Moduli of Computation

Theodore A. Slaman (on joint work with Marcia Groszek)

University of California, Berkeley

January 2007

Modulus of Computation

Definition

Let $f:\omega
ightarrow\omega,$ denoted $f\in\omega^{\omega},$ and $X\subseteq\omega$

- f is a modulus (of computation) for X iff for every g ∈ ω^ω such that g dominates f point-wise (g ≽ f), X is recursive in g.
- ► X has a *self-modulus* iff X can compute a modulus for itself.

We will also consider point-wise domination for functions with finite domains $(g \in \omega^{<\omega})$. Write $g \succeq f$ to indicate that the domain of g is a subset of the domain of f and for every n in the domain of g, $g(n) \ge f(n)$.

recursively enumerable sets

Example

If W is recursively enumerable, then W has a self-modulus:

 $f:n\mapsto$ the stage at which $W\upharpoonright n$ is completely enumerated

By similar means:

- ▶ if X is n-REA, then X has a self-modulus
- each of the canonical complete sets in the hyperarithmetic hierarchy has a self-modulus

 $\Delta_2^{0}\text{-sets}$

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

 Δ_2^0 -sets

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

Example

If X is Δ_2^0 , then X has a self-modulus.

 Δ_2^0 -sets

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

Example

If X is Δ_2^0 , then X has a self-modulus.

Proof

• Let X(n,s) be recursive such that $\lim_{s\to\infty} X(n,s) = X(n)$.

 Δ_2^0 -sets

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

Example

If X is Δ_2^0 , then X has a self-modulus.

- Let X(n,s) be recursive such that $\lim_{s\to\infty} X(n,s) = X(n)$.
- Let $f: n \mapsto s_n$, where s_n is the least stage greater than n such that for all $m \leq n$, $X(m, s_n) = X(m)$.

 Δ_2^0 -sets

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

Example

If X is Δ_2^0 , then X has a self-modulus.

- Let X(n,s) be recursive such that $\lim_{s\to\infty} X(n,s) = X(n)$.
- Let $f: n \mapsto s_n$, where s_n is the least stage greater than n such that for all $m \leq n$, $X(m, s_n) = X(m)$.
 - Clearly, $X \geq_T f$.

 Δ_2^0 -sets

We heard yesterday that no Δ_2^0 non-recursive set is hyper-immune-free.

Example

If X is Δ_2^0 , then X has a self-modulus.

- Let X(n,s) be recursive such that $\lim_{s\to\infty} X(n,s) = X(n)$.
- Let $f: n \mapsto s_n$, where s_n is the least stage greater than n such that for all $m \leq n$, $X(m, s_n) = X(m)$.
 - Clearly, $X \geq_T f$.
 - Given $g \succeq f$ and n, compute X(n) by, (1) finding $s^* > n$ such that for all $m \le n$ and all s between s^* and $g(s^*)$, $X(m,s) = X(m,s^*)$ and (2) concluding $X(n) = X(n,s^*)$.

Self-moduli are recursion theoretically useful.

- Permitting arguments:
 - construct sets X recursively in given recursively enumerable non-recursive sets W
- Providing a reservoir of examples.
 - ▶ If X has a self-modulus, then X is not 2-random relative to any continuous measure.

uniformity

Proposition

Suppose that X has a modulus f. There is a Turing functional Φ and an $f^* \succeq f$ such that for every g, if $g \succeq f^*$ then $\Phi(g) = X$.

uniformity

Proposition

Suppose that X has a modulus f. There is a Turing functional Φ and an $f^* \succeq f$ such that for every g, if $g \succeq f^*$ then $\Phi(g) = X$.

Proof

Consider g generic for conditions (g₀, f^{*}) in which g₀ ∈ ω^{<ω} specifies finitely much of g and f^{*} is a function which subsequent values of g must dominate.

uniformity

Proposition

Suppose that X has a modulus f. There is a Turing functional Φ and an $f^* \succeq f$ such that for every g, if $g \succeq f^*$ then $\Phi(g) = X$.

- Consider g generic for conditions (g₀, f*) in which g₀ ∈ ω^{<ω} specifies finitely much of g and f* is a function which subsequent values of g must dominate.
- By Σ₂¹-absoluteness, f is a modulus for X in V[G], so there is a Φ₀ and an f^{*} such that (Ø, f^{*}) ⊢ Φ₀(g) = X.

uniformity

Proposition

Suppose that X has a modulus f. There is a Turing functional Φ and an $f^* \succeq f$ such that for every g, if $g \succeq f^*$ then $\Phi(g) = X$.

- Consider g generic for conditions (g₀, f*) in which g₀ ∈ ω^{<ω} specifies finitely much of g and f* is a function which subsequent values of g must dominate.
- ▶ By Σ_2^1 -absoluteness, f is a modulus for X in V[G], so there is a Φ_0 and an f^* such that $(\emptyset, f^*) \Vdash \Phi_0(g) = X$.
- ▶ If $g \succeq f^*$, then for each n, g can compute X(n) by finding a g_0 such that $g_0 \succeq g$ and $\Phi_0(n, g_0)$ converges.

uniformity

Proposition

Suppose that X has a modulus f. There is a Turing functional Φ and an $f^* \succeq f$ such that for every g, if $g \succeq f^*$ then $\Phi(g) = X$.

Proof

- Consider g generic for conditions (g₀, f*) in which g₀ ∈ ω^{<ω} specifies finitely much of g and f* is a function which subsequent values of g must dominate.
- By Σ₂¹-absoluteness, f is a modulus for X in V[G], so there is a Φ₀ and an f^{*} such that (Ø, f^{*}) ⊢ Φ₀(g) = X.
- ▶ If $g \succeq f^*$, then for each n, g can compute X(n) by finding a g_0 such that $g_0 \succeq g$ and $\Phi_0(n, g_0)$ converges.

We say that Φ is the uniform index for X.

Finding Sets With Moduli countability

Corollary

There are only countably many sets with moduli.

Proof

An X with a modulus is determined by its uniform index Φ and there are only countably many Φ 's.

definability

Theorem (Solovay)

If X has a modulus, then X is Δ_1^1 .

definability

Theorem (Solovay)

If X has a modulus, then X is Δ_1^1 .

Proof

Suppose that X has a modulus and that Φ is the uniform index for X. Then X(n) = i has a Σ_1^1 description as follows.

$$X(n)=i \iff (\exists f^*)(orall g_0\in \omega^{<\omega})\left[egin{array}{c} (g_0\succeq f^*\wedge \Phi(n,g_0)\!\downarrow)\ \Longrightarrow \Phi(n,g_0)=i\end{array}
ight]$$

definability

Theorem (Solovay)

If X has a modulus, then X is Δ_1^1 .

Proof

Suppose that X has a modulus and that Φ is the uniform index for X. Then X(n) = i has a Σ_1^1 description as follows.

$$X(n)=i \iff (\exists f^*)(orall g_0\in \omega^{<\omega})\left[egin{array}{c} (g_0\succeq f^*\wedge \Phi(n,g_0)\!\downarrow)\ \Longrightarrow \Phi(n,g_0)=i\end{array}
ight]$$

 $X(n) \neq i$ is also Σ_1^1 .

$$X(n)
eq i \iff (\exists j)[i
eq j \wedge X(n)=j]$$

definability

Theorem (Solovay)

If X has a modulus, then X is Δ_1^1 .

Proof

Suppose that X has a modulus and that Φ is the uniform index for X. Then X(n) = i has a Σ_1^1 description as follows.

$$X(n)=i \iff (\exists f^*)(orall g_0\in \omega^{<\omega})\left[egin{array}{c} (g_0\succeq f^*\wedge \Phi(n,g_0)\!\downarrow)\ \Longrightarrow \Phi(n,g_0)=i\end{array}
ight]$$

 $X(n) \neq i$ is also Σ_1^1 .

$$X(n)
eq i \iff (\exists j)[i
eq j \wedge X(n)=j]$$

Hence, X is Δ_1^1 .

Every Δ_2^0 set has a self-modulus, hence there are a variety of examples.

- ▶ 1-generic
- ▶ 1-random
- complete extensions of Peano Arithmetic
- ▶ of minimal Turing degree

Every Δ_2^0 set has a self-modulus, hence there are a variety of examples.

- ▶ 1-generic
- 1-random
- complete extensions of Peano Arithmetic
- ▶ of minimal Turing degree

What about examples which are not Δ_2^0 ?

Proposition

Suppose that X has a self-modulus. Then either X is Δ_2^0 or X can compute a 1-generic set G.

Proposition

Suppose that X has a self-modulus. Then either X is Δ_2^0 or X can compute a 1-generic set G.

Proof

Let $g^* \in \omega^\omega \leq_T 0'$ map n to the least s such that for all $p \in 2^n$ and all $e \leq n$,

 $(\exists q \supseteq p)[q \in W_e] \Longrightarrow (\exists q \supseteq p)[|q| < s \land q \in W_{e,s}]$

Proposition

Suppose that X has a self-modulus. Then either X is Δ_2^0 or X can compute a 1-generic set G.

Proof

Let $g^* \in \omega^\omega \leq_T 0'$ map n to the least s such that for all $p \in 2^n$ and all $e \leq n,$

$$(\exists q \supseteq p)[q \in W_e] \Longrightarrow (\exists q \supseteq p)[|q| < s \land q \in W_{e,s}]$$

Any function not eventually dominated by g^* can compute a 1-generic set, details in next frame.

Proposition

Suppose that X has a self-modulus. Then either X is Δ_2^0 or X can compute a 1-generic set G.

Proof

Let $g^* \in \omega^\omega \leq_T 0'$ map n to the least s such that for all $p \in 2^n$ and all $e \leq n,$

$$(\exists q \supseteq p)[q \in W_e] \Longrightarrow (\exists q \supseteq p)[|q| < s \land q \in W_{e,s}]$$

Any function not eventually dominated by g^* can compute a 1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated by g^* , then X is Δ_2^0 . Otherwise, X computes a 1-generic set.

Suppose that f dominates g^* . Compute a set G from f by recursion where G(s) is defined at stage s so as to move toward the condition meeting the highest priority Σ_1^0 set visible in f(s) steps.

Suppose that f dominates g^* . Compute a set G from f by recursion where G(s) is defined at stage s so as to move toward the condition meeting the highest priority Σ_1^0 set visible in f(s) steps.

 $G \upharpoonright s$ defined by stage s - 1

Suppose that f dominates g^* . Compute a set G from f by recursion where G(s) is defined at stage s so as to move toward the condition meeting the highest priority Σ_1^0 set visible in f(s) steps.

 $\swarrow q \in W_e$ visible at f(s)

 $G \upharpoonright s$ defined by stage s - 1

Suppose that f dominates g^* . Compute a set G from f by recursion where G(s) is defined at stage s so as to move toward the condition meeting the highest priority Σ_1^0 set visible in f(s) steps.

Thus far, we have obtained sets X with self-moduli using approximations to Skolem functions for Σ_1^0 or Δ_2^0 definability, possibly iterated in a degree increasing manner.

Thus far, we have obtained sets X with self-moduli using approximations to Skolem functions for Σ_1^0 or Δ_2^0 definability, possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Thus far, we have obtained sets X with self-moduli using approximations to Skolem functions for Σ_1^0 or Δ_2^0 definability, possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Theorem

There is a non-recursive set X with a self-modulus such that X does not compute any non-recursive Δ_2^0 -set.

requirements

We build a Δ_3^0 function f and a partial recursive functional Γ to satisfy the following requirements.

requirements

We build a Δ_3^0 function f and a partial recursive functional Γ to satisfy the following requirements.

• If $g \succeq f$, then $\Gamma(g) = f$.

requirements

We build a Δ_3^0 function f and a partial recursive functional Γ to satisfy the following requirements.

- If $g \succeq f$, then $\Gamma(g) = f$.
- ▶ For each Φ and Ψ , either there is an n such that $\Phi(n, f) \neq \lim_{s \to \infty} \Psi(n, s)$ or $\Phi(f)$ is recursive.

We construct a recursive sequence $f_s \in \omega^{<\omega}$ and let f be the limit infimum this sequence.

We construct a recursive sequence $f_s \in \omega^{<\omega}$ and let f be the limit infimum this sequence.

We simultaneously enumerate the functional Γ as a set of pairs $(p,q) \in \omega^{<\omega} \times \omega^{<\omega}$. Here, we mean that if $(p,q) \in \Gamma$ and $p \subset h$, then $q \subset \Gamma(h)$. During stage s, we enumerate pairs (p, f_s) with a overarching requirement that if $g \succeq f$ then $\Gamma(g) = f$.

For every f_s , we maintain the possibility of later defining f_t so that $f_s \subset f_t$. For this, we need that if $p \succeq f_t$ then $f_s \subseteq \Gamma(p)$, which we arrange as in the following picture.

We make most the computations (p, q) enumerated into Γ during the interval (s, t) and acquire the obligation that $p \succeq f$.

 f_{t_1} with $f_{s_1} \not\subseteq \Gamma(q)$ f_{s_1}

We have introduced the possibility of making all computations moot

To meet the requirement that Γ is total on every g such that $g \succeq f$, we ensure that any two strings which are extended by infinitely many of the f_s are compatible.

 $\Phi(n, f) \neq \lim_{s \to \infty} \Psi(n, s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

 $\Phi(n,f)
eq \lim_{s o \infty} \Psi(n,s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

 $\Phi(n,f)
eq \lim_{s o \infty} \Psi(n,s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

Heuristic features of the strategy:

▶ Fix an initial condition *q*.

 $\Phi(n, f) \neq \lim_{s \to \infty} \Psi(n, s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

- ▶ Fix an initial condition *q*.
- Find a Φ -split at argument m using conditions extending q * 0.

 $\Phi(n, f) \neq \lim_{s \to \infty} \Psi(n, s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

- ▶ Fix an initial condition *q*.
- Find a Φ -split at argument m using conditions extending q * 0.
 - The strategy cannot simply alternate between the conditions in the split and ensure that $\Phi(m, f) \neq \lim_{s \to \infty} \Psi(m, s).$

 $\Phi(n,f)
eq \lim_{s o \infty} \Psi(n,s)$ or $\Phi(f)$ is recursive

Ensuring that either $\Phi(n, f) \neq \lim_{s\to\infty} \Psi(n, s)$ or $\Phi(f)$ is recursive requires a Π_2^0 -strategy. A priori, some aspects of the construction should be infinitary or f itself would be Δ_2^0 .

- ▶ Fix an initial condition *q*.
- Find a Φ-split at argument m using conditions extending q * 0.
 - The strategy cannot simply alternate between the conditions in the split and ensure that Φ(m, f) ≠ lim_{s→∞} Ψ(m, s).
- The strategy alternates between one of the conditions in the split and conditions extending q * n, where n > 0. Based on the behavior of Ψ, it settles upon an n and an r extending q * n so that Φ(m, r) ≠ lim_{s→∞} Ψ(m, s) and it returns to conditions extending r infinitely often.

question

Question

Suppose that H is Δ_1^1 . Does there exist an X such that X has a self-modulus and such that every set that is recursive in both X and H is recursive?

question

Question

Suppose that H is Δ_1^1 . Does there exist an X such that X has a self-modulus and such that every set that is recursive in both X and H is recursive?

Definition

 $f \in \omega^{\omega}$ is a *modulus of 1-genericity* iff for every $h \in \omega^{\omega}$, if $h \succeq f$ then there is a 1-generic set recursive in h.

Definition

 $f \in \omega^{\omega}$ is a modulus of 1-genericity iff for every $h \in \omega^{\omega}$, if $h \succeq f$ then there is a 1-generic set recursive in h.

Example

The function $g^* \in \omega^\omega \leq_T 0'$ (encountered earlier) mapping n to the least s such that for all $p \in 2^n$ and all $e \leq n$,

 $(\exists q \supseteq p)[q \in W_e] \Longrightarrow (\exists q \supseteq p)[|q| < s \land q \in W_{e,s}]$

is a modulus of 1-genericity. In fact, if g^* does not eventually dominate h, then there is a 1-generic set recursive in h. Hence, any such h is a modulus of 1-genericity.

other examples

Example

If G is 2-generic, then G computes a modulus of 1-genericity. The function mapping n to the nth element of G is not eventually dominated by the Δ_2^0 function g^* .

Example

There is an f such that f is not dominated by any recursive function and f is not a modulus of 1-genericity. Consider the self-modulus of a Δ_2^0 set of minimal Turing degree.

a 1-generic example

Theorem

There is a 1-generic set G such that G does not compute a modulus of 1-genericity.

a 1-generic example

Theorem

There is a 1-generic set G such that G does not compute a modulus of 1-genericity.

Note, since Δ_2^0 sets have self-moduli, G cannot be Δ_2^0 .

a 1-generic example

Theorem

There is a 1-generic set G such that G does not compute a modulus of 1-genericity.

Note, since Δ_2^0 sets have self-moduli, G cannot be Δ_2^0 .

We construct G as a limit infimum in the context of a (more involved) full-approximation priority argument like the previous one.

Finis