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Modulus of Computation

Let f : w — w, denoted f € w¥, and X Cw

» fis a modulus (of computation) for X iff for every g € w”
such that g dominates f point-wise (g > f), X is recursive
in g.

» X has a self-modulus iff X can compute a modulus for
itself.

We will also consider point-wise domination for functions with
finite domains (g € w<*). Write g > f to indicate that the
domain of g is a subset of the domain of f and for every n in
the domain of g, g(n) > f(n).



Examples

recursively enumerable sets

If W is recursively enumerable, then W has a self-modulus:

f :n— the stage at which W | n is completely enumerated

By similar means:

» if X is n-REA, then X has a self-modulus

» each of the canonical complete sets in the hyperarithmetic
hierarchy has a self-modulus
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Examples

AS-sets
We heard yesterday that no Ag non-recursive set is
hyper-immune-free.

If X is AY, then X has a self-modulus.

» Let X(n,s) be recursive such that lims ,,, X(n,s) = X(n).
» Let f:n+— s,, where s, is the least stage greater than n
such that for all m < n, X(m,s,) = X(m).

» Clearly, X >r f.

» Given g > f and n, compute X (n) by, (1) finding s* > n
such that for all m < n and all s between s* and g(s*),
X(m,s) = X(m, s*) and (2) concluding
X(n) = X(n,s). O




Moduli in Action

Self-moduli are recursion theoretically useful.

» Permitting arguments:

» construct sets X recursively in given recursively enumerable
non-recursive sets W

» Providing a reservoir of examples.

» If X has a self-modulus, then X is not 2-random relative to
any continuous measure.
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uniformity

Suppose that X has a modulus f. There s a Turing
functional ® and an f* > f such that for every g, if g > f*
then ®(g) = X.

» Consider g generic for conditions (go, f*) in which
go € w<¥ specifies finitely much of g and f* is a function
which subsequent values of g must dominate.

» By Xi-absoluteness, f is a modulus for X in V[G], so there
is a ®p and an f* such that (0, f*) I $¢(g9) = X.

» If g > f*, then for each n, g can compute X (n) by finding
a go such that go > g and ®¢(n, go) converges. O

We say that & is the uniform index for X.



Finding Sets With Moduli

countability

Corollary

There are only countably many sets with moduls.

An X with a modulus is determined by its uniform index ¢ and
there are only countably many $’s. O
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definability

Theorem (Solovay)

If X has a modulus, then X is Al.

Suppose that X has a modulus and that & is the uniform index
for X. Then X(n) = 1 has a &1 description as follows.

X(n) =i < (3f*)(Vg0 € w¥) l e ]

X (n) # 1 is also 1.

X(n)#1 < @)l #5AX(n)=17]

Hence, X is Al 0J
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Every AJ set has a self-modulus, hence there are a variety of
examples.

» 1-generic

» l-random

» complete extensions of Peano Arithmetic

» of minimal Turing degree

What about examples which are not A3?
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Suppose that X has a self-modulus. Then either X is A or
X can compute a 1-generic set G.

Proof

Let g* € w¥ <7 0’ map n to the least s such that for all p € 2"
and all e < n,

(3¢ 2 p)lg € We] = (3¢ D p)lg| < sAq € Wey]

Any function not eventually dominated by g* can compute a
1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated
by g*, then X is AJ. Otherwise, X computes a 1-generic
set. []
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Working From Sets With Self-Moduli

building a 1-generic

Suppose that f dominates g*. Compute a set G from f by
recursion where G(s) is defined at stage s so as to move toward
the condition meeting the highest priority 19 set visible in f(s)
steps.

g1 € W, visible at stage f(s1) withe; <e

q € W, visible at f(s)

G | s defined by stage s — 1
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Non-iterative example

Thus far, we have obtained sets X with self-moduli using
approximations to Skolem functions for 3 or AJ definability,
possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Theorem

There 1s a non-recursiwe set X with a self-modulus such
that X does not compute any non-recursive AJ-set.
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requirements

We build a A function f and a partial recursive functional T’
to satisfy the following requirements.

» If g > f, then I'(g) = f.

» For each ¢ and W, either there is an n such that
®(n, f) # lim;_,o ¥(n, s) or ®(f) is recursive.
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We construct a recursive sequence fs € w<% and let f be the
limit infimum this sequence.

We simultaneously enumerate the functional I' as a set of pairs
(p,q) € w<* x w<¥. Here, we mean that if (p,q) € I" and p C h,
then ¢ C I'(h). During stage s, we enumerate pairs (p, f;) with
a overarching requirement that if g > f then I'(g) = f.
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Non-iterative example
Building f and T'

For every fs;, we maintain the possibility of later defining f; so
that f; C f;. For this, we need that if p > f; then f; C I'(p),
which we arrange as in the following picture.

ft

p with fs Z T'(p)
fs

We make moot the computations (p,g) enumerated into T’
during the interval (s,t) and acquire the obligation that p * f.
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Non-iterative example
Building f and T'

We have introduced the possibility of making all computations
moot

ft, with fi, CT'(ft,)

fsy with fo; CT(fs)

ft1 with f51 Z F(Q)
S1
To meet the requirement that I' is total on every g such that
g ~ f, we ensure that any two strings which are extended by
infinitely many of the f; are compatible.



Non-iterative example
®(n, f) # lims,00 ¥(n, s) or $(f) is recursive
Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is

recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.



Non-iterative example
®(n, f) # lim,, 0 ¥(n, s) or $(f) is recursive

Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is
recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.

Heuristic features of the strategy:



Non-iterative example
®(n, f) # lim,, 0 ¥(n, s) or $(f) is recursive

Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is
recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.
Heuristic features of the strategy:

» Fix an initial condition gq.



Non-iterative example
®(n, f) # lim,, 0 ¥(n, s) or $(f) is recursive
Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is

recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.

Heuristic features of the strategy:

» Fix an initial condition gq.

» Find a ®-split at argument m using conditions extending
q *0.



Non-iterative example
®(n, f) # lim,, 0 ¥(n, s) or $(f) is recursive

Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is
recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.

Heuristic features of the strategy:
» Fix an initial condition gq.
» Find a ®-split at argument m using conditions extending
q *0.
» The strategy cannot simply alternate between the

conditions in the split and ensure that
®(m, f) # lims_, o ¥(m, s).



Non-iterative example
®(n, f) # lim,, 0 ¥(n, s) or $(f) is recursive

Ensuring that either ®(n, f) # lim,_,» ¥(n, s) or &(f) is
recursive requires a I13-strategy. A priori, some aspects of the
construction should be infinitary or f itself would be AY.

Heuristic features of the strategy:
» Fix an initial condition gq.
» Find a ®-split at argument m using conditions extending
q *0.

» The strategy cannot simply alternate between the
conditions in the split and ensure that

®(m, f) # lims_, o ¥(m, s).

» The strategy alternates between one of the conditions in
the split and conditions extending g * n, where n > 0.
Based on the behavior of ¥, it settles upon an n and an r
extending ¢ x n so that ®(m,r) # lim,_,, ¥(m, s) and it
returns to conditions extending r infinitely often.
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Moduli of 1-Genericity

Definition

f € w¥ is a modulus of 1-genericity iff for every h € w®, if
h > f then there is a 1-generic set recursive in h.

The function g* € w” <7 0’ (encountered earlier) mapping n to
the least s such that for all p € 2™ and all e < n,

(3¢ 2 p)lg € We] = (3¢ 2 p)[lg] < sA g€ Wes]

is a modulus of 1-genericity. In fact, if g* does not eventually
dominate h, then there is a 1-generic set recursive in h. Hence,
any such A is a modulus of 1-genericity.



Moduli of 1-Genericity

other examples

Example

If G is 2-generic, then G computes a modulus of 1-genericity.
The function mapping n to the nth element of G is not
eventually dominated by the A function g*.

Example

There is an f such that f is not dominated by any recursive
function and f is not a modulus of 1-genericity. Consider the
self-modulus of a A set of minimal Turing degree.
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Moduli of 1-Genericity

a l-generic example

Theorem

There 1s a 1-generic set G such that G does not compute a
modulus of 1-genericity.

Note, since A sets have self-moduli, G cannot be AJ.

We construct G as a limit infimum in the context of a (more
involved) full-approximation priority argument like the previous
one.



Finas



