
Moduli of Computation

Theodore A. Slaman
(on joint work with Marcia Groszek)

University of California, Berkeley

C
January 2007

Modulus of Computation

Definition
Let f : ! ! !, denoted f 2 !!, and X � !

I f is a modulus (of computation) for X iff for every g 2 !!

such that g dominates f point-wise (g � f), X is recursive
in g.

I X has a self-modulus iff X can compute a modulus for
itself.

We will also consider point-wise domination for functions with
finite domains (g 2 !<!). Write g � f to indicate that the
domain of g is a subset of the domain of f and for every n in
the domain of g, g(n) � f(n).

Examples
recursively enumerable sets

Example

If W is recursively enumerable, then W has a self-modulus:

f : n 7! the stage at which W � n is completely enumerated

By similar means:

I if X is n-REA, then X has a self-modulus
I each of the canonical complete sets in the hyperarithmetic

hierarchy has a self-modulus

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).
I Let f : n 7! sn, where sn is the least stage greater than n

such that for all m � n, X(m; sn) = X(m).

I Clearly, X �T f .
I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).
I Let f : n 7! sn, where sn is the least stage greater than n

such that for all m � n, X(m; sn) = X(m).

I Clearly, X �T f .
I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).

I Let f : n 7! sn, where sn is the least stage greater than n
such that for all m � n, X(m; sn) = X(m).

I Clearly, X �T f .
I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).
I Let f : n 7! sn, where sn is the least stage greater than n

such that for all m � n, X(m; sn) = X(m).

I Clearly, X �T f .
I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).
I Let f : n 7! sn, where sn is the least stage greater than n

such that for all m � n, X(m; sn) = X(m).
I Clearly, X �T f .

I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Examples
�0

2-sets

We heard yesterday that no �0
2

non-recursive set is
hyper-immune-free.

Example

If X is �0
2
, then X has a self-modulus.

Proof

I Let X(n; s) be recursive such that lims!1X(n; s) = X(n).
I Let f : n 7! sn, where sn is the least stage greater than n

such that for all m � n, X(m; sn) = X(m).
I Clearly, X �T f .
I Given g � f and n, compute X(n) by, (1) finding s� > n

such that for all m � n and all s between s� and g(s�),
X(m; s) = X(m; s�) and (2) concluding
X(n) = X(n; s�).

Moduli in Action

Self-moduli are recursion theoretically useful.
I Permitting arguments:

I construct sets X recursively in given recursively enumerable
non-recursive sets W

I Providing a reservoir of examples.
I If X has a self-modulus, then X is not 2-random relative to

any continuous measure.

Finding Sets With Moduli
uniformity

Proposition

Suppose that X has a modulus f . There is a Turing
functional � and an f� � f such that for every g, if g � f�

then �(g) = X.

Proof

I Consider g generic for conditions (g0; f�) in which
g0 2 !<! specifies finitely much of g and f� is a function
which subsequent values of g must dominate.

I By �1
2
-absoluteness, f is a modulus for X in V [G], so there

is a �0 and an f� such that (;; f�)
 �0(g) = X.
I If g � f�, then for each n, g can compute X(n) by finding

a g0 such that g0 � g and �0(n; g0) converges.

We say that � is the uniform index for X.

Finding Sets With Moduli
uniformity

Proposition

Suppose that X has a modulus f . There is a Turing
functional � and an f� � f such that for every g, if g � f�

then �(g) = X.

Proof

I Consider g generic for conditions (g0; f�) in which
g0 2 !<! specifies finitely much of g and f� is a function
which subsequent values of g must dominate.

I By �1
2
-absoluteness, f is a modulus for X in V [G], so there

is a �0 and an f� such that (;; f�)
 �0(g) = X.
I If g � f�, then for each n, g can compute X(n) by finding

a g0 such that g0 � g and �0(n; g0) converges.

We say that � is the uniform index for X.

Finding Sets With Moduli
uniformity

Proposition

Suppose that X has a modulus f . There is a Turing
functional � and an f� � f such that for every g, if g � f�

then �(g) = X.

Proof

I Consider g generic for conditions (g0; f�) in which
g0 2 !<! specifies finitely much of g and f� is a function
which subsequent values of g must dominate.

I By �1
2
-absoluteness, f is a modulus for X in V [G], so there

is a �0 and an f� such that (;; f�)
 �0(g) = X.

I If g � f�, then for each n, g can compute X(n) by finding
a g0 such that g0 � g and �0(n; g0) converges.

We say that � is the uniform index for X.

Finding Sets With Moduli
uniformity

Proposition

Suppose that X has a modulus f . There is a Turing
functional � and an f� � f such that for every g, if g � f�

then �(g) = X.

Proof

I Consider g generic for conditions (g0; f�) in which
g0 2 !<! specifies finitely much of g and f� is a function
which subsequent values of g must dominate.

I By �1
2
-absoluteness, f is a modulus for X in V [G], so there

is a �0 and an f� such that (;; f�)
 �0(g) = X.
I If g � f�, then for each n, g can compute X(n) by finding

a g0 such that g0 � g and �0(n; g0) converges.

We say that � is the uniform index for X.

Finding Sets With Moduli
uniformity

Proposition

Suppose that X has a modulus f . There is a Turing
functional � and an f� � f such that for every g, if g � f�

then �(g) = X.

Proof

I Consider g generic for conditions (g0; f�) in which
g0 2 !<! specifies finitely much of g and f� is a function
which subsequent values of g must dominate.

I By �1
2
-absoluteness, f is a modulus for X in V [G], so there

is a �0 and an f� such that (;; f�)
 �0(g) = X.
I If g � f�, then for each n, g can compute X(n) by finding

a g0 such that g0 � g and �0(n; g0) converges.

We say that � is the uniform index for X.

Finding Sets With Moduli
countability

Corollary

There are only countably many sets with moduli.

Proof
An X with a modulus is determined by its uniform index � and
there are only countably many �’s.

Finding Sets With Moduli
definability

Theorem (Solovay)

If X has a modulus, then X is �1
1
.

Proof
Suppose that X has a modulus and that � is the uniform index
for X. Then X(n) = i has a �1

1
description as follows.

X(n) = i () (9f�)(8g0 2 !<!)

"
(g0 � f� ^ �(n; g0)#)

=) �(n; g0) = i

#

X(n) 6= i is also �1
1
.

X(n) 6= i () (9j)[i 6= j ^X(n) = j]

Hence, X is �1
1
.

Finding Sets With Moduli
definability

Theorem (Solovay)

If X has a modulus, then X is �1
1
.

Proof
Suppose that X has a modulus and that � is the uniform index
for X. Then X(n) = i has a �1

1
description as follows.

X(n) = i () (9f�)(8g0 2 !<!)

"
(g0 � f� ^ �(n; g0)#)

=) �(n; g0) = i

#

X(n) 6= i is also �1
1
.

X(n) 6= i () (9j)[i 6= j ^X(n) = j]

Hence, X is �1
1
.

Finding Sets With Moduli
definability

Theorem (Solovay)

If X has a modulus, then X is �1
1
.

Proof
Suppose that X has a modulus and that � is the uniform index
for X. Then X(n) = i has a �1

1
description as follows.

X(n) = i () (9f�)(8g0 2 !<!)

"
(g0 � f� ^ �(n; g0)#)

=) �(n; g0) = i

#

X(n) 6= i is also �1
1
.

X(n) 6= i () (9j)[i 6= j ^X(n) = j]

Hence, X is �1
1
.

Finding Sets With Moduli
definability

Theorem (Solovay)

If X has a modulus, then X is �1
1
.

Proof
Suppose that X has a modulus and that � is the uniform index
for X. Then X(n) = i has a �1

1
description as follows.

X(n) = i () (9f�)(8g0 2 !<!)

"
(g0 � f� ^ �(n; g0)#)

=) �(n; g0) = i

#

X(n) 6= i is also �1
1
.

X(n) 6= i () (9j)[i 6= j ^X(n) = j]

Hence, X is �1
1
.

Working From Sets With Self-Moduli

Every �0
2

set has a self-modulus, hence there are a variety of
examples.

I 1-generic
I 1-random
I complete extensions of Peano Arithmetic
I of minimal Turing degree

What about examples which are not �0
2
?

Working From Sets With Self-Moduli

Every �0
2

set has a self-modulus, hence there are a variety of
examples.

I 1-generic
I 1-random
I complete extensions of Peano Arithmetic
I of minimal Turing degree

What about examples which are not �0
2
?

Working From Sets With Self-Moduli

Proposition

Suppose that X has a self-modulus. Then either X is �0
2

or
X can compute a 1-generic set G.

Proof
Let g� 2 !! �T 00 map n to the least s such that for all p 2 2n

and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

Any function not eventually dominated by g� can compute a
1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated
by g�, then X is �0

2
. Otherwise, X computes a 1-generic

set.

Working From Sets With Self-Moduli

Proposition

Suppose that X has a self-modulus. Then either X is �0
2

or
X can compute a 1-generic set G.

Proof
Let g� 2 !! �T 00 map n to the least s such that for all p 2 2n

and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

Any function not eventually dominated by g� can compute a
1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated
by g�, then X is �0

2
. Otherwise, X computes a 1-generic

set.

Working From Sets With Self-Moduli

Proposition

Suppose that X has a self-modulus. Then either X is �0
2

or
X can compute a 1-generic set G.

Proof
Let g� 2 !! �T 00 map n to the least s such that for all p 2 2n

and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

Any function not eventually dominated by g� can compute a
1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated
by g�, then X is �0

2
. Otherwise, X computes a 1-generic

set.

Working From Sets With Self-Moduli

Proposition

Suppose that X has a self-modulus. Then either X is �0
2

or
X can compute a 1-generic set G.

Proof
Let g� 2 !! �T 00 map n to the least s such that for all p 2 2n

and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

Any function not eventually dominated by g� can compute a
1-generic set, details in next frame.

Let f be the self-modulus for X. If f is eventually dominated
by g�, then X is �0

2
. Otherwise, X computes a 1-generic

set.

Working From Sets With Self-Moduli
building a 1-generic

Suppose that f dominates g�. Compute a set G from f by
recursion where G(s) is defined at stage s so as to move toward
the condition meeting the highest priority �0

1
set visible in f(s)

steps.

G � s defined by stage s� 1

q 2We visible at f(s)

q1 2We1 visible at stage f(s1) with e1 < e

Working From Sets With Self-Moduli
building a 1-generic

Suppose that f dominates g�. Compute a set G from f by
recursion where G(s) is defined at stage s so as to move toward
the condition meeting the highest priority �0

1
set visible in f(s)

steps.

G � s defined by stage s� 1

q 2We visible at f(s)

q1 2We1 visible at stage f(s1) with e1 < e

Working From Sets With Self-Moduli
building a 1-generic

Suppose that f dominates g�. Compute a set G from f by
recursion where G(s) is defined at stage s so as to move toward
the condition meeting the highest priority �0

1
set visible in f(s)

steps.

G � s defined by stage s� 1

q 2We visible at f(s)

q1 2We1 visible at stage f(s1) with e1 < e

Working From Sets With Self-Moduli
building a 1-generic

Suppose that f dominates g�. Compute a set G from f by
recursion where G(s) is defined at stage s so as to move toward
the condition meeting the highest priority �0

1
set visible in f(s)

steps.

G � s defined by stage s� 1

q 2We visible at f(s)

q1 2We1 visible at stage f(s1) with e1 < e

Non-iterative example

Thus far, we have obtained sets X with self-moduli using
approximations to Skolem functions for �0

1
or �0

2
definability,

possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Theorem
There is a non-recursive set X with a self-modulus such
that X does not compute any non-recursive �0

2
-set.

Non-iterative example

Thus far, we have obtained sets X with self-moduli using
approximations to Skolem functions for �0

1
or �0

2
definability,

possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Theorem
There is a non-recursive set X with a self-modulus such
that X does not compute any non-recursive �0

2
-set.

Non-iterative example

Thus far, we have obtained sets X with self-moduli using
approximations to Skolem functions for �0

1
or �0

2
definability,

possibly iterated in a degree increasing manner.

However, not every set with a self-modulus is of this type.

Theorem
There is a non-recursive set X with a self-modulus such
that X does not compute any non-recursive �0

2
-set.

Non-iterative example
requirements

We build a �0
3

function f and a partial recursive functional �
to satisfy the following requirements.

I If g � f , then �(g) = f .
I For each � and 	, either there is an n such that

�(n; f) 6= lims!1	(n; s) or �(f) is recursive.

Non-iterative example
requirements

We build a �0
3

function f and a partial recursive functional �
to satisfy the following requirements.

I If g � f , then �(g) = f .

I For each � and 	, either there is an n such that
�(n; f) 6= lims!1	(n; s) or �(f) is recursive.

Non-iterative example
requirements

We build a �0
3

function f and a partial recursive functional �
to satisfy the following requirements.

I If g � f , then �(g) = f .
I For each � and 	, either there is an n such that

�(n; f) 6= lims!1	(n; s) or �(f) is recursive.

Non-iterative example
Building f and �

We construct a recursive sequence fs 2 !<! and let f be the
limit infimum this sequence.

We simultaneously enumerate the functional � as a set of pairs
(p; q) 2 !<! � !<!. Here, we mean that if (p; q) 2 � and p � h,
then q � �(h). During stage s, we enumerate pairs (p; fs) with
a overarching requirement that if g � f then �(g) = f .

Non-iterative example
Building f and �

We construct a recursive sequence fs 2 !<! and let f be the
limit infimum this sequence.

We simultaneously enumerate the functional � as a set of pairs
(p; q) 2 !<! � !<!. Here, we mean that if (p; q) 2 � and p � h,
then q � �(h). During stage s, we enumerate pairs (p; fs) with
a overarching requirement that if g � f then �(g) = f .

Non-iterative example
Building f and �

For every fs, we maintain the possibility of later defining ft so
that fs � ft. For this, we need that if p � ft then fs � �(p),
which we arrange as in the following picture.

fs

p with fs 6� �(p)

ft

We make moot the computations (p; q) enumerated into �
during the interval (s; t) and acquire the obligation that p 6� f .

Non-iterative example
Building f and �

For every fs, we maintain the possibility of later defining ft so
that fs � ft. For this, we need that if p � ft then fs � �(p),
which we arrange as in the following picture.

fs

p with fs 6� �(p)

ft

We make moot the computations (p; q) enumerated into �
during the interval (s; t) and acquire the obligation that p 6� f .

Non-iterative example
Building f and �

For every fs, we maintain the possibility of later defining ft so
that fs � ft. For this, we need that if p � ft then fs � �(p),
which we arrange as in the following picture.

fs

p with fs 6� �(p)

ft

We make moot the computations (p; q) enumerated into �
during the interval (s; t) and acquire the obligation that p 6� f .

Non-iterative example
Building f and �

For every fs, we maintain the possibility of later defining ft so
that fs � ft. For this, we need that if p � ft then fs � �(p),
which we arrange as in the following picture.

fs

p with fs 6� �(p)

ft

We make moot the computations (p; q) enumerated into �
during the interval (s; t) and acquire the obligation that p 6� f .

Non-iterative example
Building f and �

For every fs, we maintain the possibility of later defining ft so
that fs � ft. For this, we need that if p � ft then fs � �(p),
which we arrange as in the following picture.

fs

p with fs 6� �(p)

ft

We make moot the computations (p; q) enumerated into �
during the interval (s; t) and acquire the obligation that p 6� f .

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1
ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1

ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1
ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1
ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1
ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
Building f and �

We have introduced the possibility of making all computations
moot

fs1
ft1 with fs1 6� �(q)

fs2 with fs1 � �(fs2)

ft2 with ft1 � �(ft1)

To meet the requirement that � is total on every g such that
g � f , we ensure that any two strings which are extended by
infinitely many of the fs are compatible.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:

I Fix an initial condition q.
I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:

I Fix an initial condition q.
I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:
I Fix an initial condition q.

I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:
I Fix an initial condition q.
I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:
I Fix an initial condition q.
I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
�(n; f) 6= lims!1	(n; s) or �(f) is recursive

Ensuring that either �(n; f) 6= lims!1	(n; s) or �(f) is
recursive requires a �0

2
-strategy. A priori, some aspects of the

construction should be infinitary or f itself would be �0
2
.

Heuristic features of the strategy:
I Fix an initial condition q.
I Find a �-split at argument m using conditions extending
q � 0.

I The strategy cannot simply alternate between the
conditions in the split and ensure that
�(m; f) 6= lims!1	(m; s).

I The strategy alternates between one of the conditions in
the split and conditions extending q � n, where n > 0.
Based on the behavior of 	, it settles upon an n and an r

extending q � n so that �(m; r) 6= lims!1	(m; s) and it
returns to conditions extending r infinitely often.

Non-iterative example
question

Question

Suppose that H is �1
1
. Does there exist an X such that X

has a self-modulus and such that every set that is recursive
in both X and H is recursive?

Non-iterative example
question

Question

Suppose that H is �1
1
. Does there exist an X such that X

has a self-modulus and such that every set that is recursive
in both X and H is recursive?

Moduli of 1-Genericity

Definition
f 2 !! is a modulus of 1-genericity iff for every h 2 !!, if
h � f then there is a 1-generic set recursive in h.

Example

The function g� 2 !! �T 00 (encountered earlier) mapping n to
the least s such that for all p 2 2n and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

is a modulus of 1-genericity. In fact, if g� does not eventually
dominate h, then there is a 1-generic set recursive in h. Hence,
any such h is a modulus of 1-genericity.

Moduli of 1-Genericity

Definition
f 2 !! is a modulus of 1-genericity iff for every h 2 !!, if
h � f then there is a 1-generic set recursive in h.

Example

The function g� 2 !! �T 00 (encountered earlier) mapping n to
the least s such that for all p 2 2n and all e � n,

(9q � p)[q 2We] =) (9q � p)[jqj < s ^ q 2We;s]

is a modulus of 1-genericity. In fact, if g� does not eventually
dominate h, then there is a 1-generic set recursive in h. Hence,
any such h is a modulus of 1-genericity.

Moduli of 1-Genericity
other examples

Example

If G is 2-generic, then G computes a modulus of 1-genericity.
The function mapping n to the nth element of G is not
eventually dominated by the �0

2
function g�.

Example

There is an f such that f is not dominated by any recursive
function and f is not a modulus of 1-genericity. Consider the
self-modulus of a �0

2
set of minimal Turing degree.

Moduli of 1-Genericity
a 1-generic example

Theorem
There is a 1-generic set G such that G does not compute a
modulus of 1-genericity.

Note, since �0
2

sets have self-moduli, G cannot be �0
2
.

We construct G as a limit infimum in the context of a (more
involved) full-approximation priority argument like the previous
one.

Moduli of 1-Genericity
a 1-generic example

Theorem
There is a 1-generic set G such that G does not compute a
modulus of 1-genericity.

Note, since �0
2

sets have self-moduli, G cannot be �0
2
.

We construct G as a limit infimum in the context of a (more
involved) full-approximation priority argument like the previous
one.

Moduli of 1-Genericity
a 1-generic example

Theorem
There is a 1-generic set G such that G does not compute a
modulus of 1-genericity.

Note, since �0
2

sets have self-moduli, G cannot be �0
2
.

We construct G as a limit infimum in the context of a (more
involved) full-approximation priority argument like the previous
one.

Finis

