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A new method to detect salient pieces of boundaries in an image is presented. After detecting
perceptually meaningful level lines, periodic binary sequences are built by labeling each point in close
curves as salient or non-salient. We propose a general and automatic method to detect meaningful
subsequences within these binary sequences. Experimental results show its good performance, when
tested with different saliency criteria, such as contrast, regularity, and the combination of both.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Shape plays a key role in our cognitive system: in the perception
of shape lies the beginning of concept formation. Formally, shapes in
an image can be defined by extracting contours from solid objects.
Shapes can be represented and analyzed as the locus of an infinite
number of points, which leads to level-sets methods [1].

We define an image as a lower (or upper) semi-continuous
function u : R2-R. Level sets [1], or level lines, provide a complete
and contrast-invariant image description. We define the bound-
aries of the connected components of a level set as a level line.
These level lines have the following properties: (1) level lines are
closed Jordan curves; (2) level lines at different levels are disjoint;
(3) by topological inclusion, level lines form a partially ordered set.

We call the collection of level lines (along with their level) a
topographic map. The inclusion relation allows to embed the
topographic map in a tree-like representation. For extracting the
level lines of a digital image we use the Fast Level Set Transform
(FLST) [2] which computes level lines by bilinear interpolation. In
general, the topographic map is an infinite set and so only
quantized grey levels are considered, ensuring that the set is finite.

Edge detectors, from which the most renowned is Canny's [3],
rely on the fact that information is concentrated along contours
(regions where contrast changes abruptly). From one side, only a
subset of the topographic map is necessary to obtain a perceptually
ll rights reserved.
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complete description. Going to a deeper level, perceptually impor-
tant level lines, in general, are so because they contain contrasted
pieces. In summary, we have to prune the topographic map and
then prune inside the level lines themselves.

The search for perceptually important contours will focus on
unexpected configurations, rising from the perceptual laws of
Gestalt Theory [4]. From an algorithmic point of view, the main
problem with the Gestalt rules is their qualitative nature.
Desolneux et al. [5] developed the Computational Gestalt detec-
tion theory which seeks to provide a quantitative assessment of
gestalts. It is primarily based on the Helmholtz principle which
states that conspicuous structures may be viewed as exceptions to
randomness. In this approach, there is no need to characterize the
elements one wishes to detect but contrarily, the elements one
wishes to avoid detecting, i.e., the background model. When an
element sufficiently deviates from the background model, it is
considered meaningful and thus, detected.

Within this framework, Desolneux et al. [5] proposed an
algorithm to detect contrasted level lines in grey level images,
called meaningful boundaries. Further improvements to this algo-
rithm were proposed by Cao et al. [6] and by Tepper et al. [7],
which include for example, the use of regularity as the saliency
measure instead of the contrast.

In this work we address the dissection of meaningful bound-
aries, developing an algorithm to select salient pieces contained in
them. Each level line is considered as a periodic binary sequence
where, following a partial saliency model, each point is labeled as
salient or non-salient. Then, the goal is to extract meaningful
subsequences of salient points. To do so, in this work we extend to
the periodic case an algorithm for detecting binary subsequences.

Grompone et al. [8] proposed a method for accurately detecting
straight line segments in a digital image. It is based on the
egular edges by a contrario detection of periodic subsequences,
.025i
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Fig. 1. A periodic sequence where runs are represented in green (light gray). If
treated as a non-periodic sequence, any subsequence detector would detect four
subsequences at best, when in fact the desired result is to detect three
subsequences.

M. Tepper et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
Helmholtz principle and hence it is parameterless. In the authors'
words, “at the core of the work lies a new way to interpret binary
sequences in terms of unions of segments.” In the same spirit,
pieces of level lines correspond to object contours and can be
recovered extending this approach to the periodic case (level lines
are closed curves).

The remainder of this paper is organized as follows. We begin, in
Section 2, by explaining the proposed algorithm for detecting periodic
subsequences in binary sequences. Then, in Section 3 we recall several
variants of the meaningful boundaries algorithm [7]. In Section 4 we
show how to apply the proposed algorithm to the problem of selecting
salient pieces of level lines. In Section 5 we discuss the pertinence of
the approach and provide some final remarks.
2. Detecting periodic subsequences

A sequence S¼ ðsiÞ1≤i≤L of length L is binary if ∀i, si∈f0;1g. A
subsequence aDS is defined by a pair of indices ðað1Þ; að2ÞÞ with
1≤að1Þoað2Þ≤L, such that ð∀si, að1Þ≤i≤að2ÞÞsi∈a. Given a binary
sequence S of length L, an n-subsequence is an n-tuple ða1;…; anÞ
of n disjoints subsequences aiDS. The set of all n-subsequences in S
will be denoted by Mðn; SÞ. We define kðaÞ ¼ #fsiji∈½að1Þ; að2Þ�∧si ¼ 1g
and lðaÞ ¼ að2Þ�að1Þ þ 1 (i.e. the length of a). Notice that
#Mðn; SÞ ¼ ð L

2n Þ [8].
Definition 1. (Grompone et al. [8]). Given a binary sequence S of
length L, an n-subsequence ða1;…; anÞ in Mðn; SÞ is said
ε�meaningful if

NFAða1;…; anÞ ¼
L
2n

� �
∏
n

i ¼ 1
ðlðaiÞ þ 1ÞBðlðaiÞ; kðaiÞ; pÞoε ð1Þ

where p¼ Prðsi ¼ 1Þ;1≤i≤L. This number is called number of false
alarms (NFA) of ða1;…; anÞ.
Proposition 1. The expected number of ε�meaningful n-subse-
quences in a random binary sequence is smaller than ε.

We refer to the work by Grompone et al. [8] for a complete proof.
A run in S is a maximal subsequence only containing ones, i.e.,

ð∀i∈½að1Þ; að2Þ�; si ¼ 1Þ∧ðað1Þ ¼ 1∨sað1Þ�1 ¼ 0Þ∧ðað2Þ ¼ L∨sað2Þþ1 ¼ 0Þ:
One can restrict the search for n-subsequences to the ones where
each of the n subsequences starts at a run start and ends at a run
end [8]. We denote by R the number of runs in S.

Definition 2. Given a binary sequence S, its maximal
ε�meaningful subsequence ða1;…; anÞn is defined as

ða1;…; anÞn ¼ argmin
1≤n≤R

ða1 ;…;an Þ∈Mðn;SÞ

NFAða1;…; anÞ:

We propose now to extend the above definitions to support
periodic binary sequences. A binary sequence S¼ ðsiÞ1≤i≤L is made
periodic by considering L as its period. Periodic sequences are
different in nature from their non-periodic counterparts, see Fig. 1.
A definition suitable for the periodic case is needed.

In the periodic case, a subsequence must be defined more
carefully. Now a subsequence aDS, defined by a pair of indices
ðað1Þ; að2ÞÞ, can belong to one of the two different types:
intra– subsequences:
Please cite this arti
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inter–subsequences:
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Runs are modified accordingly to also cover inter-subsequences.
Given a periodic binary sequence S of period L, a periodic n-
subsequence is an n-tuple ða1;…; anÞ of n disjoints subsequences
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aiDS. The set of all n-subsequences in S will be denoted by
Mðn; SÞ.

We define kðaÞ ¼#fsiji∈½að1Þ; að2Þ�∧si ¼ 1g and the length of a as

lðaÞ ¼ að2Þ�að1Þ þ 1; if a is an intra�subsequence;
að2Þ þ L�að1Þ þ 1; if a is an inter�subsequence:

(

Notice that #Mðn; SÞ ¼ 2ð L
2n Þ since from each pair of points in S

two subsequences can be constructed.

Definition 3. Given a periodic binary sequence S of period L, an n-
subsequence ða1;…; anÞ in Mðn; SÞ is said ε�meaningful if

NFAða1;…; anÞ ¼ 2
L
2n

� �
∏
n

i ¼ 1
ðlðaiÞ þ 1ÞBðlðaiÞ; kðaiÞ; pÞoε

where p¼ Prðsi ¼ 1Þ;1≤i≤L. This number is called number of false
alarms (NFA) of ða1;…; anÞ.

Proposition 2. The expected number of ε�meaningful n-subse-
quences in a random periodic binary sequence is smaller than ε.

Proof. This proof follows closely the one by Grompone et al. [8]
but adapted to periodic sequences. The expected number of
ε�meaningful n-subsequences is given by

E ∑
ða1 ;…;anÞ∈Mðn;SÞ

1NFAða1 ;…;anÞo ε

 !
¼ ∑

ða1 ;…;anÞ∈Mðn;SÞ
PðNFAða1;…; anÞoεÞ:

NFAða1;…; anÞoε implies that

∏
n

i ¼ 1
BðlðaiÞ; kðaiÞ; pÞo ε

2
L

2n

� �
∏n

i ¼ 1ðlðaiÞ þ 1Þ
:

Let Ui ¼BðlðaiÞ; kðaiÞ; pÞ be a random variable, let α∈Rþ, and let
PαU ¼ Pð∏n

i ¼ 1UioαÞ. Then

PαU ¼ ∑
u2 ;…;un

P ∏
n

i ¼ 1
Uioα

���U2 ¼ u2;…;Un ¼ un

 !
PðU2 ¼ u2;…;Un ¼ unÞ:

Since the ai are disjoint, the Ui are independent. Then

PαU ¼ ∑
u2 ;…;un

P ∏
n

i ¼ 1
Uio

α

u2…un

 !
� PðU2 ¼ u2;…;Un ¼ unÞ:

Using the classical lemma PðUioαÞoα, that PðU2 ¼ u2;…;

Un ¼ unÞ≤PðU2≤u2;…;Un≤unÞ, and that there are lðaiÞ þ 1 possible
values for Ui,

P ∏
n

i ¼ 1
Uioα

 !
o ∏

n

i ¼ 2
ðlðaiÞ þ 1Þαo ∏

n

i ¼ 1
ðlðaiÞ þ 1Þα:

Let us recall that #Mðn; SÞ ¼ 2ð L
2n Þ, then setting α¼ ε=2ð L

2n Þ
∏n

i ¼ 1ðlðaiÞ þ 1Þ gives the wanted result. □
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The maximality rule from Definition 2 holds unchanged in the
periodic case.

On the implementation side, Grompone et al. [8] describe a
dynamic programming scheme for the non-periodic case that
eases the heavy computational burden. We show now that
implementing the algorithm for detecting periodic subsequences
is indeed straightforward.

We begin by shifting the periodic sequence S (with R runs), to
transform inter-subsequences into intra-subsequences. A circular
shift to the left is used. We then form a non-periodic sequence Sð2Þ

of length 2L from two periods of the periodic sequence S of period
L. Let Rð2Þ be the number of runs in Sð2Þ. Two key tricks allow us to
solve the problem:
1.
P
P

restrict the number of tested subsequences. In the non-periodic
case, we test for n-subsequences for Sð2Þ where 1≤n≤Rð2Þ. In the
periodic case, we only test for n-subsequences where 1≤n≤R;
2.
 subsequences longer than L are not tested.

With these two restrictions, one can simply detect non-periodic
subsequences in non-periodic sequence Sð2Þ and the result will be
optimal.
3. Meaningful boundaries

We briefly reproduce the formal definitions that lead to the
meaningful boundaries algorithm, as defined by Tepper et al. [7].
Several criteria are used to determine the saliency of a boundary:
contrast, regularity and the combination of both. All these variants
will be used to test the proposed algorithm.
Fig. 2. Reproduced from the work by Cao et al. [10]. The regularity at x is obtained
by comparing the radius of the circle with s. The radius is equal to s if and only if
the curve is a straight line. If the curve has a large curvature, the radius will be
small compared to s.
3.1. Contrasted meaningful boundaries

Let C be a level line of the image u and let us denote by
fxigi ¼ 0…n�1 the n regularly sampled points of C, with arc-length
two pixels, which in the a contrario noise model are assumed to be
independent. In particular the gradients at these points are
independent random variables (the image gradient norm jDuj
can be computed by standard finite differences on a 2�2
neighborhood). We note by μk (0≤kon) the k-th value of the
values jDujðxiÞ sorted in ascending order.

The detection algorithm consists of rejecting the null hypoth-
esis H0: the line C with contrasts fμkgk ¼ 0…n�1 is observed only by
chance. For this we assume that the values of jDuj are i.i.d.,
extracted from a noise image with the same gradient histogram
as the image u itself.

Desolneux et al. [5] present a thorough study of the binomial
tail Bðn; k; pÞ and its use in the detection of geometric structures.
The regularized incomplete beta function, defined by Iðx; a; bÞ, is an
interpolation ~B of the binomial tail to the continuous domain
~Bðn; k; pÞ ¼ Iðp; k;n�kþ 1Þ where n; k∈R [5]. Additionally the reg-
ularized incomplete beta function can be computed very
efficiently.

Let HcðμÞ ¼ PðjDuj4μÞ. For a given line of length l, the prob-
ability under H0 that some parts with total length greater or equal
than lðs;nÞðn�kÞ have a contrast greater than μ can be modeled by
~Bðn � lðs;nÞ; k � lðs;nÞ;HcðμÞÞ, where lðs;nÞ ¼ l=s � n acts as a normalization
factor [7].

Definition 4. Let C be a finite set of Nll level lines of u. A level line
C∈C is a ε�meaningful boundary if

NFAK ðCÞ ¼Nll � K �min
koK

~Bðn � lð2;nÞ; k � lð2;nÞ;HcðμkÞÞoε; ð2Þ
lease cite this article as: M. Tepper, et al., Finding contrasted and r
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where K is a parameter of the algorithm. We also note

kmin ¼ argmin
koK

~Bðn � lð2;nÞ; k � lð2;nÞ;HcðμkÞÞ: ð3Þ

The parameter K controls the number of points that we allow to
be likely generated by noise, that is a line must have no more than
K points with a “high” probability of belonging to the background
model. It is simply chosen as a percentile of the total number of
points in the line.

Definition 4 is motivated by the following proposition (we refer
to the work by Tepper et al. [7] for a complete proof).

Proposition 3. The expected number of ε�meaningful boundaries in
a finite set of random level lines is smaller than ε.

3.2. Combining contrast and smoothness

As already stated, in natural images contrasted boundaries
often locally coincide with object edges. Thus, they are also
incidentally smooth. Active contours [9] rely on this combination
of good contrast and smoothness to provide well localized con-
tours. In this section, we reproduce results that use smoothness as
the saliency measure in the a contrario detection process [7].

Let C be a rectifiable planar curve, parameterized by its length.
Let l be the length of C and x¼ CðτÞ∈C. Without loss of generality,
we assume that τ¼ 0.

Definition 5. (Cao et al. [10]). Let s40 be a fixed positive value
such that 2 so l. We call regularity of C at x (at scale s) the quantity

RsðxÞ ¼
maxðjx�Cð�sÞj; jx�CðsÞjÞ

s
; ð4Þ

where jxi�xjj represents the Euclidean distance between xi and xj.

Fig. 2 visually explains the pertinence of this definition. Only
when one of the subcurves Cðð�s;0ÞÞ or Cðð0; sÞÞ is a line segment,
RsðxÞ ¼ 1; in all other cases RsðxÞo1. When s is small enough,
regularity is inversely proportional to the curve's curvature around
x [10].

The question about the choice of s arises naturally and was
studied in detail by Cao et al. [10] and Musé [11]. We will limit
ourselves to state that a larger value of s (thus at less local scale of
analysis) is more robust to noise. On the other side, s should not be
too large either. In practice, and following Cao et al. [10] one may
safely set s¼5, which is the value we use in our experiments.
egular edges by a contrario detection of periodic subsequences,
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MCB+MPSMCBIMAGE

Fig. 4. Results of the presented clean-up algorithm on MCB. MPS eliminates the vast majority of the unwanted pieces of level line.

IMAGE MB MB+CU MB+MPS

Fig. 3. Comparison of the results obtained with both clean-up algorithms. The one by Cao et al. (CU) [6] produces underdetection; this is corrected by using MPS.

IMAGE MCB+MPS
MCB+MPS

(with modified threshold)

Fig. 5. Altering the binarization threshold might help, in some cases, to eliminate spurious structures. We modified it in a simple way that allows to visualize its effect,
setting for the result on the right the threshold p2 ¼minð6np1 ;1Þ, where p1 is the threshold for the result on the center. Notice that the window is better recovered with the
original threshold.
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Let us denote by HsðrÞ the distribution of the regularity in white
noise level lines, i.e.,

HsðrÞ ¼ PðRsðxÞ4r; x∈C;C is a white noise level lineÞ; ð5Þ

which depends only on s and can be empirically estimated.
Again, the curve detection algorithm consists of adequately

rejecting the null hypothesis H0: the values of jRsj are i.i.d.,
extracted from a noise image. We assume that, in the background
model, contrast and regularity are independent.

Definition 6. Let C be a finite set of Nll level lines of u. A level line
C∈C is a ε�meaningful regular boundary (MRB) if

NFAR
K ðCÞ ¼NllKsmin

koKs

~Bðn � lð2s;nÞ; k � lð2s;nÞ;HsðρkÞÞoε; ð6Þ

and Ks is a parameter of the algorithm. We also note

kmin ¼ argmin
koKs

~Bðn � lð2s;nÞ; k � lð2s;nÞ;HsðρkÞÞ: ð7Þ

Proposition 4. The expected number of ε�meaningful contrasted
regular boundaries in a finite set E of random curves is smaller than ε.
IMAGE MRB

Fig. 6. Results of the presented clean-up algorithm on MRB. MPS el
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A proof is given in [7]. We can also combine the two criteria, as
done by Tepper et al. [7], obtaining the following formulation.

Definition 7. Let C be a finite set of Nll level lines of u. A level line
C∈C is a ε�meaningful contrasted regular boundary (MCRB) if

NFACR
K ðCÞ ¼Nll Kc Ksmax

min
koKc

IcðC; kÞ2

min
koKs

IsðC; kÞ2

0
B@

1
CAoε; ð8Þ

where

IcðC; kÞ ¼ ~Bðn � lð2;nÞ; k � lð2;nÞ;HcðμkÞÞ;
IsðC; kÞ ¼ ~Bðn � lð2s;nÞ; k � lð2s;nÞ;HsðρkÞÞ;

and Kc and Ks are parameters of the algorithm. In this case, kmin is
defined as in Eq. (3) or as in Eq. (7), depending on whether
contrast or regularity attains the maximum.

Here Kc and Ks have the same meaning as K in Definition 4 and
they are also set as a percentile of the total number of points in the
curve.

Proposition 5. The expected number of ε�meaningful contrasted
regular boundaries in a finite set E of random curves is smaller than ε.
MRB+MPS

iminates the vast majority of the unwanted pieces of level line.
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A proof is given in [7]. Definition 7 exhibits some interesting
properties:
�

P
P

A contrasted but irregular curve will not be detected.

�
 A regular but non-contrasted curve will not be detected.

�
 An irregular and non-contrasted curve will not be detected.

�
 A regular and contrasted curve will be detected.

Both gestalts, i.e., contrast and good continuation, interact in a
novel way: they compete for the “control” of the curve.

Meaningful boundaries are further pruned to eliminate the
packet effect (i.e., a bundle of level lines passing through a very
salient edge) using the maximality procedure detailed in [7].
4. Boundary clean-up

Proposition 3 asserts that if a level line is a meaningful
boundary, then it cannot be entirely generated in white noise
(up to ε false detections on the average) but it can have parts that
are likely to be contained in noise.

Cao et al. [6] propose to give an upper bound to the size of those
parts. Assume that C is a piece of level line with L independent points,
contained in a non-edge part, described by the noise model. The
probability that L is larger than l40 needs to be estimated, knowing
that jDuj≥μ. This is exactly the a posteriori length distribution
pðμ; lÞ ¼ PðL≥ljjDuj≥μÞ. The estimation of this distribution was studied
by Cao et al. [6].

Let us now consider an image uwith Nll (quantized) level lines. Let
us also denote by Nl the number of all possible sampled subcurves of
these level lines. (Nl ¼∑Nll

i ¼ 1niðni�1Þ=2, where ni is the number of
independent points in line i.) As in Proposition 3, it can be proved that
Nl � pðμ; lÞ is an upper bound of the expected number of pieces of lines
of length larger than lwith gradient larger than μ. For a fixed μ, let be l
such that Nl � pðμ; lÞoε. Then, we know that on a white noise image,
MCRIMAGE

Fig. 7. Results of the presented clean-up algorithm on MCRB. MPS e
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on the average, we cannot observe more than ε pieces of level line
with a length larger than l and a gradient everywhere larger than μ.
Then one can define LðμÞ ¼ inf ; fl;Nl � pðμ; lÞoεg and keep every
subcurve of any meaningful boundary with length equal or greater
than LðμÞ, where jDuj≥μ.

The value of μ can be seen as a new parameter of the method.
Its value can be fixed arbitrarily using a conservative approach [6]:
letting jDuj be less than 1, means that edges with an accuracy less
than one pixel may be detected. Thus, taking μ¼ 1 is the least
restrictive choice. For μ about 1, values of LðμÞ less than a few
hundreds are obtained.

Since LðμÞ is a decreasing function of μ, fixing it at a small value
produces large lengths. We are imposing that the contrasted
pieces have to be very large and this is not always the case, as
argued before. Furthermore the probability distribution pðμ; lÞ has
to be estimated. We propose to take a different path to remove
non-contrasted boundary parts.

In Definition 4, pieces of a meaningful boundary are explicitly
allowed to be generated in white noise. We are certainly not
interested in these pieces and this relaxation responds to the fact
that we want to retrieve the remaining pieces of that boundary
(i.e. edge region). The desired detection of contrasted parts in a
boundary is very close in spirit to periodic subsequence detection.
4.1. Boundary clean-up by detecting meaningful periodic
subsequences

We now explain how to adapt the detector of meaningful
periodic subsequences (MPS) for cleaning-up boundaries.

Before applying the detector to any boundary, we need to
binarize it since its contrast (or its regularity) takes on real values.
This former problem is solved by thresholding on the contrast (or
on the regularity). In this direction, we claim that μkmin

and ρkmin
are

natural choices (see Definitions 4, 6, and 7). A maximal ε boundary
MCRB+MPSB

liminates the vast majority of the unwanted pieces of level line.
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is thus converted into a periodic binary sequence. We want to
apply the periodic subsequence detection algorithm from
Definitions 3 and 2 to that sequence. The only parameter
left is p¼ Prðsi ¼ 1Þ;1≤i≤L and it is straightforward defined, for
each boundary, as p¼Hcðμkmin

Þ or p¼Hsðρkmin
Þ, depending on

the case.
IMAGE MCB+MPS

Fig. 8. Comparison of the results obtained with the presented clean-up algorithm on the
level line. We recommend to zoom-in the results in the electronic version (they are vec

Please cite this article as: M. Tepper, et al., Finding contrasted and r
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We finally define the following clean-up rule: For any mean-
ingful boundary, keep every subcurve belonging to its maximal
1-meaningful subsequence.

Algorithm 1 shows a possible procedure to obtain all
ε�meaningful boundaries and then apply the proposed clean-up
method to them.
MRB+MPS MCRB+MPS

different versions of MB. MPS eliminates the vast majority of the unwanted pieces of
torial graphics) for better visualization.
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Algorithm 1. Computation of ε-meaningful boundaries in image u
and application of the proposed clean-up procedure.
5. Discussion

The proposed clean-up mechanism does not impose a minimal
length to contrasted parts. The length is adjusted automatically, by
choosing the most meaningful subsequence in the level line. As an
additional advantage, there is no need to estimate any probability
distribution. Fig. 3 shows an example of the benefits of the
proposed clean-up method over the one by Cao et al. [6]. Their
version clearly produces underdetection: visually important struc-
tures are missed (notice the face in the third image). The proposed
algorithm produces a very mild overdetection: some small noisy
parts are not eliminated but no important structure is lost.

Figs. 4, 6, and 7 show examples on images from the BSD
database [12]. In all cases MPS eliminates the vast majority of
spurious pieces of level lines.

Notice that, in the last row of Fig. 4, MPS does not remove a few
pieces of lines that should be removed (e.g., the lower wall and the
roof). This does not occur because of a failure in MPS, but because
of a faulty binarization, that is, the μkmin

was not optimal in those
cases. Fig. 5 depicts the same example, with a more aggressive
binarization threshold. These spurious structures are now dis-
carded. In any case, there is no universal threshold for all cases and
it should be tuned for the application at hand.

Fig. 8 presents a comparison of the results obtained with the
different meaningful boundaries algorithms.

Before concluding, we need to address an important objection.
Instead of applying MPS to the meaningful boundaries, one could
directly apply MPS to the raw collection of level lines. For each
level lines, we could test several thresholds, as we do in MB, and
Please cite this article as: M. Tepper, et al., Finding contrasted and r
Pattern Recognition (2013), http://dx.doi.org/10.1016/j.patcog.2013.06
select the periodic subsequence for which the NFA is minimized.
This procedure would avoid using MB as an intermediary step.
There are two main reasons for not following this more straight-
forward approach. First, we have a computational reason: applying
MPS with different thresholds would be prohibitive; MB is much
faster than MPS, allowing to render a practical algorithm. Second,
since the maximality constraint [7] can be applied thanks to the
inclusion properties between level lines. If we dissect the level
lines before applying the maximality rule, we cannot apply it
afterwards. A different, and much more complex, mechanism
would have to be used to solve the packet effect.

In summary, we presented a general and fully automatic
algorithm to detect meaningful subsequences within periodic
binary sequences. As a useful application, we used it to select
salient pieces of level lines in an image. We have also shown that
different saliency criteria can be used, such as contrast, regularity
or a combination of both. In all cases the proposed algorithm
exhibits good results on natural images.
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