability to

penetrate deeper into tissues, makes this technique particularly suitable for acquisition

of time-lapse sequences of three-dimensional data.

2.3 Embryo staining and mounting

Wild-type zebrafish embryos were injected at the one cell stage with 200pg mCherry/H2B

RNA and 200pg eGFP-ras prepared from PCS2+ constructs [5, 6]. Although mCherry,

unlike eGFP, bleached significantly through imaging, this color combination was the

best compromise allowing proper staining of the cell membranes for further segmen-

tation. Injected embryos were raised at 28.5◦C for the next 3 hours. Embryos were

mounted in a 3cm Petri dish with a glass coverslip bottom, sealing a hole of 0.5mm

at the Petri dish center where a Teflon tore (ALPHAnov) with a hole of 780 µm re-

ceived the dechorionated embryo. The embryo was maintained and properly oriented



2.2.3 Embryo staining and mounting 43

Table 2.1: Developmental table (according to [8]) of the imaged embryo ID 070418a

Time
step

Image
duration

Development
time

Drift from the
28.5◦C table

Equivalent at
28.5◦C

Developmental
stage

t0 0h00 4h10 Non
detectable

Between 4h00
and 4h20

Late sphere stage

t120 2h13 6h23 Non
detectable

6h00 to 6h30 Late shield close
to 60% epiboly

t320 5h57 10h07 + 0h07 10h00 Tail bud

t360 6h39 10h49 + 0h29 10h20 1 somite

t420 7h46 11h56 + 0h36 11h20 3-4 somite

t480 8h53 13h03 + 0h57 12h00 5-6 somite

t540 10h03 14h13 + 1h13 13h00 7-8 somite

by infiltrating around it 0.5% low melting point agarose (Sigma) in embryo medium

[18]. Temperature control in the room resulted in a temperature of about 26◦C under

the objective slightly slowing down development with respect to the standard 28.5◦C

developmental table [8], (Table 2.1). After the imaging procedure, embryo morphology

was checked under the dissecting binocular and the animal was raised for at least 24h to

assess morphological defects. Embryo survival depends on total imaging duration, av-

erage laser power, and image acquisition frequency (or time step ∆t). Dataset 070418a

and 070420a correspond to a standardized procedure with 50s < ∆t < 70s allowing

75-110 sections per time point for 10 hours with an average laser power of 80 mW

delivered to the sample. Lowering the laser power to less than 60 mW and lengthening

∆t up to 3.5 min allowed imaging embryos for more than 20 hours, then raising them

until adulthood. These conditions were used for making up to 320 sections at 400Hz

line scan rate (bidirectional scanning), or 200Hz to improve signal-to-noise ratio, as for

the image data set 080322a shown in movie Movie1-3.
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Figure 2.6: Bright field views of live zebrafish embryos. 8-somite stage. (left) lateral
view, dorsal to the right. (right) animal pole view, rostral to the top. fb, forebrain;
mhb, midbrain-hindbrain boundary; opv, optic vesicle; otv, otic vesicle; so, somites;
tb, tail-bud.

2.4 Image acquisition

Two-photon-excited fluorescence (2PEF) microscopy, which allows in vivo imaging of

embryos for extended periods of time, has proven to be the most effective technique

for deep-tissue fluorescence imaging with sub-cellular resolution [19, 20].

However, achieving the automated tracking of cells throughout the whole living

embryo from 4D image data sets involves a difficult compromise between many vari-

ables, such as signal-to-noise ratio, spatial and temporal resolution, thickness of the

explored volume and cell survival, volume size, image acquisition duration, bleaching

and phototoxicity which has not been successfully challenged to date.

Tables 2.1, 2.4 and figure 2.7 gather the characteristics of experiences presenting

the best compromise.

Embryo labeling was obtained through RNA injection performed at the one-cell

stage to obtain ubiquitous expression of H2B/mCherry fusion protein and farnesylated

eGFP, which stained nuclei and membranes respectively [5, 6]. While nuclear staining

was instrumental to perform cell tracking, membrane staining was essential to assess

cell morphology, behavior and neighborhood, and to reveal morphological landmarks.
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Figure 2.7: Dataset time comparison. x axis: hours post fertilisation.

Embryo imaging started when sufficient signal was detected (4 hours post-fertilisation

hpf at 28◦C, i.e., at the sphere stage) and imaging proceeded for the next 10 hours at

26◦C (Figures 2.6, 2.8, Table 2.1, movie Movie1-1).

Imaging was achieved with a Leica DM6000 upright microscope SP5 MLSM equipped

with a 20/0.95NA W dipping lens objective (Olympus). Axial resolution at the sample

surface (1.5 µm) was estimated by recording 3D images of 0.1 or 1 µm fluorescent

polystyrene beads (Invitrogen) at the surface of an agarose gel. Field size was 700-700

in x, y, 140 µm in z for 070418a and 100 µm in z for 070420a; voxel size was 1,37 x

1.37 x 1.37 µm3. Simultaneous dual wavelength excitation with pulses at two different

wavelengths (980 and 1030nm) with pulsed laser beams (50Mhz, 200fs) was provided

by a solid-state Ytterbium femtosecond oscillator (T-pulse 20, Amplitude Systemes)

operating at 1030nm. The beam was split by a polarising cube. One of the two beams

was launched into a nonlinear photonic crystal fibre (Amplitude Systemes) that shifted

the optical spectrum from 1030 to 980nm. Light beams (1030nm and 980nm) were then

recombined before being injected into the microscope. Raw data visualisation in Figure

2.8, Movie1-1, Movie1-2, Movie1-3, was done using Amira software (Mercury Computer
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Systems).

The duration of the experiments, between 10 and 20h, with an acquisition of one

volume per minute does not disturb the development of fish. Too much power from the

laser, however, can lead to a necrosis of tissues. Sometimes gastrulation leads to the

formation of a more anteroposterior axis that plunges into the yolk during a normal

development. Stress exerted by the agarose is certainly the cause but we observed

that it does not prevent the implementation of the plan of organization of fish whose

structures are normally despite the disruption of the initial morphogenesis.

Figures 2.2 and 2.3 illustrate the type of images obtained at 10 hpf, depth of 150

microns. Imaged structures are have good contrast in the imaging plane (XY) but less

along the optical axis (OZ). In this direction, it is more difficult to distinguish cellular

structures because of the poor resolution. The theoretical resolution of the microscope

is worse along the optical axis which may be sufficient to explain the degradation of

the images in this direction. The signal to noise ratio decreases in the deeper regions.

The images show non uniform regional labeling. They have several origins: dif-

ferences between tissues, the ”bleaching” of fluorophores, a lack of labels specificity,

imaging depth. Thus, the outer surface of epithelial membranes is not label. The label

is different in the hypoblast and the epiblast and there is an accumulation of membrane

signal at the border of these two regions. The ”bleaching” is first seen at the top of the

embryo in the epithelial cells where nuclear signal may completely disappear. Finally,

some intracellular structures are sometimes label of nonspecific manner as is the case

of the periphery of nuclei in the image of the membranes.

The experimental device used to follow the development of the zebrafish has a

cellular scale. Quality images, however, degrades with the depth and duration of the

experiment. Below 300 µm and a after 15th hours the images not suited to a automatic

reconstruction of cell movements. The acquisition will however cover up to half of the

embryo during ten hours of development into a unique experience. It provides for

this time quality images suited to the reconstruction and description of the cellular

environment.
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(a) (b)

(c) (d)

Figure 2.8: Reconstructing zebrafish brain early embryogenesis from time lapse optical
sectioning. (a-d) Image data set ID 070418a, raw data 3D visualization, animal pole
view, orthoslice removing upper sections, time points and shown (z projected) sections
indicated top right, developmental stage indicated bottom left. fb, forebrain; hb, hind-
brain; nk, neural keel; opv, optic vesicle; otv, otic vesicle; pcp, prechordal plate; y,
yolk; ysl, yolk syncytial layer.
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2.5 Mathematical definition

Either 2D or 3D nuclei or membranes images taken by a multi-photon laser microscopy

at early stages of zebra-fish embryogenesis are represented by the image intensity func-

tions, which we denote In in case of nuclei and Im in case of membranes. Although

nuclei and membranes images are color (either red or green in our case, cf. Figure 2.2),

only one of the color channels is nonzero. So both In,Im, can be understood as a scalar

functions from an image domain Ω, Ω ∈ N2 or Ω ∈ N3 to N representing a “grey-level”

image intensities. Without lost of generality we assume that 0 < In, Im 6 255.

The nuclei and membranes images have a specific feature that can be utilized for

our goals. Namely, nuclei are given by (highly noisy) humps of the function In,and,

inner parts of cells bounded by cell membranes are given by (highly noisy) humps of

the function 256− Im.
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The biological processes leading to organism formation and development of indi-

viduals is a fundamental issue for the biomedical research but is nowadays largely not

understood. Achieving of an integrated understanding of such processes needs to an-

alyze the cells individually and in a living embryo. Such goal represents a challenge

for imaging techniques and image processing algorithms. In fact, recent advances in

imaging strategies open the way to in toto 3D+time imaging of live animals with a

resolution at cellular level and enough contrast to allow segmentation and tracking of

individual cells. However, a noise is intrinsically linked to the scanning technique and

image analysis algorithms applied consequently to the time series of 3D zebrafish im-

ages need to remove spurious, noisy, structures. The image filtering has to be always a

first step in a chain of image processing operations, and it is very important to design

appropriate filters and chose their optimal parameters for any particular type of data.

The goal of this chapter is to apply the methods of nonlinear diffusion filtering to 3-D

confocal images [1] of zebrafish embryogenesis in order to perform the segmentation

[21] and the tracking [22] of individual cells. The filtering models are discussed in

section I. Section II introduces a modified version of standard edge detector to filter

membranes data. In section III we analyze behavior of the methods in processing our

3-D data set. We evaluate quantitatively the filtering results using the mean Hausdorff

distance of isosurfaces to a gold standard.

3.1 Nonlinear PDEs Based Models

Let the input processed 3-D image be modelled by a real function I0(x), I0 : Ω → R,

where Ω ⊂ R3 represents a spatial rectangular domain. Observing that the Gauss

function is a fundamental solution of the linear heat equation,

It = ∆I = ∇ · (∇I) (3.1)

it has been possible [23, 24] to replace the classical convolution of an image with the

Gaussian kernel of a given variance v =
√

2σ by solving the linear heat equation for a

corresponding time t = σ and initial condition I(x, 0) = I0(x). Applying (3.1) to an

image means to diffuse its graylevels in an isotropic way. Despite the fact that (3.1)

reduces the noise superimposed to the image, it blurs edges and moves their position.
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To overcome these shortcomings, Perona and Malik [25] introduced the first nonlinear

diffusion model called anisotropic diffusion in the computer vision community

It = ∇ · (g(|∇I|)∇I), (3.2)

making the diffusion coefficient g dependent on the image features. This model can

behave locally as the backward heat equation, depending on the intensity of |∇I|, which

is an ill-posed problem from a mathematical point of view. Therefore Catté, Lions,

Morel and Coll [26, 27] proposed to use the convolution of ∇I with the Gaussian kernel

to evaluate the diffusion coefficient, keeping all the advantages of the original model

and avoiding its drawbacks

It = ∇ · (g(|∇Gσ ∗ I|)∇I). (3.3)

We will refer to (3.3) as modified Perona Malik model in the course of this chapter.

Another, geometrical generalization of (3.1) was suggested by Alvarez, Lions and

Morel [26]

It = g(|∇Gσ ∗ I|)|∇I|∇ ·
(
∇I
|∇I|

)
. (3.4)

Since the right hand side can be rewritten as g(|∇Gσ ∗ I|)Iηη, where Iηη represents the

tangential component of ∆I, it provides a smoothing only in the direction orthogonal

to the image gradient and uses g as a weighting term to slow down the diffusion on

high image gradients. Since K = ∇ ·
(
∇I
|∇I|

)
is the mean curvature of level sets of I,

(3.4) represents a geometrical diffusion of the image isosurfaces driven by their mean

curvature, with an image dependent stopping function g. We call this model slowed

mean curvature flow.

The last equation which we consider in this chapter is so-called geodesic mean

curvature flow

It = g(|∇Gσ ∗ I|)|∇I|K +∇g(|∇Gσ ∗ I|) · ∇I, (3.5)

which can be derived from (3.4) by adding the image dependent advective term. The

equation was introduced simultaneously in [28, 29, 30] for image segmentation, for the

filtering purposes (3.5) was suggested in [31, 32]. The image dependent velocity term
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drives the graylevel isosurfaces in the direction of −∇g, i.e. towards local edges. It can

be written in divergence form

It = |∇I|∇ ·
(
g(|∇Gσ ∗ I|)|

∇I
|∇I|

)
(3.6)

to see (3.6) as a geometrical generalization of (3.2).

3.2 Image Denoising

We have applied the models introduced in the previous section to an in vivo zebrafish

embryo nuclei and membranes 3-D images acquired with a confocal microscope Leica

DM6000 upright microscope SP5 MLSM. The data represent stages of development of

zebrafish embryo nuclei and membranes that cover a period 4-6 hours, from the sphere

to the shield stage. In the entire period of development, the whole embryo is similar

to a sphere with a diameter of 700 µ. The data have a physical dimension of 300 x 300

x 30 µ3 and cover only the top part of the embryo.

The nuclei data are composed of well contrasted objects, with an enough good signal

to noise ratio and regions approximately uniform. The membranes images are more

complex and difficult to handle. They are hollow and form an ”interlacement” continuos

in the whole volume. Very often the contrast is very low or the fluorescent signal is

completely absent. The membranes thickness is very small, in the best case composed

by no more than 3, 4 voxels. Therefore, we adopted a different strategy, depending on

the kind of data, to represent the image features.

As introduced in the previous section, in all the methods we use, the image features

are given through the function g. In the case of nuclei we represent g as a standard

edge indicator, i.e., as a smooth nonincreasing function of the original image gradient,

g(x) =
1

1 + (G∗∇I)2
β

. (3.7)

However, for the membranes g, we found useful to express it as a smooth nonincreasing
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function of the image intensity, namely

g(x) =
1

1 + (G∗I)2
β

. (3.8)

In both (3.7) and (3.8) the Gaussian variance acts like a scale parameter that determines

the minimal size of details that can be preserved. The parameter β is instead related

to the image contrast and it acts like a scale parameter by which the graylevels of the

image features are mapped into the g function.

By using (3.8), we leave the useful signal of membranes unaltered as much as possible.

Indeed, despite of the fact that (3.7) strongly reduces the noise, it smooths excessively

the membranes. This behaviour is particularly evident where the signal is weak and

the thickness of the membranes is thin. An example is shown in Fig. 3.1. Although

(3.7) removes slightly better the noise, the membranes appear blurred and part of

the information is lost. We verified in [21] that such information about boundaries

is important to correctly segment the membranes. Mathematical reliability of such

nonlinear models for image processing where the edge indicator may depend on image

intensity is given in [33].

Numerical schemes for solving presented PDEs models can be based either on the

explicit, see e.g. [32], or the semi-implicit [27, 34, 35, 36] time discretizations and

on the finite difference, finite volume or finite element space discretizations. Since in

case of explicit schemes one has to take care about the CFL stability condition, we

use semi-implicit schemes, that are unconditionally stable. For the nuclei images, the

implementation of such schemes is described in details in [36].

3.3 Filtering Results

In this section we discuss visually and quantitatively the behaviour of the models

on nuclei images, while for membranes we discuss the results by visual inspection.

In the Fig. 3.2 we show a detail of an isosurface representation of nuclei, whereas

such kind of visualization is not appropriate for membranes, where the membranes are

not always closed. A detail of a slice selected in the xy plane is shown in Fig. 3.3.

Observing figures, we can see that all the methods reduce the noise superimposed to
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the image preserving at the same time its features. We used small values of variance

σ in order to enhance the contrast and preserve the small structures of membranes.

The slowed mean curvature flow and the modified Perona-Malik models show good

behaviour after 10 filtering steps, both for nuclei and membranes images, while the

geodesic mean curvature flow requires 15 filtering steps. In all the computations our

voxel size h = 0.01. Then the time step τ = 0.0001 (to be close to relation τ ≈ h2 which

is standard for solving parabolic equations). In Fig. 3.2 we used further parameters

as follows: β = 2, σ = 5 · 10−4 for the modified Perona-Malik and smcf models, β =

1, σ = 10−3 for gmcf model. For filtering the membrane images presented in Fig. 3.3

we used β = 10−3, σ = 10−4 for the modified Perona-Malik and smcf models, while

β = 10−4, σ = 5 · 10−4 for gmcf model.

Concerning membrane images, it is worth to note that, although the noise intensity

(a) Original data (b) Standard edge detector (c) New edge detector

(d) Data filtered using eq.(3.7) (e) Data filtered using eq.(3.8)

Figure 3.1: The original data and the edge indicators. On the bottom the data filtered
using both functions.
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is often comparable with the intensity of membranes and the thickness of membranes is

very small, the methods are able to distinguish between the noise inside membranes and

the membranes itself. Visually the behaviour of all the methods is really satisfactory

and comparable. To find a way how to evaluate quantitatively the filtering by different

methods for this kind of data will be an objective of our further research.

Concerning nuclei images, by the visual inspection, cf. Fig. 3.2, we can conclude

that the methods strongly reduce the noise and smooth small variations in image

intensity without changing the shape of nuclei. However, we would like to compare

the models also quantitatively. To that goal, we have selected a subvolume of the first

unfiltered frame of the embryogenesis time sequence and constructed a gold standard by

a manual segmentation. Then we calculated the mean Hausdorff distance[37] between

the manually segmented surface of nuclei in the gold standard and isosurfaces of original

and filtered data, respectively.

Given two finite point sets, A = {a1, . . . , ap} and B = {b1, . . . , bq} the mean Haus-

dorff distance is defined as

MHD(A,B) = max (mhd(A,B),mhd(B,A)) ,

where

mhd(A,B) =
1

p

p∑
i=1

min
b∈B
‖ai − b‖

is called mean directed Hausdorff distance and ‖ · ‖ is some underlying norm (usually

Euclidean) on the points of sets A,B. The mhd(B,A) is defined similarly. The mean

Hausdorff distance is widely used to measure the mismatch between two point sets

usually to perform an image matching. In our case the sets A and B are given by

discrete points that forms the nuclei surface in the gold standard and the image intensity

isosurfaces either in original or in filtered volumes, respectively.

An appropriate image filtering should produce not only image smoothing and noise

removal but also image enhancement. Then the level sets of the image intensity should

accumulate around the boundaries of nuclei. The ideal image smoothing and enhance-

ment would give a profile of image intensity perfectly steep on the nuclei boundaries.

Such profile would correspond to a totally flat graph of the mean Hausdorff distance.
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(a) Original (b) Smcf

(c) Mod. P-M (d) Gmcf

Figure 3.2: Isosurface representation of original and filtered nuclei (by isosurface value
28).
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(a) Original (b) Smcf

(c) Mod. P-M (d) Gmcf

Figure 3.3: A slice in the xy plane of original and filtered membranes. The slice has
been selected in the middle of volumes.
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Therefore, by means of the mean Hausdorff distance to gold standard computed for

the original and filtered data, it is possible to quantitatively evaluate the capability

of smoothing and enhancement of the methods. Particularly, a reduction of the MHD

by filtering shows the capability of smoothing, while the flatness of the MHD graph is

related to enhancement.

Observing the image histogram and by the visual inspection we estimated the level

of intensity 28 as the closest to the real boundaries of nuclei. We selected isosurface

levels around this value, from 15 to 45, with step 5, in order to evaluate the mean

Hausdorff distances. For every such isosurface either in original or filtered data, we

found a nucleus surface in the gold standard and we calculated their mean Hausdorff

distance. At the end we averaged the mean Hausdorff distances over all nuclei in the

subvolume. To check correct selection of the pairs of nuclei in the gold standard and

other data we visualize them overlapped within their bounding boxes, see Fig. 3.4 in

case of original data. The values of the mean Hausdorff distances are reported in Table

I, and Fig. 3.5 shows the related graphs. We can easily observe that our choice of

isosurface value 28 as the closest to the real boundaries of nuclei has been correct. In

the original data, the isosurfaces with values between 25 and 30 give the smallest (and

approximately the same) mean Hausdorff distance to the gold standard. This fact is

expressed in almost flat graph of the mean Hausdorff distance in this interval. It is

worth to note that the interval of the flatness for original data is very narrow (in spite

of the graphs for modified Perona-Malik, smcf and gmcf filtering results), which means

that correct representation of nuclei in the noisy data is very sensitive to the choice

of correct isosurface level. Let us note that all the methods show good capability of

smoothing, the mean Hausdorff distance with respect to the gold standard is reduced

in the whole range of chosen isosurfaces. The graph of the slowed mean curvature

flow is almost parallel to that of original data, meaning that it performs a pure edge

preserving smoothing. The graph of modified Perona-Malik method is similar, but less

convex and slightly more flat for lower isosurfaces. Therefore, this method tends to

more accumulate the image graylevels in that range of image intensity. The regions

closely outside the nuclei contour moves towards the nuclei boundaries. This kind of

behaviour is very strong in the geodesic mean curvature flow, that completely flatten

the regions of a low intensity, enhancing thus edge position around nuclei. Further

details and deep discussion about the evaluation of such methods using the mean
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Figure 3.4: The plot of 11 nuclei of the gold standard (white) overlapped with the
corresponding component of isosurface 25 in the original data set (blue).

Hausdorff distance can be found in [36].

3.4 Conclusions

In this chapter we have presented PDEs edge preserving denoising methods and we

applied them to 3-D confocal images of zebrafish embryo. These images characterized

by a low resolution in z direction giving rise to regions partially overlapped. Our goal

was to identify the best filtering method in order to facilitate further image process-

ing procedures, as nuclei identification, segmentation and tracking. We studied the

behavior of all the methods and evaluated their performances both visually and quan-

titatively. The quantitative analysis has been carried out first by calculating the mean

Hausdorff distance of isosurfaces to a gold standard. We showed that all the analyzed

methods are able to reduce the noise, smooth small variations in image intensity of

the original data and remove the spurious regions. For the Perona-Malik, slowed and

geodesic mean curvature flow models, the filtering reduces the mean Hausdorff distance

significantly for a large range of isosurfaces. We have introduced a modified version

of classical edge detector to filter membranes data. Our study shows that nonlinear

diffusion methods are well suited for processing such type of data.
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Figure 3.5: The graph of the mean Hausdorff distance for the original and filtered data
against the gold standard.

Table 3.1:
Mean Hausdorff Distance

Isosurface Original SMCF PM GMCF
15 0.506 0.411 0.369 0.308
20 0.394 0.302 0.292 0.282
25 0.352 0.265 0.272 0.283
30 0.350 0.274 0.284 0.308
35 0.377 0.313 0.318 0.344
40 0.422 0.364 0.367 0.392
45 0.476 0.429 0.424 0.449
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We develop a method based on Hough transform for counting and extraction of

approximate cell centers in 2D and 3D images of early stages of the zebra-fish em-

bryogenesis. Identifying the cells in a fully automatically algorithm with minimal

intervention of an operator is required in this kind of problem, given that the size and

cell number is huge, hundreds of cells early in the development become thousands of

cells after few hours after the egg fertilization.

The approximate cell centers give us the starting points for multiple algorithms

that will allow us to achieve the automatic reconstruction of the embryo development.

Finding the cells center is a crucial task in segmentation of nuclei and membranes. Also

identifying each cell in the embryo is the first step to track the cells in time. Methods

coming from different frameworks could be applied to detect the shape of cells in the

images, topological algorithms like watershed-based methods could be used automati-

cally although it has problems separating touching structures, level set methods have

being used successfully for this task in [38], difference of Gaussians functions could

identify nuclei shapes at different scales. Otsu’s method [39] is used to automatically

perform histogram shape-based image thresholding, morphologic operators like Chuang

et al. [40], elastic deformation [41] or wavelets transformation [42] could be used to

find the nuclei shape. All this methods fail when cells nuclei touch each other or signal

to noise ratio is weak [43, 44].

In this chapter we will introduce the Hough transform in order to identify regular

shapes in the images, the zebrafish nuclei have spherical shape that could be detected

by the Hough transform. Later in this chapter experiments on real 3D embryogenesis

images are presented and the results are discussed.

4.1 Hough transform to detect image features

The Hough transform is a technique which can be used to isolate features of a particular

shape within an image. The classical Hough transform [45] requires that the desired

features be specified in some parametric form, it is commonly used for the detection of

regular curves such as lines, circles or ellipses.

To illustrate how the Hough transform works this section shows how to find straight

lines in a image. The simplest case of Hough transform is the linear transform used
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for detecting straight lines. In the image space, the straight line can be described as

the set of (x, y) coordinates where y = mx + b, m is the slope parameter and b is the

intercept parameter. The set of all straight lines in the picture plane constitutes a two-

parameter family. In the Hough transform, the idea is to describe the characteristics of

the shape in terms of its parameters. If we fix a parameterization for the family, then

an arbitrary straight line can be represented by a single point in the parameter space

(Hough space). In case of a straight line these parameters are the slope parameter

m and the intercept parameter b. However, the slope approaches infinity as the line

becomes more vertical. This problem is resolved by describing any straight line with

the parametric line equation

x cos θ + y sin θ = ρ (4.1)

with θ ∈ [0, π].

The normal parameterization specifies a straight line by the angle θ of its normal

and its algebraic distance ρ from the origin, see figure 4.1. The normal parameters for

a line are unique, with this restriction every single line in a plane x− y is mapped to a

point in the plane θ − ρ. To find the lines that intersect a pair of points belonging to

the set (x1, y1), (x2, y2), ..., (xn, yn) we transform points (xi, yi) into sinusoidal curves in

the plane θ − ρ using the equation 4.1.

Plotting the all possible points (θ, ρ) defined by each pair of (xi, yi) in image space,

they appear as sinusoids functions in the polar Hough parameter space. This point-

to-curve transformation is the Hough transformation for straight lines. The colinear

points in the plane x−y correspond to sinusoidal curves in the plane θ−ρ that intersects

in one point. Hence the problem of finding colinear points can be converted into the

problem of finding concurrent sinusoidal curves.

The Hough transform works by letting each feature point (x, y) vote in θ− ρ space

for each possible line passing through it. These votes are totaled in an accumulator

array. Suppose that a particular (θ, ρ) has one vote, this means that there is a feature

point through which this line intersects. If a position (θ, ρ) in the accumulator has n

votes, this means that n feature points lie on that line.

To extract the corresponding parameter values of the relevants shape in the image

from the accumulator we take the coordinates of the maximum values.
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Figure 4.1: Normal parameterization of a line. (a) a straight line in the original
coordinates described in terms of the length of a normal from the origin to the line - r
and orientation theta; (b) the Hough plane where points A, B, and C are transformed
into three sinusoidal curves

4.1.1 3D Hough transform to detect the spherical nuclei shape

The standard Hough transform and the Generalized Hough Transform are well known

techniques which can be used to isolate features of a particular shape within an image.

The generalized Hough transform use the analytic equation of a shape and its deriva-

tive to define a map between points in an image and a reference point in the shape.

Figure 4.2 shows the procedure to detect multiple circles in images.

At first sight is easy to see the almost spherical shape of the nuclei of the zebrafish

embryo, then the Hough transform is an excellent tool to recognize nuclei. The center

of each nuclei is found using the Hough transform with the equation of the sphere (4.2).

(x− a)2 + (y − b)2 + (z − c)2 = r2 (4.2)

where (a, b, c) is the center of the sphere with radius r. The dimension of the Hough

space is 4 but if we fix the radius, the dimension is reduced to 3.

For each edge pixel the locus for the parameters of a sphere is another sphere

centered in (x, y, z) with radius r.

The Generalized Hough transform uses the directional information associated with
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(a) (b)

(c) (d)

Figure 4.2: Hough transform identifying circles shown in frame a. An edge detection
filter is applied to the image (frame b). frame c show votes for random edge points
detected, in frame d show the acumulator space after the voting phase. The center of
the circles have correspond to the local maximum coordinates.
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the edge, if we take into account that the local gradient of the image intensity will

necessarily be orthogonal to the edge. Since edge detection generally involves comput-

ing the intensity gradient magnitude, the gradient direction is often found as a side

effect. This reduces the computation time and has the interesting effect of reducing

the number of useless votes, reduces the parameter locus to a point because the center

of the sphere is located r units along the direction of the gradient.

4.1.2 Accumulator

We build a procedure that for each edge pixel e with coordinates (x1, y1, z1) in the

image space the accumulator is increased in the coordinates:

(x1, y1, z1) + r(nx, ny, nz) + ε

where (nx, ny, nz) is the normal vector in the point e, r is the radio of the sphere we

are looking for, and |ε| < E Each point (a, b, c) in the accumulator represents all the

spheres centered in (a, b, c) in the image space. If the accumulator in the point p with

coordinates (a′, b′, c′) is equal to k it means that k edge pixels have voted increasing

the accumulator.

One interpretation of the accumulator is that each point p in the accumulator

represents the probability that in the point with coordinates p in the image space there

is the center of a sphere.

The algorithm can be summarized with the following steps:

� An edge detection filter is applied to the image.

� The gradient direction is found using the derivative of Gaussian operator.

� For each edge pixel (x, y, z) belong to the contour of a possible sphere, a votes

are set in r + ε pixels in direction of the gradient.

� The local maximum represents the center of the spheres.

There is a correlation between the image space and the accumulator space. The

variables in the image space are x, y, z and the variables in the accumulator space are

a, b, c that represent the center of a sphere in the image space. In the figure 4.4 we
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Figure 4.3: The image features vote in the neighbor of the center of the cell (2D
example). The red section represents where the votes are spread in the accumulator.

can see the ray casting volume rendering of cells and the ray casting volume of the

accumulator. As we can notice the positions of the higher values of the accumulator

are in the center of each nuclei. In figure 4.5 there is the simultaneous rendering of

the nuclei image and the accumulator. This figure shows how the higher values of the

accumulator are concentrated on the center of the cell. The nuclei are in red and the

accumulator array is rendered yellow and blue (higher value blue). Therefore we look

for the local maximum in the accumulator array to identify the cells coordinates.

4.2 Hough algorithm

Using the concepts of the previous sections we can sketch a procedure (algorithm 1)

based on the Hough transform to find spheres in a 3D image.

The input parameters of this algorithm are: the 3D image volume, the size of the

cells we want to find and the variance of the Gaussian kernel. The output of the
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(a) Top view of the embryo. Each figure with different zoom.

(b) Top view of the accumulator array. Each figure with different zoom.

Figure 4.4: Top: Ray casting volume of the embryo. Bottom: Ray casting volume of
the accumulator.
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Figure 4.5: Ray casting volume of the embryo and the accumulator. Both channels
are rendered with independent opacity and transfer functions. In red we can see the
nuclei, in yellow are the lower values of the accumulator, in blue are the higher values
of the accumulator.
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algorithm is a list of 3D points with the location of the center of the spheres.
input : 3d image, I

input : Set of Radius, [rmin...rmax]

input : Variance, σ2

output: Set with the centers of the spheres, sphereSet

Accumulator ← 0;

foreach radius r ∈ [rmin...rmax] do

foreach edge pixel e with coordinates X∈ I do

gradient← Derivative of Gaussian operator(e,x);

foreach ε where |ε| < E do

Accumulator[X + r ∗ gradient+ ε] + +;

end

end

end

sphereSet← Extract Local Maximum(Accumulator);
Algorithm 1: Hough algorithm.

Another important task in this algorithm is the stopping criteria when we look for

the local maximum. Several alternatives can be considered. If we do not know how

many cells there are in the volume the algorithm can stop when the local maximum is

below a threshold or is estable. If we know how many nucleus we are looking for, we

can iterate until that number is achieved.

4.3 Results

This section shows the results of the nuclei recognition using the Hough transform to

detect spheres in the 3d image data.

Figure 4.6,4.7 shows the ray casting volume rendering of dataset 070420a. A mark

with a synthetic white sphere is rendered where a local maximum is found in the

accumulator of the Hough space. Lets notice the good location of each mark, all of them

are almost in the center of each nucleus and there are not many mistakes (unrecognized

nucleus or multiply-marked nuclei). Even the cells which are in the bottom of the

volume where only a small portion of the nuclei are visible are recognized. Figure 4.8

shows the number of cells at different stages in the embryo, as not all the embryo is
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Figure 4.6: Nuclei recognition result using the Hough transform in dataset 070128c.
A synthetic white sphere is draw where there is a local maximum in the accumulator.
The images are rendered using 3D ray casting at different zoom factor.

capture by the microscope, cells move, enter and exit from the images, therefore the

number of detected cells not always grows.

Counting the number of cell in the embryo would give us the proliferation rate

or number of cells division (figure 4.9) by time. This could be used to show the

synchronization in space-time of cell division of neighbour cells. Also with the cell

position and number it is possible to calculate the cell density in the spatio-temporal

space (figure 4.10).

In order to validate our object counting algorithm, we performed a manual center

detection on a sub-volume of a nuclei image and we tested the correctness of the result

obtained by automatic detection. Considering the further applications of the center

detection, there are three basic types of errors that can occur:

� False positive detection is the case when the algorithm finds a center that does

not correspond to any important object in the image. This happens especially
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(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 4.7: Result of cell identification process in dataset 070128c. The white marks
are the cells recognized with the Hough transform in consecutive timesteps. The label
255 indicates a single cell trajectory that divides.

Figure 4.8: Number of nuclei detected in the time lapse series. Dataset 070128c. Not all
the embryo is capture by the microscope, cells moves, enter and exit from the images,
therefore the number of detected cells not always grows.
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Figure 4.9: Plot of the total cell number (blue curve) and cell density (brown curve) as
a function of time (dt=67s), arrow points to the stabilization of cell density by early
somitogenesis. Data set 070418a. [46]

(a)

Figure 4.10: (a) data set 070418a, local cell density in the whole volume at t479,
z=104,[46]
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in large epithelial nuclei that can contain inner structures that cause detection

of more than one center in a single nucleus.

� Another false positive case is detection of a center that corresponds to some

artifact or noise structure.

� Finally, false negative detection is the case when an object was not detected.

This is usual for small nuclei of very low intensity.

In order to measure the quality of our automatic object detection, we evaluated the

number of false positive (FP) and false negative (FN) cases and the average distance D

of an automatically detected center to the corresponding center found manually. For a

small subvolume, the algorithm found 70 out of 75 nuclei, with 2 false positives. The

false negative detections appear only on the border of the subvolume or deep on the

embryo.

Higher rate of false negative cases can occur in the parts with weaker staining.

Discovering or correcting false negative detections would be much more difficult than

correction of the false positives. Therefore, for data with varying level of staining, the

algorithm must be set up in a way that avoids production of false negative detections,

even if it often means to accept a certain number of (usually correctable) false positives.

In practice it means that the stopping criterion must be adjusted, making the algorithm

stop at an earlier when finding local maximum.

After 7 or 8 hours of development, the cell density and cell size, make the indi-

vidualization of cell very difficult, nuclei seams to stick together and errors like false

negative or double detection of the cell increase.

4.4 Conclusions

An essential information concerning the process of embryogenesis is the number and

position of cells in each time step of the image sequence. In this chapter we developed

an algorithm based on the Hough transform to detect the spherical shape of cell nuclei.

We presented how this algorithm could be used to identify the 3D coordinate and

count the number of cell at each time step. The cell center detection method that we

described provides a good estimation of this number. Counting the number of cells at
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each stage of the embryo can provide some important quantitative characteristics of the

embryo. We can calculate its global or local density of cells or cell division rate. All this

information, is precious for measuring the differences between individuals. Identifying

the cell position is a crucial task to perform the segmentation of membranes and nuclei,

and to perform the cells tracking.



Chapter 5

Cells segmentation
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The 3-D reconstruction of cellular shape is a crucial task for reaching an integrated

understanding of biological processes leading to organism formation. Providing auto-

mated procedures for reconstructing the shape of all the cells of a living vertebrate

embryo is far beyond the current state of art. Achieving such a goal would readily pro-

vide measurements for a large number of biological features including cell shape changes

and deformation characteristic for cell differentiation and tissue morphogenesis. Cell

shape segmentation is also essential to track cell divisions and help reconstructing the

cell lineage tree and from that extract the cell proliferation rate in space and time.

This kind of data is highly relevant to investigate stem cell populations, early steps of

cancerogenesis and drug effects in vivo. Furthermore, the reconstruction of the cellu-

lar shape will provide relevant parameters to measure the variability between different

individuals of the same species, opening the way for understanding the individual sus-

ceptibility to genetic diseases or response to treatments. In this context, our aim is to

design an algorithm achieving an automated segmentation of nuclei and membranes

from 4-D imaging of live embryos engineered by fluorescent markers. Although interac-

tive methods have better performances (in terms of the percentage of objects correctly

segmented), we expected to avoid the need for any manual intervention that becomes

unrealistic when manipulating millions of objects. The segmentation technique has

to be chosen according to the data features. Typically, 4-D images for living organ-

ism provide incomplete information such as objects with missing boundaries and the

segmentation technique should deal with that. Many algorithms for the shape recon-

struction have been developed by researchers worldwide, and there exist almost as many

segmentation methods as there are segmentation problems. The 2D and 3D automatic

or semi-automatic nuclei segmentation has been covered in a number of previous works

[47, 48, 49, 50, 51, 52, 53, 54, 32]. All the developed algorithms have proved to be

very useful for nuclei segmentation, however the reconstruction of the whole cell using

membrane protein markers is almost an unexplored area. In a previous work by Sarti

et al. [32] confocal microscopy images were processed to extract the shape of nuclei.

However, in that case, the analyzed volumes were not acquired from a living organism

but from pieces of fixed tissues. On the contrary, the analysis of biological processes

during embryogenesis means analyzing the cells within their natural environment, i.e.,

in a living embryo. In that case, segmentation has to proceed from 4-D data whose

quality is much more difficult to handle. Ortiz et al. [55] presented a segmentation
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algorithm based on gradient-curvature driven flow, which is suitable for whole cell

segmentation. They measured the robustness against noise and resistance to surface

discontinuities on synthetic images and demonstrated the suitability of the method on

real cell images. However, as they discussed, the resistance to surface discontinuities

is strictly dependent on a parameter introduced in curvature term that determines the

strength of the regularization. This pose a trade-off choice between surface accuracy

and missing boundaries filling that should be solved by the user. Here we present a

method to segment a large number of cells from 3-D images characterized by non homo-

geneous intensity and gradient signal and capable to complete surface discontinuities

without any compromise between precision and ability to integrate the uncompleted

contours. The segmentation method we propose in this work is a generalized version

of the Subjective Surfaces technique [56, 57]: it is distinguishable from the classic for-

mulation by the different weights applied on the two flows constituting the motion

equation (curvature and advection). In addition, two different dynamics constitute the

same segmentation process: by acting on the matching of level curves, we control the

evolutive behavior in order to make it first mostly diffusive then a level set motion. In

the biological application we deal with, these strategies are fundamental for reaching

satisfactory results, as preliminarily shown in [21]. Here we expose more widely the

same base concepts, but including a study on the stability condition, a preliminary al-

gorithm validation and an overview on future developments. The different sections of

this chapter follow the steps undertaken to analyze the 3-D confocal images (Fig.5.1).

In Section 5.1 we briefly explain the technique for image acquisition. In Section 5.2 we

apply a filtering method for image denoising. In Section 5.3 we describe the segmenta-

tion algorithm and in Section 5.4 we show some meaningful results. Finally, in Section

5.5 we describe a possible method for the algorithm validation reporting the outcomes

of its application on few cells with different shapes.

5.1 Image Acquisition

5.1.1 In Vivo Imaging Technique

In vivo imaging is becoming an increasingly powerful tool for the analysis of morpho-

dynamical patterns in biology. Microscopic imaging, taking advantage of fluorescent



5.5.2 Image Denoising 85

proteins engineering, is able to achieve a resolution at the sub cellular level in a whole

living organism, to analyze biological circuits dynamics and quantify molecular compo-

nents. To obtain accurate measurements of 3-D features at the cellular level in living

embryos, it is necessary to use an acquisition technique with micrometrical resolution,

able to reconstruct volumetric information and with enough contrast to allow segmen-

tation of individual cells. To fulfill these requirements, the analyzed images have been

acquired by confocal microscopy (CLSM) or by multiphoton laser scanning microscopy

(MLSM) with the best compromise in terms of spatial and temporal resolution [1].

5.2 Image Denoising

The noise present in the image can disrupt the shape information, therefore denoising is

an essential preliminary task in images segmentation. Noise has different sources such

as a non homogeneous concentration of fluorescent proteins in the labeled structures

or the electronic noise from the instrument.

In order to accurately reconstruct the object shape, the denoising method has to im-

prove the signal-to-noise ratio, faithfully preserving the position of the boundaries that

define the shape of the structures. The geodesic curvature filtering [32, 36, 58] is able

to achieve this task, by evolving the 3-D image I according to the following equation:

It = g|∇I|K +∇g · ∇I, (5.1)

Figure 5.1: Flowchart depicting the sequence of steps we undertook for nuclei and
membranes segmentation.
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where K = ∇ ·
(
∇I
|∇I|

)
is the mean curvature of level sets of I and g = g(I) is a

nonincreasing edge indicator function dependent on image features.

5.3 Algorithm For Cell Segmentation

In this section we introduce our segmentation algorithm through a detailed description

of the steps leading to the shape reconstruction of an entire volume of cells. The al-

gorithm allows extracting all the membranes and nuclei shapes in the acquired images

by processing the two channels separately. Composed by a chain of image processing

operations, the method is completely automated and represents a possible solution to

overcome the limits of apriori knowledge or manual intervention in segmenting objects

of different shape and with missing contours. Our attention is in particular focused on

membranes segmentation. As preliminarily mentioned in introduction, the membranes

signal is often low or even completely absent, giving rise to images with nonuniform

intensity and incomplete objects. Furthermore, as can be observed in figure 5.2a, the

useful signal consists in boundaries between adjacent cells and, even when present, is

composed by very thin structures. Missing boundaries could be completed by using

the Geodesic Active Contour method [28], but the technique greatly depends on the

algorithm initialization: at the starting point, the reference level has to be an ap-

proximation of the final contour. An interesting solution, that does not require any a

priori knowledge about the edges topology, has been introduced in [54] and consists

in the use of a Malladi-Sethian approach [59]. Every membrane is segmented using a

level-set function initialized in its center and then expanded by a balloon term. The

missing boundaries are completed by a manually chosen different weight between the

regularization and expansion term. As we are dealing with thousands of cells the user

intervention is, in our case, unfeasible. And if the weight term is automatically cho-

sen, the method is often not able to correctly detect the membranes boundaries. An

example is shown in figure 5.11. We propose to use a different technique, based on the

Subjective Surfaces [56, 57] model, in order to correctly reconstruct the shape of mem-

branes without any manual intervention. The method of Subjective Surfaces has been

introduced [56] to segment objects, as the Kanizsa triangle, perceived by human eyes

but characterized by a wide absence of information on boundaries. Such peculiarity

makes the model especially suitable for this particular application. Besides, we would
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(a)

(b)

Figure 5.2: Details of filtering results (on the right) in comparison with the original
images (on the left) for membranes (a) and nuclei (b) xy slices. The noise is greatly
reduced and the image contrast is enhanced thanks to the intensity level sets accumu-
lation around the boundaries promoted by the geodesic curvature technique.
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Figure 5.3: Procedural scheme for the segmentation of a single object (i.e. mem-
brane/nucleus).

like also to point out that the Subjective Surfaces can be successfully applied also to

nuclei segmentation, automatically solving problems related to nuclei sometimes clus-

tered as the resolution of microscope is not able to distinguish them. In the proposed

procedure, each object is processed separately from the others limiting the computa-

tion to subvolumes containing only one cell. This structure greatly simplifies the code

parallelization, because it allows subdividing the volume in blocks of few cells, sending

blocks to different processors for computation and then collecting all the segmented

surfaces as a single result. The image processing chain given by the steps followed for

the segmentation of a single cell is schematized in Fig. 5.3. The main algorithm feature

is the self-action: it has been designed to completely avoid user intervention, because

the segmentation of thousands of cells is achievable only if it is fully automated. In

order to explain our procedure, we first introduce the classic Subjective Surfaces model.

As the method requires the construction of a metric based on the image features, we

introduce a classic and a new edge detection function, depending on the kind of man-

aged data (membranes or nuclei), necessary to construct such metric. We then show

how an initial reference point, still required for segmentation, is chosen applying the

generalized 3-D Hough transform [60] and the method is initialized starting from that

point. The section proceeds with the introduction of a modified version of the classic

Surfaces method and the explanation of used numerical schemes. It is concluded by

showing our results.

Our segmentation algorithm has been implemented using the programming lan-
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guage C++ and the ITK [61] VTK [62] libraries for treatment and visualization of

medical images.

5.3.1 Subjective Surfaces method

The method of Subjective Surfaces, as introduced in [57] and then improved in [63],

consists, in the 3D case, in the volume minimization of a 3-D manifold embedded in a

4-D Riemannian space with a metric constructed on the image itself. Let us consider

the volumetric image I : (x, y, z) → I(x, y, z) as a real positive function in some

domain M ⊂ R3 and its low level locale features given by a function g = g(x, y, z).

Such function is used to construct a Riemannian metric h in R4 that will be used as

embedding for a 3-D hypersurface evolution:

h =


g 0 0 0

0 g 0 0

0 0 g 0

0 0 0 g/a

 (5.2)

Starting from a reference point of view selected in the center of object to be segmented,

is then constructed, in the image domain M , an initial function Φ = Φ(x, y, z), usually

a distance or a peak function. The graph of Φ represents a 3-D manifold S = (x, y, z,Φ)

embedded in (R4, h) whose volume is represented by

Vg =

∫
M

g(x, y, z)√
a

√
a+ Φ2

x + Φ2
y + Φ2

zdxdydz (5.3)

The hypersurface S is evolved afterwards to minimize its volume. The motion equation

S = Hν (5.4)

represents a mean curvature flow for S, as H is the mean curvature of S in (R4, h) and

ν its inner normal. During the evolution S is attracted towards existing boundaries

and smoothed in uniform regions, inside objects. The hypersurface level sets accumu-

late where exists information, developing discontinuities and completing, by geodesics,

regions that are continuation of existing edges. The condition of minimum for Vg cor-
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responds to a piece wise constant solution of motion equation (5.4) and easily allows

the selection of a level set of S to segment the object. The parameter a introduced

in the metric is a stretching factor and represents a weight between two different dy-

namics, a diffusive or pure level set motion. For a wide treatment about the meaning

of this parameter we refer the reader to [63]. A bidimensional example of evolution

of hypersurface S to segment a membrane is shown in figure 5.6. Further details are

given in next sections.

5.3.2 Low level features extraction: edge detector

The initial task in Subjective Surfaces segmentation is to build a metric on the image

low level local features. For such purpose a classic solution is to consider an edge

indicator g = g(x, y, z), a smooth nonincreasing function of the image gradient [25]:

g(x, y, z) =
1

1 + (|∇Gσ(x, y, z) ∗ I(x, y, z)|/β)n
(5.5)

where Gσ(x, y, z) is a Gaussian kernel with standard deviation σ, ∗ denotes the con-

volution and n is typically 1 or 2. The parameter σ determines the minimal size of

details that can be preserved, whereas β is related to the image contrast and acts as a

scale factor by which the image graylevels are mapped into the g function. The value

of g is close to 1 in flat areas (|∇I| → 0) and close to 0 in the regions where image

gradient is high (i.e. edges). Thus, the minima of g denote the position of the edges

and its minus gradient is a force field that can be used to drive the evolution, because

it always points in the local edge direction. The analyzed signals (membranes vs nu-

clei) behave in a completely different way in terms of edge detection: nuclei are solid

and well contrasted objects; membranes are hollow, with a thickness of about 3 to 4

voxels and adjacent to each other. In nuclei images, the contours to be segmented are

located in the regions where image gradient is higher and the minima of (5.5) denote

the position of the edges (Fig. 5.4(b)). On the contrary, the function (5.5) reveals a

double contour, on the internal and the external side of the cell (Fig. 5.4(d)), stopping

the hypersurface on the internal cell boundary. These specific features require using

different functions for the detection of the edges in nuclei and membranes images. In

order to locate the minima of g in the middle of membranes thickness, we propose
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an alternative edge indicator, using the image itself (not its gradient) as a contours

detector. The edge indicator we propose is:

g(x, y, z) =
1

1 + (|Gσ(x, y, z) ∗ I(x, y, z)|/β)n
(5.6)

As expected, its minima locate the contours in the middle of the membranes thickness

(Fig. 5.4(e)). We would like also to point out that we used the expression (5.6) in

the denoising of membranes images, because (5.5) is stronger in noise removal but it

also excessively blurs image contours, loosing part of the signal if it is weak or thin,

whereas (5.6) better preserves the useful information on boundaries [58].

(a) (b) (c)

(d) (e)

Figure 5.4: Details of (a) nuclei and (c) membranes original data and the edge indicators
obtained by applying the standard formulation of g, (b) and (d) respectively. (e) is
the alternative edge indicator defined in order to detect a single contour in membranes
images.
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5.3.3 Hypersurface initialization

Starting from every reference point detected via the generalized 3-D Hough transform

we now construct an hypersurface in (R4, h) by defining a Φ function in the image

domain M . There are some alternative forms for Φ, for example Φ = −αD or Φ = α/D,

where D is the 3-D distance function from the reference point and α is a constant. We

used the initial function Φ = α/D, instead of Φ = −αD, to have a higher contrast in

the processed image. The same expression of Si can be employed both for nuclei and

membranes processing.

We would like to observe that the segmentation of multiple objects within the same

volume can be achieved either by the simultaneous segmentation of all the objects,

defining only one initial function for the whole image, in a similar way as done in [32]

for nuclei segmentation, or by processing sequentially each cell with its own initial

function and collecting the intermediate segmentations after their computation. In the

early stage of our work, we did some tests applying the first option (Fig. 5.5). This

method gave good results only for non-contiguous objects, but failed in case of multiple

contact regions, meaning that it was fine for nuclei but not for membranes. Indeed,

membranes of closely interacting cells look fused and neighboring cells are merged into a

single object by the segmentation process (Fig. 5.5(d)). In addition, the computation

of large volumes is costly in time and memory, thus requiring parallelization of the

code. For these reasons, we chose the second option both for membranes and nuclei

segmentation.

5.3.4 Segmentation: Modified Version of the Subjective Sur-

faces Technique

Let us still consider equation (5.4) and rewrite it with respect to the Φ function intro-

duced in previous subsection:

Φ = H|∇Φ|. (5.7)
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(a) (b)

(c) (d)

Figure 5.5: Segmentation results obtained using a single initial function for the whole
volume: (a) original image, (b) initial function, (c) processed function and (d) isosur-
face.

The mean curvature of the hypersurface S, H, is given by:

H =
(a2+Φ2

x+Φ2
y)Φzz+(a2+Φ2

x+Φ2
z)Φyy+(a2+Φ2

y+Φ2
z)Φxx

(a2+Φ2
x+Φ2

y+Φ2
z)3/2

+

−2ΦxΦzΦxz+ΦxΦyΦxy+ΦyΦzΦyz

(a2+Φ2
x+Φ2

y+Φ2
z)3/2

+

+ gxΦx+gyΦy+gzΦz

(a2+Φ2
x+Φ2

y+Φ2
z)1/2

(5.8)
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Setting

K =
(a2+Φ2

x+Φ2
y)Φzz+(a2+Φ2

x+Φ2
z)Φyy+(a2+Φ2

y+Φ2
z)Φxx

(a2+Φ2
x+Φ2

y+Φ2
z)3/2

+

−2ΦxΦzΦxz+ΦxΦyΦxy+ΦyΦzΦyz

(a2+Φ2
x+Φ2

y+Φ2
z)3/2

(5.9)

and adding two different parameters, λ and ν, we can explicitly write our model equa-

tion: 
Φt = λgK|∇Φ|+ ν∇g · ∇Φ in M×]0, T [

Φ(x, y, z, t) = min(Φ0) in ∂M×]0, T [

Φ(x, y, z, 0) = Φ0 for (x, y, z) ∈M

(5.10)

Let us notice that, differently from the classical formulation of the Subjective Surfaces

technique, we assigned different weighting factors to the first and second term on the

right side of Φt expression in (5.10). The term K still represents a mean curvature for

S, but with a metric h (cf. eq.(2)) in which the edge detector is equal to 1. Our model

equation can then be read as in the following. The first term on the right side of (5.10)

represents a mean curvature flow, a parabolic motion that evolves the hypersurface

in normal direction with a velocity given by the mean curvature K and weighted by

the edge indicator g. The second term is a pure passive advection along the velocity

field −∇g, whose direction and strength depend on position. This term attracts the

hypersurface in the direction of the image edges.

Locally, different behaviors can be identified in the image regions according to one of

these flows. In the homogeneous regions g = 1 and ∇g → 0, therefore (5.10) reduces

to the mean curvature flow: inside the objects the hypersurface levels collapse in a

point then disappear. In regions where the edge information exists g → 0 and (5.10)

reduces to a simple advection equation: the hypersurface levels are driven towards the

edges by the field −∇g, their accumulation causes the increase of the spatial gradient

and S starts to generate discontinuities. In regions with subjective contours (missing

boundaries), continuation of existing edge fragments, a is negligible and (5.10) can be

approximated by a geodesic flow, allowing the boundary completion with geodesics.

The application of these dynamics is clear in Fig. 5.6, showing the effect of bound-

ary completion in a membrane with a missing contour. The use of different weights

between the regularization and the advective term (ν > λ) facilitates the control of
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evolutive process. Indeed, the segmentation, together with the missing contours com-

pletion, is obtained through the discontinuities developed by the hypersurface on object

boundaries, while the hypersurface is simultaneously smoothed and flattened inside the

object. An higher weight of advective term ensures a better accumulation of image

graylevel around existing contours. The position of the reference point influences the

result of segmentation. If it is around the object center, at the end of the evolution the

highest hypersurface values correspond to the shape we want to extract. Therefore,

selecting a level little lower than the maximum allows extracting the desired contour.

The same behavior can be observed if we start from a slightly off center initial condi-

tion. On the contrary, if we consider a strongly off center point-of-view other adjacent

structures may become predominant, not allowing a correct segmentation. We solved

this problem, at least partially, by changing the dynamics of motion equation during

the evolution process. Using first an high value of parameter a the process is most

diffusive. The hypersurface smooths, moving away from adjacent, external structures

and simultaneously flattens inside objects. Then, with a low value of a, the hyper-

surface evolves driven by a pure level set motion, sharpening its discontinuities. A

bidimensional example is shown if Fig.5.7.

5.3.5 Level Selection

In the conclusive step of the algorithm, we automatically picked the level set that

describes the desired object. After segmentation, the intensity distribution of the func-

tion Φ is typically associated to a bimodal histogram with values range between 0 and

255, because of a linear rescaling. The higher intensity peak (near to 255) corresponds

to the segmented object, the lower one to the background. Therefore, the segmented

surface could be extracted as the isosurface corresponding to the intermediate value

128. These surfaces are represented and stored through a VTK PolyData format [62].

Some VTK postprocessing filters (vtkImageGaussianSmooth and vtkPolyDataNormals

[62]) have been applied to reduce the surface discontinuities.

5.3.6 Numerical Discretization

Concerning the numerical schemes for discretization, the partial derivatives in (5.10)

are approximated with finite differences [56, 57, 64]. Time derivatives are discretized
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(a)

(b)

Figure 5.6: 2-D example of membrane with missing boundaries segmentation. (a, from
left to right): original data, edge detector, segmented contour, in red, superimposed to
original data. (b, from left to right): evolution of the initial point-of-view surface and
selection of a level set, red line, for segmentation.

with first order forward differences, the parabolic term with central differences and the

advective term with upwind schemes, where the direction of the one-sided difference

used in a point depends on the direction of the velocity field v = −ν∇g in the same

point. Let us consider a uniform grid in space-time (t, x, y, z), then the grid consists of

the points (tn, xi, yj, zk) = (n∆t, i∆x, j∆y, k∆z). We denote by Φn
ijk the value of the

function Φ at the grid point (tn, xi, yj, zk), by gijk the value of the edge indicator in

the grid point (xi, yj, zk) and by vijk the vector value of the velocity field v in the same

spatial grid point. The equation (5.11) is the numerical approximations of (5.10), where

D is a finite difference operator on Φn
ijk, the superscripts {2, 0, 1} indicate backward,

central, and forward differences and the superscripts {x, y, z} indicate the direction of

differentiation.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: 2-D example of membrane with missing boundaries segmentation. The
point for the initialization of the Surface is chosen very close to boundaries but the
membrane is correctly segmented thank to the use of different values of parameter a
during the Surface evolution. (a) Original membrane. (b) Initial distance function Φ,
depicted in red, superimposed to original data. (c) Membrane segmentation, in red,
superimposed to original data. (d) Original Surface S constructed as graph of Φ. (e)
The Surface at the end of the first, diffusive, process (a = 1). (f) The Surface at the
end of evolution, after a pure level set motion (a = 10−6).
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5.4 Results and Discussion

We applied our algorithm to membranes and nuclei images. The results reported

here are mainly membranes segmentation. Membrane images treatment allowed test-

ing characteristic behaviors of the adopted segmentation technique, such as boundary

completion. Furthermore, membranes manipulation is more difficult and reveals spe-

cific problems when applied to epithelial cells. Nuclei are more simple to handle and

their segmentation does not require particularly sophisticated tools.

The optimal values for the algorithm parameters have been found by visual inspection

of the segmented surfaces resulting from the use of different parameters. Through the

superimposition of the segmented shape on the original image, we recognized the set

of values corresponding to the best fitting.

The parameters set we used for the segmentation of the whole dataset is:

� high value of a = 1;

� low value of a = 10−6;

� load of the curvature term λ = 0.1;

� load of the advective term ν = 10;

� time step ∆t = 0.065.

In the first part of computation, the hypersurface evolved with a high value of a to

make the flow mostly diffusive and therefore to optimize the completion of the cellular

shape, even if it is irregular and indented or if the initialization point is not centered

on the object. In the second part, we used a low value of a and the evolutive behavior

was mostly a level set motion, which contributed to match the level surfaces to the

contour. Since diffusion was faster, the number of iterations with a high value of a

was lower than the number of iterations with a low value of a, to make comparable the

effects of the two motions on the final contour. We used the same parameters both

for nuclei and membranes processing, except for the total number of iterations: nuclei

are smaller, thus their segmentation requires less iterations (40000 iterative steps for

membranes, 10000 for nuclei).
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The discrete time step ∆t has been chosen as the maximum value which insures the

stability of the advective term in (5.10). The stability condition, which can be deduced

from mass balance considerations [65] applied to a single voxel, is given by:

∆t

∆x
|vx|+

∆t

∆y
|vy|+

∆t

∆z
|vz| ≤ 1 (5.12)

where vx, vy, vz are the velocity components.

In our application we used the following approximation of the components arising in

the velocity field:

gx ≈
gi+1,j,k − gi−1,j,k

2

gy ≈
gi,j+1,k − gi,j−1,k

2

gz ≈
gi,j,k+1 − gi,j,k−1

2
(5.13)

Since 0 ≤ g ≤ 1, in the worst case |gx| = |gy| = |gz| = 0.5. Therefore, substituting this

value in (5.13) and setting ∆x = ∆y = ∆z = 1, we obtain from (5.12) ∆t ≤ 2
3ν

. In our

case ν = 10, so we set ∆t = 0.065.

A similar analysis is difficult for the curvature term because it depends in nonlinear

way on the solution. In the actual implementation we did not use strong curvature

weight. In case of strong curvature influence one should approximate the equation

through the semi-implicit schemes [34, 66, 67, 68] which are unconditionally stable.

In this Section we show some meaningful results of segmentation on two different cell

types distinguishable in the imaged developmental period: epithelial cells from the en-

veloping layer and inner cells. Their morphology varies along the cell cycle introducing

more morphological categories. The inner cell mass is covered by an epithelial layer

(EVL or enveloping cell layer). EVL cells are polarized, i.e. their apical surface and

baso-lateral surface have specific properties, polygonal, large, flat and they largely keep

their shape when dividing. They sometime have several nuclei, might correlate with

some stressed condition linked to manipulation. They also always show intracellular

membrane staining, probably corresponding to intra cellular membrane compartments.

Inner cells are smaller than EVL cells and not polarized. They fill the space and their

nucleus is centered. During division inner cells become spherical and largely loose ad-
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hesion to their neighbors. Fig. 5.9 shows the effect of boundary completion on an inner

cell: the missing contour, underlined by the red circle, is completed by a straight line.

The algorithm showed the same behavior for dividing membranes (Fig. 5.10). When

two different nuclei were found inside the same cell and the membrane presented a

constriction along the division plane, the algorithm segmented two cells by completing

their contours with straight lines. These results demonstrate the suitability of the Sub-

jective Surfaces technique for this scenario, especially if compared with other methods.

In Fig. 5.11 we discuss our algorithm against Malladi-Sethian approach [59] in the

specific case study of missing membrane boundary. The performances are comparable

in the region with well defined contours, whereas the final shape achieved by the clas-

sical level set method fails in membrane completion. Before undergoing division, inner

cells become spherical, whereas nuclei staining elongates as the chromosomes arrange

in the future cell division plane (Fig. 5.12). It should be noted that the nucleus size

is underestimated in the last two parts. This is due to the parabolic regularization

term in the motion equation (5.10), which prevents the segmented surface to reach the

contour if it is concave and with high curvature. . However, the nuclei of not dividing

cells were correctly segmented, as confirmed by visual inspection. Fig. 5.13 shows a

complete sequence of an inner cell division. In the first stages the cell shape is irreg-

ular, because of the adhesion to its neighbors, but becomes spherical before mitosis.

In the same way, the nucleus shape changes during cellular division from a spherical

or ellipsoidal aspect to a more oblong and flat shape. This morphological features are

linked to specific division phases (see figure 5.8):

1. Prophase the nucleus starts changing its shape and gaining in intensity, because

of chromosomes condensation, and the membrane gradually looses adhesion to

the neighbors;

2. Prometaphase chromosomes attach to the mitotic spindle;

3. Methaphase the chromosomes arrange in the future cell division plane;

4. Anaphase the two sets of chromosomes separate;

5. Telophase the membrane shows a constriction along the future cell division plane;

6. Cytokinesis the daughter cells separate.
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(a)

(b)

Figure 5.8: Figure a: The different phases of cell division ovserved by confocal mi-
croscopy. Experiment 070128c. Figure b: schema of cell division phases [69]
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Eye inspection of the results revealed some problems in the segmentation of EVL

membranes. As we described above, these cells surrounding the embryo are very flat.

This feature impaired membrane completion by the Subjective Surfaces 3-D technique,

because the small extension in depth stopped the evolution process. Furthermore, EVL

cells show intense intracellular labeling (as we can see in the central cell of Fig. 5.14(c)),

probably corresponding to intracellular membrane compartments (Golgi apparatus or

endoplasmic reticulum). When the evolving surface reached this intracellular staining,

it was not able to pass on. These considerations led us to think we require a specific

method for the segmentation of the epithelial cells. Prior segmentation, they have

to be automatically localized within the acquired volumes through a discriminating

factor. At the moment, we are developing a simple method for the detection of the

epithelial cells based on their position. First, we segmented the surface of the embryo

using the Geodesic Active Contours technique [28]. The evolution was not stopped by

the external layer of cells, because they have a weak outer contour, so we obtained the

profile below (Fig. 5.15(a)) and the epithelial cells remained outside (Fig. 5.15(b)).

Since the segmented surface is the zero level of the processed function Si, the epithelial

cells can be detected simply by verifying the value of Si in the center position: if it

is negative the center is outside the surface and the cell can be classified as epithelial.

This method is interesting because of its simpleness, but other factors could be used for

the detection, such as the polygonal shape or the bigger size of epithelial nuclei. Finally,

in Fig. 5.16 we show the segmentation of two subvolumes of nuclei and membranes.

Every object is labeled with a different color, whose scalar value corresponds to the

cell identity number.

5.5 Validation

In order to visually inspect the results validity, the segmentation algorithm has been

first tested using a special framework designed for managing series of 3-D biological

images [70]. It provides an helpful support for testing new algorithms or their applica-

tion on new images and it supplies some visualization tools suitable for the analysis of

the processing results. In this framework, the matching between the detected contours

and the real edges can be evaluated through the superimposition of the segmented sur-

face and the original data in a tridimensional representation or visualizing a cut of the
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(a) (b) (c)

Figure 5.9: Segmentation of a membrane with an incomplete contour: (a) missing
portion underlined by a red circle, (b) segmented surface, (c) cut of the surface super-
imposed on an image slice.

(a) (b) (c)

Figure 5.10: Segmentation of a dividing cell: (a) constriction of the membrane under-
lined by a red circle, (b) segmented surface, (c) cut of the surface superimposed on an
image slice.
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(a) (b)

Figure 5.11: Segmentation of an incomplete membrane by using different segmentation
techniques: (a) missing portion underlined by a red circle, (b) segmented contour
(yellow line Subjective Surfaces, blue line Malladi-Sethian).

(a) (b) (c)

Figure 5.12: Segmentation of a cell before division: (a) superimposition of membranes
and nuclei signals, (b) segmented surfaces, (c) cut of the surfaces superimposed on an
image slice.
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(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5 (Prophase). (f) Step 6 (Prometaphase).

(g) Step 7 (Metaphase). (h) Step 8 (Telophase). (i) Step 9.

(j) Step 10 (Cytokinesis). (k) Step 11. (l) Step 12.

Figure 5.13: Sequence of cell division.
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(a)

(b) (c)

Figure 5.14: Segmentation of epithelial cells: (a) location of the epithelial cells in the
acquired volumes (dashed area), (b) segmented surfaces, (c) slice of the segmented
surfaces superimposed on an image slice.



5.5.5 Validation 107

(a)

(b)

Figure 5.15: Detection of the epithelial cells on a 4-D MLMS dataset: (a) slice of
the segmented surface, (b) superimposition of the segmented surface, nuclei channel in
volume rendering representation and detected centers.
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(a) (b)

Figure 5.16: Segmentation of an entire subvolume: (a) membranes, (b) nuclei.

(a) (b)

Figure 5.17: Mitosis Detection. (a) Top panel, cell ID 1089/t001, initial segmentation
function, two centers. Bottom panel, final segmentation, the two centers are found
inside one cell. Filtered data shown in gray scale. (b) Mother cell ID 215/t008, 3D
rendering of nucleus and membrane shape throughout mitosis.
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surface in xy, xz, yz planes on the image slice (Fig. 5.18). It also allows the selection

of a specific cell or of a group of cells simply by specifying their center numbers, so

that the user can limit the analysis to the cells he is interested in.

Table 5.1: H.d. (Hausdorff distance) and mean H.d. in reference to 10 different gold
standards.

CELL1 CELL2

H.d. (µm) Mean H.d. (µm) H.d. (µm) Mean H.d. (µm)

gold std 1 1.4 0.6 2.0 0.3
gold std 2 1.8 0.6 2.3 0.4
gold std 3 1.9 0.7 2.3 0.4
gold std 4 1.2 0.3 2.0 0.3
gold std 5 1.1 0.3 2.0 0.3
gold std 6 1.1 0.3 2.2 0.4
gold std 7 1.0 0.3 2.0 0.3
gold std 8 1.0 0.3 1.9 0.4
gold std 9 1.1 0.3 1.9 0.3
gold std 10 1.1 0.3 2.1 0.3

mean value 1.3 0.4 2.1 0.3
std deviation 0.3 0.2 0.1 0.0

The visual inspection of results allows the detection of glaring mistakes in shape recon-

struction, such as surfaces overlapping and incomplete contours. This estimation is not

enough to quantify the algorithm precision. To measure the algorithm capability to

detect and reproduce the correct edges, we propose to use the Hausdorff distance, that

calculates the distance between two surfaces, and to compute the distance between the

segmented surface and a gold standard obtained by manual segmentation, detecting

contours by hand. The reference surface was generated exploiting the functionalities

of ITK-SNAP [71], an ad hoc software that collects the contours manually detected in

every 2-D slice, returning a binary 3-D image.

Given two finite sets of points A = {a1, ..., am} and B = {b1, ..., bn}, the Hausdorff

distance is defined as [37]:

H(A,B) = max(h(A,B), h(B,A)) (5.14)

where

h(A,B) = max
a∈A

min
b∈B
||a− b|| (5.15)
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in the classical formulation and

h(A,B) =
1

m

m∑
i=1

min
b∈B
‖ai − b‖ (5.16)

in the mean Hausdorff distance. The term h(B,A) is defined similarly.

Figure 5.18: Framework interface. The GUI is structured in two parts: the interactive
control panel on the left side gives accessibility to the implemented algorithms and
to the visualization modalities, whereas the superimposition of the segmented surface
and the original data is shown in the central windows (3-D representation in lower left
window, 2-D slices in the upper and lower right windows).

The two formulations can be used to quantify different kinds of errors: the maximum

segmentation error is associated to the classical expression, whereas the total error (i.e.
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Figure 5.19: Details of segmented surfaces (red) and gold standards (blue) showing the
region where the maximum segmentation error is located.

algorithm precision) is associated to the mean Hausdorff distance.

In the foreseen validation method, the calculation of the distance should be repeated

considering different gold standards for the same membrane, to execute a statistical

analysis (mean value and standard deviation) on the data. This procedure should

reduce the influence on results of the user who made the manual segmentation. The

proposed procedure has been applied to a few cells. However, the first analysis on two

cells with different shapes revealed interesting features (Tab. 5.1). Cell1 was imaged

before division and is almost perfectly spherical, whereas cell2 has an irregular shape

because of the adhesion to adjacent cells. Examining different conformations, we want

to estimate the effect of the “shape factor” on the algorithm precision. The mean

Hausdorff distances are comparable for cell1: 0.412±0.160 µm and cell2: 0.347±0.019

µm. On the contrary, the maximum error is different whether the shape is spherical:

1.278± 0.311 µm or irregular: 2.088± 0.142 µm. These results suggest that the shape

influences the maximum error but not the overall precision. This is probably due to

the behavior already observed in section 5.4: the inability of the segmented surface to

reach the contour if it is concave and with high curvature causes an increase of the

maximum error in the irregular shapes (Fig. 5.19). Certainly, these results have to be

supported by a larger record of cases. However they indicate that our precision is at
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least sufficient to identify mitosis which is a major issue for further reconstructing cell

behaviors.

Nuclear segmentation was then used to correct “double centers”, nucleus that were

double detected from the nuclear center detection step (Figure 5.20). Finally, mem-

brane segmentation was used to detect mitosis (Figure 5.20) given that two nucleus

are inside one membrane.

5.6 Conclusions

We designed an algorithm for the automated segmentation of membranes and nuclei

based on Subjective Surfaces technique that has good performances on live zebrafish

embryos confocal images. Visual inspection of the results has shown the ability of

the algorithm to complete the missing contours, especially in membranes images, and

to correctly reproduce the objects shape. The local precision seems to decrease for

elongated and flat shapes (EVL cells and dividing nuclei). However these observations

have to be further confirmed by a quantitative analysis on the segmentation error,

according to the procedure proposed in this chapter. It is possible to correct error done

in cell detection, this segmentation algorithm could be used to erase double detection

of cells. Given that in the mitosis process two nucleus are inside a single membrane

it is possible to classify some of the cells stages. The algorithm could be improved

by integrating the segmentation of membranes and nuclei, superimposing their edge

indicators and defining two different isosurface values for extracting both shapes in the

same process. A specific method could be designed for the segmentation of the EVL

cells that have to be localized prior segmentation. With this work we have built the

basis for future developments toward a deeper understanding of the biological processes

involved in the organism formation. In this direction, the next step will be to pass the

segmentation results to a specific algorithm for the cell shape analysis, that has to be

defined yet, with the final goal to extract information on the cell state and analyze

the dynamic of their shape. This should bring us close to an automated segmentation

procedure for the whole zebrafish early embryogenesis.
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(a) (b)

(c)

Figure 5.20: Nuclei segmentation and double centers correction. Data set ID 070420a.
(a,b) Nuclei segmentation. (a) Top panels, 2D cut of initial segmentation function
(pink) superimposed with raw data. Bottom panels, final segmentation function (or-
ange). Left panels, cell ID 707/t001. Right panels, cell ID 780/t001, metaphase nu-
cleus. (b) cells ID at t001, 1628, 1638, 1671. Top panel, subjective surface technique
applied to nuclei segmentation, orthoslices view. Bottom panel, same as top panel
but 3D rendering. Filtered data shown in gray scale. (c) Correction of double centers
by comparing nuclei segmentation functions. Cell ID 1089/t001. Top panel, origi-
nally detected centers and corresponding segmentations. Bottom panel, correction by
averaging the two centers and merging segmentation functions.



114 Cells segmentation

(a) (b)

Figure 5.21: Membranes Segmentation. (a) Cell ID 802/t001, superimposed membrane
segmentation and raw data. Top panel, two orthoslices. Bottom panel, 3D rendering.
(b) Whole volume, 3D rendering of segmented cell shapes.



Chapter 6

Cells movement estimation
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Image registration computes the displacements transforming a so-called moving

image into a target image. Thus, registration of cell images sequence can be used

in cell dynamics analysis to answer the question “when and where do cells move?”.

This is a first step toward describing the relation between local cell behaviour and

macroscopic structures. Numerous studies address this topic in developmental biology

[72],[73],[74],[75].

Recent imaging techniques allow observing cell interactions together with embryo

body plan formation [1]. Description of this spatio-temporal data with an accurate

registration is a preliminary step to investigate the biomechanics of cells and tissues.

The zebrafish is a good model for biomechanical study. It is well suited for in vivo

imaging and its gastrulation exhibits many typical cell behaviours [8] including collec-

tive displacements, shape and adhesion changes.

We aims at characterizing registration algorithm ability to capture cell movements

in wide field, micrometer resolution, images sequence of zebrafish. There is a huge

amount of literature (see [76] or [77] for general references) about registration methods

and their applications in biomedical domain.

Cells images however have their own characteristics; they show ambiguities and

their large cell number imply that there is a high number of freedom degrees. The

laws to describe the cellular medium at the cell single level are unknown as it is both

a discrete and a continuous material. Therefore it can be discussed which deformation

model is the most efficient for cell motion estimation using registration: elastic, fluid,

optical flow. There are nevertheless studies addressing directly the question of cell

registration, [78] evaluating qualitatively cell plants motion estimation with various

classical methods. A registration method is applied to 3D confocal cell image registra-

tion in [79].

Migration of cells is a crucial issue to describe vertebrate development and ex-

plore the relations between cell mechanical activities and the formation of macroscopic

structures. Thus motion estimation using registration is a first step towards the under-

standing of cells and tissues biomechanics. The present chapter aims at characterizing

registration algorithm ability to capture cells and tissues displacements. An evaluation
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protocol has been set up in order to measure the error produced by a given algorithm.

Evaluation relies on a reference, a gold standard of cells trajectories. The difference

between this reference and the cell trajectories built by registration is the error mea-

surement. Four non-rigid registration methods used in the biomedical field have been

tested: Bspline elastic registration, MIA fluid registration, ITK demons optical flow

and ITK levelset optical flow. Two artificial datasets were registered with these meth-

ods. We measured errors and their distributions with our gold standard to assess

registration quality. Results show that all methods are well suited to achieve nuclei

registration with an accumulated error remaining below the voxel size for 80% of the

cells. BSpline gave the best registration under five time steps of error accumulation

whereas ITK demons was the best for longer accumulation. The same method were

used on zebrafish development 3D data.

6.1 Motion estimation using registration methods

The typical problem of motion estimation is to analyze the motion from bidimensional

data, where each image (frame), come from a sequence of images.

Each image acquired with an specific frame-rate. In this work we analyze images

that come from a confocal microscope, these images can be define as a sequence of

multidimensional 3D volumes where 2 channels are acquired.

In the next equations we will consider the bi-dimensional images where x = (x, y),

the general form of this procedure could be used to process 3D datasets. The initial

hypothesis in the classical analysis of the optical flow postulated by Horn and Schunck,

is that locally (in space and time) the image intensity is constant [80]. This hypothesis is

called brightness constancy assumption,BCA. Formally, if I(x, t) is the image intensity,

we can write

I(x, t) ≈ I(x+ δx, t+ δt), (6.1)

where x = (x, y) and δx = (δx, δy)T is the displacement of the local region of the image

in (x, t) after a time δt.
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The first order development of the Taylor function of (6.1) is:

I(x+ δx, t+ δt) = I(x, t) +∇I(x, t) · δx+
∂I(x, t)

∂t
δt (6.2)

where ∇ is the gradient operator.

Replacing equation 6.2 in equation 6.1 and dividing by δt, we get

∇I(x, t) · δx
δt

+
∂I(x, t)

∂t
= 0 (6.3)

that, when δt→ 0

∇I(x, t) · v +
∂I(x, t)

∂t
= 0 (6.4)

where · is the dot product and v = dx
δt

represents the trajectory velocity vector field

at any point x, defined in the case of 2D images as:

v =

(
u

v

)
=

(
δx/δt

δy/δt

)
(6.5)

The equation 6.4 is valid at any point in the image. It represents the Optical Flow

Constraint Equation. It is the fundamental equation of the optical flow problem.

Adopting suffix notation:

It =
∂I

∂t

,

Ix =
∂I

∂x

,

Iy =
∂I

∂y

we can rewrite 6.4

Ixu+ Iyv + It = 0 (6.6)

represent the classical definition of OFCE due to Horn and Schunck.
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6.1.1 Geometric interpretation of OFCE: the aperture prob-

lem

In the 2D space, the optical flow equation identifies a line in the velocity plane (u, v)

where every point x in the image must satisfy that their velocity vector v(x) must

reside in that line (see figure 6.1). This is an ill posed problem where the result is an

infinite family of possible solutions (va, vb, vc, ...). There are more unknown parameters

than equations. We have two unknown (u,v) and only a single linear equation. For

each point, only v⊥, the component parallel to the intensity gradient can be calculated.

This phenomenon is know as the aperture problem [81], and only the regions of the

image where it has some sort of texture (non homogeneous intensity, all the partial

derivative non zero) the vector field can be estimated (see figure 6.2).

Knowing that v⊥ of the vector field v is parallel than ∇I

v⊥ = sn̂ =
−It∇I
‖∇I‖2

(6.7)

where:

s = s(x, t) =
−I
‖∇It‖

,

n̂ = n̂(x, t) =
∇I
‖∇I‖

represent the modulus and direction of the normal component of velocity at any point

x.

Then, the optical flow constraint just is enough to determine the component of the

flow field in the orthogonal direction of the image gradient but not to retrieve the entire

vector field. Vemuri et al. [82] overcame this problem by developing a neat and elegant

surface evolution approach to achieve the smooth deformation field between two 3D

images expressed in a level-sets framework. Registering two consecutive 3D images I1

and I2 is equivalent to determine the evolution of the level-sets of I1 along its normal

direction ∇I until it becomes the target image I2. This evolution can be written as:

It(x) = S ‖∇It(x)‖

with I(x, 0) = I1(x)
(6.8)
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where S is the velocity term. Choosing the velocity term S equal to I2(x)− I(x, t)

makes this curve evolution stop when the image I reaches the level-sets of the target

image I2. Equation (6.8) does not give explicitly the transformation vector field be-

tween the two images that can be achieved using an analogous surface evolution in

Figure 6.1: Geometric interpretation of OFCE. The OFCE define a line in the velocity
plane perpendicular to ∇I. Each velocity vector under the line is a possible solution
to the problem. The normal velocity v⊥ is the vector with minimum modulus.
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vector form:

Vt = (I2 − I(V (x, t)))
∇I(V (x, t))∥∥∇I(V (x, t))

∣∣
with V (x, 0) = 0

(6.9)

Figure 6.2: Aperture problem: looking at the holes 1 and 3 only is possible to retrieve
the motion normal to the square because of the lack of local structure in the image
(Ix = 0 in 1 and Iy = 0 in 3). In the hole 4, Ix = 0 and Iy = 0 then It = 0 it is no
possible to observe any motion. Hole 2, is the only one where is possible to observe a
complete bi-dimensional structure, therefore is possible to retrieve the motion.
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where V (x) = (x + u, y + v, z + w). Since the movement of cells in the embryo

depends locally on the neighboring cells, the vector field we are expecting should have

a regular (smooth) deformation. In order to achieve a smooth vector field the images are

convolved with a Gaussian kernel Gσ before taking its gradient, therefore, expressions

(6.9) and (6.8) are modified into:

It(x, t) = (I2 − I(x, t)) ‖∇Gσ ∗ I(x, t)‖

with I(x, 0) = I1(x) and
(6.10)

Vt = (I2 − I(V (x, t)))
∇Gσ ∗ I(V (x, t))∥∥∇Gσ ∗ I(V (x, t))

∣∣ (6.11)

with V (x, 0) = 0

6.2 Algorithms testing

The aim of the study is evaluating and comparing the abilities of four non-rigid reg-

istration algorithms to capture cell movements in zebrafish early development image

sequences. All registration algorithms have in common to compute a motion field that

deforms a moving image Imov into a reference image Iref . To that aim they are rep-

resenting Imov in a given transformation model which imposes cinematic constraints

for further deformation. Thereafter Imov is deformed by solving a minimization prob-

lem on a criterion E that will depend either locally or globally on both Imov and Iref .

Thus registration algorithms may differ in the choice of the transformation model im-

posing cinematic constraints on deformation (elastic like or fluid like for instance).

They may also differ in the choice of the optimization strategy. The algorithms chosen

here present different implementation of similar principles. Their main characteristics

regarding the registration of two consecutive images are described below.

� MIA fluid registration [83]: it is a non-rigid viscous fluid registration. The core

algorithm in the fluid registration is based on a linear elastic deformation of

the fluid velocity field. This means that viscous constraints are imposed to the

velocity field. Concerning the optimization part, the algorithm is a so called
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force based model. The forces applied to the pixels of Imov are equivalent to the

minimization of a criterion. They are obtained by calculating the gradient of the

criterion. The criterion here is a squared difference of Imov and Iref intensity.

The algorithm is implemented in a multiscale framework. We used the algorithm

implementation available in MIA open source toolbox [84].

� ITK Thirion demons optical flow [85]: it is a non rigid registration method based

on optical flow. It is also a force based method. Here the forces are measured

thanks to optical flow equation. This one can be interpreted as the conservation of

object intensity when the object moves. It has been shown that demons algorithm

is an approximation of the fluid registration algorithm with a normalized version

of the forces used (meaning that the criterion E(Imov, Iref ) to optimize is also

different)[86]. It is also suggested that the approximation leading to demons

implementation may cause problems in terms of topology and stability of the

fluid model. In this study we use ITK open source library implementation of

Thirion’s algorithm [61].

� ITK levelset optical flow [87]: it is a non rigid registration algorithm also based

on optical flow forces computed in a levelset framework. Vemuri established

existence and uniqueness of the solution for the evolution model in a Sobolev

space as opposed to using viscosity methods. ITK’s implementation was also

used for this algorithm.

� BSpline elastic registration [88]: it is a non rigid parametric motion estimation

algorithm. The deformation field is represented using a parametric model based

on B-spline spatial basis functions. These functions are used because of their

implicit smoothness (minimum curvature properties). Thus B-spline functions

impose field smoothness. One can also control the rigidity of the solution with

B-spline parameters. The solution to our registration problem is a deformation

field that minimizes the criterion E(Imov, Iref ). This is found by using a multidi-

mensional optimization algorithm acting on the parameter of the spatial model

(i.e. spatial basis function position). The optimization algorithm used is gra-

dient descent using an analytical representation of the gradient and following a

multiresolution strategy both in the image and transformation spaces.
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6.3 Evaluation dataset

The sample volumes 3D image series were obtained through time-lapse biphoton laser

scanning microscopy from live embryos engineered to fluorescently label nuclei and

membranes. Our experimental data figure 6.3 corresponds to the top part (100µm

deep) of the embryo imaged from the animal pole during gastrulation.

Figure 6.3: The dataset exhibits the top part of a zebrafish embryo imaged from the
animal pole. (a1) (a2) and (a3) respectively xy (animal pole view) xz and yz cut of
nuclei image at 8hpf (75% epiboly). (b) Lateral view of the embryo at 8 hpf. The
arrow points to the hypoblast leading edge on the dorsal side of the embryo. The
dataset (blue frame) covers a period starting with epiboly and ending with gastrula-
tion. (c) Schematic representation of gastrulation movements. Tissues undergo during
gastrulation a combination of movements to simultaneously cover the yolk (epiboly,
blue arrow), migrate towards the animal pole (red) and converge towards the midline
(green).

Two test sequences consisting of ten consecutive subvolumes (about 50µm3 each)

have been extracted from this dataset. The first one taken in the middle of the embryo
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at the end of doming period contains about 30 cells (see figure 6.4,a). Their movements

are small, most of them are between 0 and 6µm, some of the cells move more that 10µm.

The nuclei mean diameter is about 8µm. The second volume period is matching with

the section displayed in figure 6.4,b. It contains cells of the epiblast (outer layer of

the embryo) and cells of the hypoblast (inner layer). Both tissues undergo during

gastrulation a combination of movements to simultaneously cover the yolk, migrate

towards the animal pole and converge towards the midline. The sub- volume covers the

boundary between epiblast and hypoblast where a movement discontinuity is expected.

The subvolume contains about 70 cells, the nuclei are much smaller and move faster

than in the first test sequence. Both test sequences data have a spatial resolution of

1.37µm and a temporal resolution of 49 seconds. The noise level is quite high (see

figure 6.4) so that the only detectable subcellular structure are the nuclei. Some nuclei

may touch each other (optical artifact) which also makes more difficult the task of

registration.

6.4 Registration evaluation protocol

Registration results contain the information to follow image structure. The principle

of our registration assessment is to compare movement of structures measured by reg-

istration to a gold standard of cell movements, entirely checked manually. Starting

from an image sequence of zebrafish, nuclei positions are extracted and followed in

time. Nuclei trajectories remaining in our test volumes during all the sequence (ten

time steps) have been selected and manually checked to avoid any error. These nuclei

trajectories are our gold standard. This reference is available for comparison with any

registration result on our test volume. Registration is performed on pairs of consecu-

tive images (Ii,Ii+1) and produces a vector field (Fi,i+1) for each of them. Fi,i+1 enables

to transform (xi, yi, zi) coordinates at time i, into the new positions (xi+1, yi+1, zi+1).

Therefore, applying F1,2 at the initial position in the gold standard, we obtain the new

cell positions calculated from registration at time 2. Measuring the difference between

gold standard position and the registered position of the nuclei gives the registration

method error. The computed trajectories are built by applying the fields iteratively to

the positions obtained. The error measured between registered nuclei and gold stan-

dard is the accumulation of error from the starting point. This protocol is schematized
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(a)

(b)

Figure 6.4: Test volume presentation: (a) the first volume for registration evaluation
(blue frame). It lasts 10 time steps during the end of doming period (5 hpf). The
second test volume is taken at 8hpf (75% epiboly). (c) A cross section a volume 1
shows the presence of noise and typical nuclei size (8µm). (d) Placing a gaussian blob
at the position of every detected and tracked cell allows constructing artificial data
with the same reference trajectories as real data. (e) Adding noise mimics real data
aspect.
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in figure 6.5. A perfect registration method should give an error for each trajectory at

each time step of 0µm. We note Xref it the gold standard i (reference) position of cell

i at time t and Xregit the position obtained by registration of cell i at time t. We thus

define the absolute distance error to gold standard at time t of cell i:

δit = ||Xref it −Xregit|| (6.12)

We also define Di
t the displacement of the cell i from time 0 to t if no registration

is done:

Di
t = ||Xref it −Xref i0|| (6.13)

It is the distance of gold standard trajectories to their starting point. Finally we

define the relative error on registration as the ratio of these two distances:

δitrel =
δit
Di
t

(6.14)

Apart from plotting the trajectories and the deltas in the real 3D space we measured

the δit distributions at each time step and calculated the distribution mean: ∆t = 1
N

Σiδt

where N is the number of cells).

In addition the δit distribution allows answering other important questions such as:

”Are the errors widely spread around their mean value ?”, ”What is the percentage

of trajectories below pixel size?”, etc. Thus confidence interval measures are also used

in results analysis. We call ∆t,k the interval containing the k% smallest δit . Knowing

that δit is positive and that we are interested in having the smallest possible value for

it, the lower bound of the interval is not very important. So we finally define ∆t,k as

the upper bound of the interval containing the k% smallest δit . This measure provides

a meaningful evaluation of registration results. Similarly we call ∆trel,k the relative

counterparts of ∆t,k.

Additionally, some artificial sequences of images have been created from scratch

in order to maximize the coherence between reference trajectories and the data to

register. Indeed there can be uncertainties in the reference trajectories. Errors remain-

ing even after hand validation, on cell nuclei position for instance, can bias the error
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measurement. In our case the nuclei displacements are small (1,2,3 pixel in length).

As a consequence a one pixel error on nuclei centre position can significantly modify

the observed nuclei displacements and consequently deteriorate artificially registration

error evaluation. The two artificial sequences are built in order to match exactly the

trajectories of sample test 1 and 2. Starting from ten empty volumes, gaussian blobs

are written down at each position of the reference trajectories. Gaussian standard

deviation of blob are compatible with cell radius size (4µm) (figure 6.4-d). Afterwards

gaussian and poissonian noise are added to mimic real empirical data aspect (see figure

6.4-e). Finally, the artificial sequence built have the same gold standard as real data

with the advantage of a perfect correspondence of artificial nuclei centre position with

the gold standard.

6.5 Results

In order to optimize the registration process, we investigated the influence of sources

and filters. In this section we present and discuss the registrations results obtained

Figure 6.5: This protocol allows to quantify registration result. Given a set of nuclei
at t0 and vector fields Fi,i+1. We apply F n

0 to the initial set of cells and gives registered
nuclei at time n. Error between gold standard and computed trajectories are measured
at every time step (∆t). The lower the error values are, the better the algorithm
performance is.
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with the four methods to be compared. Before applying the registration, we apply

some noise and filtering algorithm to evaluate their robustness. Then we compare the

4 registration methods results, analyze the error distribution and accumulated error

evolution. Finally we discuss the results obtained with real data.

6.5.1 Image preparation

In order to optimize the registration process, we investigated the influence of noise in

the images. Images are noisy (see figure 6.4-c,e) and filtering may help diminishing

registration error. Two different filters have been applied:

� Gaussian difference smoothing (filter 1). The filter smooth the image and removes

small scale image intensity variations.

� Perona-Malik (filter 2). The filter reduce image noise without removing signifi-

cant parts of the image content.

Registrations have been computed with 4 different data preparation:

� (a) artificial data with noise added and without filtering

� (b) artificial data with noise added with filter 1

� (c) artificial data with noise added with filter 2

� (d) artificial data without noise and filtering

The figure 6.6 shows the measurement of ∆t. MIA filter exhibits sensitivity to noise.

It is possible to observe that the reference (sequence d) is the better registered than

sequence a (the reference plus noise). Both filters decrease ∆t values, filter 1 being

better (result almost as good as the reference). With ITK demons and ITK levelset

methods there are no difference between the four datasets, given that inside the filter

itself the images are smoothed. Thus noise is always filtered out. MIA and BSpline

not use any filter inside, use all the information available, even the misleading noise.

Consequently, they are more sensitive to noise. In the next experiment gaussian filter

is always used for noise removal. The images used in these experiment are the nuclei

channel, the membranes images are not used.
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6.5.2 Algorithms comparison

Artificial data sequences were analyzed with the 4 methods. We added noise and

filtered the artificial data with the gaussian filter. We successively warped the first

image with the vector fields obtained after registration. The resulting sequence showed

qualitatively the error accumulation after each iteration. We used the warper of MIA

toolbox with b-spline of degree 3 interpolator. The resulting sequences conserved the

nuclei shape in time. Some degradation is noticeable but becomes important only after

4 or 5 time steps. BSpline performs the best between the algorithms. MIA seems to

dissolve the structures, on the contrary ITK demons seems to contract them.

A qualitative evaluation can be observed superimposing the gold standard and the

computed nuclei trajectories (fig. 6.7). On vol1 we observe that the 4 algorithms

correctly estimate nuclei displacements. The errors seem homogeneous amongst cells;

one unique cell is more difficult to follow. MIA registered trajectories are slightly

noisier around the reference.

In order to have a more concrete evaluation of algorithm performance, we plotted

the 80% confidence curve (∆t,80 ) for each algorithm (fig. 6.8). All the algorithms

are below or at 1 pixel accuracy even after ten time steps. This means that after ten

Figure 6.6: Data pre-processing: This figure illustrates the effects of filtering out noise
before registration. The mean absolute error of registration (∆t) is plotted against time
for MIA registration performance on artificial volume 1 (artificial volume sequence
matching reference trajectories of volume 1). The smallest the (∆t), the best is the
registration. Noisy data gives registration error (red) bigger than data without noise
(green). Data prepared with filter 1 (gaussian difference convolution, clear blue) gives
an error almost as small as data without noise.
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time steps of registration 80% of the estimated trajectories have an error of one pixel

or less. Meanwhile the Dt is increasing up to 6µm. The curve shapes are similar: a

fast increase of ∆t,80 at the first registration step after which the error slowly diverges.

Only BSpline is behaving differently. Indeed the slope of the ∆t,80 is constant at all

time steps. Registration with the second artificial sequence gives analogous results

with ∆t,80 values a bit higher. This result was already anticipated in the qualitative

observations. All in all, the four algorithms give good results with error within one

pixel accuracy even after ten time steps. It appears that BSpline has better results with

small accumulation of error (up to time step 5) and that ITK demons is better after long

accumulation (after time step 6). If one is interested in pixel accuracy registration, then

the 4 algorithms are equivalent for the nuclei trajectories gold standard that we used.

BSpline and ITK demons algorithms have singular behaviour in error accumulation.

We now detailed them (fig. 6.9-b,c).

Figure 6.7: Superimposition of nuclei trajectories (gold standard trajectories of volume
1) and the trajectories calculated by registration (ITK demons method). The view is
projected in xy plane. Almost all the trajectories are registered with pixel accuracy.
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� BSpline: absolute error is growing regularly along the ten time steps. The δit

distribution is very peaked around its mean at the beginning and spread contin-

uously as error is accumulated.

� ITk demons: absolute error has a jump after the first registration and is then

constant. The δit distribution, more spread around its mean than with BSpline

at the beginning, is shrinking along time as error accumulate. with ITK demons

than with BSpline.

If absolute error is small regarding image sampling it does not say anything about

relative error on each cell displacement. Indeed, the relation between relative error and

absolute error distribution is not direct. We take again the example of BSpline and

ITK demons to illustrate this point (fig 6.9,d,e):

� BSpline: the mean relative error (∆trel ) is constant in time. The distribution,

at least for the 90% best cells, is also rather constant. The accuracy for the 90%

best registered trajectories is of 35% of relative error on displacement evaluation

and can be as small as 5% for the best registered cell. These results are true at

every time step of the sequence registration.

� ITk demons: the mean relative error (∆trel ) is following the decrease of the

1 pixel relative error curve (doted line). The support of the ∆t,90 interval is

shrinking with time. After ten timestep ∆trel,80 shrinks from 50% to 15%.

We are probably limited here by the small extent of the nuclei displacements and

the fact that algorithm cannot be very good doing subpixel registration. Improving

relative accuracy should be possible with higher sampling or in the case of ITK demons

by increasing the accumulation of displacement.

6.5.3 Real data registration

Previous results were obtained with artificial data sequences. Here are some comments

on real data registration quality. We performed the registration of the 2 real data

sequences with each of the algorithms. Qualitative results seemed as satisfying as
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(a)

(b)

Figure 6.8: The artificial volume 1 registration is performed for 4 different registration
algorithms. The ∆t,80 curves (a) (under which value are 80% of the individual cell reg-
istration absolute error) are plotted. All methods have pixel accuracy even when error
has been accumulated for ten time steps. Graph (b) shows ∆trel,80 the relative error
on registration. As movements are small and given the pixel accuracy of algorithms,
relative error remains satisfactory.
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with artificial data. Concerning ∆t measure the scenario is the same for the four

algorithms. At the first registration step ∆t is jumping from 0 to approximately 1.5µm,

a value higher than what is obtained with artificial data after 10 time steps of error

accumulation. Thereafter, ∆t increases very slowly. The ∆i
t distribution is larger than

with artificial data. These results are coherent with the hypothesis that our nuclei

detection contains some errors on their position. The registration error measured

in artificial data is lower than a pixel, as a consequence adding one pixel randomly

to registration error may totally change registration error measurement. To test our

hypothesis we plotted ∆t for real data (test volume 1) and corresponding artificial data

registration. We also draw the ∆t curve for artificial data but then using a modified

reference by adding noise to the position of cells. The graph can be seen on figure 6.10.

The ∆t curve of artificial data registration using a noisy reference has a shape similar

to the one of real data. This strengthens our hypothesis and points the difficulties of

assessing the registration algorithm directly on real data. We are expecting real data

registration to be as good as it is on artificial data.

6.6 Conclusions

Four non-rigid registration methods coming from biomedical field have been tested on

early zebrafish development sequences. In order to estimate the registration quality

we used the tracking of reference structures (nuclei here). We compared trajectories

of these structures obtained with and without registration and measured the errors in

between. The study of these errors gives a good description of algorithms performance.

We are able to measure absolute and relative accuracy of the algorithms along with

their confidence intervals. Registration methods were applied to artificial data mim-

icking zebrafish volume sequences. The 4 registrations methods errors are at the level

of the pixel and below even after 10 time steps of errors accumulation. In particular,

BSpline methods leads to the smallest error after small accumulation and ITK demons

after long accumulation. These results are encouraging for nuclei registration.

These results encourage to apply the method to the set of cells of each time step

to facilitate the tracking of each cell (see figure 6.11).
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Figure 6.9: Details on BSpline and ITKdemons artificial volume 1 registration per-
formance. (a) Is a reference showing Dt, k. (b), (d) respectively are the absolute and
relative error for ITK demons registration. (c), (e) are the analogue for BSpline al-
gorithm. BSpline exhibits excellent results in terms of absolute error support. ITK
demons has interesting results in terms of relative error accuracy.
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Figure 6.10: This figure illustrates the effect of noise in reference trajectories. Real
data and the corresponding artificial data have been registered with BSpline method.
With artificial data registration and a gold standard where noise was added on nuclei
positions, ∆t is at the level measured on real data (red).
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(a)

(b)

Figure 6.11: Smoothed version of the dataset 070128c, the vector field was acquired
using Demons registration method. The vectors with same coordinates of cells are
shown, the color of the arrows depends on arrows length. Frame A time step 0, Frame
b time step 1, we see that the arrows ends at the position of the cells at next timestep.



Chapter 7

Cells tracking in a live zebrafish

embryo
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Understanding the cell morphodynamics underlying morphogenetic processes is a

fundamental issue for bio-medical research. Such a goal can be achieved through the

automated tracking of cell nuclei and cell divisions from 3D+time in vivo imaging [1].

These tasks are the basis for the reconstruction of the cell lineage tree described as the

branching process of cell divisions and its deployment in space and time. The complete

reconstruction of the cell lineage tree from the egg cell to the adult stage has only been

achieved for the worm Caenorhabditis elegans. However, in that case, the total cell

number in the adult is less than one thousand and the cell lineage is largely invariant.

Because of their very large cell number, this challenge has not been taken up so far

for vertebrate organisms. Nevertheless, recent advances in imaging strategies open the

way to in toto 3D plus time imaging providing data suitable for in vivo cell tracking

and cell morphodynamics reconstruction.

The zebrafish (Danio rerio) is a vertebrate model that has been chosen for its

transparency allowing in vivo inspection at the cellular level deep into the tissues by

confocal laser scanning microscopy [2]. The zebrafish exhibits typical vertebrate differ-

entiated cell types and has been largely validated for investigations related to humans

including cancerogenesis and a number of genetic diseases [3]. Achieving the automated

reconstruction of the zebrafish embryo cell morphodynamics is highly relevant for in-

vestigating stem cells populations, early steps of cancerogenesis or drug effects in vivo.

Such a goal requires engineering live zebrafish embryos to highlight sub-cellular struc-

tures to be imaged by time lapse laser scanning microscopy, designing image processing

algorithms and computational methods.

Recent works reveled outstanding advances in image microscopy [89] providing

experiments with minimal photobleaching and phototoxicity where the images have

super-resolution. On the other hand their work do not provide the details of the algo-

rithms applied.

We propose in this chapter a new tracking algorithm based on a simulated an-

nealing method which take into account the informations provided by cell detection,

segmentation and optical flow algorithms and some biological constraints. New results

on morphogenetic fields detected in early embryogenesis stage are given and discussed.

To track each cell in the embryo a workflow of image processing algorithms is applied

to 3D+t zebrafish confocal images. This algorithm include image denoising, nuclei and

membrane segmentation, optical flow methods and function minimization to identify
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the same cell at different timesteps.

Image enhancement and denoising is a critical step in order to preserve the shape in-

formation in digital images. Furthermore, in laser scanning microscopy imaging, noise

is due to different causes, and is difficult to model. In particular, the variation of the

fluorescent molecules concentration (synthesized from the injected RNA) superimposes

a de facto noise level that is difficult to model. The use of traditional preprocessing

algorithms (moving average, median and Gaussian filtering) do reduce the noise su-

perimposed on the image but do not maintain a good definition of the edges or image

features. The goal of the filtering should be to reduce the noise from the images with-

out loosing useful details like the edges.

In order to recognize all the cell nuclei in each 3D image with a fully automated

procedure we used a 3D version of the Hough transform for the identification of spheri-

cal shapes. The Hough transform is an algorithm which can be used to isolate features

of a particular shape within an image [45]. It is commonly used for the detection of

regular curves such as lines, circles or ellipses. The algorithm uses the duality between

points on a curve and parameters of that curve.

Optical flow techniques have been used to estimate pixel correspondence between

images obtained at two different times. Therefore, optical flow can give important

information about the movement of the objects in the images [80]. This movement is

represented by a vector field V : DI → R3. The brightness of the cells in the confocal

volume of the zebrafish embryo remain almost constant over time. This is the base for

the level set formulation developed by [80] and Vemuri et al. [82].

They developed a neat and elegant surface evolution approach to achieve the smooth

deformation field between two 3D images expressed in a level-sets framework. Regis-

tering two consecutive 3D images I1 and I2 is equivalent to determine the evolution of

the level-sets of I1 along its normal direction ∇I until it becomes the target image I2.

Since the movement of cells in the embryo depends locally on the neighboring cells,

the vector field we are expecting should behave as a smooth deformation. In order

to achieve a smooth vector field the images are convolved with a Gaussian kernel Gσ
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Figure 7.1: 3D optical flow of consecutive frames. The vector field represented with
colored arrows is an estimation of the movement of the cells. Parameters: 10 iterations
with σ = 4.

before taking its gradient:

It(x, t) = (I2 − I(x, t)) ‖∇Gσ ∗ I(x, t)‖

with I(x, 0) = I1(x)
(7.1)

The vector formulation of the image deformation could be expressed with the equa-

tion:

Vt = (I2 − I(V (x, t)))
∇Gσ ∗ I(V (x, t))∥∥∇Gσ ∗ I(V (x, t))

∥∥ (7.2)

where V = (u, v, w) and V (x) = (x + u, y + v, z + w) is the displacement vector at

X. This curve evolution stop when the image I reaches the level-sets of the target im-

age I2, V (x, 0) = 0 and the gradient is approximated by using the upwind schemes [90].

Segmenting the nuclei and membrane shape allows us to understand the interac-

tions between each cell and their neighbor cells, a further study of their shape could

provides us the characteristic parameters of the cell at each stage in the cell cycle. The

segmentation method we use in this work is a generalized version of the Subjective

Surfaces technique [56, 57],it is distinguishable from the classic formulation by the dif-

ferent weights applied on the two flows constituting the motion equation (curvature
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and advection).

The algorithm extract the membranes and nuclei shapes in the acquired images

by processing the two channels separately. Composed by a chain of image processing

operations, the method is completely automated. Membrane segmentation is used to

detect mitosis, given that two nucleus are inside a single membrane.

7.1 Cell tracking

The cells move in the embryo, they migrate, divides and differentiate to form struc-

tures. A cell lineage tree can be interpreted as a binary tree where the first cell of the

embryo is represented by the root node and the relationship of mother cells and the

two daughter cells are represented by edges.

While the embryo grows the cells proliferate and become smaller. The speed of

cells could reach 40µm/min while the size of the cell decrease from 30µm radius at

30%-epiboly stage to 20µm or less at 75%-epiboly, usually cells do not overlap their

volume in consecutive timesteps. There is a relative smooth movement between cells

that belongs to the same layer, while this relative speed increase in neighboring cell

belongings different layers.

In biology, mitosis is the process of chromosome segregation and nuclear division

that follows replication of the genetic material in eukaryotic cells. This process as-

sures that each daughter nucleus receives a complete copy of the organism’s genome.

Mitosis is divided into several stages, with the remainder of the cell’s growth cycle con-

sidered interphase. Properly speaking, a typical cell cycle involves a series of stages:

G1, the first growth phase; S, where the genetic material is duplicated; G2, the second

growth phase; and M, where the nucleus divides through mitosis. Mitosis is divided

into prophase, prometaphase, metaphase, anaphase, and telophase. The Mitosis is

characterized by the fact that the nucleus is splitting in two different nuclei and both

nuclei are inside a single membrane until the cytokinesis phase ends. This stage could

be recognized by segmentation algorithms as seen in chapter 5 and the two newborn

cells moves is relative opposite direction until they are dragged by the surrounding cells.
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There is also a cell process called apoptosis which is a form of cell death in which

a programmed sequence of events leads to the elimination of cells without releasing

harmful substances into the surrounding area. Apoptosis plays a crucial role in de-

veloping and maintaining the health of the body by eliminating old cells, unnecessary

cells, and unhealthy cells. In general, apoptosis confers advantages during an organ-

ism’s life cycle. For example, the differentiation of fingers and toes in a developing

human embryo occurs because cells between the fingers apoptose; the result is that the

digits are separate. This process is very difficult to be identified in the images and not

a single one was observed in the dataset in witch we worked.

Given that not all the embryo is captured by the image volume, the cells appears

and disappears from the image frame. Only cells near the border could disappears and

cells that appears are first seen near the border.

The basic principle of single particle tracking is to find for each object in a given

time frame its corresponding object in the next frame. The correspondence is based

on object features, nearest neighbor information, or other inter-object relationships.

7.2 Functional minimization

In order to efficiently find the unknown lineage tree, we have to track the large num-

ber of nuclei over time, finding the optimal joint association between nuclei for every

pair of subsequent time frames. Cells moves slowly, therefore the connectivity between

neighboring cells is maintain between consecutive frames. We found that elastic graph

matching algorithms would solve this problem efficiently.

We consider the for the single cells the following events: move, division, disappearance

and appearance. While an (apparent) cell disappearance may be caused by apoptosis,

it is more typically due to a cell leaving the field of view or misdetection of cell identifi-

cation; an (apparent) appearance happens when it is detected again at a later time or

coming from outside the field of view. In order to rule out implausible events, we only

consider at most K nearest neighbors of the cell i within a given distance threshold,

this impose an ad hoc maximum speed for cells.
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Let I be the whole set of cells at all time steps. The unknown tracking graph f on

I, representing the lineage tree, was determined in three phases (see figure 7.2):

1. The first phase use strong local constraints (maximum speed, binary tree struc-

ture) for restricting the unknown tracking graph, we link each cell with its nearest

neighbor cell at previous time step.

2. Using the lineage tree obtained in phase 1 as initialization, the second phase

minimize a heuristic functional, combining information extracted from images

(nuclear positions, vector field, mitosis detection using segmentation) with bio-

logical regularization constraints (elastic behavior, smooth movement) to measure

the correctness of cell matching at consecutive time steps.

The elastic behavior could be modeled with elastic matching in the first part of

equation 7.3 where the cell i and the cell j are near neighboring cells at time step

t. With this term we impose an structure we want to conserve at each time step

(see figure 2) where the distance between neighbor cells almost do not change.

Using the vector field obtained by optical flow techniques, it is possible to follow

the same cells at consecutive time steps, this is encouraged by the second term

of equation 7.3. where V is a function that estimate the movement of each cell

from time t to t−1 (it means backwards). Minimizing this equation we favor the

lineage tree f where the cells are near they are expected to be.

E(f) =
∑
i

∑
j neighbor i

∥∥(Xi −Xj)− (Xf−1(i) −Xf−1(j))
∥∥

2
+λ
∥∥Xf−1(i) − V (Xi)

∥∥
2
+Di+Ai

(7.3)

where i and j are neighboring cells at time t, Xi is the cells position in 3D

coordinates, Di and Ai gives penalties if the cell i appears or disappear far from

the image boundaries and the function f−1 gives the cell at previous time step.

The minimization of this functional is done by a simulated annealing algorithm

[91]. At each iteration of the algorithm 2, we modify the solution f finding a

neighbor solution by changing the links between cells. This changing are adding a

new link, switching or deleting links. This solution is accepted with a probability

that depends on a temperature function. The acceptance of a worst solution is
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(a) The underlying structure (green lines) change drastically using
elastic matching when there is a tracking error.

(b) Experiment 070128c, The cells are identified by a white sphere, each cell is connected with
neighboring cells. The color scale (blue to red) represent the deformation of the structure using
the elastic term of equation 7.3, the maximum values (red) match where there are cells division.
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done to overcome a local minimum. This temperature function decrease over

time, it is higher at the begin of the algorithm and then it cool down. The

algorithm keeps in memory the best solution found.

input : Set of cells, I

output: Lineage tree, f

f ← Phase1(I);

E ← E(f);

k ← 1;

foreach timestep do

while k < kmax do

fk ← neighbourSolution(f);

Ek ← E(fk)

if P (Ek − E, temp(k/kmax)) > random() then

f ← fk;

e← ek;

end

k + +;

end

end
Algorithm 2: Simulated Annealing

3. The third phase’s goal was to minimize false-positive and false-negative errors

from the nuclear and mitosis detection steps. This was achieved by looking at

the whole biological coherence of the lineage tree identifying:

� Cells divisions not assigned are linked with their mother cell. Tipically new

born nuclei moves in relative opposite direction until cytokinesis ends.

� The discontinuities in cell trajectories are identified as false negative nuclear

centres. Usually when there is a false negative cell detection, the trajectory

of the cell do not continue for several time steps and later at the expected

site there is a false mithosis or a cell with out mother.

� The cells that lived for only a few times steps are marked as false positive

nuclear centers. Cells fate could be after several hours whether a mithosis,
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apothosis (never seen in this experiment) or they could leave the image

frame. Cell that only live for some minutes are marked as false positives cell

detection.

(c) Initial cells set I. Cells at t2 and t3 are
missing.

(d) Tracking after phase 2, cells division are
identified, cells links are assigned

(e) Final result: tracking is corrected based on
biological coherence, cells gaps are filled (false
negatives errors at t2 and t3.) Cells trajectory
discontinuities near the boundaries are identi-
fied. Cells that live for a short period of time
(t4 and t5 ) are marked as false positives.

Figure 7.2: Tracking algorithm example
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7.3 Validation

Tracking accuracy was measured by assessing t to t + 1 link for selections of cells

over 10 time steps from time tn0 (tn0 ∈ {1, 20, 100, 200, 300, 400, 500}). Altogether,

15,686 links were manually checked, 1603 at tn0 = 1 (i.e. from t0 to t10 and so on

for other tn0); 1762 at tn0 = 20; 1828 at tn0 = 100; 2948 at tn0 = 200; 3169 at

tn0 = 300; 2931 at tn0 = 400; 1445 at tn0 = 500. In addition to tracking links from t to

t+ 1, the checking procedure provided an error measurement on cell center detection.

These measurements were used to estimate the tracking error rate. The total error

number (nerror) was defined as the number of incorrect t to t + 1 links (nbadLinks)

plus the number of false deaths (nfalseDeath). The nbadLinks were subdivided into two

categories: errors due to false positive nuclear centers (nfalsePositive) and errors due to

false tracks: the tracking jumped from one cell trajectory at time t to another cell

trajectory at time t + 1, (nchange). The total number of errors was given by nerror =

nfalsePositive + nchange + nfalseDeath. The tracking error rate at a given time point tn0

was expressed as a percentage from the ratio of the error number (nerror) over the total

number of tested links (nallLinks).

7.4 Results

Cell tracking in the 4D space of the segmented data was not properly achieved by

classical methods using a purely local nearest-neighbor principle. Although we kept

temporal resolution as fine as possible (∆t is only 67 seconds in the image data set

070418a), cell displacement during mitosis was a major problem that the tracking al-

gorithm had to solve [22]. The spatio-temporal lineage tree reconstruction was best

achieved with a tracking algorithm relying on the minimization of a heuristic func-

tional. Strong constraints were used i) a priori, i.e., before minimization, to restrict

the unknown tracking function and ii) a posteriori, i.e. after minimization, to identify

biological inconsistencies for correction of false negatives and false positives in the nu-

clear center and mitosis detection steps. The heuristic functional assigning penalties

for high displacements and deformations in cellular feature space was minimized by

simulated annealing [91].

Following the image processing steps of the phenomenological reconstruction, the
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virtual embryo consisting of nucleus centers and individual cell trajectories could be

explored using tailor made tools reveling the cell’s clonal history and allowed to derive

cell population dynamics and behaviors (see figure 7.3)

The tracking error rate was measured with the sampling procedure described in

Figure 7.6. Altogether, over 15,000 links between the t and t+1 positions of cells have

been manually checked at different time points. For the first 300 time steps (5h34

imaging, end of gastrulation) the total error rate is lower than 2%, i.e., more than

98% of the cells were correctly tracked (Figure 7.6d). Tracking accuracy degraded

somewhat beyond time step 400 (7h26 imaging, 3-somite stage), but 90% of the links

were still correctly found by time step 500 (9h18 minutes imaging, 7-somite stage).

False positives in nuclear detection were kept below 0.5% and were not the major

source of tracking errors. About half of the tracking errors were identified as false

trajectories (the tracking jumped from one cell trajectory at time t to another at time

t+1) and the other half was false deaths (the tracking did not find the position of the

cell at time t+1, and cell trajectory ended).

The most difficult task in tracking is to recognize the cell division, where a mother

cell should link to two daughter cells. Figure 7.4 show the error rate for dataset

070420a. The error rate in mitosis detection is near 10% until the embryo reach 7hs

of development, then the cells are smaller and cell density is greater, the task become

most difficult. In figure 7.5 a mitosis detected by the tracking algorithm is shown.

The exploitation of the virtual embryo opens the way to in silico experimental

embryology to follow the formation and transformation of 4D morphogenetic fields,

backtracking a 3D morphogenetic section towards its earlier 3D fate map. We ex-

plored this potential by manually selecting morphogenetic fields in the brain at t=479

(6/7- somite stage), based on morphological landmarks (Figure 7.8d). Backtracking

the selected cells, which were categorized in 12 domains, revealed cellular population

dynamics consistent with the order and coherence of the brain fate map [92, 93]. The

latter - as all fate maps in zebrafish - was however determined no earlier than the shield

stage (gastrulation onset), and only for the most superficial cell layer of the 4-5 “deep”

cell layers of the embryo, leaving the fate of all deeper cells unknown. Our data reveal

that this fate map actually holds for the whole depth of the blastoderm, and that it

can be backtracked to the earlier sphere stage, with no major loss in coherence (Figure
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(a) (b)

(c) (d)

Figure 7.3: figure (a-d) virtual counterpart of raw data in Fig. 2.8 a-d. (a) Color code
for cell displacement from yellow (rostralwards) through grey (null or medio-lateral) to
blue (caudalwards) indicating cell displacement orientation. (b) Inset, magnification
showing each nucleus center representation as a cube with a vector indicating cell
trajectory for the next 12 time steps!note

1
.
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(a)

Figure 7.4: Dataset 070420a. Mitosis detected by the procedure were manually vali-
dated at different timesteps. This bar-graph shows the false positive mitosis. This task
is so difficult that even by hand not always is possible to detect the mitosis. The x-axis
shows the timesteps number, y-axis the number of true mitosis (blue), false positives
(red) and known (yellow). Until timestep 300 (7hs of development) the error rate is
near 10%. After this point the error rate increase also deeper in z direction, the error
rate is bigger.



154 Cells tracking in a live zebrafish embryo

(a) (b)

(c) (d)

Figure 7.5: Figures a and b: membrane channel, figures c and d: nucleus channel,
figures a,c: time step 100, figures b,d: time step 101. Red dot nuclei at time step
100, blue dot newborn nuclei at timestep 101. Cell division identified using tracking
algorithm. While dividing the membrane adopt a spherical shape and nuclei an elliptic
shape. Newborn nuclei direction is opposite with similar magnitude.
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(a)

(b)

Figure 7.6: The lineage tree validation. (a) Nuclear center detection checked for a
sub-population of cells here at t400, correct centers indicated in green, false positive
in red (right panel, one red nucleus in the inset), vertical white bars through nucleus
center used to assess position relative to raw data orthoslice; tracking was manually
checked for this population from t400 to t410. (b) Plot of tracking errors.!note

1
.
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(a) (b)

Figure 7.7: Multi scale measurements of cell behaviours from their clonal history. Data
set 070418a. (a) Left panels, relative movements of cells selected in the prechordal plate
(PCP, yellow), presumptive hypothalamus (PH, red) and presumptive ventral telen-
cephalon (PVT, green), lateral views, rostral to the left, orthoslice of raw data (nuclei)
behind selected cells, time step indicated top right of each panel. (b) Top panel, aver-
age speed of the selected cells over 10 time steps (in µm/min), positive values indicate
anterior movement, arrowheads indicate time points shown in left panels. Bottom left
panel, PCP (yellow) and PH (red) cell populations in which pairs of adjacent cells were
chosen at t235; view from inside the embryo; white arrowhead points away from the
anterior border of PCP migrating from top to bottom of the image; inset shows mag-
nification of adjacent cells across PCP-PH frontier (dotted line); blue, center of non
selected cell. Bottom right panel, average distance and variance for the selected cell
pairs, tracked between t220 and t300, within PCP (yellow, 27 pairs), within PH (red, 37
pairs), or across the PCP-PH frontier (brown, 38 pairs). Dotted line at t235 when pairs
of adjacent cells were chosen, all cell trajectories have been manually checked.!note

1
.
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7.8, movies Movie4-1, Movie4-2 and Movie4-3).

Further analyzing the collective cell behaviors requires integrating at least three lev-

els of organization: single cells, cell neighborhoods and cell populations. We explored

such a multiscale approach to investigate cell behavior in the presumptive forebrain

at the midline [94, 95, 96, 97]. The speeds of selected cells from the presumptive

hypothalamus (PH), presumptive ventral telencephalon (PVT), and prechordal plate

(PCP) were averaged over 10 time steps and plotted as a function of time between

the onset of gastrulation and early somitogenesis (Figure 7.7). These measurements

indicated transitions in cell behaviors correlating with the relative positions of PCP,

PH and PVT (Figure 7.7b, top panel, movie Movie4-4). We observed that the speed

of PCP decreased as it met PH territory (t123, 60% epiboly). PH, which was moving

anti-parallel to PCP, started moving rostrally by 75% epiboly (t200). The three se-

lected cell populations accelerated similarly while keeping different speeds. By the end

of gastrulation (t260), PCP slowed down abruptly. For the next hour, PH moved faster

than the two others and passed under PVT. These observations, previously inacces-

sible but readily provided by our in toto reconstruction strategy, definitively validate

the subduction scenario proposed earlier [94], hence revealing coordinated behavior be-

tween PCP and PH cells. Further measurement of the distance between cells of pairs

chosen either within the same field or on both sides of the frontier between the two cell

populations, indicate that PCP and PH cells do not remain tightly associated, rather

they slide on top of each other (Figure 7.7, bottom panels, Movie4-5). This transient

interaction, which is expected to allow proper cell signaling, is part of the biomechani-

cal process driving PH cells rostrally. However, the cell population dynamics revealed

by our phenomenological reconstruction indicated that PH displacement might depend

on larger scale constraints.

7.4.1 Workflow time-consuming

To achieve the automated reconstruction of cell behaviors in morphogenesis using a

workflow of 3D+time image processing of algorithms requires large computation fa-

cilities. The algorithm are implemented on C or C++ using MPI to parallelize the

algorithms. Each time step of typical image dataset have 512x512x120 pixels and 2

channels (e.g. 071226a dataset). To process the filtering step, typically we use 4 pro-
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(a) (b)

(c) (d)

Figure 7.8: Multi scale measurements of cell behaviours from their clonal history. Data
set 070418a, animal pole view from the surface. (a-c) Trajectories of cells selected in
presumptive organs at t479 and backtracked, temporal window for the displayed trajec-
tories indicated top right, corresponding developmental periods indicated bottom left.
(d) 3D rendering at t479, of nuclear centres coloured according to the following code:
yellow, hypoblast including PCP and notochord (h); red, presumptive hypothalamus
(ph); pink, right eye (e); light pink, right optic stalk (os); purple, left eye; light purple,
left optic stalk; green, ventral telencephalon (t); gold, dorsal telencephalon, placodes
and neural crest; light blue, ventral midbrain (mb); light brown, dorsal midbrain and
dorsal diencephalon; blue, ventral hindbrain (hb); dark brown, dorsal hindbrain; dark
blue, ears (ea).!note

1
.
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cessors (communicating by MPI) for every 3D volume, this takes 10 minutes each 3D

image. The cell identification step, which takes 20 minutes for one 3D volume. For

nuclei segmentation, it takes in average 0.75 second to process each nucleus. In aver-

age there are 6000 nuclei in each time step, therefore each volume it takes 1.25 hours

while the computation time for the segmentation of each membrane takes 6 seconds

(10 hours each time step). To process the Image registration step, tipically we use 4

processors (communicating by MPI), for each pair of 3D consecutive volumes, takes

10 minutes for each time step. The time it takes to track all the cells in the embryo

using 8 processors (communicating with MPI) include 45 minutes for restricting the

unknown tracking graph, it means to constraint the possible successors for each cell,

4.5 hours to minimise the heuristic functional and 2 hours to identify discontinuities in

cell trajectories. The description of the time it takes to process the workflow is in ideal

situation, where the processors are always available in the computing center In2p3 [98]

and without considering the time it takes to access the datasets and images stored in

a Storage Resource Broker (In2p2 [98]). The algorithms were also succesfully imple-

mented to run on the Egee computing grid [99]. In standard load of the computing

centre, the overall process of the workflow takes about 48 hours.

7.5 Conclusions

We have presented a workflow of image process algorithms that produce as result the

tracking of cells in a live embryo. This tracking allows understand the cell behavior

and clonal history which is the basis for understanding morphogenetic processes [100].

This workflow have been applied succesfully to zebrafish embryos from 4 hours post-

fertilization through gastrulation and early neurulation stages [8]. The imaged cells,

whose number grows from 2000 to more than 15000, were tracked with less than 2%

error for at least 6 hours. Cell division were automatically identified with less than

10% of error for 7 hours. Prior to this work, the automated reconstruction of the

cell lineage tree attempted for Caenorhabditis elegans reached comparable accuracy

only for the first 194 cells, despite much more limited cell movements [101, 102]. In

the zebrafish, lineage studies previously relied at best on semi-automated cell tracking

methods [94]. The virtual embryo allows a systematic exploration of the clonal origin

and clonal complexity of organs, as well as the contribution of cell proliferation modes
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and cell movements to the formation of local patterns and morphogenetic fields. By

providing essential parameters of cell behavior and clonal history, this first assembly

of the cell lineage tree underlying zebrafish brain early morphogenesis constitutes the

core of the embryome, i.e., the phenomenological and theoretical reconstruction of the

entire system’s multiscale dynamics.

Note1: In this experiment the cell centers were obtained using [38], [103].
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The zebrafish is a small freshwater fish largely validates as animal model to understand

vertebrate development, gene function and healing/repair mechanisms in vertebrates.

We provide here a complete and original 3D+time image analysis framework to

achieve the automated reconstruction of cell behaviours in morphogenesis.

The time-lapse series of images has then been analyzed and processed in order to

reconstruct the shape and track the position of every cell in the dataset.

Embryo labeling was obtained through RNA injection performed at the one-cell

stage to obtain ubiquitous expression of H2B/mCherry fusion protein and farnesylated

eGFP, which stained nuclei and membranes respectively. While nuclear staining was

instrumental to perform cell tracking, membrane staining was essential to assess cell

morphology, behavior and neighborhood, and to reveal morphological landmarks.

We demonstrate tracking performances with single cell accuracy during early em-

bryogenesis of the zebrafish (danio rerio) where cell proliferation rate is over 50000

cells per 24 hours. 3D+time image data sets of early embryonic cells, whose number

grows from 2000 to more than 15000, were tracked with less than 2% error for at least 6

hours. Prior to this work, the automated reconstruction of the cell lineage tree reached

comparable accuracy for the first 194 cells in caenorhabditis elegans and other recent

trials in drosophila or danio rerio produced only global pictures of cell movements,

missing single cell clonal history.

In chapter 1, We have described a series of stages for development of the embryo

of the zebrafish. We have defined seven broad periods of embryogenesisthe zygote,

cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods as know in

the literature. These divisions highlight the changing spectrum of major developmental

processes that occur during the first 3 days of development and we review some of what

is known about morphogenesis and other significant events that occur during each of



162 Conclusions

the periods.

In chapter 2 we have outlined the main features of imaging techniques and the flu-

orescent proteins that allow us to capture the images. We describe the imaging tech-

niques used for acquiring our experimental dataset. Particular attention is devoted to

the main drawbacks of these imaging techniques as photobleaching and photodamage.

They influence and the typology of data to be examined, impose physical limits to the

dataset dimensionality and resolution, to the image contrast, the signal-to-noise ratio

and the specimen survival.

In chapter 3 introduces a set of preprocessing techniques developed with the research

consortium based on multiscale analysis and evolutive partial differential equations.

Particularly a qualitative and quantitative comparison between the Perona-Malik and

the geodesic mean curvature flows is provided. It have been developed a software

for the measure of the Hausdorff distance between surfaces allowing to automatically

estimate the error between a gold standard and the filtered data.

In chapter 4 we have outlined the importance of the identification of the center of

each cell. This procedure was done with the Hough transform. The cell centers found

with this procedure are the starting point to nuclei and membrane segmentation and

to track the cells.

In chapter 5 we have developed workflow of algorithms for automatically segment

the cell shape of nuclei and membranes. This segmentation has then been reconstructed

using a modified version of the Subjective Surfaces technique. Such segmentation

method has appeared well suitable in particular for membranes segmentation as it is

able to complete contours often missing in original membranes data and, likewise other

segmentation methods, does require a minimum user intervention.

In chapter 6 we explore four different algorithms that perform the registration of

3D images. We have compared the performance in synthetic data and in real data

as well. This registration calculate an estimation of deformation at each point in the

embryo. We have used this to predict the movement of each cell.

In chapter 7 we have depicted an algorithm based on the minimization of an a

nonlinear heuristic functional. The functional combines the informations extracted

from images using the methods already exposed in previous chapters (nuclei positions,

vector field, segmentation) with biological regularization constraints (elastic behavior,

cell cycle). It then measures the correctness of cell matching at consecutive time steps.
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Our results have been manually validated at different time points and reconstruct

the formation of prospective brain of zebrafish embryos from 4 hours post-fertilization

through gastrulation and 7-8 somites stage.

This reconstruction provides information about millions of cell position, millions of

membranes and nuclei segmentation, and thousands of cells tracks cell divisions per

embryo.

Our reconstruction opens the way to a systematic and quantitative exploration of

the clonal origin and clonal complexity of brain organs, as well as the contribution

of cell proliferation modes and cell movements to the formation of local patterns and

morphogenetic fields.
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Appendix A

Supplementary material

Suplementary material could be download from: http://goo.gl/OmYYX

Movie 1-1 data set 070418a, view from the animal pole at 4 hpf at 28.5◦C (AP

scheme more precisely designated as AP4 to indicate the onset of the imaged devel-

opmental period, imaged volume 700x700x140µ3 , Dt=67s, 541 time steps), raw data

with orthoslice z63, only the sections below the orthoslice are shown (Amira software

visualisation).

Movie 1-2 data set 071227b, view from the vegetal pole at the onset of gastrulation

(6 hpf at 28.5◦C, VP scheme, designated as VP6 to indicate the onset of the imaged

developmental period, imaged volume 700x700x178µ3, Dt=87s, 413 time steps), raw

data with orthoslice z45, only the sections below the orthoslice are shown (Amira

software visualisation).

Movie 1-3 data set 080322a, lateral imaging scheme, starting at 4 hpf (28.5◦C, L

scheme designated as L4 to indicate the onset of the imaged developmental period). In

the L scheme, the position of the dorsal side identified a posteriori is indicated as 0 for

a dorsal view, 6 for a ventral view and from 1 to 5 for intermediate positions, here a

L4-4 scheme. The whole volume of raw data is shown (Amira visualisation software).

For this data set, the light with a wavelength of 980 nm was provided by a mode-locked

Ti:Sapphire laser (Mai Tai from Spectra-Physics). The pulse width was less than 100

fs.
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Movie 1-4 Virtual embryo 070418a with orthoslice as in Figure 7.3. Colour code

from yellow, through grey, to blue indicating cell displacement orientation (projection

of the speed vector on the y axis). Yellow indicates migration from caudal to rostral,

blue indicates migration from rostral to caudal, grey indicates nul or medio-lateral

displacement. Each nucleus centre is represented as a cube with a vector indicating its

path for the next 12 time steps. Embryome Visualisation Platform.

Movie 1-5 Same as Movie 1-4 but with the whole volume to show the collective

displacement of cells.

Movie 2-1 Data set 070420a at t001. 3D rendering of segmented nucleus and

membrane shape for selected cells shown during mitosis. The virtual cells are in the

environment of the raw data (green membranes, red nuclei). Transparency was intro-

duced around the segmented cells. Note that the inner virtual cells that are under

the epithelium (the enveloping layer, EVL) stand below the junction of EVL cells and

rapidly move to align with the EVL junctions after cell division. Embryome Visuali-

sation Platform.

Movie 3-1 Tracking of cell ID 124516142 (data set 070418a). Superimposed raw

data and reconstructed data illustrating the augmented phenomenology concept. Here,

nuclear center of the tracked cell is superimposed with raw data orthoslices (membrane

channel). Embryome Visualisation Platform.

Movie 4-1 Same as Figure 7.8. Cells manually selected in presumptive organs at

t479 have been backtracked then allowing forward tracking visualisation, animal pole

view. Colour code described in Figure 7.8d. Cell trajectories are kept for the past 100

time steps. Embryome Visualisation Platform.

Movie 4-2 Same colour code as Movie 4-1, only nuclear centers (cubes) of selected

cells are shown. Selected cells are backtracked from t480 to t1; at t1, a cell is tracked

forward and shown with superimposed raw data orthoslices (nucleus channel) to assess

the correctness of the lineage tree assigning its progeny to the optic vesicle (pink).

Embryome Visualisation Platform.
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Movie 4-3 Same selection of presumptive organs as Movie 4-1 and 4-2; animal pole

view from the surface, visualisation of nucleus shape segmentation, cells that are not

part of the selections are shown in grey. Embryome Visualisation Platform.

Movie 4-4 Relative movements of cells selected in the prechordal plate (PCP,

yellow), presumptive hypothalamus (HP, red) and presumptive ventral telencephalon

(PVT, green) as shown in Figure 7.7. Lateral view, rostral to the right. Augmented

phenomenology visualisation with nuclear centers, cell trajectories and raw data or-

thoslices (nucleus channel). Embryome Visualisation Platform.

Movie 4-5 Same as Figure 7.7a. Small populations of PCP (yellow) and PH

(red) cells where pairs of adjacent cells were chosen for distance measurements shown

in Figure 7.7b. Augmented phenomenology visualization with 3D rendering of raw

data (nucleus channel) and nuclear centers throughout gastrulation. Last frames with

raw data orthoslice nucleus channel, then membrane channel, to show the position of

selected cells relative to morphological landmarks (marked frontier between PCP and

PH at t316, end of gastrulation). Embryome Visualisation Platform.
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M. Ledesma-Carbayo, P. Bourgine. “Evaluation of four 3D non rigid registration

methods applied to early zebrafish development sequences”, Conf.Proc MICCAI

2008.



170 Publications

5. C. Castro Gonzalez, M. A. Luengo-Oroz, L. Duloquin, T. Savy, C. Melani, S.

Desnoulez, M. J. Ledesma-Carbayo, P. Bourgine, N. Peyrieras, A. Santos. “To-

wards a Digital Model of Zebrafish Embryogenesis. Integration of Cell Tracking

and Gene Expression Quantification”. Conf.Proc EMBC’10

6. C. Castro, M. A. Luengo-Oroz, L. Douloquin, T. Savy, C. Melani, S. Desnoulez,
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[97] Stephen W. Wilson and Corinne Houart. Early Steps in the Development of the

Forebrain. Developmental Cell, 6(2):167–181, February 2004.

[98] In2p3, institut national de physique nucléaire et de physique des particules
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