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Preface

Et le quatrième mystère, non des moindres,

est celui de la structure mathématique du monde:

pourquoi et quand apparâıt-elle, comment peut-on la modéliser,

et comment le cerveau parvient-il à l’élaborer,

à partir du chaos dans lequel nous vivons?1

E. Abécassis, Le palimpseste d’Archimède

The Nobel laureate Eugene Wigner coined the phrase of the “unreasonable effec-

tiveness of mathematics” in explaining the physical world, and the novelist Eliette

Abécassis expressed this amazing fact in a literary fashion and called it one of the

four great mysteries of the world. Whether from the scientist’s or the artist’s van-

tage point, there is no dispute about the applicability of wide parts of mathematics.

On the other hand, number theory—the purest of pure mathematics—has long re-

sisted the temptation to become applicable, except for trivial applications such as

Pythagorean triples for the construction of right angles and very simple cryptosys-

tems. In 1940, the prominent number theorist G.H. Hardy confidently asserted in

his book A Mathematician’s Apology that he had never done anything useful and

that no discovery of his is likely to make the least difference to the amenity of the

world.

But things changed dramatically in the second half of the 20th century when,

driven by the impetus of science and technology, entirely new areas of mathematics

relying heavily on number theory were created. Nowadays number theory is implic-

itly present in our daily life: in the supermarket via barcodes, in our cars via GPS,

in our smart phones and CD players via error-correcting codes, or when we use the

Internet for online banking, to mention only a few examples.

From our perspective, there are four major areas of applications where number

theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte

1Authors’ translation: And the fourth mystery, and not the least, is that of the mathematical

structure of the world: why and when does it arise, how can one model it, and how does the brain

manage to work it out, starting from the chaos in which we live?
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Carlo methods, and pseudorandom number generation. Excellent textbooks are

available for each of these areas. This book presents, for the first time, a unified

account of all these applications. This allows us to delineate the manifold links and

interrelations that exist between these areas. Chapters 2 to 5 cover the four main

areas of applications and the last chapter reviews various additional applications of

number theory, ranging from check-digit systems to quantum computation and to the

organization of raster-graphics memory. We hope that this panorama of applications

will inspire further research in applied number theory. In order to enhance the

accessibility of the book for undergraduates, we included a brief introductory course

on number theory in Chapter 1. In Chapters 2 to 5, the last section offers a glimpse

of advanced results that are stated without proof and require more mathematical

maturity.

We tried to minimize the prerequisites for the book. A background in number

theory is not necessary, although it is certainly helpful. Elementary facts from

calculus are used as a matter of course. Linear algebra appears only in a limited

context, and the important special case of linear algebra over finite fields is developed

from scratch. The chapters on coding theory and quasi-Monte Carlo methods are

quite extensive, so that separate courses on each of these topics can be taught from

them. But we believe that a single course stressing the unity of applied number

theory is in better conformity with the philosophy of the book.

Writing a book is not possible without the help of many. We are particularly in-

debted to Professor Friedrich Pillichshammer of the University of Linz for assistance

with the figures, to Professors Sheldon Axler and Ken Ribet for their comments on a

preliminary version of the book, to our institutions for providing excellent research

facilities, and to Edward Lear for developing limericks into an art form. The lim-

ericks at the beginning of each chapter are not credited since they were written by

the first author (sorry if you find them silly). We extend our special gratitude to

Ruth Allewelt and Martin Peters of Springer-Verlag for their unfailing support of

our project and to our families for their patience and indulgence.

Linz, March 2015 HARALD NIEDERREITER

ARNE WINTERHOF



Chapter 1

A Review of Number Theory and

Algebra

This theory of the old Greeks,

the first mathematical geeks,

is a marvel of charm and beauty,

it’s number theory, this cutie,

and we are its devoted freaks.

1.1 Integer arithmetic

Elementary number theory may be regarded as a prerequisite for this book, but

since we, the authors, want to be nice to you, the readers, we provide a brief review

of this theory for those who already have some background on number theory and

a crash course on elementary number theory for those who have not. Apart from

trying to be friendly, we also follow good practice when we prepare the ground for

the coming attractions by collecting some basic notation, terminology, and facts in

an introductory chapter, like a playwright who presents the main characters of the

play in the first few scenes. Basically, we cover only those results from elementary

number theory that are actually needed in this book. For more information, there

is an extensive expository literature on number theory, and if you want to read the

modern classics, then we recommend the books of Hardy and Wright [62] and of

Niven, Zuckerman, and Montgomery [152].

The beginning of our story is nice and easy: you count 1, 2, 3, . . . ad infinitum and

thereby you create the set N of all positive integers (also called natural numbers).

If you throw in 0 and the negative integers −1,−2,−3, . . ., then you arrive at the

set Z of all integers with its arithmetic operations of addition, subtraction, and

multiplication. You start doing number theory when you realize that there are even

integers like 6 and −8 and odd integers like 9 and −5. Of course, an integer is even

if and only if it is twice an integer, and from this observation it is an obvious step

1
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to the general concept of divisibility.

Definition 1.1.1 Let a and b be integers with b 6= 0. Then a is divisible by b, or

equivalently b divides a, if there is an integer c such that a = bc.

There are further ways of expressing the fact that a is divisible by b, namely,

a is a multiple of b and b is a divisor of a. The integers 1 and −1 are not very

exciting divisors since they divide every integer. Any nonzero integer a has the

trivial divisors 1, −1, a, and −a. Since an integer b divides a ∈ Z if and only if

−b divides a, one often concentrates on the positive divisors (or the factors) of an

integer a. If b ∈ N divides a ∈ N and b < a, then b is called a proper divisor of

a; if also b > 1, then b is called a nontrivial divisor (or a nontrivial factor) of a.

The divisibility relation is transitive, in the sense that if b divides a and c divides

b, then c divides a. We note again and emphasize that in divisibility relations as in

Definition 1.1.1, it always goes without saying that the divisor is a nonzero integer.

Let a ∈ Z and b ∈ N. Even if a is not divisible by b, we can still divide a by b, and

then we get a quotient q ∈ Z and a remainder r ∈ Z with 0 ≤ r < b. Furthermore,

we can write a = qb + r. The numbers q and r are uniquely determined. This

procedure is called division with remainder or the division algorithm.

Example 1.1.2 Let us take a = 17 and b = 5. Then division with remainder yields

the quotient q = 3 and the remainder r = 2, and we can write 17 = 3 · 5 + 2. If your

intelligence is insulted by this example, then please ignore it.

Definition 1.1.3 For two integers a and b that are not both 0, the largest integer

that divides both a and b is called the greatest common divisor of a and b and is

denoted by gcd(a, b). Generally, for k ≥ 2 integers a1, . . . , ak that are not all 0, their

greatest common divisor gcd(a1, . . . , ak) is the largest integer that divides each of

a1, . . . , ak.

It is obvious that gcd(a1, . . . , ak) exists, for if without loss of generality a1 6= 0,

then every divisor d of a1 satisfies d ≤ |a1|.

Example 1.1.4 If a = 12 and b = 18, then the positive common divisors of a and

b are 1, 2, 3, and 6, and so gcd(12, 18) = 6.

Proposition 1.1.5 If a, b ∈ Z are not both 0, then there exist a1, b1 ∈ Z such that

gcd(a, b) = aa1 + bb1.

Proof. Let d be the smallest element of the nonempty set

L = {au+ bv : u, v ∈ Z, au+ bv > 0}.
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Then d = aa1 + bb1 > 0 for some a1, b1 ∈ Z. By division with remainder, we can

write a = qd+ r with q, r ∈ Z and 0 ≤ r < d. Then

r = a− qd = a− q(aa1 + bb1) = a(1− qa1)− bqb1.

If we had r > 0, then r ∈ L, a contradiction to the definition of d. Thus r = 0, that

is, d divides a. Similarly, one shows that d divides b.

Now let e be an arbitrary common divisor of a and b. Then e divides aa1+bb1 = d,

and so e ≤ d. Thus, d is the greatest common divisor of a and b. 2

Corollary 1.1.6 If a, b, and d are integers such that d divides ab and gcd(a, d) = 1,

then d divides b.

Proof. From gcd(a, d) = 1 we get aa1 + dd1 = 1 for some a1, d1 ∈ Z by Proposition

1.1.5. Multiplying by b, we obtain aba1 + dbd1 = b. Now d divides aba1 and dbd1,

and so d divides b. 2

Instead of looking at the common divisors of given integers, we can also consider

their common multiples. If the given integers are nonzero, then they have arbitrarily

large common multiples, so here the meaningful notion is the least positive common

multiple.

Definition 1.1.7 For k ≥ 2 nonzero integers a1, . . . , ak, their least common multiple

lcm(a1, . . . , ak) is the smallest positive common multiple of a1, . . . , ak.

Example 1.1.8 Let us take a = 12 and b = 18. The positive multiples of 12 are

12, 24, 36, . . . and the positive multiples of 18 are 18, 36, 54, . . ., hence lcm(12, 18) =

36.

You have definitely run into prime numbers like 2, 3, and 11 before, so here is

the formal definition for the sake of completeness.

Definition 1.1.9 An integer p ≥ 2 is called a prime number (or a prime) if its only

positive divisors are 1 and p. If an integer b ≥ 2 is not a prime number, then b is

called a composite number .

Note that the integer 1 is neither a prime number nor a composite number. The

prime numbers are the building blocks of the integers greater than 1, in the sense

that every integer greater than 1 can be expressed in an essentially unique way as

a product of prime numbers. The proof of this fundamental fact is based on the

following lemma.
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Lemma 1.1.10 If a prime number p divides a product a1 · · · as of integers, then p

divides ai for at least one i.

Proof. We proceed by induction on s. The case s = 1 is obvious. Now suppose that

p divides a product a1 · · · as+1 of s + 1 integers for some s ≥ 1. If p divides as+1,

then we are done. Otherwise gcd(as+1, p) = 1, which implies by Corollary 1.1.6 that

p divides a1 · · · as, and then an application of the induction hypothesis completes

the proof. 2

Theorem 1.1.11 (Fundamental Theorem of Arithmetic) Every integer b ≥
2 can be written as a product of prime numbers and this factorization of b is unique

up to the order of the prime factors.

Proof. For the proof, we include b = 1 which we write as an empty product. The

existence of the factorization is proved by induction on b. The case b = 1 is already

settled. For b ≥ 2, let d be the least divisor of b that is greater than 1. Then d is a

prime number, and we apply the induction hypothesis to b/d.

In order to prove the uniqueness of the factorization into prime numbers, we

again use induction on b. The case b = 1 is trivial. Now let b ≥ 2 and suppose that

b = p1 · · · pr = q1 · · · qs,

where p1, . . . , pr, q1, . . . , qs are prime numbers. Then p1 divides q1 · · · qs, and so

Lemma 1.1.10 implies that p1 divides qi for some i with 1 ≤ i ≤ s. Since qi is a

prime number, we must have p1 = qi. Thus, we can cancel p1 against qi and we get

p2 · · · pr = q1 · · · qi−1qi+1 · · · qs.

By the induction hypothesis, the prime factors agree on both sides up to their order,

and so the prime factors of b agree up to their order. 2

By collecting identical prime factors, we can write the factorization of the integer

b ≥ 2 in the form

b = pe11 · · · p
ek
k =

k∏
j=1

p
ej
j

with distinct prime numbers p1, . . . , pk and exponents e1, . . . , ek ∈ N. This is often

called the canonical factorization of b.

Theorem 1.1.11 and the following theorem are contained in Euclid’s Elements,

the famous treatise written around 300 BC that founded geometry and number

theory as rigorous mathematical disciplines.

Theorem 1.1.12 There are infinitely many prime numbers.
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Proof. We paraphrase Euclid’s original proof which is a classical gem of mathemat-

ics. Suppose there were only finitely many prime numbers and let p1, . . . , pr be the

complete list of prime numbers. Then we consider the integer n = p1 · · · pr + 1. By

Theorem 1.1.11, n has a prime factor p, and by assumption we must have p = pi for

some i with 1 ≤ i ≤ r. Then pi divides n and p1 · · · pr, hence pi divides 1, which is

impossible. A different proof will be presented in Remark 6.6.20. 2

If we write
∏

p for a product over all prime numbers, then the factorization of

the integer b ≥ 2 into prime factors can also be written in the form b =
∏

p p
ep(b)

with uniquely determined exponents ep(b) ≥ 0, where only finitely many ep(b) can

be positive. The case b = 1 can be formally included by putting ep(1) = 0 for all

prime numbers p. If d ∈ N is written as d =
∏

p p
ep(d), then d divides b if and only if

ep(d) ≤ ep(b) for all prime numbers p. It follows that if a1, . . . , ak ∈ N with k ≥ 2,

then

gcd(a1, . . . , ak) =
∏
p

pmin(ep(a1),...,ep(ak)). (1.1)

Similarly, we obtain

lcm(a1, . . . , ak) =
∏
p

pmax(ep(a1),...,ep(ak)). (1.2)

If k = 2 and the canonical factorizations of a1 and a2 are not readily available,

then it is more efficient to compute gcd(a1, a2) by the Euclidean algorithm (see [152,

Section 1.2] and Exercise 1.9). For k ≥ 3 one uses the identity

gcd(a1, . . . , ak) = gcd(gcd(a1, . . . , ak−1), ak)

and iterations of the Euclidean algorithm.

Example 1.1.13 Let a = 12 and b = 18 as in Examples 1.1.4 and 1.1.8. Then

a = 22 · 31 and b = 21 · 32. Thus, (1.1) shows that gcd(12, 18) = 21 · 31 = 6, and (1.2)

shows that lcm(12, 18) = 22 · 32 = 36.

1.2 Congruences

Congruences were introduced by the “prince of mathematics” Carl Friedrich Gauss

(1777–1855) in his seminal monograph Disquisitiones Arithmeticae written at age 24.

(A personal note: The second author passed the Gauss memorial every day on his

way to the Technical University of Braunschweig until he was 24, which may be con-

sidered the first steps towards this book. The Gauss statue holds the Disquisitiones

Arithmeticae, the second author was reading easier lecture notes.) Congruences are

an excellent tool for studying questions about divisibility and remainders.
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Definition 1.2.1 Let a, b ∈ Z and let m ∈ N. Then a is congruent to b modulo m,

written a ≡ b (mod m), if m divides the difference a− b. If a− b is not divisible by

m, then we say that a is incongruent to b modulo m and we write a 6≡ b (mod m).

The positive integer m in Definition 1.2.1 is called the modulus of the congruence

a ≡ b (mod m). The modulus m = 1 is not very exciting since a ≡ b (mod 1) for all

a, b ∈ Z. Therefore, interesting congruences will always involve a modulus m ≥ 2.

Example 1.2.2 For the modulus m = 2, the congruence a ≡ b (mod 2) just says

that the integers a and b have the same parity, that is, they are either both even or

both odd.

Congruences occur in everyday life, though often in an unobtrusive form. Just

take the realm of clocks and calendars as an example. If it is now 10 a.m., then five

hours later it will be 3 p.m. and the reason is the congruence 10 + 5 ≡ 3 (mod 12).

If today is March 29, then six days later the date will be April 4 because of the

congruence 29 + 6 ≡ 4 (mod 31). We promise that you will see more significant

applications of congruences later in the book.

To a large extent, congruences can be manipulated like equations. Given a

congruence a ≡ b (mod m), we are allowed to add or subtract the same integer on

both sides and we can multiply both sides by the same integer. More generally,

two congruences with the same modulus can be combined according to the following

proposition.

Proposition 1.2.3 If a ≡ b (mod m) and c ≡ d (mod m) with a, b, c, d ∈ Z and

m ∈ N, then

a+ c ≡ b+ d (mod m),

a− c ≡ b− d (mod m),

ac ≡ bd (mod m).

Proof. The statements about addition and subtraction of congruences are obvious

from Definition 1.2.1. Finally, we note that

ac− bd = a(c− d) + (a− b)d,

and so m divides ac− bd whenever m divides a− b and c− d. 2

It is a consequence of the third part of Proposition 1.2.3 that we can raise a

congruence to a power. For instance, a ≡ b (mod m) implies a3 ≡ b3 (mod m). It is

also easily seen that congruences are transitive, in the sense that if a ≡ b (mod m)

and b ≡ c (mod m), then a ≡ c (mod m). Thus, formulations like a ≡ b ≡ c (mod m)

are legitimate.
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For a ∈ Z and m ∈ N, division with remainder (see Section 1.1) yields a =

qm + r with uniquely determined q, r ∈ Z satisfying 0 ≤ r < m. It follows that

a ≡ r (modm). The integer r is called the least residue of amodulom. Every integer

is thus congruent modulo m to a unique one among the integers 0, 1, . . . ,m−1. This

set of integers deserves a special name.

Definition 1.2.4 Let m be a positive integer. The set

Zm := {0, 1, . . . ,m− 1} ⊂ Z

is called the least residue system modulo m.

There are exactly m integers in Zm and they are pairwise incongruent modulo m.

More generally, for m ∈ N we say that a set Sm ⊂ Z is a complete residue system

modulo m if Sm contains exactly m elements and if these elements are pairwise

incongruent modulo m. We again have the property that every integer is congruent

modulo m to a uniquely determined element of a complete residue system modulo m.

Example 1.2.5 For an odd integer m ≥ 1, the set {a ∈ Z : −(m − 1)/2 ≤ a ≤
(m− 1)/2} forms a complete residue system modulo m which is symmetric around

0. This does not work quite as well for an even integer m ≥ 2, but in this case the

set {a ∈ Z : −m/2 < a ≤ m/2} is a complete residue system modulo m which is

nearly symmetric around 0.

Proposition 1.2.6 If m ∈ N and a ∈ Z with gcd(a,m) = 1, then there exists a

unique c ∈ Zm with ac ≡ 1 (mod m).

Proof. According to Proposition 1.1.5, there exist a1,m1 ∈ Z such that aa1+mm1 =

1. It follows that aa1 ≡ 1 (mod m). If c ∈ Zm is the least residue of a1 modulo m,

then ac ≡ aa1 ≡ 1 (mod m).

Let d ∈ Zm be such that ad ≡ 1 (mod m). Then a(c−d) ≡ ac−ad ≡ 0 (mod m),

that is, m divides a(c− d). Now Corollary 1.1.6 implies that m divides c− d. Since

−(m− 1) ≤ c− d ≤ m− 1, this is possible only if c = d. 2

Example 1.2.7 Let m = 7 and a = 3. Then c = 5 ∈ Z7 satisfies ac ≡ 15 ≡
1 (mod 7). In general, the integer c in Proposition 1.2.6 can be computed by means

of the Euclidean algorithm (see [152, Section 1.2] and Exercise 1.12).

Definition 1.2.8 Two integers a and b that are not both 0 are said to be coprime

(or relatively prime) if gcd(a, b) = 1.

The following result was already known to mathematicians in ancient China and

India. The formulation in the language of congruences is due to Gauss.
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Theorem 1.2.9 (Chinese Remainder Theorem) If m1, . . . ,mk ∈ N with k ≥ 2

are pairwise coprime moduli and r1, . . . , rk ∈ Z are arbitrary, then there exists a

unique a ∈ Zm with m = m1 · · ·mk such that

a ≡ rj (mod mj) for 1 ≤ j ≤ k.

Proof. The existence of the integer a is shown by a construction. The condition on

m1, . . . ,mk implies that gcd(m/mj,mj) = 1 for 1 ≤ j ≤ k. Hence by Proposition

1.2.6, for each j with 1 ≤ j ≤ k there exists a cj ∈ Z with (m/mj)cj ≡ 1 (mod mj).

Clearly, (m/mj)cj ≡ 0 (mod mi) for 1 ≤ i, j ≤ k with i 6= j. We put

a0 =
k∑
j=1

(m/mj)cjrj. (1.3)

Then

a0 ≡ (m/mj)cjrj ≡ rj (mod mj) for 1 ≤ j ≤ k.

The same holds if we replace a0 by a ∈ Zm, the least residue of a0 modulo m.

If b ∈ Zm with b 6= a also satisfies b ≡ rj (mod mj) for 1 ≤ j ≤ k, then a ≡
b (mod mj) for 1 ≤ j ≤ k. This implies that mj divides |a− b| for 1 ≤ j ≤ k. As in

Section 1.1, let us writem =
∏

p p
ep(m) and similarly for other positive integers. Since

m1, . . . ,mk are pairwise coprime, we conclude that for each prime number p we have

ep(m) = ep(mj) for some j with 1 ≤ j ≤ k. Therefore ep(m) = ep(mj) ≤ ep(|a− b|),
and so m divides |a−b|. But 0 < |a−b| < m, and thus we arrive at a contradiction. 2

Example 1.2.10 The following is a version of a popular puzzle. You have a basket

of eggs. When you take out three, four, or five eggs at a time, there is always one

egg left, while with seven eggs at a time no egg is left. What is the least number of

eggs in the basket? This word problem is equivalent to the system of congruences

a ≡ 1 (mod 3), a ≡ 1 (mod 4), a ≡ 1 (mod 5), and a ≡ 0 (mod 7). The moduli 3,

4, 5, and 7 are pairwise coprime, and so we can apply the method in the proof of

Theorem 1.2.9 with m = 3 · 4 · 5 · 7 = 420. Note that m/m1 = 420/3 = 140, and so

we can take c1 = 2 since 140 · 2 ≡ 2 · 2 ≡ 1 (mod 3). Similarly, m/m2 = 105 and

c2 = 1, and furthermore m/m3 = 84 and c3 = 4. We do not need c4 since r4 = 0

in (1.3). Thus, (1.3) yields a0 = 140 · 2 + 105 · 1 + 84 · 4 = 721. The least residue of

721 modulo 420 is a = 301, and this is the answer to the puzzle. We hope that your

chickens laid more than 301 eggs because, you know, you shouldn’t put all your eggs

in one basket.

Another giant of mathematics, namely Leonhard Euler (1707–1783), introduced

and employed the following number-theoretic function.
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Definition 1.2.11 For m ∈ N, the number of elements of Zm that are coprime to

m is denoted by φ(m). The function φ is called Euler’s totient function.

Example 1.2.12 For small m, we can compute φ(m) by counting. For m = 12, for

instance, the elements of Z12 = {0, 1, . . . , 11} that are coprime to 12 are 1, 5, 7, and

11, and so φ(12) = 4. An easy general case occurs when m = p is a prime number.

Then all numbers 1, 2, . . . , p− 1 in Zp = {0, 1, . . . , p− 1} are coprime to p, while 0

is not, and so φ(p) = p− 1.

By definition, φ(m) is the number of elements of the set

Rm := {a ∈ Zm : gcd(a,m) = 1}. (1.4)

The number φ(m) can be easily computed once the canonical factorization of m ≥ 2

is known, as the following result shows. We note that evidently φ(1) = 1.

Proposition 1.2.13 If m =
∏k

j=1 p
ej
j is the canonical factorization of the integer

m ≥ 2, then

φ(m) =
k∏
j=1

(
p
ej
j − p

ej−1
j

)
= m

k∏
j=1

(
1− p−1j

)
.

Proof. We first consider the case where m is a prime power, say m = pe with a prime

number p and e ∈ N. The elements of Zpe that are not coprime to pe are exactly

the multiples of p, and there are pe−1 of them in Zpe . Hence φ(pe) = pe − pe−1.
Now let m =

∏k
j=1 p

ej
j be as in the proposition and set mj = p

ej
j for 1 ≤ j ≤ k.

We consider the map ψ : Rm → Rm1 × · · · ×Rmk given by

ψ(a) = (ψ1(a), . . . , ψk(a)) for all a ∈ Rm,

where ψj(a) is the least residue of a modulo mj for 1 ≤ j ≤ k. The Chinese

remainder theorem (see Theorem 1.2.9) shows that ψ is bijective, and so Rm and

Rm1 × · · · ×Rmk have the same number of elements. Therefore

φ(m) =
k∏
j=1

φ(mj) =
k∏
j=1

(
p
ej
j − p

ej−1
j

)
= m

k∏
j=1

(
1− p−1j

)
,

which is the desired result. 2

Example 1.2.14 The last expression in Proposition 1.2.13 shows that in order to

compute φ(m), we actually need to know only the different prime factors of m and

not the full canonical factorization of m. For instance, if m = 12, then 2 and 3 are

the different prime factors of 12, and so φ(12) = 12(1 − 1/2)(1 − 1/3) = 4, which

agrees with the result in Example 1.2.12.
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As the first application of the number-theoretic function φ, we present the fol-

lowing classical theorem from the 18th century. Later on in Section 1.3, we will

recognize this result as a special instance of a general principle in group theory.

Theorem 1.2.15 (Euler’s Theorem) If m ∈ N and a ∈ Z with gcd(a,m) = 1,

then

aφ(m) ≡ 1 (mod m).

Proof. We write Rm = {r1, . . . , rφ(m)}. We multiply all elements of Rm by a to obtain

the integers ar1, . . . , arφ(m). We claim that ar1, . . . , arφ(m) are pairwise incongruent

modulo m. For if ari ≡ arj (mod m) for some 1 ≤ i, j ≤ φ(m), then multiplying

the congruence by the integer c in Proposition 1.2.6, we get ri ≡ rj (mod m) and so

i = j. Moreover ar1, . . . , arφ(m) are coprime to m because of gcd(a,m) = 1, hence

the least residues of ar1, . . . , arφ(m) modulo m run through the set Rm in some order.

Thus, modulo m we can compute the product of all elements of Rm in two ways to

obtain

(ar1) · · · (arφ(m)) ≡ r1 · · · rφ(m) (mod m).

This means that m divides r1 · · · rφ(m)

(
aφ(m) − 1

)
. But m and r1 · · · rφ(m) are co-

prime, and so m divides aφ(m) − 1 by Corollary 1.1.6. 2

Corollary 1.2.16 (Fermat’s Little Theorem) If p is a prime number and a ∈ Z
is not divisible by p, then

ap−1 ≡ 1 (mod p).

Proof. This follows immediately from Theorem 1.2.15 and the observation in Ex-

ample 1.2.12 that φ(p) = p− 1 (or the formula in Proposition 1.2.13). 2

For m ∈ N and a ∈ Z with gcd(a,m) = 1, we see from Theorem 1.2.15 that there

is some power of a that is congruent to 1 modulo m. It is of interest to consider the

smallest positive exponent for which this works.

Definition 1.2.17 For m ∈ N and a ∈ Z with gcd(a,m) = 1, the least positive

integer h such that ah ≡ 1 (mod m) is called the multiplicative order of a modulo m.

Example 1.2.18 Consider the prime modulus p = 13. Then for a = 5 we obtain

51 ≡ 5 (mod 13), 52 ≡ 12 (mod 13), 53 ≡ 8 (mod 13), and 54 ≡ 1 (mod 13). Thus,

the multiplicative order of 5 modulo 13 is equal to 4. If we carry out the same

calculation with a = 2, then we find that the multiplicative order of 2 modulo 13

is equal to 12, hence equal to p − 1. In view of Corollary 1.2.16, this is the largest

possible multiplicative order that can appear modulo the prime number p = 13, and

this situation deserves special attention.
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Definition 1.2.19 Let p be a prime number and let g ∈ Z with gcd(g, p) = 1. If

the multiplicative order of g modulo p is equal to p− 1, then g is called a primitive

root modulo p.

Remark 1.2.20 By Example 1.2.18, the integer 2 is a primitive root modulo 13. A

more general principle will imply (see Corollary 1.4.33) that for every prime number

p there exists a primitive root modulo p, but we will not use this result before we

actually prove it.

Definition 1.2.21 Let p be an odd prime number and let a be an integer with

gcd(a, p) = 1. Then a is called a quadratic residue modulo p if there exists an

integer b such that a ≡ b2 (mod p). If there is no such b ∈ Z, then a is called a

quadratic nonresidue modulo p.

Statements about quadratic residues can be formulated in an elegant manner by

using the following notation introduced by the eminent mathematician Adrien-Marie

Legendre (1752–1833).

Definition 1.2.22 Let p be an odd prime number. For all a ∈ Z, the Legendre

symbol
(
a
p

)
is defined as follows. If p divides a, then

(
a
p

)
= 0. If gcd(a, p) = 1,

then
(
a
p

)
= 1 if a is a quadratic residue modulo p and

(
a
p

)
= −1 if a is a quadratic

nonresidue modulo p.

Proposition 1.2.23 If p is an odd prime number, then(a
p

)
≡ a(p−1)/2 (mod p) for all a ∈ Z.

Proof. The result is trivial if p divides a, and so we can assume that gcd(a, p) = 1.

The argument in the proof of Theorem 1.2.15 with m = p shows that for every

c ∈ Rp = {1, . . . , p−1}, the least residues of c, 2c, . . . , (p−1)c modulo p run through

Rp in some order. Therefore there exists a unique c′ ∈ Rp with cc′ ≡ a (mod p). We

pair off c with c′, and then c = c′ occurs if and only if
(
a
p

)
= 1. Thus, if

(
a
p

)
= −1,

then we can form (p − 1)/2 distinct pairs (c, c′) with c 6= c′ and cc′ ≡ a (mod p),

and so (p− 1)! ≡ a(p−1)/2 (mod p). We write this congruence in the form

(p− 1)! ≡ −
(a
p

)
a(p−1)/2 (mod p). (1.5)

If
(
a
p

)
= 1, then b2 ≡ a (mod p) for some b ∈ Rp. Then d2 ≡ a ≡ b2 (mod p) implies

that p divides (d− b)(d + b), and so d = b or d = p− b by Lemma 1.1.10. Now we

can form (p−3)/2 distinct pairs (c, c′) with c 6= c′ and cc′ ≡ a (mod p) as well as the

pair (b, p − b) with b(p − b) ≡ −b2 ≡ −a (mod p). Therefore the congruence (1.5)

holds again. With a = 1 in (1.5) we get (p− 1)! ≡ −1 (mod p), and so

1 ≡
(a
p

)
a(p−1)/2 (mod p)
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for all a ∈ Z with gcd(a, p) = 1. Multiplying the last congruence by
(
a
p

)
yields the

final result. 2

Proposition 1.2.24 If p is an odd prime number, then(ab
p

)
=
(a
p

)( b
p

)
for all a, b ∈ Z.

Proof. Proposition 1.2.23 shows that(ab
p

)
≡ (ab)(p−1)/2 ≡ a(p−1)/2b(p−1)/2 ≡

(a
p

)( b
p

)
(mod p).

Now both extreme sides of this congruence have the value 0 or ±1, and so the con-

gruence holds if and only if equality holds (note that p ≥ 3). 2

Example 1.2.25 Let p be an odd prime number and let a = −1. From Proposition

1.2.23 we obtain (−1

p

)
≡ (−1)(p−1)/2 (mod p).

Both sides of this congruence have the value ±1, and so we get the equality(−1

p

)
= (−1)(p−1)/2.

Thus, −1 is a quadratic residue modulo p if and only if p ≡ 1 (mod 4). For instance,

if p = 13, then −1 ≡ 64 ≡ 82 (mod 13).

Remark 1.2.26 For an odd prime number p, the argument after (1.5) shows that

if
(
a
p

)
= 1, then there exists a unique b ∈ Z with b2 ≡ a (mod p) and 1 ≤ b ≤

(p − 1)/2. Hence we find all incongruent quadratic residues modulo p in the set

{b2 : b = 1, . . . , (p− 1)/2}. Therefore, there are exactly (p− 1)/2 quadratic residues

modulo p in {1, . . . , p−1}, and consequently there are also exactly (p−1)/2 quadratic

nonresidues modulo p in {1, . . . , p− 1}.

1.3 Groups and characters

1.3.1 Abelian groups

If you expect that in this section on groups and characters we provide a psychological

study of how the character of people is affected by their social groups, then we have

to disappoint you. The groups we are considering here are abelian groups in the

sense of abstract algebra and the characters we are investigating are special maps
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between abelian groups and the set C of complex numbers. Moreover, we focus on

abelian groups that are of number-theoretic relevance. There will be no need to

consider groups that are not abelian.

If you had a course on abstract algebra, then you already know all you need to

know about abelian groups for this book. For the novices in group theory, we offer a

brief introduction. The study of abstract algebraic structures is best initiated with

some illustrative examples.

For the theory of abelian groups, we just start with the basic set for number

theory, namely the set Z of all integers. On Z we consider the binary operation of

ordinary addition which assigns to every ordered pair (a, b) ∈ Z2 the sum a+ b ∈ Z.

We have the associative law a + (b + c) = (a + b) + c for all a, b, c ∈ Z and the

commutative law a + b = b + a for all a, b ∈ Z. The integer 0 plays a special role

since a + 0 = a for all a ∈ Z. Furthermore, for every a ∈ Z there is the integer −a
that can be added to it to produce 0, that is, such that a+ (−a) = 0.

In abstract algebra we abstract (isn’t that where the name of the area comes

from?) from special examples, and this is what we do now. Instead of Z we take

some set G and instead of ordinary addition in Z we take a binary operation ∗ on

G, that is, a map that assigns to every ordered pair (a, b) of elements a, b ∈ G an

element a ∗ b ∈ G. The properties of ordinary addition in Z listed in the preceding

paragraph are now put forth as the axioms of an abelian group G. In particular,

there must be an element of G playing the role of the integer 0, and so G will

automatically be nonempty.

Definition 1.3.1 An abelian group is a set G together with a binary operation ∗
on G such that the following axioms hold:

(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G (associative law);

(ii) a ∗ b = b ∗ a for all a, b ∈ G (commutative law);

(iii) there is an identity element (or neutral element) ι ∈ G such that a ∗ ι = a for

all a ∈ G;

(iv) for each a ∈ G, there exists an inverse element a−1 ∈ G such that a ∗ a−1 = ι.

Remark 1.3.2 If ι1, ι2 ∈ G are identity elements (or neutral elements) of the

abelian group G, then on the one hand ι1 ∗ ι2 = ι1 by axiom (iii) and on the

other hand ι1 ∗ ι2 = ι2 ∗ ι1 = ι2 by axioms (ii) and (iii). It follows that ι1 = ι2. In

other words, there is exactly one identity element (or neutral element) of G and we

can speak of the identity element (or the neutral element) of G. The terminology

“identity element” may suggest something like the number 1, but for instance in

the case of the abelian group Z under ordinary addition the identity element is the

integer 0. Therefore we offer also the alternative terminology “neutral element” if

you feel misled by “identity element”, although one has to admit that the usage of

“identity element” is much more common.
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Remark 1.3.3 Let a ∈ G be given and suppose that b, c ∈ G are inverse elements

of a in the abelian group G. By using all axioms for the abelian group G, we obtain

b = b ∗ ι = b ∗ (a ∗ c) = (b ∗ a) ∗ c = (a ∗ b) ∗ c = ι ∗ c = c ∗ ι = c. Thus, there is

exactly one inverse element of a in G and we can speak of the inverse element of a.

The notation ι for the neutral element of an abelian group G is a bit awkward

and we use it only temporarily. In practice, one often employs the additive notation

a+ b instead of a ∗ b for the binary operation on G; but it must be emphasized that

by doing so it is not assumed that the operation actually is ordinary addition of

numbers. With the additive notation, it is reasonable to denote the neutral element

of G by 0 ∈ G. Similarly, one may write −a ∈ G for the inverse element of a ∈ G
with the additive notation. The expression a+(−b) for a, b ∈ G is often abbreviated

by a− b.
Possibly to confuse students, some authors prefer multiplicative notation, that

is, they write ab instead of a ∗ b for the binary operation on G. In this case, it is

plausible to write 1 ∈ G for the neutral element of G, or sometimes 1G to stress the

dependence on G. Again, the use of the multiplicative notation does not necessarily

imply that the operation is ordinary multiplication of numbers.

Example 1.3.4 Here is an example with the multiplicative notation where the

binary operation is indeed ordinary multiplication. Let m ∈ N and let Um be the

set of complex mth roots of unity. Concretely, this means that Um consists of the

complex numbers e2πij/m with j = 0, 1, . . . ,m− 1, where i =
√
−1 is the imaginary

unit. You may want to remember here that e2πiy = cos(2πy) + i sin(2πy) for all

real numbers y. The binary operation on Um is multiplication of complex numbers.

Then it is easily checked that the four axioms in Definition 1.3.1 are satisfied. The

identity element of the abelian group Um is the number 1. This is our first example

of a finite abelian group, according to the following definition.

Definition 1.3.5 The abelian group G is called a finite abelian group if it has only

finitely many elements. The number of elements of the finite abelian group G is

called the order of G.

Example 1.3.6 Let us take a second look at the finite abelian group Um of order

m in Example 1.3.4. We put ξj = e2πij/m for j ∈ Zm = {0, 1, . . . ,m − 1}. Then

Euler’s identity e2πi = 1 yields

ξjξk = e2πi(j+k)/m = e2πir/m = ξr

for all j, k ∈ Zm, where r is the least residue of j + k modulo m. This means that

the binary operation on Um can be carried out also by adding the elements of Zm
modulo m. We thus arrive at another finite abelian group of order m, namely Zm
with the binary operation being addition modulo m. The identity element of the

group Zm is 0 ∈ Zm.
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Example 1.3.7 For a fixed positive integer m, let Rm be as in (1.4). We consider

the binary operation ∗ on Rm given by multiplication modulo m, that is, for r, s ∈
Rm we let r ∗ s be the least residue of the ordinary product rs modulo m. Since

gcd(r,m) = gcd(s,m) = 1 implies that gcd(rs,m) = 1, we get indeed r ∗ s ∈ Rm. It

is easily checked that the first three axioms in Definition 1.3.1 are satisfied, with the

identity element being the number 1 ∈ Rm. The validity of the axiom (iv) follows

from Proposition 1.2.6. Thus, Rm is a finite abelian group of order φ(m), where φ

is Euler’s totient function.

Now that we know a few examples of finite abelian groups, we return to the

general theory of abelian groups. For elements a1, a2, . . . , an of an abelian group

G with the multiplicative notation, the expression a1a2 · · · an is unambiguous, since

no matter how we insert parentheses, the expression will always represent the same

element of G (thanks to the associative law). If aj = a for 1 ≤ j ≤ n with an

element a ∈ G, then we arrive at the nth power

an = aa · · · a︸ ︷︷ ︸
n factors

of a. It is customary to put a0 = 1 ∈ G. With the additive notation, we get the

n-fold sum

na = a+ a+ · · ·+ a︸ ︷︷ ︸
n summands

of a, with the convention 0a = 0 ∈ G. Usually, group theorists prefer to speak of

the nth power rather than the n-fold sum.

Here is a basic result that generalizes Theorem 1.2.15. We formulate this result

with the multiplicative notation.

Proposition 1.3.8 If G is a finite abelian group of order t, then

at = 1G for all a ∈ G.

Proof. We use the same idea as in the proof of Theorem 1.2.15. Let b1, . . . , bt be

the elements of G and fix a ∈ G. Then ab1, . . . , abt run again through G, for if

abi = abj for some 1 ≤ i, j ≤ t, then multiplying by the inverse element a−1 of a we

get bi = bj. It follows that

(ab1) · · · (abt) = b1 · · · bt,

and so

atb1 · · · bt = b1 · · · bt.

Multiplying by the inverse element of b1 · · · bt, we obtain at = 1G. 2
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If we apply Proposition 1.3.8 to the finite abelian group Rm in Example 1.3.7,

then we arrive at Theorem 1.2.15. According to Proposition 1.3.8, for a finite abelian

group G there is always some power of a ∈ G that is equal to 1G, and so the following

definition makes sense.

Definition 1.3.9 Let G be a finite abelian group and let a ∈ G. Then the least

positive integer h such that ah = 1G is called the order of the element a and denoted

by ord(a).

Lemma 1.3.10 Let G be a finite abelian group, let a ∈ G, and let n ∈ N. Then

an = 1G if and only if ord(a) divides n.

Proof. With h = ord(a) we use division with remainder to write n = qh + r with

q, r ∈ Z and 0 ≤ r < h. Then

an = aqh+r = (ah)qar = ar,

and so an = 1G if and only if ar = 1G. By the definition of ord(a), the latter condi-

tion holds if and only if r = 0, that is, if and only if ord(a) divides n. 2

Proposition 1.3.11 If G is a finite abelian group of order t, then ord(a) divides t

for all a ∈ G.

Proof. This follows from Proposition 1.3.8 and Lemma 1.3.10. 2

Remark 1.3.12 Let G be the finite abelian group Rm in Example 1.3.7. Then for

every a ∈ Rm, the order ord(a) of a according to Definition 1.3.9 is the same as the

multiplicative order of a modulo m (see Definition 1.2.17). It follows therefore from

Proposition 1.3.11 that the multiplicative order of a modulo m always divides φ(m).

Definition 1.3.13 A finite abelian group G is called cyclic if there exists an element

g ∈ G such that every element of G is a power of g. The element g is called

a generator of the finite cyclic group G. We also say that G is the cyclic group

generated by g and we write G = 〈g〉.

Remark 1.3.14 If G is a finite cyclic group of order t and g is a generator of G, then

ord(g) = t. The group G consists exactly of the elements g0 = 1G, g, g
2, . . . , gt−1. A

power gn with n ≥ 0 is a generator of G if and only if gcd(n, t) = 1. It follows that

G has exactly φ(t) different generators, where φ is Euler’s totient function.

Example 1.3.15 For every m ∈ N, the finite abelian group Zm in Example 1.3.6

is cyclic since it is additively generated by the integer 1. The finite abelian group

Um in Example 1.3.4 is cyclic since it is multiplicatively generated by the complex

number e2πi/m.
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Cyclic groups often arise in the way that we take a finite abelian group G and an

element a ∈ G, and we consider the finite cyclic group 〈a〉 generated by a. Since 〈a〉
is both a cyclic group and a subset of G, it is plausible to call 〈a〉 a cyclic subgroup

of G. More generally, we have the following standard terminology.

Definition 1.3.16 Let G be an abelian group. A subset H of G that forms by itself

a group when the binary operation on G is restricted to H is called a subgroup of G.

Example 1.3.17 Every abelian group G has the trivial subgroups {1G} and G. If

Um with m ∈ N is the finite abelian group in Example 1.3.4, then Ud is a subgroup

of Um whenever d ∈ N divides m.

Another important concept in group theory is that of a factor group. Let G be an

abelian group, not necessarily finite, and let H be a subgroup of G. In the context

of factor groups, we usually prefer the additive notation for the binary operation on

G. For every a ∈ G, we form the coset (with respect to H)

a+H := {a+ h : h ∈ H}.

In the multiplicative notation, we would write aH = {ah : h ∈ H}. For a, b ∈ G,

the cosets a+H and b+H agree as sets if and only if a− b ∈ H. If a+H and b+H

do not agree, then they are disjoint, for if c ∈ (a + H) ∩ (b + H), then c − a ∈ H
and c− b ∈ H, and so a+H = c+H = b+H.

Now we take the set of all cosets with respect to H and we introduce a binary

operation on it (in the additive notation we call it the sum of cosets) as follows. For

two cosets a+H and b+H with a, b ∈ G, their sum is defined by

(a+H) + (b+H) = (a+ b) +H. (1.6)

Thus, the sum of the two cosets is another coset with respect to H, as it should be.

However, we need to check whether this sum is well defined, that is, if we choose

arbitrary representatives c ∈ a + H and d ∈ b + H of the two given cosets, do we

get the same sum? According to (1.6), we obtain

(a+H) + (b+H) = (c+H) + (d+H) = (c+ d) +H.

But

(c+ d)− (a+ b) = (c− a)︸ ︷︷ ︸
∈H

+ (d− b)︸ ︷︷ ︸
∈H

∈ H

since H is a subgroup of G, and so indeed (c+ d) +H = (a+ b) +H. It is easy to

verify that the binary operation in (1.6) satisfies all four axioms in Definition 1.3.1.

The identity element is the coset 0 +H, which is of course the subgroup H itself.
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Definition 1.3.18 Let H be a subgroup of the abelian group G. Then the set of

all cosets with respect to H, together with the binary operation in (1.6), forms an

abelian group which is called the factor group G/H.

Example 1.3.19 Just for a change, let us consider an example with infinite abelian

groups. The set R of real numbers with the binary operation of ordinary addition

of real numbers is obviously an abelian group. The set Z of integers is a subgroup

of R. Thus, we can form the factor group R/Z. The distinct cosets with respect

to Z are given in their canonical form by u + Z with the real number u running

through the half-open interval [0, 1). The sum of two cosets u + Z and v + Z with

u, v ∈ [0, 1) is given by (u + v) + Z according to (1.6). If u + v < 1, then the coset

(u+ v) + Z is in canonical form. If u+ v ≥ 1, then by the theory of cosets we have

(u+v)+Z = (u+v−1)+Z and the latter is in canonical form since 0 ≤ u+v−1 < 1.

Thus, the cosets making up R/Z are added by adding their representatives modulo

integers. The factor group R/Z and its multidimensional versions will play a role in

the theory of quasi-Monte Carlo methods (see Subsection 4.3.2).

Example 1.3.20 Let us now start from the abelian group Z in Example 1.3.19 (see

also the beginning of this section) and fix m ∈ N. Then the set (m) := {km : k ∈ Z}
of all multiples of m is a subgroup of Z, and so we can form the factor group Z/(m).

We again have a canonical form for the distinct cosets with respect to (m), namely

r + (m) with r ∈ Zm = {0, 1, . . . ,m − 1}. Now we take a look at how the binary

operation on Z/(m) works. The sum of two cosets r+(m) and s+(m) with r, s ∈ Zm
is given by r+ s+ (m) according to (1.6). If r+ s < m, then the coset r+ s+ (m) is

in canonical form. If r+ s ≥ m, then r+ s+ (m) = r+ s−m+ (m) and the latter is

in canonical form since 0 ≤ r+s−m < m. Thus, the addition of cosets with respect

to (m) is the same as addition modulo m of their representatives. We can therefore

think of Z/(m) as another incarnation of the abelian group Zm in Example 1.3.6. In

elementary number theory, a coset with respect to (m) is also called a residue class

modulo m.

A really fundamental application of cosets is the following beautiful result from

group theory, named after the mathematician and theoretical physicist Joseph-Louis

Lagrange (1736–1813).

Theorem 1.3.21 (Lagrange’s Theorem) Let G be a finite abelian group and let

H be a subgroup of G. Then the order |G| of G, the order |H| of H, and the order

|G/H| of the factor group G/H are related by the identity

|G| = |H| · |G/H|.

In particular, the order of every subgroup of G divides the order of G.
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Proof. We pick a coset a1 + H for some a1 ∈ G. If a1 + H does not exhaust G,

then we choose a2 ∈ G \ (a1 + H). The cosets a1 + H and a2 + H do not agree,

since a2 /∈ a1 + H and a2 ∈ a2 + H. Thus, by an observation about cosets above,

a1 + H and a2 + H are disjoint. If the union V = (a1 + H) ∪ (a2 + H) is G, then

we stop. Otherwise, we choose a3 ∈ G \ V . Since G is finite, this procedure stops

after a certain number s of steps, and so we arrive at cosets a1 + H, . . . , as + H

that are pairwise disjoint and whose union is G. In other words, these cosets form

a partition of G. By counting elements, we see that |G| = |H|s, and it is obvious

that s = |G/H|. 2

We obtain Proposition 1.3.11 as a special case of Lagrange’s theorem if we choose

for H the cyclic subgroup 〈a〉 of G. The following notion will lead, in Corollary 1.3.25

below, to a refinement of Proposition 1.3.8.

Definition 1.3.22 The exponent E = E(G) of the finite abelian group G is defined

by

E = max
a∈G

ord(a).

In words, the exponent of G is the maximum order of elements of G.

Remark 1.3.23 In view of Proposition 1.3.11, the exponent E of a finite abelian

group G always divides the order t of G. We have E = t if and only if G is cyclic.

As an example for E < t, consider the special case R8 = {1, 3, 5, 7} of the family

of abelian groups Rm in Example 1.3.7. Then ord(1) = 1 and ord(3) = ord(5) =

ord(7) = 2, and so E = 2, but obviously t = 4.

Proposition 1.3.24 If G is a finite abelian group of exponent E, then ord(a) di-

vides E for all a ∈ G.

Proof. We consider a fixed element a ∈ G. Let p be any prime number. Then we

can write E = pef with integers e ≥ 0 and f ≥ 1 satisfying gcd(p, f) = 1. It suffices

to show that if pr divides ord(a) for some integer r ≥ 0, then we must have r ≤ e.

We use the multiplicative notation. By Definition 1.3.22, there exists an element

b ∈ G with ord(b) = E. Put c = aord(a)/p
r

and d = bp
e
. Then ord(c) = pr and

ord(d) = f . It follows that

(cd)p
rf = cp

rfdp
rf =

(
cp
r)f(

df
)pr

= 1G.

Therefore Lemma 1.3.10 shows that k := ord(cd) divides prf . Next we note that

1G = (cd)kf = ckfdkf = ckf . Then Lemma 1.3.10 implies that pr divides kf . Now

gcd(pr, f) = 1, and so pr divides k by Corollary 1.1.6. Similarly, we see that f divides

k. Using again gcd(pr, f) = 1, we deduce that prf divides k, and so ord(cd) = prf .

Finally, we invoke Definition 1.3.22 to obtain ord(cd) = prf ≤ E = pef , and so

r ≤ e as desired. 2
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Corollary 1.3.25 If G is a finite abelian group of exponent E, then

aE = 1G for all a ∈ G.

Proof. This follows from Lemma 1.3.10 and Proposition 1.3.24. 2

1.3.2 Characters

Now we know enough about group theory to talk about characters of abelian groups.

An important abelian group in this context is U = {z ∈ C : |z| = 1}, the unit circle

in the complex plane, with the binary operation being ordinary multiplication of

complex numbers. The abelian groups Um in Example 1.3.4 are of course subgroups

of U .

Let G be an abelian group with the multiplicative notation. Then a character

of G is a map χ : G→ U satisfying

χ(ab) = χ(a)χ(b) for all a, b ∈ G. (1.7)

With the additive notation we require that

χ(a+ b) = χ(a)χ(b) for all a, b ∈ G. (1.8)

On the right-hand sides of (1.7) and (1.8), the operation is of course ordinary mul-

tiplication of complex numbers. There are no good or bad characters of abelian

groups, but there are trivial and nontrivial characters. The trivial character χ0 of

G is defined by χ0(a) = 1 for all a ∈ G. Any character χ of G for which χ(b) 6= 1

for at least one element b ∈ G is called a nontrivial character of G.

Example 1.3.26 Let G be the abelian factor group R/Z in Example 1.3.19. For

every h ∈ Z, we define the map χh : R/Z→ U by

χh(v + Z) = e2πihv for all v ∈ R.

This map is well defined, for if u+ Z = v + Z for some u ∈ R, then u− v ∈ Z, and

so e2πihu = e2πihv since e2πihn = 1 for all n ∈ Z. It is obvious that (1.8) holds, and

therefore χh is a character of R/Z. For h = 0 we get the trivial character χ0 of R/Z,

whereas any χh with h 6= 0 is a nontrivial character of R/Z. These characters will

play a role in the theory of uniformly distributed sequences (see Subsection 4.1.1).

Example 1.3.27 For every m ∈ N, let Um be the finite abelian group in Example

1.3.4. Characters of Um are ridiculously easy to find. Just take χ1(z) = z for

all z ∈ Um. More generally, choose an integer h with 0 ≤ h ≤ m − 1 and put

χh(z) = zh for all z ∈ Um. Then (1.7) is clearly satisfied. The character χ0 is the

trivial character of Um, and for 1 ≤ h ≤ m− 1 the characters χh are nontrivial.
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Example 1.3.28 Let p be an odd prime number and let Rp = {1, . . . , p − 1} be

the finite abelian group in Example 1.3.7 with multiplication modulo p. For a ∈ Rp,

define η(a) =
(
a
p

)
to be the Legendre symbol in Definition 1.2.22. Then Proposition

1.2.24 shows that η is a character of Rp. In view of Remark 1.2.26, η is a nontrivial

character of Rp.

Proposition 1.3.29 Let χ be a character of the abelian group G with identity el-

ement 1G. Then χ(1G) = 1 and χ(a−1) = χ(a) for every a ∈ G, where the bar

denotes complex conjugation.

Proof. With the multiplicative notation, we have 1G1G = 1G, hence χ(1G)χ(1G) =

χ(1G) by (1.7), and so χ(1G) = 1. Furthermore, since aa−1 = 1G for every a ∈ G,

we obtain

χ(a)χ(a−1) = χ(aa−1) = χ(1G) = 1.

The complex number χ(a) has absolute value 1, and so χ(a−1) = χ(a). 2

Let us now focus on characters of finite abelian groups. The values of such

characters are restricted by the following result.

Proposition 1.3.30 Let G be a finite abelian group of exponent E. Then the values

of every character of G are Eth roots of unity.

Proof. If a ∈ G, then aE = 1G by Corollary 1.3.25. Hence, using Proposition 1.3.29,

we get 1 = χ(1G) = χ(aE) = χ(a)E for every character χ of G. 2

In the case of a finite cyclic group, the characters are easy to determine, as the

following example demonstrates.

Example 1.3.31 Let G be a finite cyclic group of order t and let g be a generator

of G. According to Remark 1.3.14, G consists exactly of the powers gj with j =

0, 1, . . . , t − 1. Proposition 1.3.30 shows that the value of a character at g is a tth

root of unity, hence it is equal to e2πih/t for some integer h with 0 ≤ h ≤ t− 1. This

value at g determines the character completely, hence we get the character χh of G

given by

χh(g
j) = e2πihj/t for j = 0, 1, . . . , t− 1.

Note that there are exactly t different characters of G.

It is a general fact that the number of different characters of a finite abelian group

G is equal to the order of G (see Theorem 1.3.36), but it requires an additional effort

to establish this result. We tread carefully and we first aim to show that there are

sufficiently many characters of G to separate distinct elements of G (see Lemma

1.3.33).
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Lemma 1.3.32 Let H be a subgroup of the finite abelian group G and let ψ be a

character of H. Then ψ can be extended to a character of G, that is, there exists a

character χ of G with χ(b) = ψ(b) for all b ∈ H.

Proof. We use the multiplicative notation. We can suppose that H 6= G, for

otherwise there is nothing to prove. Choose a ∈ G with a /∈ H. Then H1 = {ajb :

j ≥ 0, b ∈ H} is a subgroup of G with H ⊂ H1 since a ∈ H1. Let m be the order

of the coset aH in the factor group G/H and choose z ∈ C such that zm = ψ(am);

note that |z| = 1. Now we define a map ψ1 on H1 by taking b1 ∈ H1 with b1 = ajb,

j ≥ 0, b ∈ H, and putting ψ1(b1) = zjψ(b). We first have to show that ψ1 is well

defined. Thus, suppose that also b1 = akc, k ≥ 0, c ∈ H, where we can assume that

k > j. Then ak−j = bc−1 ∈ H, and so m divides k − j by Lemma 1.3.10. It follows

that zk−j = ψ(ak−j). Therefore

zkψ(c) = zjzk−jψ(c) = zjψ(ak−j)ψ(c) = zjψ(ak−jc) = zjψ(b),

and so ψ1 is indeed well defined.

It is obvious that ψ1 is a character of H1 and that ψ1(b) = ψ(b) for all b ∈ H.

If H1 = G, then we are done. Otherwise, we can continue the process above until,

after finitely many steps, we obtain an extension of ψ to G. 2

Lemma 1.3.33 Let G be a finite abelian group and let a1, a2 ∈ G with a1 6= a2.

Then there exists a character χ of G with χ(a1) 6= χ(a2).

Proof. It suffices to show that for a = a1a
−1
2 6= 1G, there exists a character χ of G

with χ(a) 6= 1. The cyclic subgroup H = 〈a〉 of G has order t ≥ 2. Now let ψ be

the character χ1 of H in Example 1.3.31; then ψ(a) = e2πi/t 6= 1. By Lemma 1.3.32,

ψ can be extended to a character χ of G. 2

Now we introduce a binary operation for the characters of a fixed finite abelian

group G. For two characters χ and σ of G, their product χσ is defined by

(χσ)(a) = χ(a)σ(a) for all a ∈ G.

It is evident that χσ is again a character of G. Let Ĝ be the set of all characters

of G. Then with this product as a binary operation on Ĝ, the axioms (i) and (ii)

in Definition 1.3.1 are satisfied since the associative law and the commutative law

hold for ordinary multiplication of complex numbers. The trivial character χ0 of G

serves as an identity element for the product of characters. Given χ ∈ Ĝ, its inverse

element with respect to the product of characters is the character χ of G defined by

χ(a) = χ(a) for all a ∈ G (compare with Proposition 1.3.29). Altogether, Ĝ forms

an abelian group under this binary operation, and since there are only finitely many
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choices for the values of characters of G on account of Proposition 1.3.30, Ĝ is finite.

The finite abelian group Ĝ is called the character group (or the dual group) of G.

Among the results for characters, the following theorem will be most frequently

used in this book.

Theorem 1.3.34 (Orthogonality Relations for Characters) If χ is a nontriv-

ial character of the finite abelian group G, then∑
a∈G

χ(a) = 0. (1.9)

If b ∈ G with b 6= 1G, then ∑
σ∈Ĝ

σ(b) = 0. (1.10)

Proof. We use multiplicative notation. Since χ is nontrivial, there exists an element

c ∈ G with χ(c) 6= 1. Then

χ(c)
∑
a∈G

χ(a) =
∑
a∈G

χ(c)χ(a) =
∑
a∈G

χ(ca) =
∑
a∈G

χ(a),

because if a runs through G, then so does ca. It follows that

(χ(c)− 1)
∑
a∈G

χ(a) = 0,

which already implies (1.9) since χ(c) 6= 1.

For the second part, we introduce the function b̂ on Ĝ by b̂(σ) = σ(b) for all

σ ∈ Ĝ. Then b̂ is a character of Ĝ. Furthermore, b̂ is a nontrivial character since,

by Lemma 1.3.33, there exists a χ ∈ Ĝ with b̂(χ) = χ(b) 6= χ(1G) = 1 (recall that

b 6= 1G). Now we apply (1.9) to the group Ĝ and we obtain∑
σ∈Ĝ

σ(b) =
∑
σ∈Ĝ

b̂(σ) = 0,

thus proving (1.10). 2

Example 1.3.35 For an odd prime number p, let η be the quadratic character of

the finite abelian group Rp in Example 1.3.28. Then (1.9) yields∑
a∈Rp

η(a) = 0.

This says that the number of quadratic residues modulo p in Rp is the same as the

number of quadratic nonresidues modulo p in Rp, and thus we arrive again at the

result in Remark 1.2.26.
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Theorem 1.3.36 For every finite abelian group G, the number of different charac-

ters of G is equal to the order of G.

Proof. This follows from

|Ĝ| =
∑
a∈G

∑
σ∈Ĝ

σ(a) =
∑
σ∈Ĝ

∑
a∈G

σ(a) = |G|,

where we used (1.10) in the first identity and (1.9) in the last identity. 2

1.4 Finite fields

1.4.1 Fundamental properties

This section is not a diversion into agriculture as the title may suggest, but an

excursion to an area of abstract algebra called field theory which is about as impor-

tant as group theory. The peculiar terminology “field” for the underlying algebraic

structure is not used in all languages. For instance, in French one says corps and

in German Körper, both of which mean “body”. It is of course a matter of taste

whether “body” captures the algebraic concept better than “field”.

So, to come to the point of this section, what is a field? As for the theory of

abelian groups (see Section 1.3), we start with some examples that are familiar to

you. We observed in Example 1.3.19 that the set R of real numbers forms an abelian

group under the ordinary addition of real numbers. But there is of course a second

basic operation on R, namely multiplication, and the set R∗ of nonzero real numbers

is an abelian group under this binary operation. Addition and multiplication are

linked by the distributive law u(v + w) = uv + uw for all u, v, w ∈ R. There you

already have all ingredients of a field. Analogously, the set C of complex numbers

forms a field under the usual addition and multiplication of complex numbers. Def-

initely, R and C are the most popular fields in all of mathematics. Here is a third

example from the hit parade of fields, namely the set Q of rational numbers, again

of course with the ordinary addition and multiplication of rational numbers (note

that the sum and the product of rational numbers are rational numbers and that

the reciprocal of a nonzero rational number is again a rational number).

As in the case of abelian groups, we now take the step of abstraction. We have

a set F with two binary operations which, for simplicity, we call addition and mul-

tiplication (although they are not necessarily ordinary addition and multiplication

of numbers). For the result of the addition of a, b ∈ F we write a + b and for the

result of the multiplication we write ab. Given the definition of an abelian group

(see Definition 1.3.1), we need only three axioms to define a field.
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Definition 1.4.1 A field is a set F together with the binary operations of addition

and multiplication such that the following axioms hold:

(i) F is an abelian group under addition with identity element 0 ∈ F ;

(ii) F ∗ := F \ {0} is an abelian group under multiplication with identity element

1 ∈ F ;

(iii) a(b+ c) = ab+ ac for all a, b, c ∈ F (distributive law).

It should be obvious by now that when we write 0 and 1 for an abstract field

F , we do not necessarily mean the integers 0 and 1. We emphasize that every field

contains at least two elements, namely the different identity elements 0 and 1. It is

customary to write−a for the additive inverse of a ∈ F and a−1 for the multiplicative

inverse of a ∈ F ∗. Here are two simple properties that you use without thinking for

real and complex numbers, but which hold in any field.

Lemma 1.4.2 Let F be a field. Then:

(i) a0 = 0 for all a ∈ F ;

(ii) if ab = 0 for some a, b ∈ F , then a = 0 or b = 0.

Proof. (i) If a ∈ F , then a0 = a(0 + 0) = a0 + a0 by the distributive law, and so

a0 = 0.

(ii) If ab = 0 and a 6= 0, then multiplication by a−1 yields b = a−10, and so b = 0

by part (i). 2

Example 1.4.3 We have noted that every field contains at least the two elements

0 and 1. It is stunning, when you see this for the first time, that one can construct

a field out of these two elements alone, because conventionally one thinks of fields

like Q, R, and C which have infinitely many elements. Consider the set Z2 = {0, 1}
and introduce binary operations on Z2 by the following addition and multiplication

tables.
+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Actually, both operation tables are forced on us by the general properties of a

field. Three entries in the addition table stem from the defining property of the

additive identity element 0 and the fourth entry is dictated by the need for 1 to

have an additive inverse. Similarly, three entries in the multiplication table stem

from Lemma 1.4.2(i) and the fourth entry is due to the defining property of the

multiplicative identity element 1. A second look at the addition table shows that this

binary operation of addition can also be interpreted as addition modulo 2 in the set

Z2 according to Example 1.3.6. Surprisingly, this tiny set satisfies all axioms of a field

(four axioms for the additive group, four axioms for the multiplicative group, plus the
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distributive law, so altogether nine axioms!). We already know from Example 1.3.6

that Z2 is an abelian group under addition modulo 2. Next Z∗2 = {1} is the trivial

abelian group just consisting of the identity element 1. Finally, the distributive law

a(b+ c) = ab+ ac for all integers a, b, c implies a(b+ c) ≡ ab+ ac (mod 2), which is

the distributive law for Z2. This is our first example of a finite field, according to

the following definition.

Definition 1.4.4 A field F is called a finite field if it has only finitely many ele-

ments. The number of elements of a finite field F is called the order of F .

Every positive integer occurs as the order of some finite abelian group (see for

instance Examples 1.3.4 and 1.3.6). For finite fields, there is a restriction on the

possible orders: a finite field of order q exists if and only if q is a prime power.

It will take some doing to prove this result. Let us start modestly by producing

examples of finite fields for which the order is a prime number. To this end, we

simply generalize Example 1.4.3 in an obvious manner.

Theorem 1.4.5 For every prime number p, the least residue system modulo p given

by Zp = {0, 1, . . . , p− 1} forms a finite field of order p under addition and multipli-

cation modulo p.

Proof. We know from Example 1.3.6 that Zp is an abelian group under addition

modulo p. Furthermore, Z∗p = {1, . . . , p− 1} = Rp is an abelian group under multi-

plication modulo p by Example 1.3.7. Finally, the distributive law a(b+c) = ab+ac

for all integers a, b, c implies a(b + c) ≡ ab + ac (mod p), which is the distributive

law for Zp. 2

Remark 1.4.6 A finite field for which the order is a prime number is called a finite

prime field . For the finite prime field Zp we use also the symbol Fp, in line with the

later notation Fq for a finite field of prime-power order q.

Example 1.4.7 Just for the fun of it, here are the operation tables for the finite

prime field F3 = Z3 = {0, 1, 2}.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

For the next step forward, we consider n-fold sums of the multiplicative identity

element 1 of a field F . Concretely, for all n ∈ N we write

n · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n summands

∈ F.
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Proposition 1.4.8 For every finite field F , there exists a least positive integer p

such that p · 1 = 0 ∈ F , and this integer p is a prime number.

Proof. Consider the elements n · 1 of F for n ∈ N. Since F is finite, we must have

m ·1 = n ·1 for some m,n ∈ N with m > n. It follows that (m−n) ·1 = m ·1−n ·1 =

0 ∈ F . Hence there exists a least positive integer p with p · 1 = 0 ∈ F . Note that

p ≥ 2 since 1 · 1 = 1 6= 0 ∈ F . Now assume that p were a composite number. Then

p = hk with h, k ∈ N and 1 < h, k < p, and so 0 = p · 1 = (hk) · 1 = (h · 1)(k · 1).

Lemma 1.4.2(ii) implies that either h · 1 = 0 or k · 1 = 0, but both alternatives yield

contradictions to the minimality of p. 2

Definition 1.4.9 The prime number p in Proposition 1.4.8 is called the character-

istic of the finite field F . More generally, if for an arbitrary field F there exists a

prime number p such that p · 1 = 0 ∈ F , then p is called the characteristic of F .

Example 1.4.10 For every prime number p, the finite field Zp = Fp in Theorem

1.4.5 has characteristic p. We remark for the sake of completeness that the fields Q,

R, and C have characteristic 0 by definition, but there will be no need for us to use

this terminology.

Let us consider not only n · 1, but more generally, for every field F , for every

n ∈ N, and for every a ∈ F , let us put

n · a = a+ a+ · · ·+ a︸ ︷︷ ︸
n summands

∈ F

and furthermore 0 · a = 0 ∈ F .

The following theorem provides an important necessary condition for the order

of a finite field. Later on in this section, we will prove that this condition is also

sufficient. First we note a simple consequence of the definition of the characteristic.

Lemma 1.4.11 If F is a field of characteristic p, then

p · a = a+ a+ · · ·+ a︸ ︷︷ ︸
p summands

= 0 ∈ F for all a ∈ F.

Proof. If a ∈ F , then

p · a = a+ a+ · · ·+ a︸ ︷︷ ︸
p summands

= a(1 + 1 + · · ·+ 1︸ ︷︷ ︸
p summands

) = a0 = 0 ∈ F

by the distributive law and Lemma 1.4.2(i). 2
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Theorem 1.4.12 If F is a finite field, then the order of F is a prime power pr,

where the prime number p is the characteristic of F and r is a positive integer.

Proof. We view F as a finite abelian group under addition. The cyclic group 〈1〉
generated by 1 ∈ F is a subgroup of F of order p. Therefore there exists a largest

power pr of p with r ∈ N which is the order of some subgroup H of F . Assume

that H 6= F . Then we can choose an element a ∈ F \ H. A computation in the

factor group F/H shows that p(a + H) = p · a + H = 0 + H by Lemma 1.4.11.

Thus, ord(a + H) divides p by Lemma 1.3.10, and since p is a prime number and

a + H 6= 0 + H, it follows that ord(a + H) = p. By a similar argument, we obtain

ord(a) = p. Now we consider the subgroup H1 = {j ·a+h : j ∈ Zp, h ∈ H} of F . If

j ·a+g = k ·a+h with j, k ∈ Zp and g, h ∈ H, then j(a+H) = k(a+H), hence j = k

since ord(a + H) = p, and so g = h. It follows that |H1| = |Zp||H| = pr+1, and we

get a contradiction to the definition of pr. Thus H = F , and the proof is complete. 2

We collect further elementary properties of a finite field F . We recall from

Definition 1.4.1 that F ∗ denotes the multiplicative group of nonzero elements of F .

Proposition 1.4.13 Let F be a finite field of order q. Then aq−1 = 1 ∈ F for all

a ∈ F ∗ and aq = a for all a ∈ F .

Proof. Since F ∗ is a finite abelian group of order q − 1, the first property follows

from Proposition 1.3.8. Multiplying aq−1 = 1 ∈ F by a ∈ F ∗, we get aq = a. For

a = 0 ∈ F , the identity 0q = 0 follows from Lemma 1.4.2(i). 2

Proposition 1.4.14 Let F be a field of characteristic p. If a, b ∈ F and n ∈ N,

then

(a+ b)p
n

= ap
n

+ bp
n

and (a− b)pn = ap
n − bpn .

Proof. We first take n = 1. In exactly the same way as for real numbers, one proves

the binomial theorem

(a+ b)p =

p∑
j=0

(
p

j

)
· ap−jbj = ap +

p−1∑
j=1

(
p

j

)
· ap−jbj + bp.

Now (
p

j

)
=
p(p− 1) · · · (p− j + 1)

1 · 2 · · · · · j
≡ 0 (mod p)

for j = 1, . . . , p − 1 since the prime factor p in the numerator cannot be canceled.

Then Lemma 1.4.11 implies that (a + b)p = ap + bp. For arbitrary n ∈ N, the first

identity in the proposition is proved by induction. By what we have just shown, we

obtain

ap
n

= ((a− b) + b)p
n

= (a− b)pn + bp
n

,

and the second identity follows. 2
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1.4.2 Polynomials

You are of course familiar with polynomials over the real numbers and the complex

numbers. The general theory of polynomials proceeds in complete analogy. For an

arbitrary field F , a polynomial (over F ) in the variable (or indeterminate) x is a

formal expression

f(x) =
n∑
j=0

ajx
j = anx

n + · · ·+ a1x+ a0 (1.11)

with an integer n ≥ 0 and coefficients aj ∈ F for 0 ≤ j ≤ n. The set of all

polynomials over F in the variable x is denoted by F [x]. If aj = 0 ∈ F for 0 ≤ j ≤ n

in (1.11), then we have the zero polynomial 0 ∈ F [x]. If an 6= 0 ∈ F in (1.11), then

an is called the leading coefficient of f(x). If an = 1 ∈ F , then the polynomial f(x)

is called monic. The coefficient a0 in (1.11) is the constant term of f(x). If we write

a nonzero polynomial f(x) ∈ F [x] as in (1.11) with leading coefficient an 6= 0 ∈ F ,

then the degree of f(x) is defined by deg(f(x)) = n. Various conventions are in

use for the degree of the zero polynomial 0 ∈ F [x]. For the time being, we put

deg(0) = −∞. Later on in the book, we will utilize other conventions for deg(0).

Polynomials over F are added and multiplied just like polynomials over R, the

only difference being that the arithmetic of coefficients is the arithmetic in F . If we

then inspect the axioms for a field (see Definitions 1.4.1 and 1.3.1), then we realize

that only one of the axioms fails, namely the existence of a multiplicative inverse.

For instance, the multiplicative inverse of x ∈ R[x] would be 1
x
, but this is a rational

function and not a polynomial.

An algebraic structure that satisfies all axioms for a field except the existence of

a multiplicative inverse is called a commutative ring with identity, or simply a ring .

Thus, we speak of the polynomial ring F [x]. Another famous example of a ring that

is not a field is the ring Z of integers, with the binary operations being ordinary

addition and multiplication of integers. Here, for instance, the multiplicative inverse

of 2 ∈ Z would be 1
2
, but this is not an integer. We get a field if we pass from Z

to Q.

The product of polynomials behaves very nicely with respect to the degree. For

nonzero polynomials f(x), g(x) ∈ F [x] with leading coefficients an of xn and bm of

xm, respectively, the coefficient of xn+m in f(x)g(x) is anbm 6= 0 ∈ F and this is the

leading coefficient of f(x)g(x). Therefore

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)). (1.12)

If at least one of f(x) and g(x) is 0 ∈ F [x], then this formula holds as well, with

the obvious interpretation n + (−∞) = −∞ for all n ∈ N ∪ {0,−∞}. It follows

from (1.12) that if f(x) 6= 0 ∈ F [x] and g(x) 6= 0 ∈ F [x], then also f(x)g(x) 6=
0 ∈ F [x]. In other words, the polynomial ring F [x] satisfies the property in Lemma
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1.4.2(ii). A ring with this additional property is called an integral domain. Clearly,

the ring Z of integers is also an integral domain.

There is no good analog of (1.12) for the sum of polynomials. The best we can

say is that

deg(f(x) + g(x)) ≤ max(deg(f(x)), deg(g(x)))

for all f(x), g(x) ∈ F [x], with the obvious interpretation if some of the degrees

are −∞.

Example 1.4.15 Let F be the finite prime field F3 and let f(x) = x3+1 ∈ F3[x] and

g(x) = 2x3 +x+1 ∈ F3[x]. Over R we would have f(x)g(x) = 2x6 +x4 +3x3 +x+1,

but since now the coefficients have to be computed modulo 3, we obtain

f(x)g(x) = 2x6 + x4 + x+ 1 ∈ F3[x].

We see that (1.12) is of course satisfied. Similarly, over R we would have f(x) +

g(x) = 3x3 + x+ 2, but over F3 we get

f(x) + g(x) = x+ 2 ∈ F3[x].

Here we have a case where deg(f(x)+g(x)) = 1 is smaller than max(deg(f(x)), deg(g(x))) =

3.

There is a theory of divisibility for polynomials over F similar to that for integers

(see Section 1.1). We say that a nonzero polynomial g(x) ∈ F [x] divides a polyno-

mial f(x) ∈ F [x] if there exists a polynomial h(x) ∈ F [x] such that f(x) = g(x)h(x).

We have the same alternative ways of expressing divisibility as in Definition 1.1.1 and

the paragraph following it; for instance, we speak of the divisor g(x) of a polynomial

f(x) if g(x) divides f(x). Moreover, g(x) is a proper divisor of f(x) if g(x) divides

f(x) and deg(g(x)) < deg(f(x)). We see in this last definition that the analog of

the condition b < a for integers is the condition deg(g(x)) < deg(f(x)) for polyno-

mials. From this it is clear how the division algorithm (or division with remainder)

works for polynomials: for any nonzero g(x) ∈ F [x] and any f(x) ∈ F [x] there exist

uniquely determined polynomials l(x), r(x) ∈ F [x] such that f(x) = l(x)g(x) + r(x)

and deg(r(x)) < deg(g(x)).

We have to be a bit careful when we define the greatest common divisor of

polynomials. It is not enough to say that “greatest” means “largest degree” in the

context of polynomials, for if g(x) divides f(x) in F [x] and c ∈ F ∗, then cg(x) also

divides f(x).

Definition 1.4.16 Let F be a field. For k ≥ 2 polynomials f1(x), . . . , fk(x) ∈
F [x] that are not all 0, their greatest common divisor gcd(f1(x), . . . , fk(x)) is the

uniquely determined monic polynomial over F of largest degree that divides each

of f1(x), . . . , fk(x). If k = 2 and gcd(f1(x), f2(x)) = 1, then we say that f1(x) and

f2(x) are coprime (or relatively prime).
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We can be brief with the greatest common divisor of polynomials because the

statements and proofs are completely analogous to those for the greatest common

divisor of integers in Section 1.1.

Proposition 1.4.17 (i) For all f(x), g(x) ∈ F [x] that are not both 0, there exist

f1(x), g1(x) ∈ F [x] such that

gcd(f(x), g(x)) = f(x)f1(x) + g(x)g1(x).

(ii) Let f(x), g(x), h(x) ∈ F [x]. If h(x) divides f(x)g(x) and gcd(f(x), h(x)) = 1,

then h(x) divides g(x).

Proof. (i) Instead of the set L in the proof of Proposition 1.1.5, we consider

M = {f(x)l(x) + g(x)m(x) : l(x),m(x) ∈ F [x]}.

By the hypothesis, M contains a nonzero polynomial over F , and so we can choose a

monic polynomial d(x) ∈M of least degree. In fact, d(x) is uniquely determined, for

if there were a monic d1(x) ∈M with deg(d1(x)) = deg(d(x)) and d1(x) 6= d(x), then

d(x)− d1(x) ∈M and 0 ≤ deg(d(x)− d1(x)) < deg(d(x)), hence multiplying d(x)−
d1(x) by the multiplicative inverse of its leading coefficient we get a contradiction to

the choice of d(x). As in the proof of Proposition 1.1.5, one shows that d(x) divides

f(x) and g(x). Similarly, any common divisor of f(x) and g(x) divides d(x), and so

d(x) = gcd(f(x), g(x)) = f(x)f1(x) + g(x)g1(x) for some f1(x), g1(x) ∈ F [x]. This

argument shows also that gcd(f(x), g(x)) is uniquely determined. In an analogous

way, it can be seen that the greatest common divisor of k ≥ 2 polynomials over F ,

not all 0, is uniquely determined.

(ii) Proceed as in the proof of Corollary 1.1.6. 2

Definition 1.4.18 Let F be a field. For k ≥ 2 nonzero polynomials f1(x), . . . , fk(x) ∈
F [x], their least common multiple lcm(f1(x), . . . , fk(x)) is the uniquely determined

monic polynomial over F of least degree that is a common multiple of f1(x), . . . , fk(x).

The role of the prime numbers in the ring Z of integers is played by the irreducible

polynomials in the ring F [x].

Definition 1.4.19 Let F be a field. A polynomial p(x) ∈ F [x] with deg(p(x)) ≥ 1

is said to be irreducible over F (or irreducible in F [x]) if it allows no factoriza-

tion p(x) = f(x)g(x) with f(x), g(x) ∈ F [x], 1 ≤ deg(f(x)) < deg(p(x)), and

1 ≤ deg(g(x)) < deg(p(x)). A polynomial in F [x] of positive degree that is not

irreducible over F is called reducible over F (or reducible in F [x]).
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Remark 1.4.20 It is important to emphasize irreducible (or reducible) over F since

the irreducibility or reducibility of a given polynomial depends heavily on the field

under consideration. For instance, the polynomial x2 − 2 ∈ Q[x] is irreducible over

the field Q of rational numbers, but x2− 2 = (x+
√

2)(x−
√

2) is reducible over the

field R of real numbers.

Example 1.4.21 A linear polynomial, that is, a polynomial of degree 1, over any

field F is always irreducible over F . Now consider the polynomial p(x) = x2 +x+ 1

over the finite prime field F2. The only possibility for a nontrivial factorization of

p(x) over F2 is p(x) = f(x)g(x) with f(x), g(x) ∈ F2[x] and deg(f(x)) = deg(g(x)) =

1. Since there are only two linear polynomials over F2, namely x and x+ 1, we can

simply try all choices for f(x) and g(x). We have x · x = x2, x(x + 1) = x2 + x,

and (x + 1)2 = x2 + 1, and consequently p(x) = x2 + x + 1 is irreducible over F2.

Extensive tables of monic irreducible polynomials over the finite prime fields F2, F3,

F5, and F7 can be found in the books [102, Chapter 10] and [103, Chapter 10].

Theorem 1.4.22 For every field F , each polynomial f(x) ∈ F [x] with deg(f(x)) ≥
1 has a canonical factorization

f(x) = c
k∏
j=1

pj(x)ej ,

where c ∈ F ∗, e1, . . . , ek ∈ N, and p1(x), . . . , pk(x) are distinct monic irreducible

polynomials in F [x]. This factorization is unique up to the order of the factors.

Proof. Proceed as in the proof of Theorem 1.1.11, using in particular Proposition

1.4.17(ii) in the proof of uniqueness. 2

Example 1.4.23 In F2[x] we have x6+1 = (x3+1)2 and x3+1 = (x+1)(x2+x+1).

Then x6 + 1 = (x+ 1)2(x2 + x+ 1)2 is the canonical factorization of x6 + 1 in F2[x]

since x+ 1 and x2 + x+ 1 are irreducible over F2 (see Example 1.4.21).

Analogs of the formulas (1.1) and (1.2) can be established on the basis of the

canonical factorization for polynomials over a field F . If we write
∏

p(x) for a product

over all monic irreducible polynomials over F , then the factorization of a nonzero

polynomial f(x) ∈ F [x] into monic irreducible factors over F can be written in the

form

f(x) = c
∏
p(x)

p(x)ep(x)(f(x))

with c ∈ F ∗ and exponents ep(x)(f(x)) ≥ 0, where only finitely many ep(x)(f(x)) can

be positive. If f1(x), . . . , fk(x) ∈ F [x] are k ≥ 2 nonzero polynomials, then

gcd(f1(x), . . . , fk(x)) =
∏
p(x)

p(x)min(ep(x)(f1(x)),...,ep(x)(fk(x)))
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and

lcm(f1(x), . . . , fk(x)) =
∏
p(x)

p(x)max(ep(x)(f1(x)),...,ep(x)(fk(x))).

For two fields F and K for which F ⊆ K and the addition and multiplication

in F are the addition and multiplication in K restricted to F , we say that F is a

subfield of K or that K is an extension field of F . For instance, Q is a subfield of

R and C is an extension field of R. Because of Lagrange’s theorem (see Theorem

1.3.21), a finite prime field (see Remark 1.4.6) cannot contain any strictly smaller

subfield. For f(x) ∈ F [x] and an element α in some extension field K of F , the

function value f(α) ∈ K is obtained by the substitution x = α.

Now the discussion becomes even more agricultural since we will talk about roots

in fields and stoop down to count the roots in a field.

Definition 1.4.24 Let F be a field. Then an element α in an extension field of F

is called a root (or a zero) of f(x) ∈ F [x] if f(α) = 0 ∈ F .

Lemma 1.4.25 Let F be a field and let K be an extension field of F . Then α ∈ K
is a root of f(x) ∈ F [x] if and only if the linear polynomial x − α divides f(x) in

K[x].

Proof. By the division algorithm in K[x], we can write f(x) = l(x)(x− α) + β with

l(x) ∈ K[x] and β ∈ K. Therefore f(α) = β, and the desired result follows from

this identity. 2

If α ∈ K and f(x) ∈ F [x] are as in Lemma 1.4.25 and α is a root of f(x), then

it can happen that not only x− α, but also a higher power of x− α divides f(x) in

K[x]. For a nonzero polynomial f(x) ∈ F [x], there is a largest power (x−α)m that

divides f(x) in K[x], and then m is called the multiplicity of the root α. If m = 1,

then α is called a simple root (or a simple zero) of f(x), and if m ≥ 2, then α is

called a multiple root (or a multiple zero) of f(x).

Example 1.4.26 Let f(x) = x6 + 1 ∈ F2[x]. Then Example 1.4.23 shows that

(x + 1)2 divides f(x) in F2[x], but (x + 1)3 does not. Therefore α = 1 ∈ F2 is a

multiple root of f(x) with multiplicity 2.

Theorem 1.4.27 Let F be a field and let f(x) ∈ F [x] with deg(f(x)) = n ≥ 0.

Then in every extension field of F , the polynomial f(x) has at most n roots, counting

multiplicities.

Proof. The case n = 0 is trivial since then f(x) consists only of a nonzero constant

term. Now let n ≥ 1 and let the distinct elements α1, . . . , αr ∈ K be roots of

f(x) in an extension field K of F , with respective multiplicities m1, . . . ,mr. Then
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(x− α1)
m1 , . . . , (x− αr)mr occur as factors in the canonical factorization of f(x) in

K[x], and so
∏r

j=1(x − αj)mj divides f(x) in K[x]. By comparing degrees, we get∑r
j=1mj ≤ n. 2

A characterization of multiple roots of polynomials is obtained by borrowing the

concept of derivative from calculus. For f(x) ∈ F [x] given by (1.11), its derivative

f ′(x) is defined in the expected way as

f ′(x) =
n∑
j=1

(j · aj)xj−1 ∈ F [x],

where j · aj is the j-fold sum of aj for 1 ≤ j ≤ n. The usual rules for derivatives,

such as the product rule, hold for every field F .

Proposition 1.4.28 Let F be a field and let K be an extension field of F . Then

α ∈ K is a multiple root of the nonzero polynomial f(x) ∈ F [x] if and only if α is

a root of both f(x) and f ′(x).

Proof. If α ∈ K is a root of f(x), then f(x) = (x − α)g(x) for some g(x) ∈ K[x]

by Lemma 1.4.25. The product rule yields f ′(x) = g(x) + (x − α)g′(x), and so

f ′(α) = g(α). By definition, α is a multiple root of f(x) if and only if g(α) = 0, and

so the desired result follows. 2

Corollary 1.4.29 Let F be a field. Then a nonzero polynomial f(x) ∈ F [x] with

gcd(f(x), f ′(x)) = 1 has only simple roots in every extension field of F .

Proof. This is an immediate consequence of Proposition 1.4.28. 2

1.4.3 Constructions of finite fields

Now we are ready to construct general finite fields, following in the footsteps of

Evariste Galois (1811–1832). Galois is the romantic hero of mathematics: a bril-

liant mathematician who revolutionized algebra, who passionately engaged in French

politics, and who died at age 21 in what seemed to be a duel. If you want to read

a really good book on a mathematical genius, then we recommend the biographical

novel on Galois by Petsinis [159]. An excellent source book on the work of Galois

is [123]. The major achievements of Galois were Galois theory in algebra and the

theory of finite fields (also called “Galois fields” in his honor) in number theory and

algebra.

So far, the only finite fields we know are finite prime fields (see Theorem 1.4.5),

and this was also the state of affairs before Galois came along. An arbitrary finite
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field F has a prime number p as its characteristic (see Proposition 1.4.8 and Defini-

tion 1.4.9) and it must contain the n-fold sums n · 1 for all n ∈ N. Therefore F has

a copy of Fp = Zp as a subfield. Galois posits a universe in which to operate, and in

the modern interpretation this would be the algebraic closure Fp of Fp, that is, the

field Fp consisting of all roots of all polynomials over Fp of positive degree. This is

analogous to the step from R to C which is taken in order to accommodate all roots

of all polynomials over R of positive degree. We refer to [173, Chapter 2] for more

information on the algebraic closure F of an arbitrary field F . In particular, we use

the fact that each polynomial over F of positive degree always has a root in F .

We know from Theorem 1.4.12 that the order of a finite field is necessarily a

prime power. The following result of Galois provides the crucial converse.

Theorem 1.4.30 For every prime power q, there exists a finite field of order q.

Proof. Let q = pr with a prime number p and r ∈ N. Consider the polynomial

f(x) = xq − x ∈ Fp[x] and let F be the set of all roots of f(x) in Fp. We have

f ′(x) = (q · 1)xq−1 − 1 = −1 since q · 1 = 0 ∈ Fp, and therefore gcd(f(x), f ′(x)) =

gcd(xq−x,−1) = 1. It follows then from Corollary 1.4.29 that f(x) has only simple

roots in Fp, and so F has exactly deg(f(x)) = q elements.

It remains to verify that F is a subfield of Fp. We proceed by Definition 1.4.1

and we show first that F is a subgroup of the additive group Fp. For this it suffices

to prove that if α, β ∈ F , then also α− β ∈ F . Indeed, Proposition 1.4.14 yields

(α− β)q = (α− β)p
r

= αp
r − βpr = αq − βq = α− β,

and so α − β ∈ F . Finally, we show that the set F ∗ of nonzero elements of F

is a subgroup of the multiplicative group Fp
∗
. Again, it suffices to prove that if

α, β ∈ F ∗, then αβ−1 ∈ F ∗. Now (αβ−1)q = αq(β−1)q = αq(βq)−1 = αβ−1, and the

proof is complete. 2

In a paper published posthumously, Gauss criticized the approach by Galois and

disparaged “the liberty that some younger mathematicians have taken by introduc-

ing imaginary quantities”. Therefore alternative approaches to the construction of

finite fields were developed, and we will present one such approach later in Remark

1.4.44.

Somehow the question of how to best construct finite fields is moot since it is a

theorem (see [103, Theorem 2.5]) that all finite fields of the same order are basically

identical, in the sense that they have the same algebraic structure and just differ by

the names or symbols that we assign to their elements. Therefore we can speak of

the finite field Fq of order q. For the manifold applications of finite fields that we

will encounter in the present book, it is in principle immaterial which description

of Fq is used. All that matters is that there exists a set Fq of size q which forms a

field. Next we note a simple relationship between finite fields.
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Proposition 1.4.31 Let q be a prime power and let n ∈ N. Then Fq is a subfield

of Fqn, or in other words, Fqn is an extension field of Fq.

Proof. In view of the proof of Theorem 1.4.30, it suffices to show that the polynomial

xq − x ∈ Fp[x] divides the polynomial xq
n − x ∈ Fp[x], where p is the character-

istic of Fq. But this is readily seen: the integer q − 1 divides the integer qn − 1,

hence xq−1 − 1 ∈ Fp[x] divides xq
n−1 − 1 ∈ Fp[x], and so xq − x ∈ Fp[x] divides

xq
n − x ∈ Fp[x]. 2

Here is a remarkable property of finite fields which is useful in many applications

of finite fields. We remind you that we defined cyclic groups in Definition 1.3.13.

Theorem 1.4.32 For every finite field Fq, the multiplicative group F∗q of nonzero

elements of Fq is cyclic.

Proof. Let E = E(F∗q) be the exponent of the finite abelian group F∗q (see Definition

1.3.22). Then Corollary 1.3.25 shows that aE = 1 ∈ Fq for all a ∈ F∗q, that is, every

a ∈ F∗q is a root of the polynomial xE − 1 ∈ Fq[x]. Theorem 1.4.27 implies that

q− 1 ≤ E. On the other hand, it is trivial that E ≤ q− 1. Hence E = q− 1, which

means that there exists an element g ∈ F∗q with ord(g) = q − 1. 2

Corollary 1.4.33 For every prime number p, there exists a primitive root modulo p.

Proof. The group F∗p is cyclic by Theorem 1.4.32, and (the least residue modulo p

of) a primitive root modulo p is nothing else but a generator of the cyclic group F∗p. 2

Definition 1.4.34 For a finite field Fq, every generator of the cyclic group F∗q is

called a primitive element of Fq.

Remark 1.4.35 It follows from Remark 1.3.14 that, for every prime power q, there

are exactly φ(q− 1) primitive elements of Fq, where φ is Euler’s totient function. In

particular, there are exactly φ(p − 1) primitive roots modulo p in the least residue

system modulo p.

Now we offer some relaxation with a brief interlude about general fields. For a

given field F , let α be an element of an extension field of F such that α is a root of

a polynomial over F of positive degree; we call such an element algebraic over F .

We are interested in the set of all polynomials over F that have α as a root. This

set contains a polynomial that is singled out by the following result.

Proposition 1.4.36 Let F be a field and let α be an element of an extension field

of F such that α is algebraic over F . Then there exists a uniquely determined monic

polynomial m(x) ∈ F [x] of least degree having α as a root.
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Proof. Since α is algebraic over F , there exists a polynomial f(x) ∈ F [x] with

deg(f(x)) ≥ 1 and f(α) = 0. Among all such polynomials f(x), we can choose one

called m(x) ∈ F [x] of least degree and we can make m(x) monic. It remains to

show that if g(x) ∈ F [x] is monic with g(α) = 0 and deg(g(x)) = deg(m(x)), then

g(x) = m(x). But if we had g(x) 6= m(x), then we get an easy contradiction to the

construction of m(x) by considering the polynomial c−1(g(x)−m(x)) ∈ F [x], where

c is the leading coefficient of g(x)−m(x). 2

Definition 1.4.37 Let F be a field and let α be an element of an extension field

of F such that α is algebraic over F . Then the uniquely determined polynomial

m(x) ∈ F [x] in Proposition 1.4.36 is called the minimal polynomial of α over F .

Proposition 1.4.38 Let F be a field, let α be an element of an extension field of

F such that α is algebraic over F , and let m(x) ∈ F [x] be the minimal polynomial

of α over F . Then a polynomial f(x) ∈ F [x] satisfies f(α) = 0 if and only if m(x)

divides f(x) in F [x].

Proof. By the division algorithm, we can write f(x) = l(x)m(x) + r(x) with

l(x), r(x) ∈ F [x] and deg(r(x)) < deg(m(x)). This implies that f(α) = 0 if and

only if r(α) = 0. The definition of m(x) shows that r(α) = 0 if and only if r(x) is

the zero polynomial, that is, if and only if m(x) divides f(x) in F [x]. 2

Proposition 1.4.39 Let F be a field and let α be an element of an extension field

of F such that α is algebraic over F . Then the minimal polynomial of α over F is

irreducible over F .

Proof. This is easy enough: if m(x) ∈ F [x] is the minimal polynomial of α over F

and if we had m(x) = f(x)g(x) with f(x), g(x) ∈ F [x], 1 ≤ deg(f(x)) < deg(m(x)),

and 1 ≤ deg(g(x)) < deg(m(x)), then 0 = m(α) = f(α)g(α), and so f(α) = 0 or

g(α) = 0 by Lemma 1.4.2(ii); but this is in any case a contradiction to the definition

of m(x). 2

Remark 1.4.40 Let F = Fq and consider the extension field Fqn with n ∈ N. Then

every α ∈ Fqn satisfies αq
n

= α by Proposition 1.4.13, or in other words, α is a root

of the polynomial xq
n − x ∈ Fq[x]. Therefore α is algebraic over Fq. Consequently,

the results in Propositions 1.4.38 and 1.4.39 apply to all elements of all finite fields.

Given again an arbitrary field F , let the elements α1, . . . , αk from some extension

field of F be algebraic over F . Then F (α1, . . . , αk) is by definition the smallest field

containing F, α1, . . . , αk; more precisely, we take an extension field K of F with
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α1, . . . , αk ∈ K and then F (α1, . . . , αk) is the intersection of all subfields of K that

contain F, α1, . . . , αk. If k = 1, that is, if we form F (α) with an algebraic element

α ∈ K over F , then F (α) is called a simple extension field of F .

Example 1.4.41 Let F = Fq and Fqn with n ∈ N be as in Remark 1.4.40. As an

algebraic element α ∈ Fqn over Fq, we choose a primitive element α of Fqn which

exists by Theorem 1.4.32 and Definition 1.4.34. Then the field Fq(α) is a subfield

of Fqn containing Fq and all powers of α. But the powers of α exhaust F∗qn , and so

Fq(α) = Fqn . Therefore in the world of finite fields, every finite extension field of

every finite field is a simple extension field.

The situation described in Example 1.4.41 arises quite frequently in applications,

and so the following special terminology is used in this case.

Definition 1.4.42 Let Fq be a finite field. A polynomial over Fq is called a primitive

polynomial over Fq if it is the minimal polynomial over Fq of some primitive element

of some finite extension field of Fq.

We note that since a primitive polynomial over Fq is a minimal polynomial over

Fq, a primitive polynomial over Fq is automatically monic and irreducible over Fq. It

is comforting to know that there exist primitive polynomials of any positive degree.

Proposition 1.4.43 For every finite field Fq and for every n ∈ N, there exists a

primitive polynomial over Fq, and so in particular a monic irreducible polynomial

over Fq, of degree n.

Proof. Choose a primitive element α of the extension field Fqn and let p(x) ∈ Fq[x]

be the minimal polynomial of α over Fq. Put d = deg(p(x)) and consider the subset

K of Fqn consisting of all elements
∑d−1

j=0 cjα
j with c0, c1, . . . , cd−1 ∈ Fq. It is obvious

that K is a subgroup of the group Fqn under addition. Actually, we want to prove

that K is a subfield of Fqn . First we show that if β, γ ∈ K, then also βγ ∈ K.

We can write β = f(α) and γ = g(α) with f(x), g(x) ∈ Fq[x], deg(f(x)) < d,

and deg(g(x)) < d. By the division algorithm, f(x)g(x) = l(x)p(x) + r(x) with

l(x), r(x) ∈ Fq[x] and deg(r(x)) < d. Then βγ = f(α)g(α) = r(α) since p(α) = 0,

and so βγ ∈ K. Next we prove that if β ∈ K with β 6= 0, then β−1 ∈ K. We

write β = f(α) with a nonzero polynomial f(x) ∈ Fq[x] satisfying deg(f(x)) < d.

Then gcd(f(x), p(x)) = 1 since p(x) is irreducible over Fq by Proposition 1.4.39.

Thus, Proposition 1.4.17(i) shows that we can write 1 = f(x)f1(x) + p(x)p1(x) with

f1(x), p1(x) ∈ Fq[x], where we can achieve deg(f1(x)) < d by subtracting a suitable

multiple of p(x). Substituting x = α, we get 1 = βf1(α), and so β−1 = f1(α) ∈ K.

Hence K is indeed a subfield of Fqn .

Note that K contains Fq and α, and therefore Fq(α) ⊆ K ⊆ Fqn . Now Fq(α) =

Fqn by Example 1.4.41, and so K = Fqn . Next we observe that for every β ∈ K, the
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representation β =
∑d−1

j=0 cjα
j with c0, c1, . . . , cd−1 ∈ Fq is unique, for if β also had a

different representation of this type, then we would get an immediate contradiction

to the definition of p(x) as the minimal polynomial of α over Fq. Thus, K has

exactly qd elements, hence qd = qn, and so d = n and deg(p(x)) = d = n. 2

We present a table listing for each n = 1, . . . , 15 a primitive polynomial p(x) over

F2 of degree n. This table is extracted from [103, Chapter 10, Table D]. Many more

examples of primitive polynomials can be found in the tables in [103, Chapter 10].

n p(x)

1 x + 1

2 x2 + x + 1

3 x3 + x + 1

4 x4 + x + 1

5 x5 + x2 + 1

6 x6 + x + 1

7 x7 + x + 1

8 x8 + x4 + x3 + x2 + 1

9 x9 + x4 + 1

10 x10 + x3 + 1

11 x11 + x2 + 1

12 x12 + x6 + x4 + x + 1

13 x13 + x4 + x3 + x + 1

14 x14 + x5 + x3 + x + 1

15 x15 + x + 1

Remark 1.4.44 Here is the long-awaited alternative construction of general finite

fields. Basically, we find all ingredients of this construction in the proof of Proposi-

tion 1.4.43. There is also an analogy with the factor group Z/(m) in Example 1.3.20.

Let q = pr with a prime number p and r ∈ N. According to Proposition 1.4.43, we

can choose an irreducible polynomial f(x) ∈ Fp[x] over Fp of degree r. Note that

Fp[x] is an abelian group with the binary operation being addition of polynomials

and that the set (f(x)) := {l(x)f(x) : l(x) ∈ Fp[x]} of all multiples of f(x) is a

subgroup of Fp[x]. Therefore we can form the factor group Fp[x]/(f(x)). The dis-

tinct elements of this factor group are the cosets g(x) + (f(x)), where g(x) ∈ Fp[x]

and deg(g(x)) < r. Hence Fp[x]/(f(x)) is a finite abelian group of order pr. Now

we make a field out of Fp[x]/(f(x)) by introducing a multiplication for cosets in the

obvious manner: we define

(g(x) + (f(x)))(h(x) + (f(x))) = g(x)h(x) + (f(x)) (1.13)

for all g(x), h(x) ∈ Fp[x]. Using the trick in the proof of Proposition 1.2.3, we

see that this multiplication is well defined. The same argument as in the proof of

Proposition 1.4.43, now with f(x) in the role of p(x), shows that every nonzero

element of Fp[x]/(f(x)) has an inverse element with respect to the binary operation
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in (1.13). Therefore Fp[x]/(f(x)) forms a finite field of order q = pr. Gauss would

have been satisfied with this construction of finite fields, as it involves no “imaginary

quantities”. By the way, the existence of an irreducible polynomial f(x) ∈ Fp[x] over

Fp of degree r can be shown also by a combinatorial method (see [103, Section 3.2]),

without recourse to the arguments in the proof of Proposition 1.4.43.

Example 1.4.45 Let us construct the finite field F4 according to the procedure

in Remark 1.4.44. As the irreducible polynomial f(x) over F2 we take f(x) =

x2+x+1 ∈ F2[x] (see Example 1.4.21). We have exactly four cosets in F2[x]/(f(x)),

namely 0 + (f(x)), 1 + (f(x)), x+ (f(x)), and x+ 1 + (f(x)), which we abbreviate

by 0, 1, x, and x+ 1, respectively. By recalling how the arithmetic operations with

cosets work, we obtain the following addition and multiplication tables.

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

For instance, the entry in the lower right corner of the multiplication table is obtained

by noting that (x+ 1) · (x+ 1) = x2 + 1 and x2 + 1 + (f(x)) = x+ (f(x)) since f(x)

divides x2 + 1 − x = x2 + x + 1 in F2[x]. The set {0, 1} represents the subfield F2

of F4.

Remark 1.4.46 The approach in Remark 1.4.44 can be used also for the construc-

tion of finite extension fields of an arbitrary finite field Fq. Given a positive integer

k, we can choose an irreducible polynomial f(x) ∈ Fq[x] over Fq of degree k (see

Proposition 1.4.43). With (f(x)) being the set of all multiples of f(x) in Fq[x],

we form the factor group Fq[x]/(f(x)). This is a finite abelian group of order qk,

and by introducing a multiplication of cosets as in (1.13), we obtain a finite field

of order qk. We can identify each coset with respect to (f(x)) with a uniquely de-

termined polynomial r(x) ∈ Fq[x] satisfying deg(r(x)) < k, and the operations for

these polynomials are carried out modulo f(x). We speak of the residue class field

Fq[x]/(f(x)).

A theory of congruences (see Section 1.2) for polynomials over Fq can be de-

veloped with every nonzero modulus m(x) ∈ Fq[x]. We say that g1(x) ∈ Fq[x] is

congruent to g2(x) ∈ Fq[x] modulo m(x), and we write g1(x) ≡ g2(x) (mod m(x)),

provided that m(x) divides the difference g1(x) − g2(x) in Fq[x]; otherwise we say

that g1(x) is incongruent to g2(x) modulo m(x). Obviously, the basic properties of

congruences in Proposition 1.2.3 hold here as well. A coset in Fq[x] with respect to

(m(x)) := {l(x)m(x) : l(x) ∈ Fq[x]} is also called a residue class modulo m(x). This

explains the terminology “residue class field” in Remark 1.4.46. By defining addition
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and multiplication of residue classes modulo m(x) in the obvious manner (compare

with Remarks 1.4.44 and 1.4.46), we obtain the residue class ring Fq[x]/(m(x)).

If g(x) ≡ r(x) (mod m(x)) with deg(r(x)) < deg(m(x)), then r(x) ∈ Fq[x] is

called the least residue of g(x) ∈ Fq[x] modulo m(x) ∈ Fq[x]. A set of qdeg(m(x))

polynomials over Fq that are pairwise incongruent modulo m(x) is called a complete

residue system modulo m(x). An easy example of a complete residue system modulo

m(x) is given by the least residue system modulo m(x), that is, the set of all r(x) ∈
Fq[x] with deg(r(x)) < deg(m(x)).

It is a remarkable phenomenon that once we know a root of a polynomial over

a finite field Fq, then further roots of that polynomial can be generated in a very

simple manner. Concretely, let f(x) =
∑n

j=0 cjx
j ∈ Fq[x] with cj ∈ Fq for 0 ≤ j ≤ n

and deg(f(x)) = n ≥ 1, and let α be a root of f(x) in some extension field of Fq.
Then using Propositions 1.4.14 and 1.4.13, we get

0 = f(α)q =
( n∑
j=0

cjα
j
)q

=
n∑
j=0

cqjα
jq =

n∑
j=0

cjα
jq = f(αq),

and so αq is also a root of f(x). If we feed αq into this formula, then we obtain that

(αq)q = αq
2

is a root of f(x). In the end, all elements αq
s

with s = 0, 1, . . . are roots

of f(x). Obviously, these elements cannot all be distinct since f(x) has at most

n roots by Theorem 1.4.27. A particularly nice situation occurs in the case where

f(x) is irreducible over Fq, because then the different ones among the elements αq
s
,

s = 0, 1, . . ., yield exactly all roots of f(x).

Proposition 1.4.47 Let Fq be a finite field and let f(x) ∈ Fq[x] be irreducible over

Fq with deg(f(x)) = k. Then f(x) has a root α in the finite extension field Fqk , all

roots of f(x) are simple, and the roots of f(x) are exactly the k distinct elements

α, αq, αq
2
, . . . , αq

k−1
of Fqk .

Proof. As a model for the finite field Fqk we take the residue class field Fq[x]/(f(x))

in Remark 1.4.46. Let α denote the coset x+H with respect to H := (f(x)). Then

by the way the arithmetic operations in Fq[x]/(f(x)) are defined, we obtain

f(α) = f(x+H) = f(x) +H = 0 +H,

and so α ∈ Fqk is a root of f(x). As we have seen, it follows that α, αq, αq
2
, . . . , αq

k−1

are roots of f(x). Since f(x) can have at most k roots by Theorem 1.4.27, it suffices

now to show that α, αq, αq
2
, . . . , αq

k−1
are distinct. So suppose we had αq

i
= αq

j
for

some i, j ∈ Z with 0 ≤ i < j ≤ k − 1. By raising this identity to the power qk−j,

we get αq
d

= αq
k

= α with d = k + i − j, where we used α ∈ Fqk and Proposition

1.4.13 in the second step. We infer from the proof of Theorem 1.4.30 that α ∈ Fqd ,
and so Fq(α) ⊆ Fqd . On the other hand, the definition of α as the coset x + H

shows that Fq(α) = Fq[x]/(f(x)) = Fqk , and so Fqk ⊆ Fqd . This is a contradiction

to d = k + i− j < k. 2
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1.4.4 Trace map and characters

We introduce an important map from a finite field to a subfield which will turn out

to be useful, for instance, in the construction of characters of finite fields later in

this subsection. In order to simplify the notation, we write F = Fq for a given finite

field and K = Fqn with n ∈ N for a finite extension field of F . We start from an

element α ∈ K and we consider the element γ =
∑n−1

j=0 α
qj which, as it stands, lies

in K. But now we observe that by Propositions 1.4.14 and 1.4.13 we obtain

γq =
( n−1∑
j=0

αq
j)q

=
n−1∑
j=0

αq
j+1

=
n−1∑
j=1

αq
j

+ αq
n

=
n−1∑
j=1

αq
j

+ α = γ,

and so the argument in the proof of Theorem 1.4.30 shows that γ ∈ Fq = F .

Definition 1.4.48 Let F = Fq be an arbitrary finite field and let K = Fqn with

n ∈ N be a finite extension field of F . Then the trace TrK/F (α) of α ∈ K over F is

defined by

TrK/F (α) =
n−1∑
j=0

αq
j ∈ F.

Example 1.4.49 Let q = 2 and n = 2 in Definition 1.4.48, so that F = F2 and

K = F4. Then by the addition and multiplication tables in Example 1.4.45, we

obtain

TrK/F (x) = x+ x2 = x+ x+ 1 = 1 ∈ F.

Theorem 1.4.50 Let F = Fq and K = Fqn with n ∈ N. Then the trace map

TrK/F : K → F has the following properties:

(i) TrK/F (α + β) = TrK/F (α) + TrK/F (β) for all α, β ∈ K;

(ii) TrK/F (cα) = cTrK/F (α) for all c ∈ F and α ∈ K;

(iii) for every c ∈ F , there are exactly qn−1 elements α ∈ K with TrK/F (α) = c, and

so in particular the map TrK/F is surjective.

Proof. (i) This is an immediate consequence of Proposition 1.4.14.

(ii) This follows from cq
j

= c for all c ∈ F and all integers j ≥ 0, which is in turn

deduced from Proposition 1.4.13.

(iii) For every c ∈ F , let N(c) be the number of α ∈ K with TrK/F (α) = c.

Note that TrK/F (α) =
∑n−1

j=0 α
qj = c if and only if α is a root of the polynomial∑n−1

j=0 x
qj − c ∈ F [x] of degree qn−1. Hence Theorem 1.4.27 shows that N(c) ≤ qn−1

for all c ∈ F . Consequently, we obtain

qn =
∑
c∈F

N(c) ≤
∑
c∈F

qn−1 = q · qn−1 = qn.
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It follows that we must have equality throughout, and so N(c) = qn−1 for all c ∈ F .

2

The last task we set ourselves in this chapter is to determine the characters of a

given finite field Fq. According to the definition of a field in Definition 1.4.1, there

are actually two abelian groups that are relevant in this context, namely the additive

group Fq (that is, Fq with the binary operation being addition) and the multiplicative

group F∗q (that is, the set F∗q of nonzero elements of Fq with the binary operation

being multiplication). Both abelian groups Fq and F∗q are of course finite, and so

the general theory of characters of finite abelian groups in Subsection 1.3.2 applies.

Let us first consider the additive group Fq. A character of this group G = Fq
is a map χ : G → U = {z ∈ C : |z| = 1} satisfying (1.8). The basic tool for the

construction of such a character is the trace map TrFq/Fp : Fq → Fp, where p is the

characteristic of Fq and Fp is the finite prime field contained in Fq. In order to avoid

awkward notation, we abbreviate this trace map by Tr in the following discussion.

As usual, we identify Fp with Zp = {0, 1, . . . , p−1} ⊂ Z under the arithmetic modulo

p. Now we choose an element c ∈ Fq and we put

χc(a) = e2πiTr(ca)/p for all a ∈ Fq. (1.14)

Then it follows from Theorem 1.4.50(i) that the map χc : Fq → U is a character

of the additive group Fq. Instead of “character of the additive group Fq”, we shall

henceforth use the terminology additive character of Fq.

Theorem 1.4.51 The additive characters of the finite field Fq are exactly given by

the maps χc in (1.14) with c running through Fq.

Proof. We have already seen that each map χc with c ∈ Fq is an additive character

of Fq. Furthermore, we know from Theorem 1.3.36 that there are exactly q different

additive characters of Fq. Therefore it suffices to prove that the maps χb and χc
are different whenever b, c ∈ Fq with b 6= c. By Theorem 1.4.50(iii) there exists an

element d ∈ Fq with Tr(d) = 1 ∈ Fp. With a = (b − c)−1d ∈ Fq we then deduce

from (1.14) that

χb(a)

χc(a)
= e2πiTr((b−c)a)/p = e2πiTr(d)/p = e2πi/p 6= 1,

and so χb(a) 6= χc(a). 2

Now we turn to the multiplicative group F∗q, a character of which is called a

multiplicative character of Fq. This is actually the easier case since we can just

collect the fruits of earlier labor. The point is that F∗q is a finite cyclic group of

order q−1 by Theorem 1.4.32 and that the characters of all finite cyclic groups were

already determined in Example 1.3.31.



44 CHAPTER 1. A REVIEW OF NUMBER THEORY AND ALGEBRA

Theorem 1.4.52 Let g be a fixed primitive element of the finite field Fq. Then for

each integer h = 0, 1, . . . , q − 2, the map ψh : F∗q → U given by

ψh(g
j) = e2πihj/(q−1) for j = 0, 1, . . . , q − 2

defines a multiplicative character of Fq, and every multiplicative character of Fq is

obtained in this way.

Proof. This follows immediately from Example 1.3.31. 2

Remark 1.4.53 If q is a power of an odd prime, then the multiplicative character

ψh of Fq in Theorem 1.4.52 with h = (q − 1)/2 is the quadratic character η of Fq.
Note that for a ∈ F∗q we have η(a) = 1 if a is the square of an element of F∗q and

η(a) = −1 otherwise. It is sometimes convenient to put η(a) = 0 for a = 0 ∈ Fq. If q

is an odd prime number p, then η agrees with the Legendre symbol for the modulus

p (see Definition 1.2.22), that is, η(a) =
(
a
p

)
for a ∈ Zp = Fp.

If your appetite for results on finite fields is not yet stilled, then you will find

a lot of food for thought in the textbooks [74] and [103] and in the encyclopedic

monographs [102] and [181]. The Handbook of Finite Fields edited by Mullen and

Panario [118] contains over 80 survey articles on all imaginable aspects of finite fields.

The aficionados of finite fields will encounter many applications of these beautiful

structures in the present book.

Exercises

1.1 For all nonzero integers a and b, prove that

gcd(a, b) lcm(a, b) = |ab|.

1.2 For all nonzero integers a, b, c, prove that

gcd(ab, ac, bc) lcm(a, b, c) = |abc|.

1.3 Given k ≥ 2 integers a1, . . . , ak that are not all 0, prove that there exist integers

b1, . . . , bk such that

gcd(a1, . . . , ak) =
k∑
j=1

ajbj.

1.4 Let a, b, k ∈ N with k ≥ 2 be such that gcd(a, b) = 1 and ab is a kth power of

a positive integer. Prove that a and b are kth powers of positive integers.
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1.5 Show that n! + 1 and (n+ 1)! + 1 are coprime for all n ∈ N.

1.6 Prove that the product of any four consecutive integers is divisible by 24.

1.7 Modify Euclid’s trick in the proof of Theorem 1.1.12 in order to prove that

there are infinitely many prime numbers that are congruent to 3 modulo 4.

1.8 Compute the least residue of 234 modulo 5.

1.9 The Euclidean algorithm for the computation of gcd(a, b) for a, b ∈ N proceeds

as follows. We can assume that a > b and that b does not divide a. Then

we carry out repeated divisions with remainder: a = q1b + r1 (1 ≤ r1 < b),

b = q2r1 + r2 (0 ≤ r2 < r1), r1 = q3r2 + r3 (0 ≤ r3 < r2), and so on.

Prove that this algorithm terminates after finitely many steps and that the

last nonzero remainder rj is equal to gcd(a, b). (Hint: show by induction that

gcd(a, b) = gcd(ri−1, ri) for 1 ≤ i ≤ j, where r0 := b.)

1.10 Prove that the number of steps in the Euclidean algorithm in the preceding

exercise is at most C log b with an absolute constant C > 0.

1.11 Compute gcd(123, 45) by the Euclidean algorithm in Exercise 1.9.

1.12 For m, b ∈ N with gcd(m, b) = 1, the Euclidean algorithm (see Exercise 1.9)

for the computation of gcd(m, b) can be used to find an integer c with bc ≡
1 (mod m). We can assume that 1 < b < m. Now start from the identity

rj−2 = qjrj−1 + rj (with r−1 := m if j = 1) and note that rj = 1. Hence

1 = rj−2−qjrj−1. Then show that we can run backwards through the Euclidean

algorithm until we get 1 as a linear combination of b and m.

1.13 Use the method in Exercise 1.12 to determine the unique integer c ∈ Z97 for

which 36c ≡ 1 (mod 97).

1.14 Let a, b,m ∈ Z with m ≥ 1. Prove that there exists an integer c with ac ≡
b (mod m) if and only if gcd(a,m) divides b.

1.15 Prove that if ab ≡ ac (mod m) with a, b, c ∈ Z, m ∈ N, and gcd(a,m) = d,

then b ≡ c (mod m/d).

1.16 Prove that if a ≡ b (mod m) for a, b ∈ Z and m ∈ N, then gcd(a,m) =

gcd(b,m).

1.17 If a, b ∈ Z with a ≥ 0 and b ≥ 3, prove that 2a + 1 is not divisible by 2b − 1.

1.18 Prove that there is no right triangle with all side lengths being integers and

such that the lengths of the two sides forming the right angle are odd.
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1.19 For odd m ∈ N, prove that the sum of the elements of every complete residue

system modulo m is divisible by m.

1.20 For m,n ∈ N with gcd(m,n) = 1, prove that Euler’s totient function φ satisfies

φ(mn) = φ(m)φ(n).

1.21 For m,n ∈ N with gcd(m,n) > 1, prove that φ(mn) > φ(m)φ(n).

1.22 Let m,n ∈ N be such that every prime factor of m is also a prime factor of n.

Prove that φ(mn) = mφ(n).

1.23 Prove that φ(m) is even for all integers m ≥ 3.

1.24 Find the least positive integer a such that a ≡ 4 (mod 7), a ≡ 2 (mod 11),

and a ≡ 11 (mod 13).

1.25 Find all quadratic residues modulo 13 in the least residue system modulo 13.

1.26 For every prime number p ≥ 5, prove that the sum of the quadratic residues

modulo p in any complete residue system modulo p is divisible by p.

1.27 Let p be an odd prime number and let a be a quadratic residue modulo p.

Prove that for every k ∈ N there exists an integer bk with b2k ≡ a (mod pk).

1.28 For a prime number p 6= 3, an integer a with gcd(a, p) = 1 is called a cubic

residue modulo p if there exists an integer b such that a ≡ b3 (mod p). Prove

that if p ≡ 2 (mod 3), then all integers coprime to p are cubic residues modulo

p, whereas if p ≡ 1 (mod 3), then there are exactly (p − 1)/3 cubic residues

modulo p in the least residue system modulo p.

1.29 Let G be a finite abelian group with the multiplicative notation and let a, b ∈
G. Prove that ord(ab) = ord(a) ord(b) whenever ord(a) and ord(b) are coprime.

1.30 Prove that ord(a−1) = ord(a) for all elements a of a finite abelian group.

1.31 Prove that the finite abelian group Rm in Example 1.3.7 is not cyclic if m = 2k

with an integer k ≥ 3.

1.32 Let H be a subgroup of the finite abelian group G. Prove that there are exactly

|G|/|H| characters χ of G with the property that χ(h) = 1 for all h ∈ H.

1.33 For characters χ and σ of the finite abelian group G of order t, prove that

∑
a∈G

χ(a)σ(a) =

{
t if χ = σ,

0 if χ 6= σ,

where the bar denotes complex conjugation.
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1.34 If ψ is a nontrivial multiplicative character and χ a nontrivial additive char-

acter of Fq, then the Gauss sum G(ψ, χ) is defined by

G(ψ, χ) =
∑
c∈F∗q

ψ(c)χ(c).

Prove that |G(ψ, χ)| = q1/2. (Hint: start from |G(ψ, χ)|2 = G(ψ, χ)G(ψ, χ),

where the bar denotes complex conjugation.)

1.35 For a nontrivial additive character χ of Fq with q odd and for a ∈ F∗q and

b ∈ Fq, put

S(χ; a, b) =
∑
c∈Fq

χ(ac2 + b).

(a) Prove that

S(χ; a, b) = χ(b)η(a)G(η, χ),

where η is the quadratic character of Fq in Remark 1.4.53.

(b) Deduce that |S(χ; a, b)| = q1/2.

(c) Prove |S(χ; a, b)| = q1/2 also directly without the use of Gauss sums.

(Hint: start from |S(χ; a, b)|2 = S(χ; a, b)S(χ; a, b), where the bar denotes

complex conjugation.)

1.36 For nontrivial multiplicative characters ψ and σ of Fq, the Jacobi sum J(ψ, σ)

is defined by

J(ψ, σ) =
∑

c∈Fq\{0,1}

ψ(c)σ(1− c).

Prove that if ψσ is also a nontrivial multiplicative character of Fq, then

J(ψ, σ) =
G(ψ, χ)G(σ, χ)

G(ψσ, χ)
,

where χ is any nontrivial additive character of Fq. (Hint: start from the

product G(ψ, χ)G(σ, χ) of Gauss sums.)

1.37 Prove that if ψ, σ, and ψσ are nontrivial multiplicative characters of Fq, then

the Jacobi sum J(ψ, σ) satisfies |J(ψ, σ)| = q1/2.

1.38 Let ψ be a nontrivial multiplicative character of Fq and let S be a subset of

Fq with h ≥ 1 elements. Prove that∑
c∈Fq

∣∣∣∑
a∈S

ψ(c+ a)
∣∣∣2 = h(q − h),

where we put ψ(0) = 0.
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1.39 Prove Theorem 1.4.22 in detail.

1.40 Let f(x) and g(x) be monic polynomials over an arbitrary field. Prove that

gcd(f(x), g(x)) lcm(f(x), g(x)) = f(x)g(x).

1.41 Let f1(x), . . . , fk(x) be k ≥ 2 monic polynomials over an arbitrary field that

are pairwise coprime. Prove that

lcm(f1(x), . . . , fk(x)) = f1(x) · · · fk(x).

1.42 Let F be a field and let f(x), g(x),m(x) ∈ F [x] with m(x) 6= 0 ∈ F [x]. Prove

that the congruence f(x)h(x) ≡ g(x) (mod m(x)) has a solution h(x) ∈ F [x]

if and only if gcd(f(x),m(x)) divides g(x) in F [x].

1.43 Consider the polynomial ring F [x] for an arbitrary field F . Prove the Chinese

remainder theorem for F [x]: if k ≥ 2 pairwise coprime nonzero polynomi-

als m1(x), . . . ,mk(x) ∈ F [x] and arbitrary polynomials f1(x), . . . , fk(x) ∈
F [x] are given, then there exists a polynomial g(x) ∈ F [x] with g(x) ≡
fj(x) (mod mj(x)) for 1 ≤ j ≤ k and g(x) is uniquely determined modulo

m1(x) · · ·mk(x).

1.44 Prove the product rule for the derivative of polynomials over an arbitrary field.

1.45 Prove in detail that there are exactly φ(q−1) primitive elements in every finite

field Fq.

1.46 Set up addition and multiplication tables for the finite field F9.

1.47 Determine all primitive elements of F9.

1.48 Prove that if p is a prime number and n ∈ N, then n divides φ(pn− 1). (Hint:

consider the primitive elements of the finite field Fpn .)

1.49 Prove that for q ≥ 3, the sum of all elements of Fq is equal to 0.

1.50 Prove that x2 + x+ 4 ∈ F11[x] is irreducible over F11.

1.51 Find all irreducible polynomials over F2 of degree 4.

1.52 Let Fq be a finite field of characteristic p. Prove that the derivative f ′(x) of

f(x) ∈ Fq[x] is the zero polynomial if and only if f(x) is the pth power of some

polynomial in Fq[x].

1.53 Determine the minimal polynomial of α = (1 +
√

5)/2 over Q.
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1.54 For F = Fq and K = Fqn with n ∈ N, prove that TrK/F (αq) = TrK/F (α) for

all α ∈ K.

1.55 Let K be a finite extension field of the finite field F of characteristic p. Prove

that

TrK/F (αp
n

) = (TrK/F (α))p
n

for all α ∈ K and n ∈ N.

1.56 Prove the transitivity of the trace, that is, if F ⊆ K ⊆ E are finite fields, then

TrE/F (α) = TrK/F
(
TrE/K(α)

)
for all α ∈ E.

1.57 Let α be algebraic over F = Fq, let m(x) ∈ Fq[x] be the minimal polynomial

of α over Fq, and suppose that deg(m(x)) = n. Then show that TrK/F (α) =

−cn−1 with K = Fqn , where cn−1 is the coefficient of xn−1 in m(x).

1.58 Let K be a finite extension field of F = Fq and let α ∈ K. Prove that

TrK/F (α) = 0 if and only if α = βq − β for some β ∈ K.
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Chapter 2

Cryptography

Don’t shed any tears for Bob,

this blundering bungling slob.

He mixed up n, p, and q,

giving RSA hackers a clue,

no wonder he’s lynched by a mob.

2.1 Classical cryptosystems

2.1.1 Basic principles

Cryptology in the modern sense is the theory of data security and data integrity.

Cryptology as a practical craft can be traced back several thousand years as it was

already used in one form or other in the ancient civilizations of Egypt, Mesopotamia,

China, Greece, and Rome. It would lead us too far astray if we were to delineate the

colorful history of cryptology here, but we will occasionally mention some tidbits.

A systematic account of the history of cryptology up to 1967 is given in the book

of Kahn [75]. The more recent treatment by Singh [187] offers very stimulating

reading.

Cryptology splits up into cryptography, that is, the design of secure data and

communication systems, and cryptanalysis, that is, the breaking of such systems.

Cryptanalysis is slippery territory: if we provide too much information here, we

will be accused of giving a tutorial on hacking and cybercrime. Therefore we fo-

cus on cryptography and discuss only in general terms what is involved in cracking

certain cryptographic schemes. Cryptography has various important facets, such

as confidentiality (guaranteeing that sensitive messages cannot be read by eaves-

droppers), data integrity (guaranteeing that the contents of messages cannot be

tampered with), authentication (proving the identity of legitimate users), and non-

repudiation (guaranteeing that actions such as sending messages and signing elec-

tronic documents cannot be denied later). In this chapter, we examine those aspects

51
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of cryptography where number theory plays a significant role. It would be tempting

to treat also some curious angles of cryptography like hiding secret messages in pic-

tures (a technique that is called steganography) or in poems (no special designation

here, so we offer cryptopoetry), but we guess we have to show some restraint.

Let us first of all address a primary concern of cryptography, namely the pro-

tection of confidential communication. We use the technical term channel for a

communication medium. A channel can, for instance, be a computer network, a

satellite link, the Internet, or a telephone line. An important player in our scenario

is the adversary, who also goes by other terms of endearment like the opponent,

the enemy, the eavesdropper, the attacker, and the bad guy. The adversary wants

to overhear our confidential communication and/or steal our sensitive data. Adver-

saries can, for instance, be your boss, the NSA, a hacker, or the parents of your lover.

We speak of an insecure channel if we want to signalize that there is an adversary

lurking around the channel.

The basic tool for the protection of confidential communication is encryption,

that is, the transformation of given data (or messages) into disguised data (or mes-

sages) that do not give any clue about the original meaning. The reverse process of

recovering the original data/messages from the encrypted data/messages is called

decryption. A secure communication system is described by the following model.

adversary

↓
Message M −→ E(M) −→ channel −→ D(E(M)) −→ Message M

↑ ↑
encryption decryption

Figure 2.1: A secure communication system

The message in its original form, also called the plaintext , is first encrypted before

it is sent over the insecure channel. Thus, the sender takes the plaintext M , applies

an encryption function (or an encryption algorithm) E to it, and then transmits the

ciphertext C = E(M) over the channel. Upon receipt of C, the receiver decrypts the

ciphertext C by computing D(C) = D(E(M)) = M with the help of a decryption

function (or a decryption algorithm) D, thus recovering the plaintext M . In this

way, the secure communication is completed. Obviously, the encryption function

E must be injective so that there is no ambiguity about recovering the original

message correctly. Note that E and D are inverse functions of each other. Often,

E and D belong to a parametrized family of functions. The parameters K and K ′

specifying E and D, respectively, are called the encryption key and the decryption

key , respectively. Sometimes one writes EK and DK′ instead of E and D for the

sake of clarity.

It is a generous and also prudent assumption in cryptology that the adversary



2.1. CLASSICAL CRYPTOSYSTEMS 53

has information about the general form of the encryption and decryption algorithms

and can access the ciphertext. Cynics like to say that the hacker can gain all this

knowledge by charming or bribing the secretary. Consequently, the security of the

system is based on carefully protecting the only data that are not assumed to be

available to the adversary, namely the keys. This is neatly summarized in the so-

called Kerckhoff principle: the security resides in the secret key. For a secure system,

the set of possible keys (the key space) must be very large in order to prevent a brute-

force attack by exhaustive search for the key. The important part in the design of a

secure communication system is the choice of the encryption algorithm and of the

key space.

Definition 2.1.1 A cryptosystem (or a cipher) consists of an encryption algorithm

(including the encryption keys) and a decryption algorithm (including the decryption

keys) together with the plaintext source, that is, the set of all possible plaintexts.

In early cryptography, the security of a cryptosystem was based on a key ex-

changed by a reliable method such as a face-to-face meeting or a dispatch via a

trusted courier. In modern cryptography, for example when transferring confiden-

tial information via the Internet, such a basic and simple key exchange is usually

assumed to be impracticable.

There are two fundamentally different techniques for encrypting information:

symmetric encryption, also called secret-key (or private-key) encryption, and asym-

metric encryption, also called public-key encryption. In a symmetric cryptosystem

the encryption and decryption keys are identical or easy to obtain from each other.

Examples are block ciphers and stream ciphers. In an asymmetric cryptosystem the

encryption and decryption keys are hard to obtain from each other without insider

knowledge. Examples are the RSA cryptosystem and the ElGamal cryptosystem.

Number theory is involved in the construction of many cryptosystems. We will

present quite a few such cryptosystems in this chapter. In spite of the very long

history of cryptology, the serious applications of number theory (and of mathematics

in general for that matter) to this area are a very recent phenomenon. In fact, the

decade of the 1970s can be pinpointed as the period when these applications began

in earnest. We will elaborate on the circumstances of this remarkable development

in Section 2.3.

Cryptology touches many areas, such as mathematics, information theory, com-

puter science, electrical engineering, and espionage, and so there is wide interest in

the subject. This is reflected also in the large number of textbooks that have been

written on cryptology. The Renaissance scholar Johannes Trithemius was possibly

the first textbook author in the history of cryptology with his Polygraphiae published

in the early 16th century. Modern readers will probably prefer more recent offer-

ings such as Stinson [193] and van Tilborg [194]. The books of Buchmann [15] and

Koblitz [82] emphasize number-theoretic aspects of cryptography, whereas Trappe
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and Washington [196] cover cryptography together with coding theory. An extensive

treatment of cryptography from the viewpoint of computer science is given in the

monograph [160]. A milestone is the Handbook of Applied Cryptography edited by

Menezes, van Oorschot, and Vanstone [116] which may be regarded as the encyclo-

pedia of cryptography.

2.1.2 Substitution ciphers

When one thinks about encryption, probably the first idea that comes to mind is to

encrypt a message letter by letter according to a prescribed scheme. This is what a

substitution cipher does. Formally, the set of all possible plaintexts in a substitution

cipher is the 26-letter English alphabet {A,B,C,...,X,Y,Z}. The encryption function

E is a permutation of the 26 alphabetic characters. The permutation is secret,

that is, it is known only to the legitimate users of the system, and it is the key of

the cipher. The decryption function D is the inverse permutation of E. Messages

containing more than one letter are encrypted by applying E to each individual

letter of the message.

Example 2.1.2 Here is an example of a substitution cipher. The encryption func-

tion E is given by the table

A B C D E F G H I J K L M

X N Y A H P O G Z Q W B T

N O P Q R S T U V W X Y Z

S F L R C V M U E K J D I

and the decryption function D is given by the table

A B C D E F G H I J K L M

D L R Y V O H E Z X W P T

N O P Q R S T U V W X Y Z

B G F J Q N M U S K A C I

The encryption and decryption algorithms are permutations of the 26 letters and the

keys (here the tables of function values) specify the permutations. This substitution

cipher encrypts the message cum desperate plea DAD SEND MONEY into AXA

VHSA TFSHD.

Remark 2.1.3 There are altogether 26! (≈ 4 · 1026) permutations of the 26 alpha-

betic characters. Thus, the key space has size ≈ 4 ·1026. This is too large to find the
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correct key by hand. However, if we use a powerful computer, then it is quite man-

ageable to determine the key, particularly if we use additional information such as

the fact that the letters of the alphabet appear with different frequencies in natural

languages. For instance, in English the most frequent letter is E, the second most

frequent letter is T, and so on. Therefore, if in a long ciphertext from a substitution

cipher the letter Q occurs most frequently, then we can deduce with good confidence

that Q is the encryption of E, and similarly for other frequent letters. The original

message can then be recovered by using the redundancy of natural languages and

some combinatorial skill. Because of this vulnerability, substitution ciphers are only

of historical and didactic interest.

The affine cipher is a special case of the substitution cipher and it is based on

modular arithmetic with the modulus m = 26.

Algorithm 2.1.4 (Affine Cipher) The plaintext source is the set of the 26 En-

glish letters, identified with the least residue system Z26 modulo 26 via the corre-

spondence

A↔ 0, B ↔ 1, . . . , Z ↔ 25.

The encryption key consists of a positive integer a with gcd(a, 26) = 1 and an

integer b, both considered modulo 26, and the encryption algorithm is given by the

function e : Z26 → Z26 determined by e(m) ≡ am + b (mod 26) for all m ∈ Z26.

The decryption key consists of the integer c ∈ Z26 with ac ≡ 1 (mod 26) and b,

and the decryption algorithm is given by the function d : Z26 → Z26 with d(r) ≡
c(r − b) (mod 26) for all r ∈ Z26.

Remark 2.1.5 Here we clearly see the general structure of a cryptosystem de-

scribed in Subsection 2.1.1. The encryption and decryption functions belong to the

family of affine functions modulo 26 and the keys K = (a, b) and K ′ = (c, b) specify

these affine functions.

Remark 2.1.6 Affine ciphers with a = 1 are called shift ciphers since the encryp-

tion function is then a cyclic shift in the alphabet by b letters. The choice a = 1

and b = 3 yields the Caesar cipher which was used by the Roman emperor Julius

Caesar according to his biographer Suetonius. Many scholars regard this as the first

concretely and explicitly recorded cipher in the history of cryptology, while vague

references to shift ciphers can be found also in earlier documents. (The first author

named his first dog Caesar as a tribute to the pioneer cryptographer Julius Caesar.)

Remark 2.1.7 There are movie fans who believe that the name of the computer

HAL in the Stanley Kubrick film 2001: A Space Odyssey was obtained by using

a shift cipher. Indeed, if you take the shift cipher with b = 25, which is a shift

backward by one letter in the alphabet, and apply it to IBM, then voilà you get

HAL.
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For a given encryption key K = (a, b) in an affine cipher, determining the decryp-

tion key amounts to finding the integer c ∈ Z26 with ac ≡ 1 (mod 26) as specified

in Algorithm 2.1.4. This can be easily done by using Euler’s theorem (see Theorem

1.2.15) and the square-and-multiply algorithm described in Subsection 2.3.2 below.

Alternatively and somewhat more efficiently, we can use the Euclidean algorithm

which is discussed in [152, Section 1.2] (see also Exercise 1.12). Thus, the affine

cipher is a symmetric cryptosystem.

Remark 2.1.8 Since the affine cipher has a very small key space of size φ(26) ·26 =

312, it can be broken easily, with some patience even by hand, using exhaustive key

search.

Remark 2.1.9 The substitution and affine ciphers are called monoalphabetic ci-

phers because every single alphabetic character is mapped to a unique alphabetic

character for a fixed encryption key. If we collect blocks of n ≥ 2 letters together

and encrypt each such block, then we get a polyalphabetic cipher . A well-known

historical example of a polyalphabetic cipher dating back to the 16th century is the

Vigenère cipher in which n shift ciphers are applied in parallel and the keys for

these n shift ciphers are chosen independently of each other. Therefore the size of

the key space is 26n. This is definitely an improvement on the affine cipher, and

we can indeed get very large key spaces by this method if we are willing to make n

large.

Polyalphabetic ciphers were mechanized in the 20th century, and a cipher ma-

chine that became famous was the Enigma. The Enigma cipher and its implemen-

tation on the Enigma machine were used by the German military from the 1920s

on. During World War II the Allies raised a monumental effort to crack the Enigma

cipher, based on earlier progress made by Polish cryptanalysts, and they succeeded

fairly early in the war. Some historians claim that this achievement had a major

impact on the outcome of the war. The breaking of the Enigma cipher is a story

full of drama and suspense, and so it is not surprising that two blockbuster movies

were made on this subject: Enigma starring Kate Winslet and Dougray Scott and

The Imitation Game starring Keira Knightley as well as Benedict Cumberbatch in

the role of the brilliant mathematician and pioneer computer scientist Alan Turing

(1912–1954) who was a decisive factor in the cracking of Enigma.

2.2 Symmetric block ciphers

2.2.1 Data Encryption Standard (DES)

Now we move from historical cryptosystems to a family of ciphers that are widely

utilized in our present age, namely symmetric block ciphers. This family includes
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the industry standards DES and AES. Cryptochips running the DES algorithm or

the AES algorithm are omnipresent in the automatic teller machines (ATMs) that

supply us with our daily cash. The point is that the communication between an ATM

and the server of the bank is highly confidential and therefore has to be protected

by encryption. The encryption algorithm must be able to process large amounts of

data at a very high speed, and this is where DES and AES shine.

Definition 2.2.1 A block cipher splits up the plaintext into blocks of symbols of

fixed length (for example n bits) and encrypts each block in a manner that is in-

dependent of past input blocks. The ciphertext depends only on the current input

block and on the key. In a symmetric block cipher , the encryption and decryption

keys are identical or easy to obtain from each other, and they are kept secret.

In every practical implementation of a symmetric block cipher, the plaintext is

given as a string of bits. If the plaintext has some other format, it first has to be

transformed into a string of bits before applying a symmetric block cipher.

Example 2.2.2 The Vigenère cipher in Remark 2.1.9 can be viewed as a bit-based

symmetric block cipher if letters are transformed into blocks of bits by using for

example the ASCII code.

The Data Encryption Standard (DES ) is a symmetric block cipher that was

developed by IBM and endorsed by the U.S. National Bureau of Standards in 1977.

It has been widely used ever since, for example in the banking industry as mentioned

above, and its design details are available to the public.

DES encrypts plaintext blocks of 64 bits. The user first chooses a key consisting

of 56 random bits, which is then split into eight blocks of seven bits each. For

error control (compare with Section 6.1), a parity-check bit is added to each block

of seven bits, that is, the check bit is 0 or 1 depending on whether the number of

1’s in the previous seven bits is even or odd, respectively. Thus, the actual key K

has length 64, but only 56 bits (now in positions 1, 2, . . . , 7, 9, . . . , 15, . . . , 57, . . . , 63)

have been chosen by the user. The same key is applied in both the encryption and

the decryption and is of course kept secret. The effective size of the key space is 256.

Let M = m1m2 . . .m64 be a given plaintext block of 64 bits mj, 1 ≤ j ≤ 64. The

DES encryption algorithm first applies a fixed permutation P to M , namely

P (M) = mπ(1)mπ(2) . . .mπ(64)

with a permutation π of {1, . . . , 64} given by

π(i) ≡

{
58i (mod 66) for i = 1, 2, . . . , 32,

58(i− 32)− 1 (mod 66) for i = 33, 34, . . . , 64.
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Figure 2.2: A typical round of DES

Then 16 iterations of a function f are applied to P (M). Finally, the inverse per-

mutation P−1 operates on the last output, and this produces the ciphertext. Note

that for i = 1, . . . , 64, the image π−1(i) under the inverse permutation π−1 of π is

π−1(i) =

{
r33(4i) if i is even,

r33(4i+ 3) + 33 if i is odd,

where r33(a) denotes the least residue of the integer a modulo 33. The function f

combines substitution and transposition. A typical operation in the calculation of f

proceeds as follows. If Ti = t1t2 . . . t64 (with bits tj for 1 ≤ j ≤ 64) is an intermediate

result, then split up Ti into the left half Li and the right half Ri, that is, Ti = LiRi

with

Li = t1 . . . t32, Ri = t33 . . . t64.

Then

Li+1 = Ri, Ri+1 = Li ⊕ g(Ri, Ki),

where g is a known function with range F32
2 and Ki is an intermediate key derived

from the key K. Here ⊕ denotes bit by bit addition in F2 of two blocks of 32 bits.

For the full details of the algorithm we refer to [116, Section 7.4]. Decryption is per-

formed by essentially the same algorithm, except that the order of the intermediate

keys is reversed.

Over time, several weaknesses of DES were discovered by cryptanalysts. The

key of 56 bits is now considered too short. A better variant still in current use is

Triple DES . Here a plaintext block M is encrypted as

C = DESK1(DES−1K2
(DESK1(M)))
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Figure 2.3: A 4× 4 array representing a plaintext block. Each bij is a byte and also

an element of F256.

with an obvious notation, that is, M is encrypted, decrypted, and then encrypted

again by DES, using a key K1 for the encryptions and a different and independently

chosen key K2 for the decryption. The effective size of the key space is now 2112 and

this yields a higher security level compared to DES.

2.2.2 Advanced Encryption Standard (AES)

The increasing dissatisfaction with DES, which stood more and more for Deficient

Encryption Scheme, called for remedial action. The U.S. National Institute of Stan-

dards and Technology (NIST) ran a competition to find a state-of-the-art symmetric

block cipher succeeding DES. Submissions were received in 1998 and 15 of them

met the criteria of NIST. Five finalists were selected in 1999 and the winner was

announced in 2000. The winning design was from Belgium and was called Rijndael

at the time of submission, after the names of the designers Rijmen and Daemen.

It seems that Rijndael is also a play on words in the Dutch language since Rijndal

means Rhine valley in Dutch. Rijndael became the Advanced Encryption Standard

(AES ) in 2001. There are actually slight design differences between Rijndael and the

officially adopted Advanced Encryption Standard, but only AES will be discussed

here.

The plaintext block length in AES is 128 bits and the key length can be 128, 192,

or 256 bits. Many operations in AES are based on bytes. A byte, that is, a string

a0a1 . . . a7 of eight bits, is identified with the polynomial a0+a1x+· · ·+a7x7 ∈ F2[x].

This polynomial is in turn interpreted as an element of the finite field F256 which is

viewed as the residue class field F2[x]/(x8+x4+x3+x+1). Note that the polynomial

x8 + x4 + x3 + x + 1 ∈ F2[x] is irreducible over F2, and so the residue class ring

F2[x]/(x8 + x4 + x3 + x+ 1) is indeed a finite field of order 28 = 256 (see Subsection

1.4.3).

A given plaintext block of 128 bits is split up into 16 blocks of eight bits, that

is, into 16 bytes. Each byte is interpreted as an element of F256 as above. The 16

bytes are arranged into a 4× 4 array. Thus, the plaintext block is finally viewed as

a 4 × 4 array of elements of F256. The rows and columns of the array are indexed

by 0, 1, 2, 3.
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The AES encryption algorithm has a number of rounds, each consisting of four

operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. In the stan-

dard case of key length 128, the number of rounds is 10.

SubBytes has two steps: (i) each array element is replaced by its multiplicative

inverse in F256, with 0 being mapped to 0; (ii) the array undergoes a fixed affine

transformation over F256.

ShiftRows cyclically shifts the elements of the ith row (i = 0, 1, 2, 3) of the array

by i elements to the left.

MixColumns views each column of the array as a polynomial over F256 of degree

at most 3 and multiplies this polynomial by a fixed polynomial over F256 that is

coprime to x4 +1 ∈ F2[x], with reduction modulo x4 +1 in the case of overflow. The

new polynomial yields the new column.

AddRoundKey adds the array bit by bit, using addition in F2, to another array

of the same format, where the latter array depends on an intermediate key.

Decryption in AES is carried out by using the inverses of the steps and reversing

their order. Note that this is feasible since each step represents an injective map.

All you ever want to know about Rijndael and AES can be found in the book [34]

which comes straight from the horse’s mouth, namely from the designers themselves.

Being number theorists, we like to think of AES as a smarter cipher than DES

since it relies much more heavily on number theory than DES does. It remains to be

seen how long AES will survive. It is a known phenomenon that once a cryptographic

scheme is elevated to the rank of a standard, then hordes of cryptanalysts assail it

and seek the fame that is gained by breaking it.

Remark 2.2.3 Consider the permutation f of the finite field F2r with r ∈ N that

is defined by f(y) = y−1 for y ∈ F∗2r and f(0) = 0. This function is used in the first

step of SubBytes with the choice r = 8. The function f has the following property:

for all a ∈ F∗2r and b ∈ F2r , the equation

f(y) + f(y + a) = b

has at most two solutions y ∈ F2r if r is odd. (Note that y + a is a solution

whenever y is a solution.) Such a function is called almost perfect nonlinear (APN ).

APN functions are the functions that best resist the so-called differential attacks on

cryptosystems, see for example [19]. If r is even and b = a−1, then the equation

above has four solutions y = 0, a, ca, (c + 1)a, where c ∈ F4 ⊆ F2r is a root of the

polynomial x2 + x+ 1 ∈ F2[x].
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2.3 Public-key cryptosystems

2.3.1 Background and basics

All the cryptosystems we have discussed so far satisfy the property that the decryp-

tion key is the same as the encryption key or is easily derived from the encryption

key. In other words, they are all symmetric cryptosystems. But in many modern

communication systems, the big difficulty with symmetric cryptosystems is how to

get the common key from user A to user B if A and B can communicate only over

an insecure channel, for example by email over the Internet. This problem is solved

by using public-key cryptosystems.

The idea of a public-key cryptosystem goes back to the paper of Diffie and

Hellman [40] from 1976 with the prophetic title “New directions in cryptography”.

Their fundamental insight was that a secret key is needed only for decryption! Thus,

the roles of the encryption and decryption keys can be separated: use a public key

for encryption and a private (secret) key for decryption. Of course, the public key

and the private key must be completely different (this is why we speak also of an

asymmetric cryptosystem). In a nutshell, a public-key cryptosystem is built on the

following new principle: anybody can encrypt, but only the legitimate receiver can

decrypt.

The paper of Diffie and Hellman was a watershed in the history of cryptology,

or a paradigm change to use a fancy term from the philosophy of science. It is

generally acknowledged that cryptology as a serious mathematical discipline began

only in 1976, while before that it was more like an art or a craft. The Diffie-Hellman

paper triggered a burst of creativity that led to the design of many cryptographic

schemes in the late 1970s and throughout the 1980s. Interestingly enough, many

pure mathematicians entered the game of inventing cryptographic schemes during

that period. Several of these schemes are still in practical use today. It is a curious

footnote to the history of cryptology that the priority for the invention of public-key

cryptography was later claimed by the British secret service, but they can of course

assert anything under their shroud of secrecy.

The personal story behind the Diffie-Hellman paper is quite remarkable. Whit-

field Diffie came to Stanford University in the mid 1970s as a somewhat overripe

(or should we say mature?) graduate student (he was born in 1944). He was an

autodidact in the field of cryptology since this subject was not taught at universities

at that time. He met a congenial partner in Martin Hellman who was then an assis-

tant professor at Stanford and actually younger than Diffie. Formally, Hellman was

the Ph.D. adviser of Diffie, but their style of work was collaboration rather than a

professor-student relationship. Their story is told in fascinating detail in the book

of Levy [100] which reads like a thriller.

For a public-key cryptosystem, the encryption algorithm E and the decryption
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algorithm D should satisfy the following properties.

PKC1: The encryption and decryption algorithms are fast.

PKC2: D(E(M)) = M for all plaintexts M in the plaintext source.

PKC3: Given the encryption key, it must be computationally infeasible to deter-

mine the decryption key.

We can set up a public-key cryptosystem in the following way. A typical user

A chooses an encryption key KA and the corresponding decryption key K ′A. Then

A makes the encryption key KA public for all users and keeps the decryption key

K ′A secret. The encryption key is called also the public key and the decryption

key is called also the private key . Because of the property PKC3 of a public-key

cryptosystem, other users cannot figure out the decryption key from the public key.

Suppose that a user A wants to send a confidential message M to another user

B. Before we proceed any further, we personalize the scenario: user A is in reality

called Alice and user B is in reality called Bob. So it is Alice who wants to send

the message M to Bob. She proceeds as follows. She looks up the encryption key

KB = KBob of Bob in a directory and then she encrypts the plaintext M into the

ciphertext

C = EKB
(M).

The ciphertext C is sent to Bob through the insecure channel. Everyone may read

C, but only Bob can decrypt the ciphertext C by calculating

DK′B
(C) = DK′B

(EKB
(M)) = M.

This completes the confidential communication. People other than Bob cannot

decrypt the ciphertext because they cannot determine K ′B from KB.

Remark 2.3.1 We describe a “hardware” analog of a public-key cryptosystem

which may help to better understand how public-key cryptosystems work. The

principal tools of this analog are padlocks. Note that anybody can lock a padlock

(just push it until the lock clicks), but that it can be opened only with the cor-

rect key. Now suppose that Alice wants to send a confidential document to Bob.

She puts the document in a strongbox and then she goes to a sort of post office

where padlocks of all users of the communication system are available. She locks

the strongbox with Bob’s padlock and posts the strongbox plus padlock. When

Bob receives this delivery, he unlocks the padlock with his key and retrieves the

document from the strongbox. We see again the guiding principle of public-key

cryptosystems in operation: anybody can encrypt (lock the padlock), but only the

legitimate receiver (Bob) can decrypt (unlock the padlock).

Public-key cryptosystems can be used not only for the communication of se-

cret messages, but also for the distribution of keys in symmetric cryptosystems.
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Figure 2.4: A strongbox with a padlock

Before the encryption by a symmetric cryptosystem starts, the necessary keys are

distributed by a public-key cryptosystem. This makes sense because encryption by

a symmetric cryptosystem is usually much faster than by a public-key cryptosystem.

Note that the distribution of keys is needed only once in a communication session.

Key distribution by public-key cryptosystems is a huge advantage because the par-

ties in the communication do not even have to know each other! A scheme that

uses a public-key cryptosystem for key distribution and a symmetric cryptosystem

for message encryption is called a hybrid cryptosystem. A well-known example of a

hybrid cryptosystem is Pretty Good Privacy (PGP), a popular tool for encrypting

email messages.

The difficulty in designing a public-key cryptosystem is to satisfy the property

PKC3 above. An important step in the design of a public-key cryptosystem is to use

one-way functions as encryption functions. As usual, we write f−1 for the inverse

function of an injective function f .

Definition 2.3.2 A one-way function is an injective function f : A → B with a

domain A and a range B for which the following properties hold:

(i) f(a) is easy to evaluate for all a ∈ A;

(ii) given f , it is computationally infeasible to compute f−1(b) for almost all b in

the image of f .

Example 2.3.3 As a simple example from everyday life, consider the telephone

directory of any big city. It is easy to look up the phone number of any specific

person. On the other hand, given an arbitrarily chosen phone number, it is in general

pretty hopeless to find the person with this number by just using the directory. In

this sense, the function f : person 7→ phone number can be viewed as a one-way

function.

Remark 2.3.4 An important application of one-way functions is the password file

of a computer. It is obviously too dangerous to store passwords as plaintexts. There-

fore a password P is stored as f(P ), where f is a one-way function. The inverse

function f−1 is not needed in this application, for if a password P is entered, then

the computer simply checks whether the image f(P ) coincides with the stored value.

On the other hand, an intruder reading the password file has to know f−1 in order

to deduce the password from the stored value, but f−1 is hard to compute.
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You will concede that the definition of a one-way function is not really rigorous.

What do “easy” and “computationally infeasible” mean precisely? It is generally

agreed that a function evaluation is “easy” (or “efficient”) if it can be carried out

in polynomial time, that is, the number of required arithmetic operations (or bit

operations as the case may be) is a polynomial in the number of bits of the input.

“Computationally infeasible” is then somehow the opposite, but in practice it is ex-

tremely difficult to prove that it is not possible to compute a mathematical quantity

efficiently. Furthermore, we use “almost all” in part (ii) of Definition 2.3.2 only in

an intuitive sense; you may interpret it as “a very high percentage of”.

Another big problem remains: if we use a one-way function f for encryption,

then at least one person has to know how to invert f , namely the intended recipient

of the message! The solution of this dilemma is to use trapdoor one-way functions ,

which are one-way functions such that with additional information (the trapdoor

information) the function f can be inverted and so the ciphertext can be decrypted.

The trapdoor information is known only to the authorized person who generates

the encryption key and the decryption key. This authorized person can be the

legitimate user who will own the keys, but also a trusted third party. In the following,

we will see various ways of how to produce trapdoor information. As for many

cryptographic terms, the name “trapdoor” is well chosen: it suggests a ciphertext

caught helplessly in a trap, but somebody has a key for the trapdoor and frees

(decrypts) the ciphertext.

2.3.2 The RSA cryptosystem

The RSA cryptosystem is named after its inventors Rivest, Shamir, and Adleman

and was published in the paper [171] in 1978, hence fairly soon after the Diffie-

Hellman paper [40]. The fact that a powerful and convincing public-key cryptosys-

tem was designed shortly after Diffie and Hellman propounded their ideas gave a

big boost to public-key cryptography.

The RSA cryptosystem is a public-key cryptosystem based on the presumed

difficulty of finding the factorization of large integers into prime numbers. Actually,

only a special case of the factorization problem is considered: given two distinct big

prime numbers p and q, it is easy to find the product n = pq; however, given the

product n, it is believed to be very hard in general to find the prime factors p and

q. This belief is considered reasonable at present since up to now no deterministic

polynomial-time factorization algorithm for integers is known. The situation will of

course change dramatically once somebody finds such an algorithm. Consequently,

there is no absolute guarantee for the security of the RSA cryptosystem, and a

similar state of affairs prevails for other public-key cryptosystems.

In order to set up the RSA cryptosystem, our typical user Bob chooses two



2.3. PUBLIC-KEY CRYPTOSYSTEMS 65

distinct big prime numbers p and q. Furthermore, Bob computes

n = pq and φ(n) = (p− 1)(q − 1).

Then Bob chooses an integer e ≥ 2 with gcd(e, φ(n)) = 1 and computes a positive

integer d such that ed ≡ 1 (mod φ(n)). Note that d can be obtained efficiently by

the Euclidean algorithm (see [152, Section 1.2] and Exercise 1.12).

Algorithm 2.3.5 (RSA Cryptosystem) The public key of Bob is the ordered

pair (n, e) and the private key of Bob is the ordered triple (p, q, d). The plaintext

source is Zn = {0, 1, . . . , n− 1}, that is, the least residue system modulo n.

Encryption: Suppose that Alice wants to send a plaintext m ∈ Zn to Bob. Then

Alice computes the integer c ∈ Zn with c ≡ me (mod n) and sends c as the ciphertext

to Bob.

Decryption: Upon receiving the ciphertext c, Bob computes the least residue of

cd modulo n, which is the plaintext m.

It remains to verify that the least residue of cd modulo n is indeed the plaintext

m. Note that cd ≡ med (mod n), and so it suffices to prove the following lemma.

Lemma 2.3.6 If ed ≡ 1 (mod φ(n)) as above, then

med ≡ m (mod n) for all m ∈ Z.

Proof. Since ed ≡ 1 (mod φ(n)), we can write ed = kφ(n) + 1 with some positive

integer k. If gcd(m,n) = 1, then mφ(n) ≡ 1 (mod n) by Theorem 1.2.15. This

implies mkφ(n) ≡ 1 (mod n), hence

med ≡ mkφ(n)+1 ≡ m (mod n).

If gcd(m,n) = p or q, say p, then mq−1 ≡ 1 (mod q) by Theorem 1.2.15. We infer

that mφ(n) ≡ 1 (mod q), so as above we get med ≡ m (mod q). But p divides m,

so med ≡ 0 ≡ m (mod p). Together with the last congruence modulo q this yields

med ≡ m (mod n) by the Chinese remainder theorem (see Theorem 1.2.9). The

remaining case is gcd(m,n) = n. But then med ≡ 0 ≡ m (mod n), and we have

settled all cases. 2

The security of the RSA cryptosystem is based on the presumed difficulty of

finding d from n and e. If the opponent can factor n = pq, then he (the bad guy is

always male) can easily compute φ(n) = (p−1)(q−1) and consequently the integer d.

There is no other known efficient way of getting d than by factoring n. In this sense,

the security of the RSA cryptosystem is founded on the belief that the factorization

problem for large integers is difficult. The trapdoor information that allows Bob
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to compute d is the knowledge of the prime factors p and q. According to current

standards, each of p and q should have about 150 decimal digits, so n should have

about 300 decimal digits. Experts like to speak of a 1024-bit RSA modulus. The

problem of finding large prime numbers will be discussed in Section 6.6. It was shown

by May [112] that breaking the RSA cryptosystem is deterministic polynomial-time

equivalent to factoring if p and q have the same bit size.

Remark 2.3.7 The RSA cryptosystem is so easy to understand that even criminals

can use it. A psychopath terrorized Austria in the 1990s with threatening messages

encrypted by the RSA cryptosystem and with letter bombs. He teased the police by

including the public key (n, e) in the messages, but he made the stupid mistake of

choosing prime numbers p and q that are very close together. This case is quickly

broken: just compute b
√
nc and look for prime numbers in the vicinity of this integer

(see also Algorithm 2.3.11 below).

A practical issue that needs to be addressed in Algorithm 2.3.5 is how to compute

the powers me and cd modulo n for very large exponents e and d in an efficient

manner. We phrase this problem in a more general form since we will run into

it again in other contexts. Thus, let S be any algebraic structure in which an

associative product is defined. Then for all a ∈ S and all exponents e ∈ N, the

power an is defined unambiguously. The high-school method of computing powers

by successive multiplication, that is,

ae = a · a · · · a︸ ︷︷ ︸
e factors

,

needs e − 1 multiplications. This can be practically infeasible in an RSA setting

where e may have several hundred decimal digits. A much faster way is provided by

the square-and-multiply algorithm. We first explain this algorithm in an example.

Example 2.3.8 We want to compute a25. We write the exponent 25 in its binary

representation

25 = 1 + 0 · 2 + 0 · 22 + 1 · 23 + 1 · 24 = 1 + 8 + 16.

Then

a25 = a · a8 · a16.

We first calculate a2, a4 = (a2)2, a8 = (a4)2, a16 = (a8)2 by repeated squaring. Then

we multiply together a, a8, and a16 to obtain a25. Instead of 24 multiplications by

the high-school method, we need just six multiplications by the square-and-multiply

algorithm.
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Algorithm 2.3.9 (Square-and-Multiply Algorithm) Let S be an algebraic struc-

ture in which an associative product is defined, let a ∈ S, and let e ∈ N. Compute ae.

Step 1: Write e in its binary representation

e = 2k1 + 2k2 + · · ·+ 2kr with 0 ≤ k1 < k2 < · · · < kr.

Step 2: Compute the powers a2, a4, . . . , a2
kr

by repeated squaring.

Step 3: Multiply together a2
k1 , a2

k2 , . . . , a2
kr

to obtain ae.

Proposition 2.3.10 For all a ∈ S and e ∈ N, the computation of ae by the square-

and-multiply algorithm needs at most 2 log2 e multiplications in S, where log2 denotes

the logarithm to the base 2.

Proof. Let h ∈ N be such that 2h−1 ≤ e < 2h. Then in Step 2 of Algorithm 2.3.9 we

have to calculate a2, a4, . . . , a2
h−1

. This needs h− 1 multiplications in S. For Step 3

in Algorithm 2.3.9, in the worst case we have to multiply

a · a2 · a4 · · · a2h−1

.

This needs again h−1 multiplications in S. Altogether, we require at most 2(h−1)

multiplications in S. The proof is completed by noting that h− 1 ≤ log2 e. 2

Returning to the RSA cryptosystem, we observe that even if the exponents e

and d in Algorithm 2.3.5 have about 1000 bits, then encryption and decryption

would each require at most about 2000 multiplications modulo n by the square-and-

multiply algorithm. This is an easy task for a modern computer.

2.3.3 Factorization methods

We initially assume in this subsection that n is a product of two distinct odd prime

numbers, say n = pq with p > q. We pointed out that the RSA cryptosystem can be

broken once n is factored. We note that this is equivalent to knowing the value of

φ(n). First, if n = pq is factored, then φ(n) = (p−1)(q−1) is obtained immediately.

Conversely, if φ(n) is known, then it is easy to check that p and q are the roots of

the quadratic equation

x2 − (n− φ(n) + 1)x+ n = 0.

We now discuss some classical factorization methods. A joyful and up-to-date

account of factoring is given in the book of Wagstaff [198]. A factorization algorithm

using quantum computers will be presented in Subsection 6.5.1.

The first method is named after the famous 17th century mathematician Pierre

de Fermat and applies if the two prime factors p and q of n are close. Then s :=

(p− q)/2 is a small number.
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Algorithm 2.3.11 (Fermat Factorization) Given n = pq with close prime num-

bers p > q ≥ 3, we see from

n =

(
p+ q

2

)2

−
(
p− q

2

)2

that t := (p + q)/2 is an integer slightly larger than
√
n having the property that

t2 − n = s2 is a perfect square. By testing the successive integers t >
√
n, one will

soon find t and s. Then t+ s and t− s are the two prime factors of n.

Example 2.3.12 For n = 35 we try t = d
√

35e = 6 and get s =
√
t2 − n = 1.

Hence p = t+ s = 7 and q = t− s = 5.

The second method is based on the following result.

Lemma 2.3.13 Let x, y, and n be positive integers. If x2 ≡ y2 (mod n) but x 6≡
±y (mod n), then gcd(x− y, n) and gcd(x+ y, n) are nontrivial divisors of n.

Proof. Note first that n divides x2− y2 = (x− y)(x+ y). However, n divides neither

x− y nor x+ y. Hence gcd(n, x± y) > 1. 2

Example 2.3.14 For n = 35 we easily find the congruence 122 ≡ 22 (mod 35), and

then gcd(12− 2, 35) = 5 and gcd(12 + 2, 35) = 7 are the prime factors of 35.

The following lemma guarantees the existence of x and y.

Lemma 2.3.15 Let n be a product of two distinct odd prime numbers and let a ∈ Z
with gcd(a, n) = 1. Then x2 ≡ a2 (mod n) has exactly four solutions x ∈ Zn; two

of them are the trivial solutions x ≡ ±a (mod n).

Proof. For odd prime numbers p and q, the congruences x2 ≡ a2 (mod p) and

x2 ≡ a2 (mod q) have exactly two incongruent solutions x ≡ ±a (mod p) and

x ≡ ±a (mod q), respectively. If p 6= q, then by the Chinese remainder theorem

(see Theorem 1.2.9) there are exactly four solutions of x2 ≡ a2 (mod n) in Zn with

n = pq. 2

Example 2.3.16 For n = 35 and a = 2, the congruence x2 ≡ 4 (mod 35) has the

four solutions x ≡ ±2,±12 (mod 35) in Z35, that is, x = 2, 12, 23, 33. The solutions

x = 2 and x = 33 are the trivial ones.

The crucial step for this method is to find a nontrivial solution of x2 ≡ y2 (mod n).

We describe one such method.
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Algorithm 2.3.17 (Square-Root Factoring) Given n = pq as above, find a non-

trivial solution of x2 ≡ y2 (mod n).

Step 1: Choose S = {p1, p2, . . . , pk}, where pj is the jth prime in the natural order,

and select an integer c slightly larger than k.

Step 2(a): For i = 1, 2, . . . , c choose (randomly) ai ∈ {0, 1. . . . , n−1} and calculate

bi ≡ a2i (mod n).

Step 2(b): Write (if possible)

bi =
k∏
j=1

p
eij
j with integers eij ≥ 0.

Otherwise choose a new ai.

Step 3: Find a set T ⊆ {1, . . . , c} such that
∏

i∈T bi is a square by determining a

nontrivial linear combination over F2 of the c binary vectors vi ≡ (ei1, . . . , eik) (mod 2),

1 ≤ i ≤ c, which yields 0 ∈ Fk2.

Step 4: Compute x =
∏

i∈T ai and y =
(∏

i∈T bi
)1/2

.

Step 5: If x 6≡ ±y (mod n), then stop with success. If x ≡ ±y (mod n), then take

a different set T or increase the value of c by 1.

The following two algorithms are due to the prolific algorithm designer John

Pollard and they apply to any composite integer n. Let B be a positive integer. An

integer n ≥ 2 is said to be B-smooth if all its prime factors are less than or equal

to B.

Algorithm 2.3.18 (Pollard p− 1 Algorithm) Find a nontrivial factor of the com-

posite integer n.

Step 1: Select a smoothness bound B.

Step 2: Select a random integer a with 2 ≤ a ≤ n− 1 and compute d = gcd(a, n).

If d ≥ 2, then return the nontrivial factor d of n.

Step 3: If d = 1, then for each prime number r ≤ B perform the following iteration:

compute l(r) = b(log n)/ log rc and replace the current value of a by the least residue

of ar
l(r)

modulo n (use Algorithm 2.3.9 to compute this least residue efficiently).

Step 4: Compute e = gcd(b− 1, n), where b is the last output in Step 3.

Step 5: If 1 < e < n, then e is a nontrivial factor of n. Otherwise return to Step 2

and choose another integer a.

Note that in Step 3 we are calculating the least residue b of aQ modulo n, where

Q =
∏
r≤B

rl(r).

If for some prime factor p of n the number p− 1 is B-smooth, then p− 1 divides Q

(observe that rl(r) is the largest power of r that is ≤ n). Since ap−1 ≡ 1 (mod p),

we obtain aQ ≡ 1 (mod p), and so

e = gcd(b− 1, n) = gcd(aQ − 1, n) ≥ p
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in Step 4. Thus, Step 5 is successful unless we are very unlucky and e = n.

A good value of B has to be selected by a careful trade-off. If B is small, then

the computations in the algorithm are faster, but the probability of success will be

low. If B is not too small, then the likelihood of p − 1 being B-smooth is quite

large. Practitioners say that with experience and feng shui one gets the knack for

the proper choice of B.

Finally, we describe the Pollard rho algorithm. Let S be a finite set with m ≥ 2

elements, let f : S → S be a self-map of S, and let s0, s1, . . . be a sequence of

elements of S defined recursively by si = f(si−1) for i = 1, 2, . . . with an arbitrary

initial value s0. Since S is finite, this sequence is ultimately periodic. In particular,

there exist subscripts i and j with 0 ≤ i < j such that si = sj, and so there are

repeated terms.

Lemma 2.3.19 For a real number λ > 0 put ` = 1 + b
√

2λmc. Then the fraction

of ordered pairs (f, s0) such that all elements s0, s1, . . . , s` are different is smaller

than e−λ.

Proof. We may assume that ` < m. The total number of all ordered pairs

(f, s0) is mm+1 and the number of ordered pairs (f, s0) with different s0, s1, . . . , s`
is mm−`∏`

j=0(m− j). Hence the fraction in question is

h(m, `) := m−`−1
∏̀
j=0

(m− j) =
∏̀
j=0

(
1− j

m

)
.

Because of log(1− u) < −u for 0 < u < 1, we get

log h(m, `) =
∑̀
j=0

log
(

1− j

m

)
< − 1

m

∑̀
j=0

j = −`(`+ 1)

2m
< − `2

2m
< −λ

and thus h(m, `) < e−λ. 2

Lemma 2.3.20 The expected value of the smallest integer ` ≥ 1 with s` = s2` has

an order of magnitude at most m1/2.

Proof. Denote by `1 and `2 the length of the preperiod and the length of the period

of the sequence s0, s1, . . ., respectively. Then for ` = `2(1 + b`1/`2c) > `1 we obtain

s` = s2`. By Lemma 2.3.19, the expected value of ` ≤ `1 + `2 has an order of mag-

nitude at most m1/2. 2

Now let p be a prime factor of a given composite integer n. The Pollard rho

algorithm tries to find repeated terms in the sequence a0, a1, . . . of elements of S =
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Zp = {0, 1, . . . , p − 1} generated by a0 = 2 and ai = f(ai−1) for i = 1, 2, . . ., where

f(s) ∈ Zp is determined by f(s) ≡ s2 + 1 (mod p) for all s ∈ Zp. Since p divides

n but is unknown, this is effected by carrying out the analogous computation in Zn
and testing whether gcd(ai−a2i, n) > 1. If also gcd(ai−a2i, n) < n, then a nontrivial

factor of n has been found. In the implementation, the terms ai and bi := a2i are

computed in parallel.

Algorithm 2.3.21 (Pollard Rho Algorithm) Find a nontrivial factor of the com-

posite integer n.

Step 1: Put a0 = 2, b0 = 2.

Step 2: For i = 1, 2, . . . do the following:

(a) Compute ai ≡ a2i−1 +1 (mod n) and bi ≡ (b2i−1 +1)2 +1 (mod n) with ai, bi ∈ Zn.

(b) Compute di = gcd(ai − bi, n).

(c) If 1 < di < n, then di is a nontrivial factor of n and stop with success. If always

di = 1 or n for i up to a prescribed bound, then stop with failure.

Remark 2.3.22 Under the assumption that x2 + 1 behaves like a random function

modulo p, we can apply Lemma 2.3.20 with m = p. Since there always exists a

prime factor p of n with p ≤ n1/2, we can therefore expect that Algorithm 2.3.21

terminates with success after O(n1/4) steps. Here and later, g(n) = O(h(n)) is

equivalent to the existence of a positive constant C such that |g(n)| ≤ Ch(n) for all

positive integers n, where g is a real-valued function and h is a nonnegative function

on N. In the rare case where the algorithm fails, we replace x2 + 1 by a function

x2 + c with a new value for the constant c, such as c = 2 or c = 3.

Example 2.3.23 Let us factor n = pq = 1927 by the Pollard rho algorithm. We

summarize the computation in the following table.

i 0 1 2 3 4 5 6 7

ai 2 5 26 677 1631 902 411 1273

bi 2 26 1631 411 1850 1005 205 535

di − 1 1 1 1 1 1 41

Therefore n has the prime factor 41, and by division we obtain n = 41 · 47.

Can you guess where the name “rho algorithm” comes from? This is not exactly

a million dollar question, but still the answer is not obvious. Let us return to

Example 2.3.23 and compute the ai modulo the prime factor 47. This initially

yields the terms 2, 5, 26, 19, 33, 9, 35, 4, 17, 8, 18, 43, 17. From then on the sequence

cycles since a12 ≡ a8 ≡ 17 (mod 47). If you picture the situation starting for example

from 19 (see Figure 2.5), then you see the Greek letter rho appearing! No kidding,

this is the reason for the name of the algorithm.
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Figure 2.5: The Pollard rho algorithm

2.4 Cryptosystems based on discrete logarithms

2.4.1 The cryptosystems

The factorization problem for large integers is not the only number-theoretic prob-

lem that serves as the basis for a public-key cryptosystem. The discrete logarithm

problem also gets top billing in the area. Let us introduce the discrete logarithm

function for finite fields without further ado. A crucial role is played by the concept

of a primitive element of a finite field (see Definition 1.4.34).

Definition 2.4.1 Let Fq be a finite field and let g ∈ F∗q be a primitive element of

Fq. For each a ∈ F∗q, the unique integer h with 0 ≤ h ≤ q − 2 such that gh = a is

called the discrete logarithm (or the index ) indg(a) of a to the base g.

Example 2.4.2 Note that 2 ∈ F∗5 is a primitive element of F5, and in this case the

discrete logarithm has the following values:

ind2(1) = 0, ind2(2) = 1, ind2(3) = 3, ind2(4) = 2.

It would of course be more natural to denote the discrete logarithm function

by “log”, but since this notation is already reserved for the logarithm function in

calculus, we use “ind” instead. The discrete logarithm problem is the problem of

computing indg(a) for a finite field Fq of large order q. There are easily obtained

values of the discrete logarithm like indg(1) = 0 and indg(g) = 1, but in general the

discrete logarithm problem is believed to be difficult. In fact, practical experience

shows that the discrete logarithm problem for Fq is about as hard as factoring an

integer that has roughly the same size as q.

The discrete logarithm for Fq has similar properties as the ordinary logarithm,

but identities have to be replaced by congruences modulo q−1. In detail, if a, b ∈ F∗q
and n ∈ N, then

indg(ab) ≡ indg(a) + indg(b) (mod q − 1),

indg(a
n) ≡ n indg(a) (mod q − 1).

If the discrete logarithm problem for Fq is presumed to be difficult, then we can

view the discrete exponential function h ∈ Zq−1 7→ gh ∈ F∗q as a one-way function
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(compare with Definition 2.3.2). Note that the computation of gh, even for very

large exponents h, can be carried out quickly by Algorithm 2.3.9. Therefore the

discrete exponential function can serve as a basis for public-key cryptosystems.

The first cryptographic scheme of this type that we discuss (and also histori-

cally the first) is actually not a public-key cryptosystem for encryption, but a key-

exchange (or key-agreement) scheme which can be part of a hybrid cryptosystem

(see Subsection 2.3.1). This scheme was introduced in the seminal paper of Diffie

and Hellman [40]. The objective is to exchange (or agree on) a cryptographic key,

for instance for a symmetric block cipher, over an insecure channel. All participants

of a communication system share a large finite field Fq and a primitive element g of

Fq. Let us describe how the participants Alice and Bob establish a common key.

Algorithm 2.4.3 (Diffie-Hellman Key Exchange) Alice and Bob want to es-

tablish a common key, given the large finite field Fq and the primitive element g

of Fq.
Step 1: Alice chooses a random integer h with 2 ≤ h ≤ q − 2 and Bob chooses a

random integer k with 2 ≤ k ≤ q − 2.

Step 2: Alice sends gh ∈ Fq to Bob over the channel, while Bob sends gk ∈ Fq to

Alice over the channel.

Step 3: The common key is ghk ∈ Fq, which Alice computes as (gk)h and Bob

computes as (gh)k.

An observer of the communication sees gh and gk going over the channel. If he

is a malicious adversary, then he will try to figure out ghk, given gh and gk. But

according to the current know-how, the only way to do that is to first compute h

and k, and so he has to solve the discrete logarithm problem for Fq. If q is large (say

q has at least 300 decimal digits), then the Diffie-Hellman key-exchange scheme is

considered secure.

There is also a public-key cryptosystem based on the presumed difficulty of the

discrete logarithm problem, but it was designed almost a decade after the Diffie-

Hellman paper [40] since it is not so obvious here how to build trapdoor information

into the system. Actually, a new idea was needed, namely to use a random quantity

in the encryption algorithm. Just like the work of Diffie, this cryptosystem is also

the achievement of a graduate student at Stanford University.

Our typical user Bob chooses a large finite field Fq and a primitive element g

of Fq. Then he selects an integer h with 2 ≤ h ≤ q − 2 and efficiently computes

a = gh ∈ F∗q by Algorithm 2.3.9.

Algorithm 2.4.4 (ElGamal Cryptosystem) The public key of Bob is the or-

dered triple (q, g, a) and the private key of Bob is h = indg(a). The plaintext source

is F∗q.
Encryption: Suppose that Alice wants to send a plaintext m ∈ F∗q to Bob. Then
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Alice chooses a random integer r with 2 ≤ r ≤ q − 2 and computes c1 = gr ∈ F∗q
and c2 = mar ∈ F∗q. The ordered pair (c1, c2) is sent as the ciphertext to Bob.

Decryption: Upon receiving the ciphertext (c1, c2), Bob computes c2(c
h
1)−1 = m

and thus recovers the plaintext.

The security analysis for the ElGamal cryptosystem is similar to that for the

Diffie-Hellman key-exchange scheme. The result is that this public-key cryptosystem

is considered secure if q has at least 300 decimal digits.

Remark 2.4.5 In practical implementations of the Diffie-Hellman key-exchange

scheme and the ElGamal cryptosystem, one usually takes for Fq a finite prime field

Fp with a prime number p (see Theorem 1.4.5 and Remark 1.4.6). The primitive

element g then becomes a primitive root modulo p. However, for the theory it does

not make any difference whether we use a general finite field or a finite prime field.

This brings to mind a famous saying by the legendary baseball coach Yogi Berra:

“In theory there is no difference between theory and practice, in practice there is.”

2.4.2 Computing discrete logarithms

For special prime powers q or prime powers q that are not too large, discrete loga-

rithms for Fq can be computed. We present three algorithms of this type.

A first rather simple algorithm for computing discrete logarithms for Fq uses

about q1/2 operations in Fq. It is known by the colorful name baby-step giant-step

algorithm. For all c ∈ F∗q and all integers n ≥ 0, we use the notation c−n := (c−1)n.

Algorithm 2.4.6 (Baby-Step Giant-Step Algorithm) Let a ∈ F∗q and let g be

a primitive element of the finite field Fq. Compute indg(a).

Step 1: Put m := d
√
q − 1e and set up the table (this is the baby step)

j 0 1 2 . . . m− 1

gj g0 g1 g2 . . . gm−1

Step 2: Compute g−m and put a0 := a.

Step 3: For i = 0, 1. . . . ,m− 1 do the following:

(a) Check whether ai occurs in the second row of the above table and read the

corresponding j above it.

(b) If yes, put indg(a) = im+ j and stop. Otherwise put ai+1 := aig
−m (this is the

giant step) and return to (a).

It remains to show that the algorithm really calculates the discrete logarithm

indg(a). By division with remainder, we can write indg(a) = im + j with integers

0 ≤ i ≤ m− 1 and 0 ≤ j ≤ m− 1. Then from gim+j = a we obtain

gj = ag−im = a0g
−im = a1g

−(i−1)m = · · · = ai−1g
−m = ai,
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and so in Step 3(a) the element ai corresponds to j.

Since a discrete logarithm h = indg(a) for Fq satisfies 0 ≤ h ≤ q − 2, it suffices

to compute h modulo q − 1. The case q = 2 is trivial, and so we can assume that

q ≥ 3. By the Chinese remainder theorem (see Theorem 1.2.9), we can proceed by

determining h modulo all prime powers in the canonical factorization of q− 1. This

is the strategy of the Silver-Pohlig-Hellman algorithm. Let

q − 1 =
k∏
j=1

p
ej
j

be the canonical factorization of q − 1 and let a ∈ F∗q and a primitive element g of

Fq be given.

We take a typical prime factor p = pj of q − 1. The idea is to first compute the

least residue of h = indg(a) modulo p, which is h0, say. Then h = h0 + kp for some

k ∈ Z, and so

q − 1

p
h ≡ q − 1

p
(h0 + kp) ≡ q − 1

p
h0 (mod q − 1).

Therefore

g(q−1)h0/p = g(q−1)h/p = (gh)(q−1)/p = a(q−1)/p.

Thus, we compute b := g(q−1)/p and then b0, b1, b2, . . . until we get a(q−1)/p. This will

happen at bh0 , where 0 ≤ h0 ≤ p− 1, and so h0 is determined.

If there are higher powers of p dividing q − 1, say p2 divides q − 1, then we

determine the least residue of h modulo p2, which has the form h0 + h1p with some

h1 ∈ Zp. To do this, we put a1 = ag−h0 and compute the exponent h1 ∈ Zp such

that bh1 = a
(q−1)/p2
1 . For even higher powers of p dividing q − 1, we continue this

procedure in a similar way. Finally, h is determined modulo all prime powers in

the canonical factorization of q− 1, and so h is uniquely determined by the Chinese

remainder theorem.

In each of the above steps we have to compute at worst b0, b1, . . . , bp−1, so if all

prime factors p of q−1 are relatively small, then the Silver-Pohlig-Hellman algorithm

is feasible.

Example 2.4.7 Here is a toy example for the Silver-Pohlig-Hellman algorithm with

q = 19, g = 2, and a = 6. Note that q − 1 = 18 = 2 · 32. We first consider the

more involved case of the prime factor p = 3. We determine b = g(q−1)/p from

b ≡ 26 ≡ 64 ≡ 7 (mod 19), and so b = 7 ∈ F19. Next we compute a(q−1)/p by

a(q−1)/p ≡ 66 ≡ (62)3 ≡ (−2)3 ≡ −8 ≡ 11 (mod 19),

and so a(q−1)/p = 11 ∈ F19. Now we calculate b0, b1, b2, . . . in F19 until we obtain

a(q−1)/p. We get b0 = 1, b1 = 7, b2 = 11, and so h0 = 2. Since 32 divides q − 1,

another step is needed. If h = indg(a), then

h ≡ h0 + h1p ≡ 2 + 3h1 (mod 9).
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Note that a1 = ag−h0 = 11 ∈ F19 and that h1 ∈ Z3 is the exponent such that

bh1 = a
(q−1)/p2
1 = 112 = 7 ∈ F19. Hence h1 = 1 since b = 7. Therefore h ≡ 2 + 3 · 1 ≡

5 (mod 9). The case of the prime factor p = 2 is easy since now

a(q−1)/p ≡ 69 ≡ (62)4 · 6 ≡ (−2)4 · 6 ≡ 1 (mod 19),

and so h ≡ 0 (mod 2). Since 0 ≤ h ≤ 17, the congruence h ≡ 5 (mod 9) implies

that h = 5 or 14, and so h ≡ 0 (mod 2) yields h = indg(a) = ind2(6) = 14.

Finally, we present a somewhat more elaborate algorithm for computing discrete

logarithms, the index-calculus algorithm. We restrict the discussion to the case of

a finite prime field Fp, but see Remark 2.4.9 below. Let p be a prime number and

let g be a primitive root modulo p (or equivalently a primitive element of Fp). Let

B be an integer with 2 ≤ B < p and recall the notion of a B-smooth integer from

Subsection 2.3.3.

In the first step of the index-calculus algorithm, we determine indg(r) for all

prime numbers r ≤ B. To do this, we choose a random integer m with 1 ≤ m ≤ p−2

and compute the least residue of gm modulo p. If this least residue is B-smooth,

then

gm ≡
∏
r≤B

re(r) (mod p).

Otherwise, we pick a new m. By the rules for discrete logarithms, we obtain

m ≡
∑
r≤B

e(r) indg(r) (mod p− 1).

This is a linear congruence for the unknowns indg(r). By producing sufficiently

many of these congruences, we hope that the resulting system will have a unique

solution modulo p− 1.

In the second step of the index-calculus algorithm, let a be an integer with

gcd(a, p) = 1 for which we want to calculate indg(a). (Strictly speaking, we are

really talking about the least residue of a modulo p, viewed as an element of F∗p,
but this does not make any difference in the computations.) We choose a random

integer s with 0 ≤ s ≤ p− 2 and compute the least residue of ags modulo p. If this

least residue is B-smooth, then

ags ≡
∏
r≤B

rf(r) (mod p).

Otherwise, we pick a new s. By the rules for discrete logarithms, we get

indg(a) + s ≡
∑
r≤B

f(r) indg(r) (mod p− 1).

Since all discrete logarithms indg(r) for prime numbers r ≤ B have been computed

in the first step, this determines indg(a) uniquely.
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The index-calculus algorithm is feasible if p is not too large, since then there is a

higher chance that the least residues modulo p we have to calculate are B-smooth.

Example 2.4.8 We compute ind2(6) in Example 2.4.7 by the index-calculus algo-

rithm. Since a = 6 = 2 · 3, it suffices to take B = 3. In the first step, we have

to compute ind2(2) and ind2(3). Clearly ind2(2) = 1. For the determination of

ind2(3), we are obliged to find a suitable power gm = 2m for which the least residue

modulo 19 is 3-smooth. Now the least residues of 2, 22, 23, and 24 modulo 19

are 3-smooth, but they do not involve the number 3. Next 25 ≡ 13 (mod 19),

26 ≡ 7 (mod 19), and 27 ≡ 14 (mod 19) yield least residues modulo 19 that

are not 3-smooth. But 28 ≡ 9 (mod 19) has a 3-smooth least residue modulo

19. Taking the discrete logarithm to the base 2 in 28 = 32 in F19, we obtain

8 ≡ 2 ind2(3) (mod 18), and so ind2(3) ≡ 4 (mod 9). The value ind2(3) = 4 is not

possible since 24 ≡ 16 6≡ 3 (mod 19), and so necessarily ind2(3) = 13. The second

step of the index-calculus algorithm is easy in this case. We simply choose s = 0,

then ags ≡ 6 ≡ 2 · 3 (mod 19), and taking the discrete logarithm to the base 2 we

obtain

indg(a) ≡ ind2(2 · 3) ≡ ind2(2) + ind2(3) ≡ 14 (mod 18).

Thus, the final answer is indg(a) = ind2(6) = 14 as in Example 2.4.7.

Remark 2.4.9 For a finite field Fq where q is not a prime number, say q = pk with

a prime number p and an integer k ≥ 2, there is also an index-calculus algorithm.

The computations are then carried out not in Z, but in the polynomial ring Fp[x].

Furthermore, Fq is identified with the residue class field Fp[x]/(v(x)), where v(x) ∈
Fp[x] is irreducible over Fp with deg(v(x)) = k (compare with Subsection 1.4.3). We

refer to [103, Section 9.3] for details of the algorithm.

2.5 Digital signatures

2.5.1 Digital signatures from public-key cryptosystems

Let us consider confidential communication between two users A and B with encryp-

tion by a public-key cryptosystem. Since the encryption key of B is public, anybody

can send an encrypted message to B. How can B be sure that the message really

came from A? This question is very important in highly sensitive areas such as legal

and financial matters. The recipient (for example a bank) has to be absolutely sure

that the message (asking for example for a money withdrawal) comes from an autho-

rized person (for example the owner of the bank account). Conventionally, one uses

handwritten signatures for this purpose. In electronic communications one employs

digital signatures. Thus, digital signatures are essential in e-banking, e-commerce,

e-government, and anything else starting with “e-”.
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Digital signatures are provided by signature schemes. A signature scheme con-

sists of two algorithms:

(i) a signing algorithm sigK , depending on a signature key K, which computes for

each possible message m a corresponding signature s = sigK(m) that is appended

to the message;

(ii) a verification algorithm verK which checks, for all possible messages m and all

possible signatures s, whether s = sigK(m). Thus,

verK(m, s) =

{
true if s = sigK(m),

false if s 6= sigK(m).

The signing and verification algorithms should be fast. The signature key K

and so the function sigK are secret, whereas verK is a public function, with a public

verification key K, so that anybody can check digital signatures. It should be

computationally infeasible to forge a digital signature on a message m. That is,

given m, only the authorized user A should be able to compute the signature s such

that verK(m, s) = true.

It is worth emphasizing that a handwritten signature is independent of the doc-

ument to be signed, whereas a digital signature depends on the message m. The

reason for the latter is that the physical link between document and handwritten

signature has to be replaced by a logical link between message and digital signature.

Certain public-key cryptosystems can be used to produce digital signatures. The

public-key cryptosystem must satisfy the following condition, in addition to PKC1,

PKC2, and PKC3 in Subsection 2.3.1.

PKC4: The decryption algorithm D can be applied to every plaintext M and

E(D(M)) = M for all M .

Note that normally the decryption algorithm is applied only to ciphertexts, so

PKC4 is an additional property that needs to be checked. An example of a public-key

cryptosystem that does not satisfy PKC4 is the ElGamal cryptosystem in Algorithm

2.4.4, since there the plaintexts are elements of F∗q and the ciphertexts are ordered

pairs of elements of F∗q.
If a public-key cryptosystem satisfies PKC4, then we get a signature scheme as

follows. We consider again our two acquaintances Alice and Bob. Suppose that Bob

wants to sign the message M that he sends to Alice. Then the following two steps

are executed, with the notation in Subsection 2.3.1.

(i) Signing algorithm: Bob takes his secret decryption key K ′ and computes the

message-dependent signature S = DK′(M).

(ii) Verification algorithm: Alice looks up the public encryption key K of Bob. Then

she takes the signature S and computes EK(S) = EK(DK′(M)). If the result is M ,

then the signature is verified, otherwise it is rejected. Alice can be satisfied that the

message M came from Bob since no other person would have used the secret key K ′
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of Bob to compute S = DK′(M).

An important example is provided by the RSA cryptosystem. Remember that

we have to check the property PKC4 above. In the RSA cryptosystem, decryption

is achieved by the map that sends c ∈ Zn to the least residue of cd modulo n.

Obviously, this decryption algorithm can be applied to every plaintext m ∈ Zn.

Furthermore, the corresponding encryption algorithm computes c ≡ me (mod n)

with ed ≡ 1 (mod φ(n)). Then

E(D(m)) ≡ E(md) ≡ (md)e ≡ med ≡ m (mod n)

for all m ∈ Zn, where the last step follows by Lemma 2.3.6. Thus, the RSA cryp-

tosystem satisfies the property PKC4 and can be used for digital signatures.

In order to set up the RSA signature scheme, the prime numbers p and q and

the integers n = pq, e, and d are chosen as in the RSA cryptosystem, and the public

and private keys are now those of Bob in the role of the signer.

Algorithm 2.5.1 (RSA Signature Scheme) The public key of Bob is the or-

dered pair (n, e) and the private key of Bob is the ordered triple (p, q, d).

Signing: Bob signs a plaintext m ∈ Zn by computing s ∈ Zn with s ≡ md (mod n)

and sends the ordered pair (m, s) to Alice.

Verification: Upon receiving (m, s), Alice computes the least residue of se modulo

n and checks whether it agrees with m.

Clearly, the security level of the RSA signature scheme is exactly the same as for

the RSA cryptosystem. Note that we have just turned the tables: encryption has

become verification and decryption has become signing.

The ElGamal cryptosystem cannot be used directly for digital signatures since we

have already noted that it does not satisfy PKC4, but there is a slight modification

that works. In order to set up the ElGamal signature scheme, the signer Bob

chooses a large prime number p, a primitive root g modulo p, and an integer h with

2 ≤ h ≤ p− 2. Then Bob computes a ∈ Zp with a ≡ gh (mod p).

Algorithm 2.5.2 (ElGamal Signature Scheme) The public key of Bob is the

ordered triple (p, g, a) and the private key of Bob is h.

Signing: Bob signs a plaintext m ∈ Zp by choosing a random integer r with

2 ≤ r ≤ p − 2 and gcd(r, p − 1) = 1, computing b ∈ Zp with b ≡ gr (mod p), and

sending the ordered triple (m, b, c) to Alice, where c ∈ Zp−1 is the unique solution

of the congruence

rc ≡ m− bh (mod p− 1).

Verification: Upon receiving (m, b, c), Alice computes the least residue of abbc

modulo p and checks whether it agrees with the least residue of gm modulo p.
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It remains to prove that abbc ≡ gm (mod p). This holds since

abbc ≡ ghbgrc ≡ ghbgm−bh ≡ gm (mod p).

As for the ElGamal cryptosystem, the security of the ElGamal signature scheme is

based on the presumed difficulty of the discrete logarithm problem, in this case for

the finite prime field Fp.
In practice, one wants to combine signing and public-key encryption. The cru-

cial question is about the proper order of these operations: do you first sign or first

encrypt? The answer becomes obvious once you pose the question in the analog

world: when you mail for example a confidential contract like a job contract, would

you first sign the contract and then put it into an envelope that you seal, or would

you put the unsigned contract into an envelope and then sign the sealed envelope?

Consequently, you first sign and then you encrypt the combined plaintext and signa-

ture. The legitimate receiver Alice undoes these operations in the correct order: she

first decrypts and then she verifies the signature attached to the plaintext. If you

carry out these steps in the wrong order, that is, if you first encrypt and then sign,

then an adversary having access to the insecure channel can replace your signature

by his own signature and send the ciphertext-signature pair to Alice. When Alice

applies the verification algorithm of the adversary, everything checks and Alice will

conclude that the message originated with the adversary.

2.5.2 DSS and related schemes

The Digital Signature Standard (DSS ) is a signature scheme that was adopted as

a standard by the U.S. Government in 1994, thus sanctioning a design by one of

its own agencies. The DSS is a modification of the ElGamal signature scheme in

Algorithm 2.5.2.

Note that the signature in the ElGamal signature scheme is an ordered pair

(b, c), where b and c are integers modulo p and p − 1, respectively. In 1994 it

was already necessary to choose p as a 512-bit prime number in order to make the

ElGamal signature scheme secure. Thus, an ElGamal signature can be expected to

have up to 1024 bits. This is too long for typical applications such as smart cards.

Nowadays it would be preferable to choose a 1024-bit prime modulus p, leading to

even longer 2048-bit ElGamal signatures in the worst case. For this reason, the

ElGamal signature scheme was not used directly.

The DSS signs 160-bit messages with 320-bit signatures, but the computations

are performed with a prime modulus p that has between 512 and 1024 bits. This

is achieved by replacing the primitive root g modulo p in the ElGamal signature

scheme by a nonzero integer g1 ∈ Zp such that the multiplicative order of g1 modulo

p is equal to p1, where p1 is a 160-bit prime number dividing p−1. If a primitive root

g modulo p is known, then such an integer g1 can be obtained by the congruence
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g1 ≡ g(p−1)/p1 (mod p). The signer Bob chooses an integer h with 2 ≤ h ≤ p1 − 2

and computes a ∈ Zp with a ≡ gh1 (mod p).

Algorithm 2.5.3 (Digital Signature Standard) The public key of Bob is the

ordered quadruple (p, p1, g1, a) and the private key of Bob is h.

Signing: Bob signs a 160-bit plaintext m by choosing a random integer r with

2 ≤ r ≤ p1−2, computing the least residue of gr1 modulo p, and then computing the

least residue b of that number modulo p1. Next Bob determines the unique solution

c ∈ Zp1 of the congruence

rc ≡ m+ bh (mod p1).

In the rare case where c = 0, a new random integer r is chosen. Finally Bob sends

the ordered triple (m, b, c) to Alice.

Verification: Upon receiving (m, b, c), Alice first finds the solutions e1, e2 ∈ Zp1 of

the congruences ce1 ≡ m (mod p1) and ce2 ≡ b (mod p1). Then she computes the

least residue of ge11 a
e2 modulo p, then the least residue of that number modulo p1,

and finally she checks whether the latter number agrees with b.

It remains to prove that ge11 a
e2 ≡ gr1 (mod p). Note that

ge11 a
e2 ≡ ge11 g

he2
1 ≡ ge1+he21 (mod p).

Furthermore,

c(e1 + he2) ≡ m+ bh ≡ cr (mod p1).

From gcd(c, p1) = 1 we obtain e1 + he2 ≡ r (mod p1), and since the multiplicative

order of g1 modulo p is p1, we get indeed ge11 a
e2 ≡ gr1 (mod p).

Remark 2.5.4 We can sign only 160-bit messages with the DSS, but in practice

messages can be megabytes in size. This raises the question of how to sign long

messages with the DSS. Of course, we could split up a long message into 160-bit

chunks and then sign each chunk separately. But this has several disadvantages: (i)

the resulting signature is enormous, namely about twice as long as the message; (ii)

the communication is slowed down by the time it takes to compute many signatures;

(iii) a loss of security is possible since an adversary could rearrange or remove various

chunks of a signed message and the resulting message plus signature would still be

verified. The preferred solution for the signing of long messages with the DSS is to

“hash” the message to a 160-bit message digest and then to sign this message digest

with the DSS. In the communication, the original message is sent together with the

signed message digest. For the purpose of “hashing”, we need a hash function, that

is, a function mapping long strings of symbols into much shorter strings of symbols.

In the present case, the hash function must be publicly known so that everyone can

compute the message digest in order to verify the signature. For security reasons,

hash functions with special cryptographic properties have to be used. We refer

to [116, Chapter 9] and [160, Chapter 6] for information on hash functions.
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It seems that the DSS is unnecessarily complicated (maybe this is typical of

something produced by a huge bureaucracy), and so several simpler digital signa-

ture schemes using the same basic idea were proposed. We describe a particu-

larly elegant alternative, the Nyberg-Rueppel signature scheme. The setup for the

Nyberg-Rueppel signature scheme is the same as for the DSS, except that there are

no constraints on the sizes of p and p1.

Algorithm 2.5.5 (Nyberg-Rueppel Signature Scheme) The public key of Bob

is the ordered quadruple (p, p1, g1, a) and the private key of Bob is h.

Signing: Bob signs a plaintext m ∈ Fp by choosing a random integer r with

2 ≤ r ≤ p1 − 2, computing b = mg−r1 ∈ Fp, and sending the ordered triple (m, b, c)

to Alice, where c = bh+ r ∈ Fp1 .
Verification: Upon receiving (m, b, c), Alice computes bgc1a

−b ∈ Fp and checks

whether it agrees with m.

It remains to prove that bgc1a
−b = m in Fp. This holds since

bgc1a
−b = bgbh+r1 g−bh1 = bgr1 = m.

2.6 Threshold schemes

The need for threshold schemes is best explained by an example. The following is a

standard operating principle in banks (the “four-eyes principle”): in order to open

the bank’s vault, at least two senior employees have to cooperate; one person is not

enough. Thus, we require a scheme to distribute the vault’s lock combination such

that two authorized persons can generate the lock combination, but one person

cannot. The four-eyes principle is used also in other sensitive areas, such as the

control of nuclear weapons.

In a more general and abstract setting, the relevant cryptographic scheme is de-

scribed as follows. Let n be the number of users of the scheme. Let S be the secret

that needs to be protected, for example the key for a cryptosystem or a lock combi-

nation. The n users receive data S1, . . . , Sn, respectively, which may be thought of

as partial information about S and are called the “shares”. The idea is that certain

coalitions of users can reconstruct the secret S from their shares. Such a general

scheme is called a secret-sharing scheme. The shares are customarily generated by

a trusted authority which also distributes them to the users. A threshold scheme is

a special type of secret-sharing scheme.

Definition 2.6.1 Let k and n be integers with 2 ≤ k ≤ n. A secret-sharing scheme

with threshold k and n users is called a (k, n)-threshold scheme if it has the following

properties:

(i) any k or more users can reconstruct the secret from their shares;

(ii) for k − 1 or fewer users it is impossible to reconstruct the secret.
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Remark 2.6.2 In the above example from banking, the threshold is k = 2 and n

is the number of employees authorized to open the vault. Thus, we need a (2, n)-

threshold scheme to implement the four-eyes principle.

Remark 2.6.3 Here is a simplistic threshold scheme, say for k = 2 and n = 2.

Let us be concrete and assume that the lock combination of the vault consists

of six decimal digits. We give the first three digits to the president of the bank

and the other three digits to the vice-president. On first glance, it looks as if

the definition of a (2, 2)-threshold scheme were satisfied. However, if say the vice-

president is dishonest, then he has to guess only the first three digits of the lock

combination rather than the full six digits. It is feasible for him to try the 103

possibilities during a long night session or over a weekend, but it is impossible for

him to try 106 possibilities unless he is unbelievably lucky and beats the chance of

10−6 within a manageable time span. Hence this simplistic scheme does not work

since it dramatically reduces the time that is needed for an exhaustive search. In a

well-designed threshold scheme, the shares should contain about as much unknown

information or uncertainty as the secret.

Example 2.6.4 Threshold schemes can be used also to protect against loss of in-

formation. If S is a piece of information that we want to protect, then we can use a

(k, n)-threshold scheme to distribute partial information about S to n users. Even if

n−k of these shares are lost or destroyed, we can still recover S from the remaining

k shares. The threshold k also allows up to k − 1 of the shares to be disclosed

by breaches of security, without compromising S. This has obvious applications in

highly exposed or dangerous environments such as a battle field.

We describe a number-theoretic (k, n)-threshold scheme, the Shamir threshold

scheme, which is named after its designer Adi Shamir (who is also the S in RSA).

Let p be a large prime number. We identify the secret S with an element of the

finite prime field Fp. Similarly, we identify the n users of the scheme with n distinct

nonzero elements c1, . . . , cn of Fp. For this we must of course take p > n.

Algorithm 2.6.5 (Shamir Threshold Scheme) Let n ≥ 2 be the number of

users, let p > n be a large prime number, let c1, . . . , cn ∈ F∗p be the user identifiers,

let k be the threshold, and let S ∈ Fp be the secret. A trusted authority chooses

random elements a1, . . . , ak−1 ∈ Fp and sets up the polynomial

f(x) = ak−1x
k−1 + · · ·+ a1x+ S ∈ Fp[x]

of degree at most k − 1. The shares are obtained by Si = f(ci) for 1 ≤ i ≤ n and

then distributed to the users.
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In order to prove that this is indeed a (k, n)-threshold scheme, we need to verify

two properties: (i) any k function values of f(x) determine f(x) uniquely; (ii) k− 1

function values of f(x) do not determine f(x). The second property is easy: if

f(b1), . . . , f(bk−1) are given function values, then the polynomial

g(x) = f(x) + c(x− b1) · · · (x− bk−1) ∈ Fp[x]

with an arbitrary c ∈ Fp has degree at most k − 1 and the same function values at

b1, . . . , bk−1, that is, g(bj) = f(bj) for 1 ≤ j ≤ k − 1. Note also that S = f(0) and

g(0) = S + c(−b1) · · · (−bk−1) = S + cd

for some nonzero d ∈ Fp if b1, . . . , bk−1 are nonzero, and so g(0) contains no infor-

mation about S since S + cd runs through Fp if c runs through Fp.
For the verification of the first property and the reconstruction of the secret,

there are two methods that we can use. In the first method, we start from the given

data f(b1), . . . , f(bk) for distinct b1, . . . , bk ∈ Fp, say f(bj) = fj ∈ Fp for 1 ≤ j ≤ k.

By writing down f(x) in detail, we get

ak−1b
k−1
j + · · ·+ a1bj + S = fj for 1 ≤ j ≤ k.

This can be viewed as a system of k linear equations for the k unknowns ak−1, . . . , a1, S.

The determinant D of the coefficient matrix is a Vandermonde determinant (we as-

sume here that you are familiar with determinants), and by the well-known formula

for Vandermonde determinants we obtain

D =
∏

1≤h<j≤k

(bj − bh).

Since bj − bh 6= 0 for 1 ≤ h < j ≤ k, we have D 6= 0, and so the system of linear

equations can be solved uniquely in Fp.
In the second method, we are again given f(bj) = fj ∈ Fp for 1 ≤ j ≤ k. Here

f(x) is explicitly computed by the Lagrange interpolation formula

f(x) =
k∑
j=1

fj

k∏
h=1
h 6=j

(bj − bh)−1(x− bh).

The secret S is obtained from S = f(0). It is easy to check that f(bj) = fj for

1 ≤ j ≤ k, since the above product over h is 1 at x = bj and 0 at x = br for

r 6= j. The uniqueness of f(x) can be proved independently of the first method,

for if v(x) ∈ Fp[x] is an arbitrary polynomial of degree ≤ k − 1 with v(bj) = fj for

1 ≤ j ≤ k, then (v − f)(bj) = 0 for 1 ≤ j ≤ k. Thus, the polynomial v(x) − f(x)

of degree at most k − 1 has k distinct roots b1, . . . , bk. But this is possible only if

v(x)− f(x) is the zero polynomial (see Theorem 1.4.27), and then v(x) = f(x).
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It is important to observe that the security of the Shamir threshold scheme does

not rely on any unproved assumptions, unlike that of many other cryptographic

schemes. In other words, the Shamir threshold scheme offers unconditional security.

The Shamir threshold scheme has several other nice properties. For instance,

it is easy to add new users without changing the shares of the existing users. The

trusted authority just chooses a nonzero identifier cn+1 ∈ Fp that has not been

utilized before and assigns the share Sn+1 = f(cn+1) to the (n+ 1)st user. This does

not affect the existing shares. Similarly, we can implement various levels of control.

If the user Alice is higher up in the hierarchy, she can be provided with multiple

shares corresponding to several different user identifiers. This gives more weight to

Alice in coalitions of users.

On the other hand, the Shamir threshold scheme can be applied only once with

a fixed set of shares. As soon as the members of a coalition of at least k users have

disclosed their shares to recover the secret, these shares and the polynomial f(x) are

compromised. The trusted authority then has to choose a new random polynomial

f(x) and distributes new shares accordingly.

2.7 A glimpse of advanced topics

Although we presented several algorithms to solve the number-theoretic problems

that form the basis of most public-key cryptosystems, namely the factorization prob-

lem for integers and the discrete logarithm problem, none of these algorithms is

efficient enough to endanger, say, the RSA cryptosystem or the Diffie-Hellman key

exchange if the parameters are carefully chosen. However, not much is known when

we ask for the complexity of these problems in the rigorous sense of complexity

theory in computer science. The book of Shparlinski [182] introduces new ways of

using number theory in cryptography for the purpose of deriving lower bounds on

the complexity of these number-theoretic problems. In particular, the book contains

lower bounds on the degrees or orders of polynomials, algebraic functions, Boolean

functions, and linear recurring sequences coinciding with the discrete logarithm for

the finite prime field Fp at sufficiently many points. Just to whet the appetite, we

state a sample result (see [182, Theorem 8.1]): let f(x) ∈ Fp[x], let g be a primitive

element of Fp, and let S ⊆ F∗p be such that indg(a) = f(a) in Fp for all a ∈ S; then

deg(f(x)) ≥ 2|S| − p, where we put deg(0) = 0.

It is obvious that the definition of the discrete logarithm in Definition 2.4.1 makes

sense in any finite cyclic group. The index-calculus algorithm (see Subsection 2.4.2)

uses some special features of finite fields and is, with a proper choice of parameters,

essentially faster than any so-called generic algorithm, that is, an algorithm such

as the baby-step giant-step algorithm that can be easily extended from F∗q to any

finite cyclic group. This can be considered a disadvantage for cryptographic schemes
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based on the discrete logarithm problem for finite fields. Therefore cryptologists have

looked around for finite cyclic groups, and more generally finite abelian groups, other

than F∗q that can be used as the basis for cryptographic schemes.

The points on an elliptic curve over a finite field form a finite abelian group

for which the discrete logarithm problem is believed to be harder than the discrete

logarithm problem for finite fields of a similar size because of the lack of an analog

of the index-calculus algorithm for elliptic curves. Elliptic curves can be employed

in versions of cryptographic schemes based on the discrete logarithm problem, as

for example the Diffie-Hellman key exchange. We emphasize that elliptic curves are

not ellipses. Elliptic curves received their name from integrals in calculus that arise

in the computation of the arc length of ellipses.

An elliptic curve E over a finite field Fq of characteristic different from 2 and 3

is the set of solutions (x, y) ∈ F2
q of a cubic polynomial equation of the form

y2 = x3 + ax+ b, a, b ∈ Fq, 4a3 + 27b2 6= 0, (2.1)

together with a further point O called the point at infinity. We turn E into a finite

abelian group with the additive notation by stipulating first of all that O serves as

the identity element of E. Next we describe how the inverse element −P of a point

P on E is defined. If P = O, then −O = O by the rules for abelian groups. If

P = (x, y) 6= O, then we put −P = (x,−y). The axioms for abelian groups force

us to define P + O = O + P = P and P + (−P ) = (−P ) + P = O for all points P

on E. It remains to define the sum P + Q for two points P and Q on E that are

different from O and satisfy Q 6= −P . We first express the definition geometrically.

We consider the line in F2
q through P and Q if P 6= Q, and the tangent line to E at

P if P = Q. This line intersects E in a unique third (respectively second) point R,

and then by definition P +Q = −R. The arithmetic definition says that if P 6= O,

Q 6= O, and Q 6= −P , then the sum of P = (x1, y1) and Q = (x2, y2) is given by

P +Q = (x3, y3) with

x3 = c2 − x1 − x2, y3 = c(x1 − x3)− y1,

where

c =

{
(y2 − y1)(x2 − x1)−1 if P 6= Q,

(3x21 + a)(2y1)
−1 if P = Q.

It requires some nontrivial computations to verify that E is indeed a finite abelian

group under this addition (see the books on elliptic-curve cryptography cited below).

The order N(E) of E satisfies

|N(E)− q − 1| ≤ 2q1/2

according to the celebrated Hasse-Weil bound (see [47, Theorem 3.61] and [199,

Theorem 4.2]).
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Now we can describe the analog of the Diffie-Hellman key exchange (see Algo-

rithm 2.4.3) for elliptic curves over a finite field. In a nutshell, we replace the large

cyclic group F∗q by a large cyclic subgroup of the finite abelian group E. We use the

abbreviation nP = P + P + · · ·+ P︸ ︷︷ ︸
n summands

for all positive integers n and all points P on

E. All participants of a communication system share now a point P of large order

t on an elliptic curve E over a finite field. In the first step, Alice chooses a random

integer h with 2 ≤ h ≤ t−1 and Bob chooses a random integer k with 2 ≤ k ≤ t−1.

In the second step, Alice sends hP to Bob over the channel, while Bob sends kP to

Alice over the channel. The common key is (hk)P , which Alice computes as h(kP )

and Bob computes as k(hP ).

It should be obvious how to design, for example, an analog of the ElGamal

cryptosystem (see Algorithm 2.4.4) in the framework of elliptic curves over finite

fields. For more details on elliptic-curve cryptography, we refer first and foremost

to the Handbook of Elliptic and Hyperelliptic Curve Cryptography [27]. There are

also quite a number of monographs on this subject; we mention Blake, Seroussi,

and Smart [12], Enge [47], Menezes [115], Washington [199], and two books by

Koblitz [82], [83]. It is remarkable that elliptic curves can be used also for factoring

integers and for primality tests (see [12, Chapter IX] and [82, Chapter VI]).

Groups derived from more complicated curves than elliptic curves have also been

studied and may be attractive alternatives. For more information about this fasci-

nating area, we refer again to the handbook [27] as well as to the books [12], [83],

[147], and [148].

Stream ciphers represent an approach to symmetric encryption different from

block ciphers. In a stream cipher the message is represented as a (usually finite)

sequence m1,m2, . . . of bits and the message is encrypted by combining it with

another (usually finite) sequence k1, k2, . . . of bits, the keystream. One possibility

to encrypt the message is to view bits as elements of the finite field F2 and to add

the message bits and the keystream bits term by term in F2. Thus, the ciphertext

is the sequence c1, c2, . . . given by ci = mi + ki ∈ F2 for all i ≥ 1. The receiver can

recover the message by adding the keystream to the ciphertext term by term, that

is, by computing mi = ci + ki ∈ F2 for all i ≥ 1. This is extremely fast and has

the nice feature that the same device can be used for encryption and decryption. In

theory we could play the same game over any finite field, where in general decryption

means subtracting the keystream from the ciphertext, but as so often in cryptology

the Yogi Berra principle in Remark 2.4.5 applies again and motivates us to stick

to F2.

If the keystream is a truly random sequence of bits, then we get the one-time

pad or Vernam cipher , the latter named after the engineer Gilbert Vernam who got

a U.S. patent for this cipher in 1919. The one-time pad is theoretically supported

by the Shannon theorem (see [193, Chapter 2]) which says that the ciphertext in
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a one-time pad does not leak any information and so cannot be decrypted by an

adversary. Thus, the one-time pad would be the Holy Grail of cryptography, but

the trouble is that nobody knows how to generate a truly random sequence of bits

in practice (see Sections 5.1 and 5.4 for discussions of this issue). Therefore the

one-time pad is an idealization and stream ciphers attempt to imitate this ideal as

best as they can. By the way, the name “one-time pad” stems from the requirement

that the same keystream should not be reused to encrypt a second message. Indeed,

if ki is used to encrypt mi and m′i, then by adding the identities ci = mi + ki and

c′i = m′i + ki we obtain ci + c′i = mi + m′i. The adversary can compute ci + c′i for

as many values of i as desired, and this leaks information about mi and m′i for that

many values of i.

Stream ciphers can be considered the practical versions of the one-time pad where

the keystream is now a deterministically generated and often periodic sequence of

bits with certain desirable features of randomness. Such a sequence is called a se-

quence of pseudorandom bits . We will say more about such sequences in Section 5.4.

Keystreams generated by number-theoretic methods are discussed at length in the

monograph [32]. Because of the difficulty of generating good keystreams and the

practical problem of how to get the keystream from the sender to the receiver,

stream ciphers are nowadays used only in contexts where a very high level of security

is demanded and where a hierarchical organizational structure exists, for instance

in military and diplomatic communications. The practicality of stream ciphers is

also hampered by the fact that the keystream needs to be as long as the plaintext

message, which causes problems when encrypting big data sets.

We mention a particularly elegant number-theoretic sequence of pseudorandom

bits, where we again view bits as elements of F2. Let p be a large (and therefore

odd) prime number and define k1, k2, . . . by ki = 1 if i is a quadratic nonresidue

modulo p and ki = 0 otherwise. This sequence is periodic with least period length

p. In a full period, there are (p−1)/2 terms equal to 1 and (p+1)/2 terms equal to 0

(compare with Remark 1.2.26). The sequence satisfies the obvious linear recurrence

relation ki+p = ki for all i ≥ 1. This raises the interesting question of the least order

of a linear recurrence relation that generates the sequence. This least order is called

the linear complexity of a periodic sequence (see also Section 5.4). If L is the linear

complexity of the given sequence k1, k2, . . ., then there exist c0, c1, . . . , cL ∈ F2 with

cL = 1 such that
L∑
l=0

clki+l = 0 for all i ≥ 1.

If i is not divisible by p, then (−1)ki is the Legendre symbol
(
i
p

)
, and so we obtain

L∏
l=0

(i+ l

p

)cl
= 1 for 1 ≤ i ≤ p− L− 1.
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If we use the quadratic character η of Fp in Remark 1.4.53, then this can be written

as

η
( L∏
l=0

(i+ l)cl
)

= 1 for 1 ≤ i ≤ p− L− 1.

Therefore we get

p− L− 1 =

p−L−1∑
i=1

η
( L∏
l=0

(i+ l)cl
)

≤
∣∣∣ p−1∑
i=0

η
( L∏
l=0

(i+ l)cl
)∣∣∣+ L+ 1 ≤ Lp1/2 + L+ 1.

In the last step we applied the Weil bound stated later in (6.8) in Subsection 6.1.3.

We conclude that

Lp1/2 + 2(L+ 1) ≥ p,

and so L ≥ 1
2
p1/2 for p ≥ 11. Using a different method (see [32, Theorem 9.3.2]),

one can determine the exact value of L, and in particular one obtains the lower

bound L ≥ (p − 1)/2 for all odd prime numbers p. However, the method we have

employed can be extended to produce lower bounds on the linear complexity for

parts of the period (see [182, Theorem 9.2]), with an appropriate definition for the

linear complexity of a finite sequence.

It is noteworthy that cryptosystems can also be utilized for the generation of

keystreams. Let us start with DES. Take an arbitrary block M1 of 64 bits. In the

standard application of DES as a block cipher, M1 would be a plaintext, but now

M1 is viewed as the initial value of a recursion. In detail, we recursively generate a

sequence M1,M2, . . . of 64-bit blocks by

Mi+1 = DESK(Mi) for i = 1, 2, . . . ,

where K is a fixed DES key. The sequence M1,M2, . . . of 64-bit blocks is then

regarded in an obvious manner as a sequence of bits and so as a keystream. We

can play the same game with AES, but of course the blocks Mi consist then of 128

bits. It is difficult to carry out a theoretical analysis of the keystreams generated

by DES and AES, but particularly for AES the keystreams perform satisfactorily

under statistical tests for randomness. For the RSA cryptosystem, we again use the

idea of repeated encryption. With the notation in Algorithm 2.3.5, we start from

an initial value m1 ∈ Zn and generate a sequence m1,m2, . . . of elements of Zn by

the recursion

mi+1 ≡ me
i (mod n) for i = 1, 2, . . . .

Trivial initial values such as m1 = 0, 1, n − 1 have to be excluded. A sequence

k1, k2, . . . of bits is obtained by the formula

ki ≡ mi (mod 2) for i = 1, 2, . . . ,



90 CHAPTER 2. CRYPTOGRAPHY

and this is a keystream produced by the RSA cryptosystem.

Cryptography is such a wide area that a lot more can be said about it, but we

have to respect certain limits. The books cited in Subsection 2.1.1 will certainly

satisfy your curiosity. A few more topics related to cryptography will be discussed

in the following chapters, including code-based cryptosystems (see Section 3.6) and

the possible impact of quantum computers on cryptography (see Subsection 6.5.1).

Exercises

2.1 Use the decryption function D given in Example 2.1.2 to decrypt YCDLMF

ZV PUS.

2.2 Consider the affine cipher determined by e(m) ≡ 7m + 12 (mod 26). We

identify the English alphabet with Z26 by A↔ 0, B ↔ 1, . . . , Z ↔ 25.

(a) Encrypt the word BECKENBAUER using this substitution.

(b) Which word was encrypted to 4 1 12 25 4 11? (Hint: the solution is the

name of an Austrian football player who would have become less famous

if Franz Beckenbauer had attended the World Cup 1978.)

2.3 For a linear substitution e(m) ≡ am + b (mod 31) with a, b ∈ Z31, we know

e(2) = 5 and e(3) = 10.

(a) Determine a and b.

(b) Determine the inverse map e−1.

2.4 Verify that the permutations π and π−1 used in DES satisfy π−1(π(i)) = i for

all i = 1, . . . , 64.

2.5 Verify that all steps in AES are invertible.

2.6 Prove the assertions in Remark 2.2.3 in detail.

2.7 Show that f(x) = x3 is an APN function over every finite field F2r with r ∈ N.

2.8 (a) Encrypt the messages m = 5 and m = 7 with the RSA cryptosystem and

the public key (n, e) = (35, 5).

(b) Calculate the private key d.

2.9 Determine all possible encryption exponents e ≤ 60 for the RSA modulus

n = 77.

2.10 Determine the number of multiplications modulo n that are required for an

RSA encryption with modulus n and encryption exponent e = 218 + 28 + 1 if

an efficient algorithm is used for this purpose.
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2.11 A plaintext m ∈ Zn in the RSA cryptosystem with public key (n, e) is said

to be fixed if me ≡ m (mod n). Prove that the number of fixed plaintexts is

given by

(gcd(p− 1, e− 1) + 1)(gcd(q − 1, e− 1) + 1).

2.12 Show that the encryption exponent e = φ(n)/2 + 1 is unsuitable in the RSA

cryptosystem since then me ≡ m (mod n) for all m ∈ Z.

2.13 (a) Suppose that the same plaintext m ∈ Zn is encrypted twice with the RSA

cryptosystem using two public keys (n, e) and (n, f) with gcd(e, f) = 1.

Show that m can be recovered from the two ciphertexts ce ≡ me (mod n)

and cf ≡ mf (mod n).

(b) Consider the special case n = 77, e = 13, and f = 17. The two ciphertexts

are ce = 3 and cf = 5. Find the plaintext m.

2.14 Consider the RSA cryptosystem with public key (n, e).

(a) Prove that there exists a positive integer k such that mek ≡ m (mod n)

for all m ∈ Z.

(b) For an integer k in part (a), prove that ce
k−1 ≡ m (mod n) for the

ciphertext c corresponding to the plaintext m.

(c) Suppose that a small integer k with the property in part (a) can be found.

Argue that this endangers the security of this RSA cryptosystem.

2.15 Does an analog of the RSA cryptosystem work if n is the product of more than

two distinct prime numbers? What is the disadvantage if we take more than

two prime factors? Why is n = p2 a bad choice?

2.16 Suppose that m ∈ N is divisible by the square of a prime number. Prove that

there exist integers a1 and a2 such that a1 6≡ a2 (mod m), but ak1 ≡ ak2 (mod m)

for all integers k ≥ 2.

2.17 The Rabin cryptosystem works with a modulus n = pq, where p and q are

distinct prime numbers with p ≡ 3 (mod 4) and q ≡ 3 (mod 4). Furthermore,

an integer b with 0 ≤ b ≤ n− 1 is chosen. The public key is the ordered pair

(n, b), while p and q form the private key. A plaintext m ∈ Zn is encrypted by

computing c ∈ Zn with

c ≡ m(m+ 2b) (mod n).

(a) Show that the least residues of w(m + b) − b modulo n encrypt to the

same ciphertext, where w is any of the four solutions of x2 ≡ 1 (mod n)

provided by Lemma 2.3.15. This is a rare example of an encryption

function which is not injective.
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(b) For a prime number p ≡ 3 (mod 4) and a quadratic residue a modulo p,

show that x ≡ a(p+1)/4 (mod p) is a solution of x2 ≡ a (mod p).

(c) In order to decrypt a Rabin ciphertext c, the quadratic congruence x2 +

2bx ≡ c (mod n) has to be solved. By standard substitutions from the the-

ory of quadratic equations, this is equivalent to solving x2 ≡ a (mod n)

for some a ∈ Z. Show that the latter congruence can be solved in a

straightforward manner by the legitimate receiver if the encryption was

performed correctly. (Note: Among the up to four possible plaintexts,

the one which is most plausible is taken as the correct one. The sender

may also deliberately create redundancy in the plaintext to facilitate de-

cryption.)

2.18 Try to factor 1927, 7721, 11413, 17111, and 200819 using:

(a) trial division, that is, checking whether one of the first prime numbers

2, 3, 5, 7, 11, . . . is a divisor;

(b) Fermat factorization;

(c) the Pollard rho algorithm;

(d) square-root factoring.

2.19 Find all solutions x ∈ Z105 of the congruence x2 ≡ 16 (mod 105). (Note that

Lemma 2.3.15 does not apply since 105 has three distinct prime factors.)

2.20 Let f : S → S be a self-map of a set S and let s0, s1, . . . be a sequence of

elements of S generated by si = f(si−1) for i = 1, 2, . . . with an arbitrary

initial value s0. Suppose that s0, s1, . . . , s15 are distinct, but that s16 = s9.

Find the least integer ` ≥ 1 with s` = s2`.

2.21 For q = 53, g = 2, h = 29, and k = 19, describe the Diffie-Hellman key

exchange. Work out the common key of Alice and Bob.

2.22 Let Fq be a finite field and let g be a primitive element of Fq. Prove that

indg(−a) ≡ indg(a) +
q − 1

2
(mod q − 1) for all a ∈ F∗q.

2.23 Let Fq be a finite field and let g and h be primitive elements of Fq. Prove that

indh(a) ≡ indg(a) · indh(g) (mod q − 1) for all a ∈ F∗q.

2.24 Compute the discrete logarithm modulo 113 of a = 57 to the base 3 using the

baby-step giant-step algorithm.
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2.25 Compute the discrete logarithm modulo 29 of a = 18 to the base 2 using the

Silver-Pohlig-Hellman algorithm.

2.26 Compute the discrete logarithm modulo 229 of a = 13 to the base 6 using the

index-calculus algorithm. (Hint: choose B = 11.)

2.27 Use the data in Example 2.4.8 to solve the power congruence 3k ≡ 6 (mod 19)

for the integer k.

2.28 The public key of Bob in an ElGamal signature scheme is (p, g, a) = (107, 2, 80).

He signs his message with (b, c) = (9, 93). Show that the message m = 17 can

be sent by him with this signature being accepted as valid, but that m = 10

and m = 83 are forged.

2.29 Suppose that Bob is using the ElGamal signature scheme and that he signs

two plaintexts m1 and m2 with signatures (b, c1) and (b, c2), respectively, so

that the same value of b occurs in the first entry of both signatures. Suppose

also that gcd(c1 − c2, p− 1) = 1.

(a) Describe how r can be computed efficiently given this information.

(b) Show that the signature scheme can then be broken.

2.30 Suppose that in a Shamir threshold scheme the parameters are p = 19, k = 3,

and n = 6, and shares are given by f(2) = 8, f(3) = 18, and f(6) = 11.

Calculate the secret S = f(0).

2.31 (a) Verify that c2ab = c(a+b)
2
c−a

2
c−b

2
for all c ∈ F∗q and a, b ∈ N.

(b) Note that 2 is a quadratic residue modulo p if and only if p ≡ ±1 (mod 8)

(see [152, Theorem 3.3]). For a prime number p ≡ 5 (mod 8) and a

quadratic residue a modulo p, show that

x ≡
{
a(p+3)/8 (mod p) if a(p−1)/4 ≡ 1 (mod p),
p+1
2

(4a)(p+3)/8 (mod p) if a(p−1)/4 ≡ −1 (mod p),

is a solution of x2 ≡ a (mod p). (Note: since square-root finding in finite

fields is an easy task, the Diffie-Hellman map D(ga, gb) ≡ gab (mod p)

could be efficiently evaluated if the univariate map d(ga) ≡ ga
2

(mod p)

can be represented by a low-degree polynomial.)

(c) Let p be a prime number and let f(x) ∈ Fp[x] with f(ga) = ga
2

in Fp
for all a ∈ S ⊆ {0, 1, . . . , p − 2}, where g is a primitive element of Fp.
Prove a lower bound on the degree of f(x) in terms of p and |S|. (Hint:

estimate the number of roots of the polynomial m(x) := f(gx)− gx2f(x)

with deg(m(x)) = deg(f(x)) + 2.)
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2.32 Let F be a field. Show that the three roots of x3 + ax+ b ∈ F [x] are distinct

if and only if 4a3 + 27b2 6= 0.

2.33 Prove that the number of ordered pairs (a, b) ∈ F2
q with 4a3 +27b2 6= 0 is equal

to q2 − q.

2.34 Consider the elliptic curve E over F11 defined by y2 = x3 + 8x. Show that

P = (8, 9) and Q = (9, 3) are points on E and compute P +Q and 2P .

2.35 Consider the elliptic curve E over F7 defined by y2 = x3 + 5x+ 4. Show that

E is a cyclic group. (Hint: determine the 10 points on the curve and show

that P = (3, 2) is a point of order 10.)

2.36 Let E be the elliptic curve over Fq given by (2.1) and let η be the quadratic

character of Fq with η(d) = 0 for d = 0 ∈ Fq. Prove that the order N(E) of E

is given by

N(E) = q + 1 +
∑
c∈Fq

η(c3 + ac+ b).

2.37 Describe the analog of the ElGamal cryptosystem for elliptic curves.

2.38 Let g be a primitive root modulo a prime number p > 2 and consider the

periodic sequence k1, k2, . . . of elements of F2 with period length p− 1 that is

defined by ki = 1 if and only if gi + 1 is a quadratic residue modulo p. Prove

a lower bound on the linear complexity of this sequence.



Chapter 3

Coding Theory

If you select the codes of Reed

and Solomon or kindred breed

with shrewdness and not badly,

you will be coding gladly

as they meet every need.

3.1 Introduction to error-correcting codes

3.1.1 Basic definitions

Life is a comedy of errors, at least in the opinion of William Shakespeare, but you

can make a concentrated effort to reduce the number of errors that you commit and

thus increase the quality of your life. There is probably no panacea for all human

errors and mishaps, but in the setting of communication technology, number theory

and finite fields can help to prevent errors and ensure the quality of communication.

The aim of this chapter is to explain in sufficient detail how this is achieved.

We consider the transmission of information through a communication medium,

and as in Chapter 2 we use the convenient term channel for a communication

medium. A channel can, for instance, be a computer network, a satellite link,

the Internet, or even the interface between a storage medium (like a compact disk)

and its reading device. In practice, channels are subject to various types of dis-

turbance, distortion, and interference. This may cause transmission errors, and so

the information that is received may not coincide with the information that was

sent. Engineers speak of a noisy channel to designate a channel that may produce

transmission errors. The frequency of transmission errors depends on the physical

nature of the channel. For instance, one expects that in communications over very

long distances, such as they occur in space missions, the error probability will be

rather high.

A fundamental requirement in modern communication systems is reliability,

95
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meaning that information is received as sent. Reliability does not come for free. In-

deed, special features and algorithms have to be built into a communication system

to guarantee that transmission errors are eliminated. This is exactly where coding

schemes and coding theory enter the scene. In simple terms, a coding scheme is

an algorithm and/or a device for detecting and correcting transmission errors that

occur in noisy channels. At the core of a coding scheme is the mathematical con-

cept of an error-correcting code, or simply a code. Coding schemes are nowadays

omnipresent in communication systems and also in storage systems. They are nor-

mally fully integrated into these systems, and then the user is actually not aware

that error control is taking place.

In practice, channels are both noisy and insecure. But the protection against

noisy channels and the protection against insecure channels are different as mathe-

matical problems, and so it is customary to treat these issues separately. We also

follow this tradition, and therefore we discussed the protection against insecure chan-

nels, that is cryptography, in Chapter 2 and we deal with the protection against noisy

channels, that is error-correcting codes, in the present chapter. In the real world,

security and reliability have to be provided concurrently in our communication.

Example 3.1.1 The message DAD SEND MONEY in Example 2.1.2 is now sent

over a noisy channel. If the noisy channel is in addition a malicious channel, then

it may deliver DAD SEND HONEY to the recipient, thus causing considerable

confusion. The lesson is again that important messages should not only be encrypted

so as to frustrate eavesdroppers, but should also be protected against transmission

errors by using an error-correcting code.

Coding theory (that is, the theory of coding schemes) is a wide subject at the

interface of discrete mathematics and information theory. One may therefore dis-

tinguish between the part of coding theory oriented more towards discrete and

structural mathematics (this part is often called algebraic coding theory) and the

information-theoretic part which studies channels from a probabilistic viewpoint.

Both parts are covered very well in the book of McEliece [113].

The history of coding theory has a well-marked beginning with the seminal paper

of Shannon [179] from 1948 which introduced the basic information-theoretic model

for coding theory and established fundamental existence results. Claude Shannon

(1916–2001) was a brilliant mathematician and also a quirky character who liked to

ride a unicycle in the halls of the AT&T Bell Laboratories at night. He built not

only coding theory, but also juggling machines and one of the first chess computers.

Shortly after the publication of Shannon’s paper [179], various explicit error-

correcting codes were constructed, some of which still belong to the standard reper-

toire of coding theory. We will meet these classical codes, such as the Hamming

codes and the Golay codes, later in this chapter. The 1950s and 1960s saw dramatic

progress in coding theory, so that by the end of the latter decade coding theory was
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already a rich and well-founded subject. Significantly, the very influential mono-

graph of Berlekamp [10] on algebraic coding theory appeared near the end of the

1960s. Other milestones in the expository literature on coding theory are the book

of MacWilliams and Sloane [108] and the Handbook of Coding Theory edited by

Pless and Huffman [162].

In line with the general perspective of this book, we focus on the number-

theoretic aspects of coding theory. Number theory plays indeed a major role in

the construction of efficient error-correcting codes. The basic structure for this

purpose is that of a finite field (see Section 1.4). Besides finite fields, we use also

elementary linear algebra and simple facts about rings and ideals. With these tools,

the coverage of algebraic coding theory can be pushed quite far, and so we will be

able to treat the fundamentals of algebraic coding theory and the most important

specific codes in this chapter.

In order to formalize coding schemes, we start by considering the data to be

transmitted. We assume that these data are formatted as a string of symbols from a

chosen alphabet. Since modern communication is digital, it is reasonable to select a

finite alphabet. Frequently, the alphabet consists of the bits 0 and 1, but sometimes

it is more efficient to use an alphabet of larger size. From the theoretical point of

view, it is preferable to choose an alphabet with mathematical structure. In fact,

we assume that the alphabet is a finite field Fq of order q for some prime power q.

Thus, the data are formatted as a string of elements of Fq. The next step in the

preparation for coding is to split up this string into blocks of fixed length, let us say

of length k ≥ 1. Some padding (say by zero elements) may be needed at the end

to arrive at a partition into complete blocks of length k. The coding scheme now

processes the data block by block.

From now on, we will thus assume that the input of the coding scheme is a block

of length k of elements of Fq, or in other words a k-tuple (a1, . . . , ak) with ai ∈ Fq
for i = 1, . . . , k. We use the standard notation Fkq for the set of all these k-tuples.

An element of Fkq is also called a word (over Fq) of length k. The essential idea

of a coding scheme is to take an input a = (a1, . . . , ak) ∈ Fkq and add redundant

information to allow for error correction. We assume that this transforms a into an

n-tuple c ∈ Fnq with n ≥ k. In fact, in nontrivial situations we suppose that n > k.

Example 3.1.2 Let k = 1 and let n be of the form n = 2r + 1 for some integer

r ≥ 1. An input block of the coding scheme consists thus of a single element a ∈ Fq.
We create redundancy by repeating this element n times. In other words, we set up

the map

ψ : a ∈ Fq 7→ (a, . . . , a) ∈ Fnq .

We send c = ψ(a) over the noisy channel. Assume that at most r errors can occur

in this transmission. The receiver will then get an n-tuple v = (v1, . . . , vn) ∈ Fnq
where at least n − r = r + 1 coordinates vj are equal to a. Hence by looking at
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the coordinates of v and observing that a is the most frequent one, the receiver can

recover the correct element a ∈ Fq although up to r errors may have occurred in the

transmission. For instance, if r = 2, n = 5, and the quintuple v = (1, 0, 1, 1, 0) ∈ F5
q

is received, then a = 1 since 1 is the most frequent coordinate of v. This is a very

simple scheme, and its shortcoming is that it incurs data expansion by a factor n ≥ 3

and thus a corresponding loss of speed in the data transmission. The task of coding

theory is to design more efficient schemes.

In general, the passage from the input a ∈ Fkq (also called the message) to c ∈ Fnq
is described by an injective map ψ : S → Fnq from some nonempty subset S of Fkq to

Fnq . The image of ψ is called a code, and this leads to the following simple formal

definition.

Definition 3.1.3 A code (over Fq) is a nonempty subset C of Fnq . The integer n ≥ 1

is called the length of the code C. An element of C is called a codeword in C.

With this terminology, we thus have an injective map ψ which takes a message

a ∈ S ⊆ Fkq to a codeword c = ψ(a) ∈ Fnq , where normally n > k. The map ψ is

called an encoder .

Example 3.1.4 Consider the encoder ψ in Example 3.1.2. The corresponding code

is

C = {(a, . . . , a) ∈ Fnq : a ∈ Fq}

and its length is n = 2r+1. As we have seen in Example 3.1.2, this code can correct

up to r = (n− 1)/2 errors in a word of length n. For obvious reasons, C is called a

repetition code.

A code over F2 is also called a binary code and a code over F3 is also called a

ternary code. Similarly, one may speak of a quaternary code for a code over F4, and

so on, and in general a code over Fq is sometimes referred to as a q-ary code.

3.1.2 Error correction

A primary characteristic of a code is its error-correction capability, that is, the

number of errors that it can correct in a word of length n, where n is the length of

the code. If we think of c ∈ Fnq as a sent word and v ∈ Fnq as a received word, then

the number of errors is equal to the number of coordinates in which c and v differ.

Thus, the following notion is highly relevant in this context.

Definition 3.1.5 For c = (c1, . . . , cn) ∈ Fnq and v = (v1, . . . , vn) ∈ Fnq , the Ham-

ming distance d(c,v) is defined to be the number of coordinates in which c and v

differ, that is,

d(c,v) = # {1 ≤ j ≤ n : cj 6= vj}.
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The Hamming distance is defined for pairs of words over Fq of any (but equal)

length, and so in particular for pairs of words of length 1. If, for the moment, we

let d1 denote the Hamming distance for pairs of words of length 1, then with the

notation in Definition 3.1.5 we can write

d(c,v) = d1(c1, v1) + · · ·+ d1(cn, vn). (3.1)

Note that for c, v ∈ Fq we have d1(c, v) = 0 if c = v and d1(c, v) = 1 if c 6= v.

Proposition 3.1.6 The Hamming distance d has the following properties for all

c,u,v ∈ Fnq :

(i) 0 ≤ d(c,u) ≤ n (nonnegativity and upper bound);

(ii) d(c,u) = 0 if and only if c = u (identity of indiscernibles);

(iii) d(c,u) = d(u, c) (symmetry);

(iv) d(c,v) ≤ d(c,u) + d(u,v) (triangle inequality).

Proof. The properties (i), (ii), and (iii) are trivial. In view of (3.1), it suffices to

prove (iv) for n = 1, that is, for the Hamming distance d1. We take c, u, v ∈ Fq and

distinguish two cases. If c = v, then (iv) is obvious since d1(c, v) = 0. If c 6= v, then

either c 6= u or u 6= v, and (iv) is again true for d1. 2

Example 3.1.7 Let q = 2 and let

c = (1, 1, 1, 0, 1) ∈ F5
2, u = (0, 1, 0, 0, 1) ∈ F5

2, v = (0, 1, 0, 1, 0) ∈ F5
2.

Then d(c,u) = 2, d(c,v) = 4, d(u,v) = 2, and so (iv) in Proposition 3.1.6 is

verified immediately. This example demonstrates that equality in (iv) can occur in

a nontrivial situation.

Remark 3.1.8 If you had a course on analysis or topology, then you will recognize

(ii), (iii), and (iv) in Proposition 3.1.6, together with the first inequality in (i), as

the axioms for a distance function in a metric space. Thus, Proposition 3.1.6 shows

that the pair (Fnq , d) forms a metric space. This metric space is called a Hamming

space.

Definition 3.1.9 For a code C containing at least two codewords, the minimum

distance d(C) of C is defined by

d(C) = min {d(c1, c2) : c1, c2 ∈ C, c1 6= c2}.

In words, d(C) is the closest that two distinct codewords in C can come together

in terms of the Hamming distance.
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Example 3.1.10 Let q = 2 and let the binary code C of length 5 consist of the

codewords

c1 = (0, 0, 0, 0, 0), c2 = (1, 1, 0, 0, 0), c3 = (1, 1, 1, 1, 1).

Then d(c1, c2) = 2, d(c1, c3) = 5, d(c2, c3) = 3, and so d(C) = 2.

Example 3.1.11 Consider the repetition code in Example 3.1.4. Then any two

distinct codewords in C differ in all n coordinates, and so d(C) = n.

The minimum distance is a crucial parameter of a code since it governs the

error-correction capability of a code, as we shall see in Theorem 3.1.14 below.

Let us now take a closer look at the issue of error correction. We recall that

in our model for communication we start with a word a over Fq of length k (the

message) and transform it by the encoder into a codeword c over Fq of length n,

where typically n > k. The codeword c is sent over the noisy channel. On the

other side of the channel we get a received word v over Fq of length n which may

be different from c. The problem of error correction is how to recover c from v, if

this is at all possible. The following diagram represents the general situation in our

model and introduces two more devices, the error processor and the decoder.

c = ψ(a) −→ v = c + e −→ c′ ∈ C −→ a′ = ψ−1(c′)

↑ ↑ ↑ ↑
encoder noisy channel error processor decoder

Figure 3.1: The model for error correction

The error processor serves the purpose of error correction. It takes the input v

and attempts to find the most likely codeword c′ corresponding to it, by applying

what is called a decoding algorithm. Again, c′ may be different from the original

codeword c. The decoder applies the inverse map ψ−1 of the encoder ψ to c′ and

produces the output a′ = ψ−1(c′). In the case of a successful communication, we

should have c′ = c and a′ = a. The decoder raises no fundamental issues as it

simply requires the application of the inverse map of a given injective map. On the

other hand, the design of efficient decoding algorithms is a nontrivial problem which

has received a lot of attention in coding theory.

An important mathematical task for the model above is to find sufficient con-

ditions for a successful communication. The following terminology is convenient in

connection with this task.

Definition 3.1.12 For an integer t ≥ 0, a code C ⊆ Fnq is called t-error-correcting

if for every v ∈ Fnq there is at most one c ∈ C such that d(v, c) ≤ t.
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Every code is trivially 0-error-correcting, and so the concept in Definition 3.1.12

is of practical interest only for t ≥ 1.

The standard principle used by the error processor is nearest neighbor decoding .

It is based on the admittedly optimistic assumption that few rather than many

errors occur in the transmission over the noisy channel.

Algorithm 3.1.13 (Nearest Neighbor Decoding) Let C be a code over Fq of

length n.

Input: a received word v ∈ Fnq .

Output: a codeword c′ ∈ C that is closest to v in terms of the Hamming distance,

that is,

d(v, c′) = min
c∈C

d(v, c).

The actual procedure of passing from the input v to the output c′ depends on

the nature of the code C, and more will be said about this later in this chapter. This

procedure is the core of decoding algorithms, and from a practical point of view it

is an essential requirement that it be reasonably efficient.

If c ∈ C is sent over the noisy channel and at most t transmission errors occur in

this word of length n, then d(v, c) ≤ t for the received word v. If we know that C is

t-error-correcting, then d(v, z) > t for all other codewords z 6= c in C, which means

that c is closest to v (in terms of the Hamming distance) among all codewords in

C and nearest neighbor decoding gives the correct result. The missing link is the

following result.

Theorem 3.1.14 If C is a code with at least two codewords and with minimum

distance d(C), then C is t-error-correcting with t = b(d(C)− 1)/2c.

Proof. We proceed by contradiction. Let C ⊆ Fnq and suppose that, for some

v ∈ Fnq , there exist two codewords c1, c2 ∈ C with c1 6= c2 such that d(v, c1) ≤ t

and d(v, c2) ≤ t. Then the triangle inequality yields

d(c1, c2) ≤ d(c1,v) + d(v, c2) ≤ 2t ≤ d(C)− 1,

a contradiction to the definition of d(C). 2
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Figure 3.2: Unique error correction
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Example 3.1.15 Consider again the repetition code C in Examples 3.1.2, 3.1.4,

and 3.1.11. We noted in Example 3.1.11 that d(C) = n = 2r + 1, and so Theorem

3.1.14 implies that C is r-error-correcting. This agrees with the result of the simple

analysis we carried out in Example 3.1.2.

Example 3.1.16 Let C be the binary code of length 5 consisting of the codewords

c1 = (0, 0, 0, 0, 0), c2 = (0, 0, 1, 1, 1), c3 = (1, 1, 0, 1, 1), c4 = (1, 1, 1, 0, 0).

It is straightforward to verify that d(C) = 3. Therefore C is 1-error-correcting by

Theorem 3.1.14.

Remark 3.1.17 A simpler problem than error correction is error detection, where

we want to recognize by looking at the received word v whether transmission errors

have occurred or not. For an integer u ≥ 1, a code C ⊆ Fnq is called u-error-detecting

if the property 1 ≤ d(v, c) ≤ u with v ∈ Fnq and c ∈ C always implies that v /∈ C.

For such a code C, if c ∈ C is sent over the noisy channel and at most u transmission

errors occur in this word of length n, then there are two possible cases for the

received word v: either (i) v ∈ C, then v = c and the transmission is error-free; or

(ii) v /∈ C, then we have detected that transmission errors have happened. To decide

whether we are in case (i) or in case (ii) is a simple matter of going through the list

of codewords in C, and there may even be more efficient ways of deciding this in

situations where C has a nice structural description. If C has at least two codewords

and minimum distance d(C) ≥ 2, then it is clear that C is u-error-detecting with

u = d(C)− 1, for if v ∈ Fnq , c ∈ C, and 1 ≤ d(v, c) ≤ u = d(C)− 1, then v /∈ C by

the definition of d(C). In the remaining part of this chapter, we will interpret results

about the minimum distance of a code in terms of the error-correction capability

of the code, but the discussion above shows that an interpretation in terms of the

error-detection capability of the code is possible as well.

We summarize the desirable properties of a good code and equivalently of a good

coding scheme:

(i) large minimum distance of the code to guarantee a high error-correction ca-

pability (see Theorem 3.1.14);

(ii) not too much loss of speed in the data transmission caused by the code (a

negative example is the repetition code in Example 3.1.2 with large n);

(iii) the computational procedures in the coding scheme (that is, the encoder, the

decoding algorithm, and the decoder) are fast.

The goals (i) and (ii) are usually not compatible, as we will see in Subsection 3.4.2.

Therefore, in general one has to settle for a trade-off between (i) and (ii).
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3.2 Linear codes

3.2.1 Vector spaces over finite fields

The Hamming space Fnq in Remark 3.1.8 can be endowed with additional structure,

namely that of a vector space. You have learned about vector spaces in a course

on linear algebra, but most likely you have seen only vector spaces over the real

numbers and over the complex numbers in that course. In abstract linear algebra

one can consider vector spaces over any field, and so in particular over a finite field,

which is the relevant case for the theory of linear codes. The theory of vector spaces

works basically in the same way for any field of scalars. For your benefit, we briefly

review the fundamentals of vector spaces over finite fields.

A vector space (or linear space) V over Fq has two operations: addition of vectors

from V and multiplication of a vector from V by a scalar from Fq. These operations

have to satisfy certain properties. To begin with, V is an abelian group with respect

to vector addition. The identity element of this group is called the zero vector and

denoted by 0. Multiplication by scalars is distributive with regard to both vector

addition and scalar addition, that is, c(a + b) = ca + cb and (c1 + c2)a = c1a + c2a

for all a,b ∈ V and c, c1, c2 ∈ Fq. There is an associative law of the form (c1c2)a =

c1(c2a) for all a ∈ V and c1, c2 ∈ Fq, and finally we must have 1a = a for the

multiplicative identity 1 ∈ Fq and all a ∈ V .

Definition 3.2.1 Let V be a vector space over Fq. The vectors b1, . . . ,bk ∈ V are

linearly independent over Fq if

c1b1 + · · ·+ ckbk = 0

with c1, . . . , ck ∈ Fq implies that ci = 0 for 1 ≤ i ≤ k. The vectors b1, . . . ,bk ∈ V
are linearly dependent over Fq if they are not linearly independent over Fq.

Definition 3.2.2 Let V be a vector space over Fq. The vectors a1, . . . , am ∈ V

generate V if for every v ∈ V there exist c1, . . . , cm ∈ Fq such that

c1a1 + · · ·+ cmam = v. (3.2)

If there exist vectors a1, . . . , am ∈ V that generate V , then V is called finite-

dimensional .

The identity (3.2) is often expressed by saying that v is a linear combination (over

Fq) of a1, . . . , am. Suppose now that a1, . . . , am generate V 6= {0}. Let {b1, . . . ,bk}
be a subset of {a1, . . . , am} of minimal size such that b1, . . . ,bk generate V . Then

b1, . . . ,bk are linearly independent over Fq, for if we had

c1b1 + · · ·+ ckbk = 0
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with c1, . . . , ck ∈ Fq and some ci 6= 0, then either k = 1 and b1 = 0, a contra-

diction to V 6= {0}, or otherwise k ≥ 2 and bi is a linear combination over Fq
of b1, . . . ,bi−1,bi+1, . . . ,bk, which implies that the latter set of k − 1 vectors al-

ready generates V , a contradiction to the minimality condition above. Thus, for

every finite-dimensional vector space V 6= {0} there exists a set of vectors with the

properties enunciated in the following definition.

Definition 3.2.3 The vectors b1, . . . ,bk ∈ V form a basis of the finite-dimensional

vector space V 6= {0} over Fq if b1, . . . ,bk are linearly independent over Fq and

generate V .

Proposition 3.2.4 The number of vectors in a basis of a finite-dimensional vector

space V 6= {0} over Fq depends only on V , or in other words, any two bases of V

contain the same number of vectors.

Proof. Suppose that b1, . . . ,bk ∈ V form a basis of V . Then every v ∈ V can be

written as a linear combination

c1b1 + · · ·+ ckbk = v (3.3)

with c1, . . . , ck ∈ Fq. We claim that this representation is unique. Assume we have

also

c′1b1 + · · ·+ c′kbk = v

with c′1, . . . , c
′
k ∈ Fq. By subtracting these two identities, we obtain

(c1 − c′1)b1 + · · ·+ (ck − c′k)bk = 0.

Since b1, . . . ,bk are linearly independent over Fq, it follows from Definition 3.2.1

that ci − c′i = 0 for 1 ≤ i ≤ k, that is, ci = c′i for 1 ≤ i ≤ k. Thus, the claim con-

cerning the unique representation in (3.3) is established. Consequently, the number

of vectors in V is equal to the number of k-tuples (c1, . . . , ck) of elements of Fq, and

so it is equal to qk. It remains to observe that k is uniquely determined by V . 2

Definition 3.2.5 The dimension dim(V ) of a finite-dimensional vector space V 6=
{0} over Fq is the number of vectors in any basis of V . The dimension dim(V ) of

V = {0} is defined to be 0.

Proposition 3.2.6 The number of vectors in a finite-dimensional vector space V

over Fq is equal to qdim(V ).

Proof. This is trivial for dim(V ) = 0, and for dim(V ) ≥ 1 it was shown in the proof

of Proposition 3.2.4. 2
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Let V 6= {0} be a k-dimensional vector space over Fq and let b1, . . . ,bk ∈ V form

a basis of V . If we fix the order of the basis vectors, then we speak of the ordered

basis {b1, . . . ,bk} of V over Fq. We have shown in the proof of Proposition 3.2.4 that

there is a one-to-one correspondence provided by (3.3) between the vectors v ∈ V
and the vectors (c1, . . . , ck) ∈ Fkq . The vector (c1, . . . , ck) is called the coordinate

vector of v relative to the ordered basis {b1, . . . ,bk}.

Remark 3.2.7 For a positive integer k, the finite field Fq is a subfield of Fqk (see

Proposition 1.4.31). It is of interest to observe that Fqk can be viewed as a vector

space over Fq, by letting the addition of vectors be the addition in Fqk and by letting

the multiplication of a vector by a scalar from Fq be the multiplication in Fqk . It is

straightforward to check that all properties of a vector space are satisfied. According

to Proposition 3.2.6, the dimension of the vector space Fqk over Fq is k. A basis of

Fqk can be obtained as follows. Let f(x) ∈ Fq[x] be an irreducible polynomial over

Fq of degree k. Then Fqk can be identified with the residue class field Fq[x]/(f(x))

(see Remark 1.4.46). Thus, the elements of Fqk can be taken to be the polynomials∑k−1
j=0 ajx

j, with all aj ∈ Fq, in the least residue system modulo f(x). Given this

description of Fqk , it is obvious that 1, x, x2, . . . , xk−1 form a basis of Fqk . Since

f(x) = 0 in Fq[x]/(f(x)), we can think of x also as a root α ∈ Fqk of f(x). Then a

basis of Fqk is formed by 1, α, α2, . . . , αk−1, and f(x) is the minimal polynomial of

α over Fq.

Definition 3.2.8 Let V be a vector space over Fq. A subset W of V is a (linear)

subspace of V if W is a vector space over Fq under the operations inherited from V .

Remark 3.2.9 A subspace of V must always contain the zero vector 0 of V . There

are two trivial subspaces of V , namely {0} (the zero subspace) and V itself. If

V is a finite-dimensional vector space over Fq and W is a subspace of V , then

dim(W ) ≤ dim(V ) by Proposition 3.2.6.

3.2.2 Fundamental properties of linear codes

After these preparations, let us shift into a higher gear and move on to the important

family of linear codes. The basic vector spaces for the theory of linear codes are

the Hamming spaces Fnq , where n is some positive integer. The two operations in

the vector space Fnq are defined coordinatewise. Thus, if u = (u1, . . . , un) ∈ Fnq and

v = (v1, . . . , vn) ∈ Fnq , then the vector addition is defined by

u + v = (u1 + v1, . . . , un + vn) ∈ Fnq ,

and the multiplication by a scalar c ∈ Fq is defined by

cv = (cv1, . . . , cvn) ∈ Fnq .
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It is straightforward to verify that, with these operations, Fnq satisfies all properties

of a vector space over Fq.
Since Fnq contains exactly qn vectors, it follows from Proposition 3.2.6 that

dim(Fnq ) = n. Thus, every basis of Fnq consists of n vectors. The standard basis

of Fnq is formed by the vectors s1, . . . , sn ∈ Fnq , where sj, j = 1, . . . , n, has jth

coordinate equal to 1 and all other coordinates equal to 0.

Definition 3.2.10 A linear code C over Fq is a nonzero subspace of Fnq for some

positive integer n. The dimension dim(C) of C as a vector space over Fq is called

the dimension of the linear code C.

If C ⊆ Fnq is a linear code over Fq of length n, then it follows from Remark 3.2.9

that the dimension k of C satisfies 1 ≤ k ≤ n. It is convenient to call C a linear

[n, k] code over Fq. If we want to point out in addition that the minimum distance

of C is d, then we speak of a linear [n, k, d] code over Fq.

Example 3.2.11 The repetition code C = {(a, . . . , a) ∈ Fnq : a ∈ Fq} in Example

3.1.4 has dimension 1 and a basis of C is formed by the single all-one vector (1, . . . , 1).

Therefore we can say that C is a linear [n, 1] code over Fq. By Example 3.1.11 we

know that d(C) = n, and so C is a linear [n, 1, n] code over Fq.

Example 3.2.12 Consider the binary code C in Example 3.1.16. It is clear that C

is a linear code over F2 with basis c2, c3. Therefore dim(C) = 2, and so C is a linear

[5, 2, 3] code over F2.

Let C be a linear [n, k] code over Fq. Then by Proposition 3.2.6, C contains

exactly qk codewords. In the setting described in Section 3.1, we can then take Fkq
as the set of messages. Furthermore, it is common practice to let the encoder ψ

be a linear transformation from Fkq into Fnq . We recall from linear algebra that if

V1 and V2 are arbitrary vector spaces over Fq, then a linear transformation from V1
into V2 is a map λ : V1 → V2 such that λ(a + b) = λ(a) + λ(b) for all a,b ∈ V1 and

λ(ca) = cλ(a) for all c ∈ Fq and a ∈ V1.
If we choose the encoder ψ : Fkq → Fnq to be a linear transformation, then

encoding (that is, the computation of ψ(a) for a ∈ Fkq) becomes a simple task. Let

s1, . . . , sk be the standard basis of Fkq . Then we precompute ψ(s1), . . . , ψ(sk). For

an arbitrary input a = (a1, . . . , ak) ∈ Fkq of the encoder, we can write

a = a1s1 + · · ·+ aksk,

and so the properties of a linear transformation imply that

ψ(a) = a1ψ(s1) + · · ·+ akψ(sk). (3.4)
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We will see a bit later that this computation can also be conveniently described in

terms of matrix algebra.

Life is easier with linear codes, and this holds not only for encoding, but also

for most other computational tasks for codes. Consider, for instance, the problem

of determining the minimum distance of a code. This is greatly facilitated by the

following concept and the subsequent theorem valid for all linear codes.

Definition 3.2.13 The Hamming weight w(v) of v = (v1, . . . , vn) ∈ Fnq is defined

to be the number of nonzero coordinates of v, that is,

w(v) = # {1 ≤ j ≤ n : vj 6= 0}.

By comparing this definition with the definition of the Hamming distance in

Definition 3.1.5, we see that if u,v ∈ Fnq , then

w(v) = d(v,0) and d(u,v) = w(u− v). (3.5)

Theorem 3.2.14 If C is a linear code over Fq, then its minimum distance d(C)

satisfies

d(C) = w(C) := min
c∈C\{0}

w(c),

that is, d(C) is equal to the minimum Hamming weight of a nonzero codeword in C.

Proof. By definition, there exist distinct codewords c1, c2 ∈ C such that d(C) =

d(c1, c2). We apply the second identity in (3.5) and get

d(C) = d(c1, c2) = w(c1 − c2) ≥ w(C)

since c1−c2 ∈ C for a linear code C. Conversely, there exists a codeword c ∈ C\{0}
with w(C) = w(c), and then the first identity in (3.5) yields

w(C) = w(c) = d(c,0) ≥ d(C)

since 0 ∈ C for a linear code C. 2

Remark 3.2.15 The number w(C) introduced in Theorem 3.2.14 is called the Ham-

ming weight of the linear code C. The Hamming weight w(C) is defined in exactly

the same way for every nonlinear code C that contains at least one nonzero code-

word. The minimum distance and the Hamming weight of a nonlinear code can, for

a suitable choice of the code, be as far apart as we desire. For instance, take an

arbitrary prime power q and an integer n ≥ 2 and let C ⊆ Fnq be the nonlinear code

consisting of the two codewords

c1 = (1, . . . , 1) ∈ Fnq , c2 = (1, . . . , 1, 0) ∈ Fnq .

Then d(C) = 1 and w(C) = n− 1.
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Suppose that a linear code C for which we want to determine the minimum

distance contains exactly s codewords. If we calculate d(C) by its definition in

Definition 3.1.9, then we have to compute (s2−s)/2 Hamming distances between all

pairs of distinct codewords in C. If we calculate d(C) by Theorem 3.2.14, then we

have to compute only the s−1 Hamming distances between the nonzero codewords in

C and 0 ∈ C. Therefore the minimum distance of a linear code is usually calculated

by means of Theorem 3.2.14.

Example 3.2.16 The binary linear code C of length 6 is given by its basis

b1 = (1, 0, 0, 1, 1, 0),

b2 = (0, 1, 0, 1, 0, 1),

b3 = (0, 0, 1, 0, 1, 1).

We obtain all codewords in C by forming all linear combinations over F2 of b1,b2,b3.

Besides 0,b1,b2,b3, this yields the codewords

b1 + b2 = (1, 1, 0, 0, 1, 1),

b1 + b3 = (1, 0, 1, 1, 0, 1),

b2 + b3 = (0, 1, 1, 1, 1, 0),

b1 + b2 + b3 = (1, 1, 1, 0, 0, 0).

For the nonzero codewords in C, only the Hamming weights 3 and 4 appear, and so

d(C) = w(C) = 3 by Theorem 3.2.14. Thus, C is a linear [6, 3, 3] code over F2, and

C is 1-error-correcting by Theorem 3.1.14.

3.2.3 Matrices over finite fields

Before we begin with matrix algebra and its importance for linear codes, we intro-

duce an operation on Fnq which yields an element of Fq as the output.

Definition 3.2.17 The dot product (or standard inner product) of u = (u1, . . . , un) ∈
Fnq and v = (v1, . . . , vn) ∈ Fnq is defined by

u · v = u1v1 + · · ·+ unvn ∈ Fq.

Proposition 3.2.18 The dot product on Fnq has the following properties:

(i) u · v = v · u for all u,v ∈ Fnq ;

(ii) u · (v1 + v2) = u · v1 + u · v2 for all u,v1,v2 ∈ Fnq ;

(iii) u · (cv) = c(u · v) for all u,v ∈ Fnq and c ∈ Fq.

Proof. All properties are obvious from the definition of the dot product. 2

Proposition 3.2.18 implies that the dot product u · v is bilinear , that is, it is

linear in both the first vector u and the second vector v.
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Remark 3.2.19 The dot product of two nonzero vectors can turn out to be 0. For

instance, in F2
3 we have

(1, 1) · (2, 1) = 1 · 2 + 1 · 1 = 0.

Two vectors u,v ∈ Fnq with u · v = 0 are said to be orthogonal .

Matrix algebra is standard material in a course on linear algebra, but often only

real and complex matrices are treated. Here we briefly review matrices over finite

fields. A k × n matrix over Fq is a rectangular array consisting of k rows and n

columns, where k and n are positive integers and each entry of the array is an

element of Fq. For a k× n matrix A over Fq, the (i, j) entry of A, that is, the entry

in the ith row and jth column of A, is usually denoted by aij, and the whole matrix

can be written as A = (aij)1≤i≤k, 1≤j≤n.

There are various operations that can be performed for matrices over finite fields,

and they are completely analogous to those for real and complex matrices. The k×n
matrix A = (aij)1≤i≤k, 1≤j≤n over Fq is multiplied by a scalar c ∈ Fq by multiplying

each entry of A by c, that is,

cA = (caij)1≤i≤k, 1≤j≤n.

Two k×n matrices A = (aij)1≤i≤k, 1≤j≤n and B = (bij)1≤i≤k, 1≤j≤n over Fq are added

by adding corresponding entries, that is,

A+B = (aij + bij)1≤i≤k, 1≤j≤n.

Two matrices A and B over Fq can be multiplied if they have compatible sizes, that

is, if the number of columns of A is equal to the number of rows of B. Accordingly,

let A be a k × n matrix over Fq and let B be an n ×m matrix over Fq. Then the

product AB is a k×m matrix over Fq, and the (i, j) entry of AB is equal to the dot

product ai ·bj, where ai is the ith row of A, bj is the jth column of B, and both are

viewed as vectors in Fnq . As for real and complex matrices, multiplication of matrices

over Fq is associative, but in general not commutative. Matrix multiplication and

addition are linked by (left and right) distributive laws. Scalar multiplication of

matrices behaves in the expected way when combined with matrix multiplication

and addition. For instance, A(cB) = c(AB) for all matrices A and B over Fq of

compatible sizes and for all c ∈ Fq.
We can turn every matrix A over Fq on its side by defining its transpose A>. In

detail, if A is a k × n matrix over Fq, then A> is the n × k matrix over Fq that is

obtained by letting the ith row of A (for 1 ≤ i ≤ k) become the ith column of A>,

or equivalently by letting the jth column of A (for 1 ≤ j ≤ n) become the jth row

of A>.
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Proposition 3.2.20 The transpose of matrices has the following properties:

(i) (cA)> = cA> for every c ∈ Fq and every matrix A over Fq;
(ii) (A+B)> = A> +B> for all matrices A and B over Fq of the same size;

(iii) (AB)> = B>A> for all matrices A and B over Fq of compatible sizes;

(iv) (A>)> = A for every matrix A over Fq.

Proof. This is a straightforward verification. 2

Vectors can be viewed as special cases of matrices. Thus, a row vector from Fnq
is interpreted as a 1× n matrix over Fq and a column vector from Fnq is interpreted

as an n× 1 matrix over Fq. An operation that occurs frequently in the theory and

practice of linear codes is that of multiplication of a matrix and a vector. This

operation is a special case of matrix multiplication, and so it is possible only if the

sizes are compatible. In detail, if A is a given k × n matrix over Fq, then we can

multiply it from the left by a 1× k matrix over Fq and from the right by an n× 1

matrix over Fq. In other words, the product aA makes sense for a row vector a ∈ Fkq
and the product Ab makes sense for a column vector b ∈ Fnq . In order to pass from

row vectors to column vectors, we can use the transpose. It is common practice to

let vector symbols like a,b, . . . denote only row vectors, and then column vectors

are obtained by forming the transposes a>,b>, . . . . Thus, for the vector-matrix

products and the matrix-vector products above, we typically write aA and Ab>,

respectively. The dot product u · v in Definition 3.2.17 can then be expressed also

as the product uv>. If we view a vector as a special matrix, then it is consistent to

write a vector (a1, . . . , ak) ∈ Fkq in matrix notation (a1 . . . ak) without commas.

3.2.4 Generator matrix

Supplied with all these tools from linear algebra, we can now return to the theory

of linear codes. Let us first reconsider the issue of encoding for linear codes. We

have seen earlier that if the encoder ψ is a linear transformation, then for a message

a = (a1, . . . , ak) ∈ Fkq , the corresponding codeword ψ(a) ∈ Fnq is given by the

formula in (3.4). Now we set up the k × n matrix G over Fq whose row vectors are

ψ(s1), . . . , ψ(sk) in this order. Then the expression on the right-hand side of (3.4)

is the vector-matrix product aG, and so we obtain

ψ(a) = aG for all a ∈ Fkq . (3.6)

Let C ⊆ Fnq be the linear code over Fq corresponding to ψ, that is, C is the image of ψ

by definition. Then it is clear from (3.4) that ψ(s1), . . . , ψ(sk) generate C. Since ψ is

injective, C contains exactly qk codewords, and so dim(C) = k by Proposition 3.2.6.

Hence ψ(s1), . . . , ψ(sk) form a basis of C. This leads to the following terminology

for the matrix G in (3.6).
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Definition 3.2.21 Let C be a linear [n, k] code over Fq. Then a k× n matrix over

Fq whose row vectors form a basis of C is called a generator matrix of C.

Consequently, efficient encoding for a linear code proceeds by the following simple

algorithm.

Algorithm 3.2.22 (Encoding for Linear Codes) Let C be a linear [n, k] code

over Fq.
Step 1: choose a basis of C.

Step 2: set up a k × n generator matrix G of C by writing the basis vectors of C

as row vectors of G.

Step 3: the codeword c ∈ C corresponding to the message a ∈ Fkq is computed as

c = ψ(a) = aG.

Given the linear code C, a generator matrix G of C can be precomputed by

Steps 1 and 2 of the algorithm above. If many codewords have to be computed for a

concrete data transmission over a noisy channel, then only Step 3 in the algorithm

needs to be carried out repeatedly.

Example 3.2.23 A generator matrix G of the linear [6, 3] code over F2 introduced

in Example 3.2.16 is given by

G =

 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 .

For the message a = (1 0 1) ∈ F3
2, we use our encoding algorithm to compute the

corresponding codeword

c = ψ(a) = (1 0 1)

 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 = (1 0 1 1 0 1).

A generator matrix of a linear code is usually not unique (this is why we speak

of a generator matrix and not of the generator matrix), since a linear code can have

many different bases in general.

Example 3.2.24 It is easily checked that another generator matrix G′ of the binary

linear code in Examples 3.2.16 and 3.2.23 is given by

G′ =

 1 0 0 1 1 0

1 1 0 0 1 1

0 0 1 0 1 1

 .
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Some linear codes have a generator matrix that is of a special form which turns

out to be unique. Before we introduce this special form in the following definition,

we recall that an identity matrix is a square matrix (that is, the number of rows is

equal to the number of columns) for which the entries on the main diagonal (that is,

the diagonal running from the upper left corner to the lower right corner) are equal

to 1 and all other entries are equal to 0.

Definition 3.2.25 A k × n generator matrix G over Fq of the form

G = (Ik | A)

with the k × k identity matrix Ik over Fq and some k × (n− k) matrix A over Fq is

said to be in standard form.

For instance, the 3 × 6 generator matrix G over F2 in Example 3.2.23 is in

standard form. A k × n generator matrix G in standard form affords a speedup

in encoding, since the fact that the first k columns of G come from an identity

matrix implies that the word consisting of the first k coordinates of ψ(a) is equal

to a. Thus, only n − k coordinates of ψ(a) have to be computed. This feature is

illustrated by Example 3.2.23 where the first three coordinates of c are for free since

they are equal to the coordinates of a in the same order. Unfortunately, not every

linear code has a generator matrix in standard form.

Example 3.2.26 Let C be the binary linear [3, 2] code with basis b1 = (1, 0, 0),

b2 = (1, 0, 1). Then C has six possible generator matrices:(
1 0 0

1 0 1

)
,

(
1 0 1

1 0 0

)
,

(
0 0 1

1 0 0

)
,

(
1 0 0

0 0 1

)
,

(
0 0 1

1 0 1

)
,

(
1 0 1

0 0 1

)
.

None of these generator matrices is in standard form.

Remark 3.2.27 A generator matrix in standard form can always be obtained if

we consider linear codes up to a notion of equivalence. Two linear [n, k] codes C

and C ′ over Fq are called equivalent if the codewords in C can be transformed into

the codewords in C ′ by applying a fixed permutation of the coordinates. Then we

claim that every linear code C is equivalent to a linear code C ′ such that C ′ has a

generator matrix in standard form. This is proved by a simple procedure in matrix

theory, namely that of transforming a matrix (in this case a generator matrix of C)

into reduced echelon form by elementary row operations. Recall that an elementary

row operation is any one of the following three operations: (i) interchanging two

rows; (ii) multiplying a row by a nonzero scalar; (iii) replacing a row by its sum

with a scalar multiple of another row. The resulting matrix G in reduced echelon

form is still a generator matrix of C. By a suitable permutation of the columns of

G (and thus by passing to an equivalent linear code C ′), we get a generator matrix

G′ of C ′ in standard form.
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Example 3.2.28 Consider the linear code C in Example 3.2.26. By interchanging

the second and third coordinates of all codewords in C, we get an equivalent linear

code C ′. If we apply this permutation of the coordinates to the fourth generator

matrix in Example 3.2.26, then we obtain the generator matrix

G′ =

(
1 0 0

0 1 0

)
of C ′ which is in standard form.

Example 3.2.29 Let C be the binary linear [5, 3] code with generator matrix

G =

 1 1 1 0 1

1 0 1 1 0

1 1 0 1 0

 .

We transform G into reduced echelon form by elementary row operations. To start

with, the second row of G and the third row of G are changed by adding the first

row of G to them. This yields

G1 =

 1 1 1 0 1

0 1 0 1 1

0 0 1 1 1

 .

Now the first row of G1 is changed by adding the sum of the second and third rows

of G1 to it. This yields

G2 =

 1 0 0 0 1

0 1 0 1 1

0 0 1 1 1

 .

Then G2 is a generator matrix of C in standard form.

In the case where the linear [n, k] code C over Fq has a generator matrix G in

standard form, we know that the encoder ψ : Fkq → C operates by adding n − k

coordinates from Fq to a message a ∈ Fkq ; these coordinates depend on G and

a. The decoder ψ−1 : C → Fkq is then trivial, for all we have to do for a given

codeword c ∈ C is to delete its last n − k coordinates, and this already yields the

corresponding message a ∈ Fkq . For instance, in Example 3.2.23 we delete the last

n− k = 3 coordinates of c = (1 0 1 1 0 1) to obtain a = (1 0 1).

3.2.5 The dual code

The dot product introduced in Definition 3.2.17 serves as the basic tool in the duality

theory for linear codes.
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Definition 3.2.30 The dual space V ⊥ of a subspace V of Fnq is given by

V ⊥ = {u ∈ Fnq : u · v = 0 for all v ∈ V }.

Proposition 3.2.31 The dual space V ⊥ of a subspace V of Fnq is again a subspace

of Fnq .

Proof. It is obvious that 0 ∈ V ⊥. Furthermore, it follows from properties of the dot

product (see Proposition 3.2.18) that u ∈ V ⊥ implies cu ∈ V ⊥ for all c ∈ Fq, and

u1,u2 ∈ V ⊥ implies u1 + u2 ∈ V ⊥. 2

Example 3.2.32 For V = {0} it is obvious that V ⊥ = Fnq . If V = Fnq , u =

(u1, . . . , un) ∈ V ⊥, and s1, . . . , sn is the standard basis of Fnq , then uj = u · sj = 0

for 1 ≤ j ≤ n, and so V ⊥ = {0}.

There is a trivial linear code C over Fq of length n, namely C = Fnq . It has

minimum distance d(C) = 1, and so this code is useless since it can neither correct

nor detect errors. We emphasize that a linear [n, k] code over Fq is nontrivial if and

only if its dimension k satisfies 1 ≤ k ≤ n− 1.

Definition 3.2.33 If C is a nontrivial linear code over Fq, then the dual space C⊥

of C is called the dual code of C.

Theorem 3.2.34 If C is a nontrivial linear [n, k] code over Fq, then its dual code

C⊥ is a linear [n, n− k] code over Fq.

Proof. Proposition 3.2.31 shows that C⊥ is a subspace of Fnq . It remains to determine

dim(C⊥). Since passing to an equivalent linear code does not change dim(C) and

dim(C⊥), we can assume that C has a generator matrix in standard form (compare

with Remark 3.2.27). Thus, if dim(C) = k, then C has a basis c1, . . . , ck of the form

ci = (si,di) for 1 ≤ i ≤ k

with suitable d1, . . . ,dk ∈ Fn−kq , where s1, . . . , sk is the standard basis of Fkq . Con-

sider a fixed b ∈ Fn−kq . Let u ∈ Fnq be of the form

u = (u1, . . . , uk,b)

for some u1, . . . , uk ∈ Fq. Then u ∈ C⊥ if and only if u · ci = 0 for 1 ≤ i ≤ k. Be-

cause of the special form of the ci, the latter condition is equivalent to ui = −b · di
for 1 ≤ i ≤ k. Hence for every fixed b ∈ Fn−kq , the coordinates u1, . . . , uk of

u = (u1, . . . , uk,b) ∈ C⊥ are uniquely determined. It follows that C⊥ contains ex-

actly qn−k vectors, and so dim(C⊥) = n− k by Proposition 3.2.6. 2
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Corollary 3.2.35 Every nontrivial linear code C over Fq satisfies (C⊥)⊥ = C.

Proof. From Theorem 3.2.34 we obtain

dim((C⊥)⊥) = n− dim(C⊥) = n− (n− dim(C)) = dim(C).

We complete the proof by showing that C ⊆ (C⊥)⊥. In order to prove that c ∈ C
implies c ∈ (C⊥)⊥, we have to verify that c · u = 0 for all u ∈ C⊥. But this follows

from the definition of C⊥. 2

3.2.6 Parity-check matrix

Besides a generator matrix, there is another important type of matrix attached to a

linear code (on condition that the linear code is nontrivial), namely a parity-check

matrix.

Definition 3.2.36 Let C be a nontrivial linear [n, k] code over Fq. Then an (n −
k)× n matrix over Fq is a parity-check matrix of C if it is a generator matrix of the

dual code C⊥.

Theorem 3.2.37 Let H be a parity-check matrix of a nontrivial linear [n, k] code

C over Fq and let v ∈ Fnq . Then v ∈ C if and only if vH> = 0.

Proof. Note that, by definition, the row vectors h1, . . . ,hn−k of H form a basis of

C⊥. Moreover, h>1 , . . . ,h
>
n−k are the column vectors of H>. If v ∈ C, then v ·hj = 0

and so vh>j = 0 for 1 ≤ j ≤ n − k. This means that vH> = 0. Conversely, if

vH> = 0, then vh>j = 0 and so v · hj = 0 for 1 ≤ j ≤ n − k. Since h1, . . . ,hn−k
generate C⊥, we deduce that v · u = 0 for all u ∈ C⊥. This yields v ∈ (C⊥)⊥ = C

by Corollary 3.2.35. 2

Corollary 3.2.38 Let C be a nontrivial linear [n, k] code over Fq. Then for every

generator matrix G of C and every parity-check matrix H of C, the identity GH> =

Ok×(n−k) holds, where Ok×(n−k) is the k × (n− k) zero matrix over Fq.

Proof. For every row vector v of G, we obtain vH> = 0 by Theorem 3.2.37, and

this shows the desired result. 2

Remark 3.2.39 By using the property of the transpose stated in Proposition 3.2.20(iii),

we see that the condition vH> = 0 in Theorem 3.2.37 can be written also as

Hv> = 0>. This can be interpreted as saying that the linear code C in Theorem

3.2.37 forms what is called in linear algebra the null space (or the kernel) of the ma-

trix H. In view of the same property of the transpose, the identity GH> = Ok×(n−k)

in Corollary 3.2.38 is equivalent to HG> = O(n−k)×k.
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How can we obtain a parity-check matrix of a given nontrivial linear code C

explicitly? By turning to an equivalent linear code, we can assume that C has a

generator matrix in standard form (compare with Remark 3.2.27). Then a formula

for a parity-check matrix of C is provided by the following theorem. We note that

once we know a parity-check matrix H of C, we have also an explicit description

of the dual code C⊥ of C, since C⊥ consists of all linear combinations of the row

vectors of H.

Theorem 3.2.40 If C is a nontrivial linear [n, k] code over Fq with generator ma-

trix G = (Ik | A) in standard form, then H = (−A> | In−k) is a parity-check matrix

of C.

Proof. It is clear from the form of H that the n − k row vectors of H are linearly

independent over Fq. In order to prove that H is a parity-check matrix of C (or, by

definition, that H is a generator matrix of C⊥), it remains to verify that each row

vector of H is orthogonal to each row vector of G. Now

HG> = (−A> | In−k)
(
Ik
A>

)
= −A>Ik + In−kA

> = −A> + A> = O(n−k)×k,

and this implies the desired property. 2

Definition 3.2.41 An (n− k)× n parity-check matrix H over Fq of the form

H = (B | In−k)

with the (n− k)× (n− k) identity matrix In−k over Fq and some (n− k)× k matrix

B over Fq is said to be in standard form.

Remark 3.2.42 It follows from Remark 3.2.27 and Theorem 3.2.40 that for every

nontrivial linear code there exists an equivalent linear code which has a parity-check

matrix in standard form.

Example 3.2.43 Consider the binary linear [5, 3] code C in Example 3.2.29. We

have seen in that example that C has a generator matrix

G2 =

 1 0 0 0 1

0 1 0 1 1

0 0 1 1 1


in standard form. Theorem 3.2.40 now yields a parity-check matrix

H =

(
0 1 1 1 0

1 1 1 0 1

)
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of C in standard form. By forming the four possible linear combinations over F2 of

the row vectors of H, we find out that the list of all codewords in the dual code C⊥

is given by

c1 = (0 0 0 0 0), c2 = (0 1 1 1 0),

c3 = (1 1 1 0 1), c4 = (1 0 0 1 1).

A parity-check matrix of a nontrivial linear code comes in handy when deter-

mining the minimum distance of a linear code. This application is based on the

following two results.

Theorem 3.2.44 Let C be a nontrivial linear code over Fq with parity-check matrix

H and let d ≥ 2 be an integer. Then d(C) ≥ d if and only if any d−1 column vectors

of H are linearly independent over Fq.

Proof. Let h>1 , . . . ,h
>
n be the column vectors of H. Recall from Theorem 3.2.37 that

the codewords c = (c1, . . . , cn) ∈ C are characterized by the property cH> = 0,

that is,

c1h1 + · · ·+ cnhn = 0.

Thus, if any d− 1 column vectors of H are linearly independent over Fq, then there

is no c ∈ C \ {0} of Hamming weight w(c) ≤ d − 1, and so d(C) ≥ d by Theorem

3.2.14. Similarly, if there are d− 1 column vectors of H that are linearly dependent

over Fq, then w(c) ≤ d− 1 for some nonzero c ∈ C, and therefore d(C) ≤ d− 1. 2

Corollary 3.2.45 Let C be a nontrivial linear code over Fq with parity-check matrix

H and let d ≥ 2 be an integer. Then d(C) = d if and only if any d−1 column vectors

of H are linearly independent over Fq and there exist d column vectors of H that

are linearly dependent over Fq.

Proof. This is an immediate consequence of Theorem 3.2.44. 2

Example 3.2.46 Let C be the linear [6, 3] code over F2 with generator matrix

G =

 1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1


in standard form. By Theorem 3.2.40, a parity-check matrix of C is given by

H =

 1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

 .

It is easily verified that any two column vectors ofH are linearly independent over F2.

On the other hand, the third column of H is the sum of the first and second column

of H, and so d(C) = 3 by Corollary 3.2.45. Thus, this code is 1-error-correcting.
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3.2.7 The syndrome decoding algorithm

We have learned that linear codes allow fast encoders and decoders. Now we look

at the remaining computational procedure in a coding scheme with a linear code,

namely the decoding algorithm. It will transpire that reasonably efficient decoding

algorithms can be designed for linear codes, and so linear codes achieve goal (iii)

stated at the end of Subsection 3.1.2.

We study decoding algorithms for linear codes in the framework of nearest neigh-

bor decoding described in Algorithm 3.1.13. Let C be a nontrivial linear code over

Fq of length n. If the codeword c ∈ C is sent over the noisy channel and the word

v ∈ Fnq is received, then

e = v − c (3.7)

is the error word (or error pattern). If the received word v is given, then finding c

is equivalent to finding e. Many decoding algorithms are thus focusing on the error

word e. A general property of e that immediately follows from (3.7) is e ∈ v + C,

where the latter set is the coset

v + C = {v + c : c ∈ C}

which can be defined for all v ∈ Fnq . This terminology stems from group theory

(compare with Section 1.3). Note that Fnq , like any vector space, is an abelian group

under vector addition. The linear code C is a subgroup of Fnq . The set v +C above

is exactly the coset (in the sense of group theory) of v with respect to the subgroup

C. As in the general theory of abelian groups, cosets have the following properties

which we prove in detail in the present context for your convenience.

Proposition 3.2.47 Let C be a nontrivial linear code over Fq of length n. Then:

(i) two cosets of C are either identical or they have empty intersection;

(ii) if v,w ∈ Fnq , then v−w ∈ C if and only if v and w are in the same coset of C.

Proof. (i) Consider two cosets v + C and w + C and suppose that u ∈ (v + C) ∩
(w + C). From u ∈ v + C we deduce that u = v + c0 for some c0 ∈ C, and so

u + C = {u + c : c ∈ C} = {v + c0 + c : c ∈ C} = v + C.

Similarly, u ∈ w + C implies that u + C = w + C. Therefore the cosets v + C and

w + C are identical since they are both equal to u + C.

(ii) If v − w ∈ C, then v = w + c0 for some c0 ∈ C, and so v ∈ w + C. Also

w ∈ w +C since 0 ∈ C, and so v and w are in the same coset of C. Conversely, if v

and w are in the same coset u+C for some u ∈ Fnq , then v−u ∈ C and w−u ∈ C,

hence v −w = (v − u)− (w − u) ∈ C. 2
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Let C be a nontrivial linear [n, k] code over Fq. Then Proposition 3.2.47(i)

implies that the different cosets of C form a partition of Fnq . Since each coset of

C contains exactly qk vectors, it follows that there are exactly qn−k different cosets

of C.

Let v ∈ Fnq again be the received word. We have realized that the unknown error

word e belongs to the coset v + C. In conformity with the philosophy of nearest

neighbor decoding, we assume that few rather than many errors have occurred in the

transmission over the noisy channel. Concretely, we suppose that e has the smallest

Hamming weight within the coset v + C. This leads to the following concept.

Definition 3.2.48 Let C be a nontrivial linear code. A word of minimum Hamming

weight within a coset v+C is called a coset leader of v+C. If several words in v+C

have minimum Hamming weight within v +C, we choose one of them arbitrarily as

coset leader.

At this stage, we already have a preliminary version of a decoding algorithm for

a nontrivial linear code C over Fq of length n. For a received word v ∈ Fnq , we

consider the corresponding coset v +C. The coset leader e′ of v +C is a most likely

error word, and a most likely sent codeword c′ is obtained from (3.7) as c′ = v− e′.

Consequently, the crucial objects in this context are the coset leaders. Given a

nontrivial linear code C ⊆ Fnq , the coset leaders can in principle be precomputed by

inspecting all cosets of C and picking from each coset a word of minimum Hamming

weight. This yields the list of all coset leaders. The remaining issue is to figure out

the coset leader e′ to which a given v ∈ Fnq belongs. Note that e′ and v are in the

same coset v +C, and so it is a matter of finding an efficient way of deciding which

word from a given list of words (the list of all coset leaders) belongs to a given coset

of C (the coset v + C determined by the received word v). This is achieved by the

following notion.

Definition 3.2.49 Let C be a nontrivial linear [n, k] code over Fq with parity-check

matrix H. Then the word S(v) = vH> ∈ Fn−kq is called the syndrome of v ∈ Fnq .

Remark 3.2.50 Strictly speaking, since the syndrome depends on the choice of

the parity-check matrix H, it would be more precise to denote the syndrome of

v by SH(v) to signalize this dependence. However, for simplicity of notation, the

subscriptH is dropped as we tacitly assume thatH is fixed in the decoding algorithm

for a given nontrivial linear code.

Proposition 3.2.51 Let C be a nontrivial linear [n, k] code over Fq. Then the

syndromes of v,w ∈ Fnq satisfy:

(i) S(v) = 0 if and only if v ∈ C;

(ii) S(v) = S(w) if and only if v and w are in the same coset of C.
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Proof. (i) This follows from Theorem 3.2.37.

(ii) By Proposition 3.2.47(ii), v and w are in the same coset of C if and only if

v−w ∈ C. The latter condition is equivalent to S(v−w) = 0 by part (i), and this

is the same as saying that S(v) = S(w). 2

It follows from Proposition 3.2.51 that there is a one-to-one correspondence be-

tween the different cosets of C and the different syndromes of words from Fnq . Each

coset of C can thus be uniquely identified with the syndrome of its coset leader.

This principle is used in the following refined version of the preliminary decoding

algorithm described earlier.

Algorithm 3.2.52 (Syndrome Decoding Algorithm for Linear Codes) Let C

be a nontrivial linear code over Fq of length n and assume that a parity-check matrix

of C is known.

Precomputation: compute all coset leaders and the syndrome of each coset leader.

Step 1: for a received word v ∈ Fnq , compute the syndrome S(v).

Step 2: in the list of syndromes of coset leaders, find the coset leader e′ with

S(e′) = S(v); then e′ is a most likely error word.

Step 3: compute a most likely sent codeword c′ as c′ = v − e′.

Example 3.2.53 Let C be the linear [7, 4] code over F2 with generator matrix

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0


in standard form. Then Theorem 3.2.40 yields a parity-check matrix

H =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 1 0 0 0 1



of C. There are exactly 27−4 = 8 different cosets of C. Next we determine the coset

leaders. It turns out that, for this code C, each coset of C has a unique coset leader.

The following table lists the coset leaders and their syndromes.



3.2. LINEAR CODES 121

coset leader syndrome

(0 0 0 0 0 0 0) (0 0 0)

(1 0 0 0 0 0 0) (0 1 1)

(0 1 0 0 0 0 0) (1 0 1)

(0 0 1 0 0 0 0) (1 1 1)

(0 0 0 1 0 0 0) (1 1 0)

(0 0 0 0 1 0 0) (1 0 0)

(0 0 0 0 0 1 0) (0 1 0)

(0 0 0 0 0 0 1) (0 0 1)

Suppose that the received word is v = (0 1 1 0 1 1 0) ∈ F7
2. Its syndrome is

S(v) = vH> = (0 1 1 0 1 1 0)



0 1 1

1 0 1

1 1 1

1 1 0

1 0 0

0 1 0

0 0 1


= (1 0 0).

This syndrome agrees with the syndrome of the coset leader e′ = (0 0 0 0 1 0 0).

Hence e′ is a most likely error word, and a most likely sent codeword is

c′ = v − e′ = (0 1 1 0 1 1 0)− (0 0 0 0 1 0 0) = (0 1 1 0 0 1 0).

We can check that c′ is indeed a codeword in C as it is the sum of the second

row and the third row of G. By inspecting the parity-check matrix H and using

Corollary 3.2.45, we see that d(C) = 3, and so C is a 1-error-correcting code. If

we assume that the noisy channel allows at most one transmission error in a word

of length 7, then we can conclude that c′ is in fact the correct codeword that was

sent and that a transmission error occurred in the fifth coordinate of c′. Since G is

in standard form, the original message a ∈ F4
2 is then obtained by deleting the last

three coordinates of c′, that is, a = (0 1 1 0).

3.2.8 The MacWilliams identity

We now return to the subject of dual codes (see Definition 3.2.33) which offers many

fascinating aspects. We know that a crucial parameter of a code is its minimum

distance, which in the case of a linear code is equal to the minimum Hamming

weight of a nonzero codeword (see Theorem 3.2.14). It is of interest to determine

not only this minimum Hamming weight, but also the complete weight distribution

of the linear code. This information is captured by the following notion.
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Definition 3.2.54 Let C be a linear code of length n. Then the weight enumerator

of C is the polynomial

A(x) =
n∑
j=0

Ajx
j ∈ Z[x]

over the ring Z of integers, where Aj for 0 ≤ j ≤ n is the number of codewords in

C of Hamming weight j.

There is a famous identity that links the weight enumerator of a nontrivial linear

code and the weight enumerator of its dual code. This identity was proved by

Jessie MacWilliams, one of several prominent female coding theorists, in her Ph.D.

thesis [107] and this is no mean achievement for a graduate student.

Theorem 3.2.55 (MacWilliams Identity) If C is a nontrivial linear [n, k] code

over Fq with weight enumerator A(x), then the weight enumerator A⊥(x) of the dual

code C⊥ is given by

A⊥(x) = q−k(1 + (q − 1)x)nA

(
1− x

1 + (q − 1)x

)
.

Proof. Since the dual code C⊥ is defined in terms of the dot product on Fnq , it is not

surprising that the proof employs properties of the dot product. Fix a nontrivial

additive character χ of Fq. For u ∈ C we introduce the polynomial gu(x) over the

field of complex numbers given by

gu(x) =
∑
v∈Fnq

χ(u · v)xw(v),

where w(v) is the Hamming weight of v ∈ Fnq . Then∑
u∈C

gu(x) =
∑
u∈C

∑
v∈Fnq

χ(u · v)xw(v) =
∑
v∈Fnq

xw(v)
∑
u∈C

χ(u · v).

Consider the inner sum in the last expression. For fixed v ∈ Fnq , the map σ : u ∈
C 7→ χ(u · v) is a character of the finite abelian group C. If v ∈ C⊥, then the inner

sum is qk. If v /∈ C⊥, then σ is a nontrivial character, and so the inner sum is 0 by

the orthogonality relation (1.9). Therefore∑
u∈C

gu(x) = qk
∑
v∈C⊥

xw(v) = qkA⊥(x). (3.8)

Now we compute the left-hand side of (3.8) in a different way. For v = (v1, . . . , vn) ∈
Fnq , we write

w(v) = w1(v1) + · · ·+ w1(vn)
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in analogy with (3.1), where w1 is the Hamming weight for words of length 1. Then

for u = (u1, . . . , un) ∈ C we infer from the definition of gu(x) that

gu(x) =
∑

v1,...,vn∈Fq

χ(u1v1 + · · ·+ unvn)xw1(v1)+···+w1(vn)

=
∑

v1,...,vn∈Fq

χ(u1v1)x
w1(v1) · · ·χ(unvn)xw1(vn)

=
n∏
j=1

(∑
v∈Fq

χ(ujv)xw1(v)
)
.

In the last expression, the inner sum is equal to 1+(q−1)x if uj = 0, and for uj 6= 0

it is equal to

1 +
(∑
a∈F∗q

χ(a)
)
x = 1 +

(∑
a∈Fq

χ(a)− 1
)
x = 1− x,

again by the orthogonality relation (1.9). Therefore

gu(x) = (1 + (q − 1)x)n−w(u)(1− x)w(u) = (1 + (q − 1)x)n
(

1− x
1 + (q − 1)x

)w(u)
.

It follows that ∑
u∈C

gu(x) = (1 + (q − 1)x)n
∑
u∈C

(
1− x

1 + (q − 1)x

)w(u)
= (1 + (q − 1)x)nA

(
1− x

1 + (q − 1)x

)
.

By invoking (3.8), we arrive at the desired formula for A⊥(x). 2

Example 3.2.56 Let C be the binary linear [6, 3, 3] code in Example 3.2.16. From

the complete list of codewords in C given in Example 3.2.16, we see that A0 = 1,

A1 = A2 = A5 = A6 = 0, A3 = 4, and A4 = 3 in the notation of Definition 3.2.54.

Therefore the weight enumerator of C is the polynomial

A(x) = 1 + 4x3 + 3x4 ∈ Z[x].

The MacWilliams identity in Theorem 3.2.55 shows that

A⊥(x) = 2−3(1 + x)6A

(
1− x
1 + x

)
=

1

8
(1 + x)6

[
1 + 4

(
1− x
1 + x

)3

+ 3

(
1− x
1 + x

)4
]

=
1

8

[
(1 + x)6 + 4(1− x)3(1 + x)3 + 3(1− x)4(1 + x)2

]
.
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A straightforward algebraic manipulation yields

A⊥(x) = 1 + 4x3 + 3x4 ∈ Z[x]

as the weight enumerator of the dual code C⊥. This is an example where C and C⊥

have the same weight enumerator and thus the same weight distribution, although

the two linear codes C and C⊥ are different. For instance, the vector

(0, 0, 0, 1, 1, 1) ∈ F6
2

belongs to C⊥, but not to C.

3.2.9 Self-orthogonal and self-dual codes

We briefly consider nontrivial linear codes for which any two codewords are orthog-

onal to each other, or where we have the even stronger property that the nontrivial

linear code is equal to its dual code.

Definition 3.2.57 A nontrivial linear code C over Fq is self-orthogonal if C ⊆ C⊥

and it is self-dual if C = C⊥.

Proposition 3.2.58 Let C be a nontrivial linear [n, k] code over Fq. If C is self-

orthogonal, then k ≤ n/2, and if C is self-dual, then k = n/2. In particular, if C is

self-dual, then its length n must be even.

Proof. If C is self-orthogonal, then C ⊆ C⊥ by definition, and a comparison of

dimensions yields k ≤ n − k by Theorem 3.2.34. This implies k ≤ n/2. If C is

self-dual, then an analogous argument yields k = n− k, and so k = n/2. 2

Example 3.2.59 A simple example of a binary self-dual code is given by the linear

code of length 4 with basis vectors (1, 0, 1, 0) and (0, 1, 0, 1). A simple example of

a ternary self-dual code is given by the linear code of length 4 with basis vectors

(1, 0, 1, 1) and (0, 1, 1, 2).

Example 3.2.60 Let q be a prime power with q ≡ 1 (mod 4) and let k be a

positive integer. We construct a self-dual code C over Fq of length 2k as follows.

Choose an element a ∈ F∗q and a primitive element g of Fq (see Definition 1.4.34).

Put c = g(q−1)/4. The linear code C is given by its basis {b1, . . . ,bk}. Here for

1 ≤ i ≤ k, we put

bi = (0, . . . , 0, a, ca, 0, . . . , 0) ∈ F2k
q ,

where the entry a is in position 2i − 1 and the entry ca is in position 2i. It is

clear that b1, . . . ,bk are linearly independent over Fq, and so dim(C) = k. For
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1 ≤ i < j ≤ k, it is immediately seen that bi · bj = 0. Furthermore, for 1 ≤ i ≤ k

we have

bi · bi = a2 + c2a2 = 0

since c2 = g(q−1)/2 = −1. The bilinearity of the dot product implies that c · d = 0

for all c,d ∈ C, and so C ⊆ C⊥. A comparison of dimensions shows that C = C⊥,

hence C is indeed self-dual.

Example 3.2.61 It is easy to construct self-orthogonal codes that are not self-dual,

especially if the dimension of the code is low. For instance, take any nonzero vector

b ∈ Fnq with b ·b = 0 and let C be the one-dimensional linear code with basis vector

b. Then C is self-orthogonal, but for n ≥ 3 this code is not self-dual.

Further examples of self-orthogonal codes will be presented in Theorems 3.5.18

and 3.5.19. For further examples of self-dual (and thus self-orthogonal) codes, we

refer to Example 3.5.4, Example 3.5.6, Proposition 3.5.21, and Theorem 3.5.27.

3.3 Cyclic codes

3.3.1 Cyclic codes and ideals

It is a plausible principle that the more structure we have for a family of codes, the

nicer a theory we can develop for it. In this section, we consider linear codes that

have the additional property of being invariant under cyclic shifts. This is why they

are called cyclic codes, but maybe they are named also after Shannon’s unicycle (see

Subsection 3.1.1). The rich theory of cyclic codes involves a fascinating interplay

with polynomials over finite fields. First we introduce a convenient notation for

cyclic shifts of vectors from Fnq .

Definition 3.3.1 For every v = (v0, v1, . . . , vn−1) ∈ Fnq and every integer t with

0 ≤ t ≤ n− 1, the cyclic shift vt by t positions is defined by

vt = (vn−t, vn−t+1, . . . , vn−1, v0, v1, . . . , vn−t−1) ∈ Fnq .

Note that we have taken it for granted that the cyclic shift is by t positions to

the right. Cyclic shifts to the left are also covered by this definition: vn−1 is the

cyclic shift by one position to the left, vn−2 is the cyclic shift by two positions to

the left, and so on. Note also that v0 = v for all v ∈ Fnq . Formally, we may put also

vn = v0, vn+1 = v1, and so on.

Definition 3.3.2 A linear code C ⊆ Fnq is cyclic if c ∈ C implies ct ∈ C for

1 ≤ t ≤ n− 1.
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Remark 3.3.3 For n ≥ 2 it suffices to request in Definition 3.3.2 that c ∈ C

implies c1 ∈ C, for then c2 = (c1)1 ∈ C, c3 = (c2)1 ∈ C, and in general ct ∈ C

for 1 ≤ t ≤ n − 1. A linear code over Fq of length 1 (the only such code is in

fact Fq itself) is automatically cyclic since the condition in Definition 3.3.2 is then

vacuously satisfied.

Example 3.3.4 The following are easy examples of cyclic codes:

(i) the binary linear code of length 4 given by

{(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)};

(ii) every repetition code (see Example 3.1.4);

(iii) the trivial linear code Fnq .

A basic device for the analysis of cyclic codes is a correspondence between vectors

from Fnq and polynomials from Fq[x]<n, the set of polynomials over Fq of degree less

than n. This correspondence is furnished by the map π : Fnq → Fq[x]<n which is

defined by

π(v) =
n−1∑
j=0

vjx
j for all v = (v0, v1, . . . , vn−1) ∈ Fnq . (3.9)

Note that Fq[x]<n is a vector space over Fq, with the vector addition and the mul-

tiplication by scalars given by the ordinary addition of polynomials and the multi-

plication of polynomials by elements of Fq, respectively. Then π : Fnq → Fq[x]<n is a

bijective linear transformation, and so in the language of linear algebra the vector

spaces Fnq and Fq[x]<n are isomorphic. A linear code C ⊆ Fnq is a nonzero subspace

of Fnq , and so π(C) is a nonzero subspace of Fq[x]<n with the same dimension as C.

Example 3.3.5 Let C be the binary cyclic code in Example 3.3.4(i). Then

π(C) = {0, 1 + x2, x+ x3, 1 + x+ x2 + x3} ⊂ F2[x]<4.

It is clear that π(C) is a subspace of F2[x]<4 of dimension 2, with 1 + x2 and x+ x3

forming a basis.

If a linear code C ⊆ Fnq has the additional property of being cyclic, then this

property can be captured by endowing Fq[x]<n with an additional operation of mul-

tiplication. In the polynomial ring Fq[x] we have the ordinary multiplication of

polynomials. If two polynomials from Fq[x]<n are multiplied, this may yield an

overflow in the sense that the product has degree ≥ n, and then the product does

not belong to Fq[x]<n. In order to obtain a product that is again in Fq[x]<n, we need

to modify the ordinary multiplication of polynomials in Fq[x]. This is accomplished

by first computing the ordinary product of polynomials in Fq[x], dividing it by a

fixed polynomial over Fq of degree n, and then taking the remainder as the modified
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product. Note that the remainder is a polynomial over Fq of degree less than n and

hence an element of Fq[x]<n. In the theory of cyclic codes, the fixed polynomial over

Fq of degree n is xn− 1. In the terminology of abstract algebra, we are thus turning

Fq[x]<n into the residue class ring Fq[x]/(xn − 1) (see Subsection 1.4.3). Formally,

Fq[x]/(xn − 1) consists of residue classes modulo xn − 1, but we can identify each

residue class modulo xn − 1 with a unique element from the least residue system

Fq[x]<n modulo xn − 1, and this is done in the following. Note that, with this iden-

tification, addition in Fq[x]/(xn − 1) agrees with ordinary addition of polynomials

in Fq[x] since there is no possibility of overflow with addition. The arithmetic op-

erations in Fq[x]/(xn − 1) can be expressed also by means of congruences modulo

xn − 1 (see again Subsection 1.4.3).

Example 3.3.6 Let q = 3 and n = 4, so that we are looking at the residue class ring

F3[x]/(x4 − 1) identified with F3[x]<4. Since −1 = 2 in F3, we consider equivalently

the residue class ring F3[x]/(x4 + 2). Let the two elements f1(x) = x2 + x + 1 and

f2(x) = x3 +2x+1 of F3[x]/(x4 +2) be given. Then addition in F3[x]/(x4 +2) yields

f1(x) + f2(x) = x3 + x2 + 2,

just like for ordinary addition of polynomials in F3[x]. To multiply f1(x) and f2(x)

in F3[x]/(x4 + 2), we first compute the ordinary product

f1(x)f2(x) = (x2 + x+ 1)(x3 + 2x+ 1) = x5 + x4 + 1 ∈ F3[x].

Here we have an overflow, hence we need to divide x5 + x4 + 1 by x4 + 2. This

division with remainder in F3[x] yields

x5 + x4 + 1 = (x+ 1)(x4 + 2) + x+ 2.

Therefore in F3[x]/(x4 + 2) we obtain f1(x)f2(x) = x + 2, the remainder in the

division above. As noted before, the arithmetic operations in F3[x]/(x4 + 2) can be

expressed also in the language of congruences modulo x4 + 2, so that we can write

f1(x)f2(x) ≡ x+ 2 (mod x4 + 2).

After the identification of Fq[x]<n with Fq[x]/(xn− 1), the map π in (3.9) is now

viewed as a map π : Fnq → Fq[x]/(xn− 1). It is still a bijective linear transformation

between these two vector spaces over Fq.
In order to proceed further, we need the concept of an ideal of a commutative ring

with identity. As in Subsection 1.4.2, we simply say “ring” instead of “commutative

ring with identity”. Recall that a ring is in particular an additive group, that is, an

abelian group with respect to the binary operation of addition.

Definition 3.3.7 An ideal of a ring R is a subgroup J of the additive group R such

that ab ∈ J whenever a ∈ R and b ∈ J .



128 CHAPTER 3. CODING THEORY

Example 3.3.8 Every ring R has two trivial ideals, namely J = {0} (called the

zero ideal) and J = R. Now let Z be the ring of integers. We noted in Example

1.3.20 that for every m ∈ N, the set (m) := {km : k ∈ Z} is a subgroup of the

additive group Z. It is obvious that (m) is in fact an ideal of Z. Similarly, for every

field F and every f(x) ∈ F [x], the set (f(x)) := {g(x)f(x) : g(x) ∈ F [x]} is an ideal

of the polynomial ring F [x]. In general, for every ring R and every b ∈ R, the set

(b) := {ab : a ∈ R} is an ideal of R. An ideal of this type is called a principal ideal ,

and if we want to lay stress on the special role of the element b, then we say that

(b) is the principal ideal generated by b.

Remark 3.3.9 Every ideal of Z is a principal ideal. If J = {0}, then J is the

principal ideal generated by 0. If there are nonzero integers in J , then J contains

positive integers by the property of being an additive group, and so there is a least

positive integer m in J . Now it is easily seen that J = (m). Obviously (m) ⊆ J ,

and if on the other hand h ∈ J is arbitrary, then division with remainder yields

h = km+ r with k, r ∈ Z and 0 ≤ r < m; then r = h− km ∈ J by the definition of

an ideal, and so r = 0 by the minimality property of m, which shows that h ∈ (m).

Similarly, since there is a division with remainder in the polynomial ring F [x] for

an arbitrary field F , every ideal of F [x] is principal.

In the theory of cyclic codes over Fq, the notion of an ideal is applied to a residue

class ring Fq[x]/(xn − 1). We start out nice and easy with an example.

Example 3.3.10 Consider π(C) in Example 3.3.5, viewed as a subset of the ring

R = F2[x]<4 = F2[x]/(x4 − 1). We claim that π(C) is an ideal of R. First we note

that π(C) is closed under addition since it is a vector space over F2, and so π(C)

is a subgroup of the additive group R. The verification of the remaining property

in Definition 3.3.7 needs a bit of work. In a first step, we show that if c(x) ∈ π(C),

then also xc(x) ∈ π(C). Since π(C) has only four elements, this can be done by

direct computation. Note that x · 0 = 0 ∈ π(C) and x(1 + x2) = x + x3 ∈ π(C).

Furthermore, x(x+ x3) = x2 + x4 = x2 + 1 ∈ π(C) since x4 = 1 in R, and similarly

x(1 + x+ x2 + x3) = x+ x2 + x3 + x4 = x+ x2 + x3 + 1 ∈ π(C).

Thus, the first step is achieved. Now if c(x) ∈ π(C), then x2c(x) = x(xc(x)) ∈ π(C)

by what we have just proved, and similarly x3c(x) = x(x2c(x)) ∈ π(C). Finally, an

arbitrary f(x) ∈ R is a sum of some of the monomials 1, x, x2, x3, hence f(x)c(x) is

a sum of some of the elements c(x), xc(x), x2c(x), x3c(x) of π(C), and now the fact

that π(C) is closed under addition shows that f(x)c(x) ∈ π(C). This completes the

proof of the claim that π(C) is an ideal of R.

Example 3.3.10 is an instance of a general fact, namely that for a cyclic code C

over Fq of length n, the corresponding set π(C) is an ideal of the residue class ring
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Fq[x]/(xn − 1). We recall that linear codes have, by definition, a dimension at least

1, and so the zero ideal mentioned in Example 3.3.8 cannot be of the form π(C) for

some cyclic code C.

Theorem 3.3.11 Let π : Fnq → Fq[x]/(xn − 1) be the map defined in (3.9). Then a

subset C of Fnq is a cyclic code if and only if π(C) is a nonzero ideal of the residue

class ring Fq[x]/(xn − 1).

Proof. We generalize the argument in Example 3.3.10. Let C be a cyclic code. Since

π is a linear transformation, π(C) is a subspace of R = Fq[x]/(xn − 1) of dimension

at least 1. In particular, π(C) is closed under addition. Now let c(x) =
∑n−1

j=0 cjx
j ∈

π(C) be arbitrary. Then π(c) = c(x) with c = (c0, c1, . . . , cn−1) ∈ C and

ct = (cn−t, . . . , cn−1, c0, . . . , cn−t−1) ∈ C for 0 ≤ t ≤ n− 1

since C is cyclic. Noting that xn = 1 in R, we get

π(ct) = cn−t + · · ·+ cn−1x
t−1 + c0x

t + · · ·+ cn−t−1x
n−1

= cn−tx
n + · · ·+ cn−1x

n+t−1 + c0x
t + · · ·+ cn−t−1x

n−1

= xt(c0 + · · ·+ cn−t−1x
n−t−1 + cn−tx

n−t + · · ·+ cn−1x
n−1)

= xtc(x).

Therefore xtc(x) = π(ct) ∈ π(C) for 0 ≤ t ≤ n− 1. Now let f(x) =
∑n−1

t=0 ftx
t ∈ R

with f0, f1, . . . , fn−1 ∈ Fq be arbitrary. Then, recalling that π(C) is a vector space

over Fq, we obtain f(x)c(x) =
∑n−1

t=0 ftx
tc(x) ∈ π(C), and so π(C) is a nonzero ideal

of R.

Conversely, suppose that π(C) is a nonzero ideal of R. Since π is a bijective

linear transformation, C is a subspace of Fnq of dimension at least 1. By Remark

3.3.3, it remains to show that c ∈ C implies c1 ∈ C, and we can assume that n ≥ 2.

By the computation above, π(c1) = xc(x) ∈ π(C) since π(C) is an ideal of R, and

so c1 ∈ π−1(π(C)) = C. 2

3.3.2 The generator polynomial

It is evident from Theorem 3.3.11 that in order to delve deeper into the structure

of cyclic codes, we should study the nonzero ideals of Fq[x]/(xn − 1).

Theorem 3.3.12 Every ideal J of Fq[x]/(xn−1) is principal, and for every nonzero

ideal J there exists a unique monic polynomial g(x) ∈ Fq[x]/(xn − 1) such that J

consists exactly of all multiples of g(x). The polynomial g(x) is a proper divisor of

xn − 1 in Fq[x].



130 CHAPTER 3. CODING THEORY

Proof. It suffices to consider a nonzero ideal J . Then there is a monic polynomial

g(x) of least degree in J . By Definition 3.3.7, every multiple of g(x) is in J . We

claim that conversely, if f(x) ∈ J , then f(x) must be a multiple of g(x). By the

division algorithm, we can write f(x) = a(x)g(x) + r(x) with a(x), r(x) ∈ Fq[x]

and deg(r(x)) < deg(g(x)). Now r(x) = f(x) − a(x)g(x) ∈ J , and the minimality

property of g(x) implies that r(x) is the zero polynomial. Thus, f(x) is a multiple

of g(x), and so J consists exactly of all multiples of g(x).

If g1(x) ∈ Fq[x]/(xn − 1) is an arbitrary monic polynomial such that J consists

exactly of all multiples of g1(x), then from g(x), g1(x) ∈ J we infer that g(x) divides

g1(x) and g1(x) divides g(x). Since g(x) and g1(x) are both monic, this implies

g1(x) = g(x) and shows the uniqueness of g(x).

Note that xn−1 is the zero element of Fq[x]/(xn−1), thus it belongs to J and is

therefore a multiple of g(x). Moreover, deg(g(x)) < n by construction, and so g(x)

is a proper divisor of xn − 1 in Fq[x]. All statements in the theorem have now been

proved. 2

Definition 3.3.13 For a nonzero ideal J of Fq[x]/(xn−1), the uniquely determined

polynomial g(x) in Theorem 3.3.12 is called the generator polynomial of J . For a

cyclic code C, the generator polynomial of the nonzero ideal π(C) is called the

generator polynomial of C.

Example 3.3.14 We determine the generator polynomials g(x) of the cyclic codes

C listed in Example 3.3.4. By the proof of Theorem 3.3.12, in each case it suffices

to find the monic polynomial g(x) of least degree in π(C).

(i) If C is as in Example 3.3.4(i), then it was shown in Example 3.3.5 that

π(C) = {0, 1 + x2, x+ x3, 1 + x+ x2 + x3}.

Therefore g(x) = x2 + 1. Note that g(x) divides x4 − 1 = x4 + 1 in F2[x] since

x4 + 1 = (x2 + 1)2.

(ii) For the repetition code C over Fq of length n, it is clear that

π(C) = {a(1 + x+ x2 + · · ·+ xn−1) : a ∈ Fq}.

Therefore g(x) = xn−1 + · · ·+ x2 + x+ 1. Again, g(x) divides xn − 1 in Fq[x] since

xn − 1 = (xn−1 + · · ·+ x2 + x+ 1)(x− 1).

(iii) For C = Fnq we get π(C) = Fq[x]/(xn − 1), and so g(x) = 1.

Theorem 3.3.15 There is a one-to-one correspondence between the nonzero ideals

of Fq[x]/(xn − 1), and so of the cyclic codes over Fq of length n, and the monic

proper divisors of xn − 1 in Fq[x].
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Proof. To each nonzero ideal of Fq[x]/(xn − 1) there corresponds a unique monic

proper divisor of xn − 1 in Fq[x], according to Theorem 3.3.12. On the other hand,

if g(x) is a monic proper divisor of xn− 1 in Fq[x], then the multiples of g(x) form a

nonzero ideal of Fq[x]/(xn− 1). Furthermore, Theorem 3.3.12 implies that different

nonzero ideals of Fq[x]/(xn − 1) correspond to different monic proper divisors of

xn − 1 in Fq[x]. 2

Example 3.3.16 We determine all cyclic codes over F3 of length 4. In view of

Theorem 3.3.15, this is equivalent to finding all monic proper divisors of x4 − 1 =

x4 + 2 in F3[x]. We start from the canonical factorization

x4 + 2 = (x+ 1)(x+ 2)(x2 + 1)

into monic irreducible polynomials over F3. Therefore the monic proper divisors of

x4 + 2 in F3[x] are given by

1, x+ 1, x+ 2, (x+ 1)(x+ 2), x2 + 1, (x+ 1)(x2 + 1), (x+ 2)(x2 + 1).

Thus, there are exactly seven different cyclic codes over F3 of length 4, each having

a generator polynomial from the list of seven polynomials above. Let us explicitly

describe, for instance, the cyclic code C with generator polynomial g(x) = x2 + 1.

By computing all multiples of g(x) in F3[x]/(x4 + 2), we get the ideal

π(C) = {0, 1 + x2, 2 + 2x2, x+ x3, 1 + x+ x2 + x3, 2 + x+ 2x2 + x3,

2x+ 2x3, 2 + 2x+ 2x2 + 2x3, 1 + 2x+ x2 + 2x3}.

By applying the inverse π−1 of the map π to each element of π(C), we obtain the

cyclic code

C = {(0000), (1010), (2020), (0101), (1111), (2121), (0202), (2222), (1212)}

over F3 of length 4.

An important issue for a cyclic code, as for any linear code, is the determination

of the dimension of the code. Since a cyclic code is often given via its generator

polynomial, the question is how we can read off the dimension from the generator

polynomial. The following theorem provides the answer.

Theorem 3.3.17 Let g(x) be the generator polynomial of the cyclic code C over Fq
of length n. Then

dim(C) = n− deg(g(x)).
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Proof. In view of Proposition 3.2.6 and since π is a bijection, it suffices to show

that the ideal J = π(C) corresponding to C has exactly qn−deg(g(x)) elements. Recall

that J consists of the multiples of g(x) in Fq[x]/(xn − 1). Let f(x)g(x) be such a

multiple. With m = deg(g(x)) and by the division algorithm, we can write

f(x) = a(x)
xn − 1

g(x)
+ r(x)

with a(x), r(x) ∈ Fq[x] and deg(r(x)) < n−m. Then

f(x)g(x) = a(x)(xn − 1) + r(x)g(x) = r(x)g(x)

in Fq[x]/(xn − 1) since xn − 1 = 0 in Fq[x]/(xn − 1). Thus,

J = {r(x)g(x) : deg(r(x)) < n−m}.

Now we claim that distinct choices of r(x) yield distinct elements of J . So take

r1(x) and r2(x) with deg(r1(x)) < n − m and deg(r2(x)) < n − m such that

r1(x)g(x) = r2(x)g(x) in Fq[x]/(xn−1). Then xn−1 divides r1(x)g(x)−r2(x)g(x) =

(r1(x) − r2(x))g(x), and so (xn − 1)/g(x) divides r1(x) − r2(x). By comparing de-

grees, we see that r1(x) = r2(x), hence the claim is demonstrated. It follows that

the number of elements of J is equal to the number of choices for r(x), which is

qn−m = qn−deg(g(x)). 2

Example 3.3.18 Consider the cyclic code C over F3 in Example 3.3.16. This code

has length n = 4 and generator polynomial g(x) = x2 + 1. Hence dim(C) =

n − deg(g(x)) = 2 by Theorem 3.3.17. A basis of C is formed by the codewords

(1 0 1 0) and (0 1 0 1).

3.3.3 Generator matrix

We recall from Subsection 3.2.4 that every linear code has a generator matrix. If C

is a cyclic code over Fq of length n and with dim(C) = k, then a generator matrix

of C must be a k × n matrix over Fq whose row vectors form a basis of C. If C is

given via its generator polynomial g(x) ∈ Fq[x], then deg(g(x)) = n−k by Theorem

3.3.17. Let us write

g(x) = g0 + g1x+ · · ·+ gn−kx
n−k ∈ Fq[x] (3.10)

with g0, g1, . . . , gn−k ∈ Fq and gn−k = 1. Then a generator matrix of C can be

immediately derived from g(x).
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Theorem 3.3.19 Let g(x) in (3.10) be the generator polynomial of a cyclic code

C ⊆ Fnq with deg(g(x)) = n− k. Then the k × n matrix

G =



g0 g1 . . . gn−k 0 0 0 . . . 0

0 g0 g1 . . . gn−k 0 0 . . . 0

. .

. .

. .

0 0 . . . g0 g1 . . . . . gn−k


over Fq is a generator matrix of C.

Proof. Note that

π−1(g(x)) = (g0 g1 . . . gn−k 0 0 0 . . . 0)

belongs to C. Since C is cyclic, all cyclic shifts of this vector are codewords in C.

In particular, all row vectors of G belong to C. Since gn−k = 1, it is clear that the

row vectors of G are linearly independent over Fq. The number of row vectors of G

is k = dim(C), and so the row vectors of G form a basis of C. 2

Example 3.3.20 Let C be the ternary cyclic code in Example 3.3.16 with generator

polynomial g(x) = 1 + x2 ∈ F3[x]. Then a generator matrix of C is given by

G =

(
1 0 1 0

0 1 0 1

)
.

We observe that g0 6= 0 in (3.10) since g(x) divides xn − 1 by Theorem 3.3.12.

Therefore the matrix G in Theorem 3.3.19 can be transformed into standard form

(see Definition 3.2.25) by elementary row operations. Consequently, every cyclic

code has a generator matrix in standard form, whereas in general a linear code need

not have a generator matrix in standard form (see Example 3.2.26). We have seen

in Subsection 3.2.4 that linear codes with a generator matrix in standard form have

fast encoders and decoders.

It is a natural question to ask whether the unique generator matrix in standard

form of a cyclic code can be derived from its generator polynomial by polynomial

manipulations. This is indeed the case, and one proceeds as follows. Let C ⊆ Fnq
be a cyclic code with dim(C) = k. The case k = n is trivial, and so we can assume

that k < n. Let g(x) ∈ Fq[x] with deg(g(x)) = n − k be the generator polynomial

of C. For every integer j ≥ 0, we can use the division algorithm to write

xj = aj(x)g(x) + rj(x) (3.11)

with aj(x), rj(x) ∈ Fq[x] and deg(rj(x)) < n−k. Let the map σ : Fn−kq → Fq[x]<n−k
be as in (3.9), but with n replaced by n− k.
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Theorem 3.3.21 Let C ⊆ Fnq be a cyclic code with dim(C) = k < n. Let

G = (Ik | − T ),

where the k × (n− k) matrix T over Fq is defined as follows: for 1 ≤ i ≤ k, the ith

row is σ−1(rn−k−1+i(x)) with the notation in (3.11). Then G is the unique generator

matrix of C in standard form.

Proof. It suffices to show that the rows of G are codewords in C. It follows

from (3.11) that xj − rj(x) is a multiple of g(x), and so

cj(x) := xk(xj − rj(x)) ∈ π(C) ⊆ Fq[x]/(xn − 1)

for all integers j ≥ 0. Using the fact that xn = 1 in Fq[x]/(xn − 1), we deduce that

cn−k−1+i(x) = xk(xn−k−1+i − rn−k−1+i(x)) = xn−1+i − xkrn−k−1+i(x)

= xi−1 − xkrn−k−1+i(x) ∈ π(C)

for 1 ≤ i ≤ k. This implies that π−1(cn−k−1+i(x)), the ith row of G, is a codeword

in C. 2

Example 3.3.22 Since g(x) = x3 + x2 + 1 ∈ F2[x] divides x7 − 1 = x7 + 1 ∈ F2[x],

there exists a binary cyclic code C of length 7 with generator polynomial g(x). Note

that dim(C) = 4 by Theorem 3.3.17. In order to find the generator matrix G of

C in standard form, it suffices, by Theorem 3.3.21, to determine the polynomials

r3(x), r4(x), r5(x), r6(x). These are obtained from (3.11) by computing x3, x4, x5, x6

modulo g(x). This computation in the residue class ring Fq[x]/(g(x)) can be carried

out using congruences modulo g(x) (see Subsection 1.4.3), and this yields

x3 ≡ x2 + 1 (mod g(x)),

x4 ≡ x3 + x ≡ x2 + x+ 1 (mod g(x)),

x5 ≡ x3 + x2 + x ≡ x+ 1 (mod g(x)),

x6 ≡ x2 + x (mod g(x)).

Therefore r3(x) = 1 + x2, r4(x) = 1 + x + x2, r5(x) = 1 + x, r6(x) = x + x2. From

the coefficients of these polynomials we obtain the matrix T in Theorem 3.3.21, and

the final result is the generator matrix

G =


1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 .
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3.3.4 Dual code and parity-check matrix

In Definition 3.2.33, we introduced for every nontrivial linear code C, that is, for

every linear [n, k] code C with 1 ≤ k ≤ n − 1, its dual code C⊥. In the following,

we study the dual code of a nontrivial cyclic code.

Proposition 3.3.23 The dual code of a nontrivial cyclic code is again cyclic.

Proof. A nontrivial cyclic code C automatically has length n ≥ 2, and so by Remark

3.3.3 it suffices to show that u = (u0, u1, . . . , un−1) ∈ C⊥ implies u1 ∈ C⊥. If

c = (c0, c1, . . . , cn−1) ∈ C, then

u1 · c = un−1c0 + u0c1 + · · ·+ un−2cn−1 = u · cn−1 = 0

since u ∈ C⊥ and cn−1 ∈ C. Hence u1 ∈ C⊥ as required. 2

Since the dual code C⊥ of a nontrivial cyclic code C is cyclic, C⊥ has a uniquely

determined generator polynomial. How is the generator polynomial of C⊥ related

to the generator polynomial of C? The answer is given in the following theorem.

First we need a simple definition.

Definition 3.3.24 Let h(x) ∈ Fq[x] be a polynomial of degree k ≥ 1. Then the

reciprocal polynomial h∗(x) of h(x) is defined by h∗(x) = xkh(1/x) ∈ Fq[x].

Example 3.3.25 For h(x) = x3 + 2x2 + 4x+ 3 ∈ F5[x], its reciprocal polynomial is

h∗(x) = x3h(1/x) = x3[(1/x)3 + 2(1/x)2 + 4(1/x) + 3]

= 3x3 + 4x2 + 2x+ 1.

In general, the reciprocal polynomial of h(x) ∈ Fq[x] is obtained by reading the

coefficients of h(x) in reverse order.

Theorem 3.3.26 Let C be a nontrivial cyclic [n, k] code over Fq with generator

polynomial g(x). Put h(x) = (xn − 1)/g(x) ∈ Fq[x]. Then the generator polynomial

of the dual code C⊥ is h−10 h∗(x), where h0 is the constant term of h(x).

Proof. First we note that g(x) divides xn − 1 by Theorem 3.3.12, and so h(x) =

(xn − 1)/g(x) is indeed a polynomial over Fq. Let m(x) ∈ Fq[x] be the generator

polynomial of C⊥. Then by Theorems 3.3.17 and 3.2.34,

deg(m(x)) = n− dim(C⊥) = n− (n− k) = k.

Note that deg(h(x)) = n − deg(g(x)) = k by Theorem 3.3.17. Furthermore, we

observe that h0 6= 0 since h(x) divides xn−1, and so deg(h∗(x)) = k. Thus, h−10 h∗(x)

is a monic polynomial of degree k. If we can show that h∗(x) ∈ π(C⊥), then we
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can conclude that m(x) = h−10 h∗(x) since there is exactly one monic polynomial of

degree k in the ideal π(C⊥).

Let g(x) be as in (3.10) and let

g = (g0, g1, . . . , gn−1) ∈ Fnq
be the first row vector of the generator matrix G of C in Theorem 3.3.19, where

gj = 0 for n− k < j ≤ n− 1. Let h(x) =
∑n−1

j=0 hjx
j and

u = (hn−1, hn−2, . . . , h0) ∈ Fnq ,

where hj = 0 for k < j ≤ n − 1. Note that g(x)h(x) = xn − 1 in Fq[x] by the

definition of h(x). By comparing the coefficients of xn−1 in this identity, we get

g0hn−1 + g1hn−2 + · · ·+ gn−1h0 = 0,

and so g · u = 0. Similarly, by comparing the coefficients of xn−t for 1 ≤ t ≤ k, we

get gt−1 · u = 0 for 1 ≤ t ≤ k with the notation in Definition 3.3.1, and so u ∈ C⊥.

Since C⊥ is cyclic by Proposition 3.3.23, we have uk+1 ∈ C⊥. Now π(uk+1) = h∗(x),

and so h∗(x) ∈ π(C⊥) as desired. 2

Remark 3.3.27 For a nontrivial cyclic code C, it is convenient to use the termi-

nology parity-check polynomial of C for the generator polynomial h−10 h∗(x) of C⊥

in Theorem 3.3.26. The parity-check polynomial of C divides again xn− 1, where n

is the length of C.

Example 3.3.28 Let C be the ternary cyclic code of length 8 with generator poly-

nomial g(x) = x2 + 1 ∈ F3[x]. Then

h(x) = (x8 − 1)/g(x) = (x8 − 1)/(x2 + 1) = x6 + 2x4 + x2 + 2 ∈ F3[x].

Furthermore, h∗(x) = 2x6 + x4 + 2x2 + 1 and h0 = 2, and so by Theorem 3.3.26

the generator polynomial of the dual code C⊥, or in other words the parity-check

polynomial of C, is h−10 h∗(x) = 2h∗(x) = x6 + 2x4 + x2 + 2 ∈ F3[x].

We are now in a position to determine a parity-check matrix of a given nontrivial

cyclic code C over Fq of length n. We note that the generator polynomial of the

dual code C⊥ is obtained from Theorem 3.3.26, and so a generator matrix of C⊥

can be set up by Theorem 3.3.19. But now this generator matrix of C⊥ serves by

Definition 3.2.36 as a parity-check matrix of C.

Example 3.3.29 Let C be the ternary cyclic code in Example 3.3.28. Then the

generator polynomial of C⊥ is x6+2x4+x2+2 ∈ F3[x]. The corresponding generator

matrix of C⊥ is

H =

(
2 0 1 0 2 0 1 0

0 2 0 1 0 2 0 1

)
according to Theorem 3.3.19, and so H is a parity-check matrix of C.
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3.3.5 Cyclic codes from roots

Cyclic codes over Fq can be introduced also by means of roots of polynomials over

Fq. Let α1, . . . , αs be nonzero elements in some finite extension field of Fq. For

i = 1, . . . , s, let mi(x) ∈ Fq[x] be the minimal polynomial of αi over Fq. Put

g(x) = lcm(m1(x), . . . ,ms(x)) ∈ Fq[x]. (3.12)

Let n be a positive integer such that αni = 1 for 1 ≤ i ≤ s. Then g(x) divides xn− 1

in Fq[x] by Proposition 1.4.38. If we assume that deg(g(x)) < n, then g(x) is the

generator polynomial of a cyclic code over Fq of length n. The codewords in this

cyclic code can be characterized as follows.

Theorem 3.3.30 Let C ⊆ Fnq be the cyclic code with the generator polynomial g(x)

in (3.12) satisfying deg(g(x)) < n and let v ∈ Fnq . Then v ∈ C if and only if the

polynomial v = π(v) ∈ Fq[x] given by (3.9) satisfies v(αi) = 0 for 1 ≤ i ≤ s.

Proof. If v ∈ C, then g(x) divides v(x) in Fq[x] by the definition of the generator

polynomial of C. For each i = 1, . . . , s, the polynomial mi(x) divides g(x) in Fq[x],

and so mi(x) divides v(x) in Fq[x]. Now mi(αi) = 0, and thus v(αi) = 0. Con-

versely, if v(αi) = 0 for 1 ≤ i ≤ s, then mi(x) divides v(x) in Fq[x] for 1 ≤ i ≤ s by

Proposition 1.4.38, and so g(x) divides v(x) in Fq[x]. This shows that v ∈ C. 2

Example 3.3.31 Let α1 ∈ F4 be a root of the irreducible polynomial x2 + x + 1

over F2 and let α2 ∈ F8 be a root of the irreducible polynomial x3 + x + 1 over F2.

Then α3
1 = 1 and α7

2 = 1, hence α21
1 = α21

2 = 1. Thus, from α1 and α2 we obtain a

cyclic code C over F2 of length 21. The generator polynomial of C is

g(x) = lcm(x2 + x+ 1, x3 + x+ 1) = (x2 + x+ 1)(x3 + x+ 1) = x5 + x4 + 1.

The cyclic code C has dimension 16 by Theorem 3.3.17. A polynomial v(x) ∈ F2[x]

belongs to the ideal π(C) if and only if v(α1) = v(α2) = 0.

There is no easy general formula for the minimum distance of a cyclic code, but

there are various results that yield lower bounds on the minimum distance. The

following considerations lead to useful tools for establishing such bounds.

Let Fq be a finite field and let n ≥ 2 be an integer with gcd(n, q) = 1. Then

there exists a finite extension field of Fq containing a primitive nth root of unity.

Indeed, the condition gcd(n, q) = 1 implies by Theorem 1.2.15 that there exists a

positive integer k with qk ≡ 1 (mod n). Let β be a primitive element of Fqk and put

γ = β(qk−1)/n. Then γ is an element of order n in the multiplicative group F∗
qk

; in

other words, γ is a primitive nth root of unity.

We recall that to each v ∈ Fnq we can associate a polynomial v = π(v) ∈ Fq[x]

according to (3.9). Here is another polynomial associated to v.
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Definition 3.3.32 Let n ≥ 2 be an integer with gcd(n, q) = 1 and let γ be a

primitive nth root of unity in a finite extension field of Fq. Then for every v ∈ Fnq ,

the Mattson-Solomon polynomial Mv(x) of v is defined by

Mv(x) =
n∑
j=1

v(γj)xn−j,

where v(x) ∈ Fq[x] is the polynomial corresponding to v according to (3.9).

Note that if γ ∈ Fqk , then Mv(x) is a polynomial over Fqk . The Mattson-Solomon

polynomial may depend also on the specific choice of γ, but we think of γ as being

fixed and thus suppress this dependence in the notation. The coordinates of v can

be recovered from Mv(x) in the following way.

Lemma 3.3.33 Let n ≥ 2 be an integer with gcd(n, q) = 1 and let γ be a primitive

nth root of unity in a finite extension field of Fq. If v = (v0, v1, . . . , vn−1) ∈ Fnq , then

vi = n−1Mv(γi) for i = 0, 1, . . . , n− 1,

where n−1 is the multiplicative inverse of n considered as an element of the prime

subfield of Fq.

Proof. For i = 0, 1, . . . , n− 1, we obtain

Mv(γi) =
n∑
j=1

v(γj)γi(n−j) =
n∑
j=1

v(γj)γ−ij

=
n∑
j=1

γ−ij
n−1∑
h=0

vhγ
hj =

n−1∑
h=0

vh

n−1∑
j=0

γ(h−i)j = nvi,

since the formula for geometric sums shows that
∑n−1

j=0 γ
(h−i)j = 0 for h ∈ {0, 1, . . . , n−

1} with h 6= i. 2

We are now ready to prove a classical lower bound on the minimum distance of

cyclic codes.

Theorem 3.3.34 Let C ⊆ Fnq be a cyclic code with n ≥ 2, gcd(n, q) = 1, and

generator polynomial g(x). Let γ be a primitive nth root of unity in a finite extension

field of Fq. Assume that there exist integers b and d with b ≥ 0 and 2 ≤ d ≤ n such

that g(γb+i) = 0 for 0 ≤ i ≤ d− 2. Then the minimum distance of C is at least d.

Proof. Let v ∈ Fnq be a nonzero codeword in C. Then the corresponding polynomial

v(x) ∈ Fq[x] is nonzero and satisfies deg(v(x)) < n. Since the n distinct elements γj,

j = 1, . . . , n, cannot all be roots of v(x), the Mattson-Solomon polynomial Mv(x) is
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nonzero. By multiplying Mv(x), if necessary, by a suitable power of x modulo xn−1,

we can assume that b = 1. Then g(γj) = 0 for 1 ≤ j ≤ d − 1 by the hypothesis,

and since g(x) divides v(x) in Fq[x], we deduce that v(γj) = 0 for 1 ≤ j ≤ d− 1. It

follows then from Definition 3.3.32 that deg(Mv(x)) ≤ n− d. By Lemma 3.3.33 the

Hamming weight w(v) satisfies w(v) = n − r, where r is the number of nth roots

of unity that are roots of Mv(x). Now trivially r ≤ deg(Mv(x)), and so r ≤ n− d.

This implies w(v) = n − r ≥ d, and since this holds for every nonzero v ∈ C, the

desired result follows from Theorem 3.2.14. 2

Remark 3.3.35 If you are familiar with determinants, then you will appreciate

the following alternative proof of Theorem 3.3.34. We proceed by contradiction

and suppose that there exists a nonzero codeword c ∈ C with Hamming weight

w = w(c) < d. Let u = π(c) ∈ Fq[x] be the corresponding polynomial. Then g(x)

divides u(x) in Fq[x], and so u(γb+i) = 0 for 0 ≤ i ≤ d− 2. Since w = w(c), we can

write

u(x) =
w∑
j=1

ujx
aj

with uj ∈ F∗q for 1 ≤ j ≤ w and integers 0 ≤ a1 < a2 < · · · < aw < n. The property

u(γb+i) = 0 for 0 ≤ i ≤ d− 2 implies that u(γb+i) = 0 for 0 ≤ i ≤ w − 1. This can

be put in the form Ku> = 0>, where u = (u1, . . . , uw) and K is the w × w matrix

K =


γa1b γa2b . . . γawb

γa1(b+1) γa2(b+1) . . . γaw(b+1)

...
...

...

γa1(b+w−1) γa2(b+w−1) . . . γaw(b+w−1)

 .

A basic property of determinants yields det(K) = γ(a1+a2+···+aw)b det(L), where L is

the Vandermonde matrix

L =


1 1 . . . 1

γa1 γa2 . . . γaw

...
...

...

γa1(w−1) γa2(w−1) . . . γaw(w−1)

 .

Now γa1 , γa2 , . . . , γaw are distinct since γ is a primitive nth root of unity, hence

det(L) 6= 0, and so det(K) 6= 0. Thus, Ku> = 0> implies that u = 0. This

contradiction completes the alternative proof of Theorem 3.3.34.

Example 3.3.36 Let C be the binary cyclic code in Example 3.3.31. With a suit-

able primitive 21st root of unity γ ∈ F64, we can take α1 = γ7 and α2 = γ3 in

Example 3.3.31. Then by Proposition 1.4.47, the roots of the generator polynomial
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g(x) = x5 + x4 + 1 ∈ F2[x] are γ7, γ14, γ3, γ6, and γ12. Thus, with b = 6 and d = 3

we get g(γb+i) = 0 for 0 ≤ i ≤ d − 2. It follows then from Theorem 3.3.34 that

d(C) ≥ 3. Since g(x) corresponds to a codeword in C of Hamming weight 3, we

conclude that d(C) = 3.

3.3.6 Irreducible cyclic codes

Now we consider a special family of cyclic codes that allow a nice explicit description

of the codewords. As in the discussion prior to Definition 3.3.32, we take a finite

field Fq and let n ≥ 2 be an integer with gcd(n, q) = 1. Let k be the least positive

integer such that qk ≡ 1 (mod n). Then there exists a primitive nth root of unity

γ ∈ Fqk . Let f(x) ∈ Fq[x] be the minimal polynomial of γ over Fq. Then f(x) is a

monic irreducible polynomial over Fq of degree k. We note that f(x) divides xn− 1

in Fq[x] since γn = 1 (see Proposition 1.4.38). Hence there exists a cyclic [n, k] code

C over Fq with parity-check polynomial f(x) (compare with Remark 3.3.27). Such

a cyclic code is called an irreducible cyclic code with parity-check polynomial f(x).

Here is the promised explicit description of the codewords in C. We use the trace

map for finite fields that we introduced in Definition 1.4.48 and the basic properties

of the trace map in Theorem 1.4.50.

Theorem 3.3.37 Let n ≥ 2 be an integer with gcd(n, q) = 1 and let C be the

irreducible cyclic [n, k] code over Fq with parity-check polynomial f(x), where f(x)

is the minimal polynomial of the primitive nth root of unity γ ∈ Fqk over Fq. Then

the codewords in C are exactly the words

c(θ) = (Tr(θ),Tr(θγ),Tr(θγ2), . . . ,Tr(θγn−1)) ∈ Fnq ,

where θ runs through the finite field Fqk and Tr denotes the trace map from Fqk
onto Fq.

Proof. By definition, f(x) =
∑k

j=0 fjx
j ∈ Fq[x] with all fj ∈ Fq is the generator

polynomial of the dual code C⊥. A parity-check matrix of C is a generator matrix

of C⊥, and so a parity-check matrix H of C is obtained from Theorem 3.3.19 as the

(n− k)× n matrix

H =



f0 f1 . . . fk 0 0 0 . . . 0

0 f0 f1 . . . fk 0 0 . . . 0

. .

. .

. .

0 0 . . . f0 f1 . . . . . fk


over Fq. For v = (v0, v1, . . . , vn−1) ∈ Fnq , Theorem 3.2.37 shows that v ∈ C if and

only if vH> = 0 ∈ Fn−kq . In view of the special form of H, the latter condition
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means that
k∑
j=0

fjvj+i = 0 for 0 ≤ i ≤ n− k − 1. (3.13)

If v = c(θ), then vi = Tr(θγi) for 0 ≤ i ≤ n− 1, and so

k∑
j=0

fjvj+i =
k∑
j=0

fjTr(θγj+i) = Tr
( k∑
j=0

fjθγ
j+i
)

= Tr(θγif(γ)) = 0

for 0 ≤ i ≤ n− k − 1 since f(γ) = 0. Thus, v = c(θ) satisfies the condition (3.13),

and so c(θ) ∈ C for all θ ∈ Fqk . Since C has exactly qk codewords, it now suffices

to prove that the linear transformation θ ∈ Fqk 7→ c(θ) ∈ Fnq is injective. This boils

down to showing that c(θ) = 0 ∈ Fnq only for θ = 0. If we had c(θ) = 0 ∈ Fnq for

some θ ∈ F∗
qk

, then Tr(θγi) = 0 for 0 ≤ i ≤ k − 1. Since 1, γ, γ2, . . . , γk−1 form a

basis of Fqk over Fq (compare with Remark 3.2.7), this implies that Tr(β) = 0 for

all β ∈ Fqk , which is a contradiction to the fact that Tr : Fqk → Fq is a surjective

map by Theorem 1.4.50(iii). 2

The explicit formula for the codewords in C given by Theorem 3.3.37, in con-

junction with the following simple estimation of character sums, leads to a lower

bound and an upper bound on the Hamming weight of each nonzero codeword in C.

Lemma 3.3.38 Let χ be a nontrivial additive character of the finite field Fq and

let a ∈ F∗q have multiplicative order t. Then∣∣∣ t−1∑
i=0

χ(bai)
∣∣∣ ≤ (q − t)1/2 for all b ∈ F∗q.

Proof. We write s(b) for the given character sum and put s(0) = t. The sequence

(bai)∞i=0 is periodic with period length t. Thus, for every integer j ≥ 0 we obtain

s(b) =
t−1∑
i=0

χ(bai+j) =
t−1∑
i=0

χ(bajai) = s(baj).

The elements b, ba, ba2, . . . , bat−1 of F∗q are distinct, hence

t|s(b)|2 =
t−1∑
j=0

|s(baj)|2 ≤
∑
c∈F∗q

|s(c)|2.

Now by expanding |s(c)|2 via |z|2 = zz for all z ∈ C and by the orthogonality

relation (1.9) for characters, we get∑
c∈F∗q

|s(c)|2 =
∑
c∈Fq

|s(c)|2 − |s(0)|2 =
∑
c∈Fq

t−1∑
i,j=0

χ(c(ai − aj))− t2

=
t−1∑
i,j=0

∑
c∈Fq

χ(c(ai − aj))− t2 = qt− t2.
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This yields t|s(b)|2 ≤ qt− t2, and so |s(b)| ≤ (q − t)1/2 as desired. 2

Theorem 3.3.39 If C is an irreducible cyclic [n, k] code over Fq as in Theorem

3.3.37, then the Hamming weight w(c) of every nonzero codeword c ∈ C satisfies

q − 1

q

(
n− (qk − n)1/2

)
≤ w(c) ≤ q − 1

q

(
n+ (qk − n)1/2

)
.

Proof. By Theorem 3.3.37, a nonzero codeword c ∈ C is given by c = c(θ) with

θ ∈ F∗
qk

. We write

w(c(θ)) = n−N(c(θ)),

whereN(c(θ)) is the number of integers i with 0 ≤ i ≤ n−1 and Tr(θγi) = 0. Choose

a nontrivial additive character χ of Fq. Then by the orthogonality relation (1.9) for

characters we get

N(c(θ)) =
n−1∑
i=0

1

q

∑
b∈Fq

χ(bTr(θγi)) =
1

q

∑
b∈Fq

n−1∑
i=0

χ(Tr(bθγi)).

Now χk(α) = χ(Tr(α)) for α ∈ Fqk defines a nontrivial additive character of Fqk ,
and so we obtain

N(c(θ)) =
1

q

∑
b∈Fq

n−1∑
i=0

χk(bθγ
i) =

n

q
+

1

q

∑
b∈F∗q

n−1∑
i=0

χk(bθγ
i).

It follows that ∣∣∣∣w(c(θ))− (q − 1)n

q

∣∣∣∣ ≤ 1

q

∑
b∈F∗q

∣∣∣ n−1∑
i=0

χk(bθγ
i)
∣∣∣.

The last sum is a character sum as in Lemma 3.3.38, with q in that lemma replaced

by qk. By applying the bound in that lemma, we arrive at the desired result. 2

Corollary 3.3.40 If C is an irreducible cyclic [n, k] code over Fq as in Theorem

3.3.37, then the minimum distance of C satisfies

d(C) ≥ q − 1

q
(n− (qk − n)1/2).

Proof. This follows from Theorems 3.2.14 and 3.3.39. 2

The lower bound on d(C) in Corollary 3.3.40 is positive whenever n > qk/2. We

note that since n is the multiplicative order of the element γ ∈ F∗
qk

, the value of n

can potentially be as large as qk − 1.
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3.3.7 Decoding algorithms for cyclic codes

Since cyclic codes form a special family of linear codes, we can apply the syndrome

decoding algorithm (see Algorithm 3.2.52) to cyclic codes. Because of the special

structure of cyclic codes, there is some hope that simplifications in this decoding

algorithm can be achieved. This is indeed the case if one works with a suitable

parity-check matrix of the given cyclic code.

Let C ⊆ Fnq be a nontrivial cyclic code with generator polynomial g(x) ∈ Fq[x]

of degree n−k (note that 1 ≤ k ≤ n− 1). Then dim(C) = k and the syndromes are

elements of Fn−kq . We construct a parity-check matrix H of C via its transpose H>,

which is an n× (n−k) matrix over Fq. First we introduce the linear transformation

% : Fq[x]<n → Fq[x]/(g(x)) which assigns to each f(x) ∈ Fq[x]<n the least residue

of f(x) modulo g(x), that is, the remainder of f(x) after division by g(x). Then

we set up the vector space isomorphism τ : Fq[x]/(g(x)) → Fn−kq which sends each

least residue modulo g(x) (which is a polynomial of degree less than n − k) to its

coefficient vector, in analogy with the inverse of the map π in (3.9). The composite

map τ ◦ % : Fq[x]<n → Fn−kq is again a linear transformation between vector spaces

over Fq.
Now we construct the matrix H> by letting its jth row be (τ ◦ %)(xj−1) for

1 ≤ j ≤ n. For v ∈ Fnq and its corresponding polynomial v = π(v) ∈ Fq[x]<n, we

obtain the logical equivalences

v ∈ C ⇔ %(v) = 0 ∈ Fq[x]/(g(x))⇔ (τ ◦ %)(v) = 0 ∈ Fn−kq ⇔ vH> = 0 ∈ Fn−kq .

Furthermore, the first n − k rows of H> form the identity matrix In−k, and so

the column vectors of H> are linearly independent over Fq. Consequently, H is a

parity-check matrix of C.

It is convenient to carry out the syndrome decoding algorithm for cyclic codes

in the language of polynomials. To this end, we translate syndromes in Fn−kq into

polynomials, by applying the inverse τ−1 : Fn−kq → Fq[x]/(g(x)) of the vector space

isomorphism τ introduced above. For every v = (v0, v1, . . . , vn−1) ∈ Fnq and its

syndrome S(v) = vH>, an application of τ−1 to S(v) amounts to multiplying v by

the n× (n− k) matrix P whose jth row is %(xj−1) for 1 ≤ j ≤ n. Therefore

τ−1(S(v)) = vP =
n−1∑
j=0

vj%(xj) = %
( n−1∑
j=0

vjx
j
)

= %(v),

where v = v(x) =
∑n−1

j=0 vjx
j ∈ Fq[x]<n is the polynomial corresponding to v. Thus,

in the context of the syndrome decoding algorithm for cyclic codes, it is convenient

to speak of the received polynomial v(x) ∈ Fq[x]<n instead of the received word

v ∈ Fnq , and the corresponding syndrome can then be viewed as τ−1(S(v)) = %(v),

that is, the least residue of v(x) modulo g(x). As in Subsection 3.3.1, we identify
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Fq[x]<n with the residue class ring Fq[x]/(xn−1). We summarize this in the following

definition.

Definition 3.3.41 Let C ⊆ Fnq be a nontrivial cyclic code with generator polyno-

mial g(x). Then for a received polynomial v = v(x) ∈ Fq[x]/(xn − 1), its syndrome

polynomial S(v) ∈ Fq[x]/(g(x)) is the least residue of v(x) modulo g(x).

Note that S(v) is well defined for v ∈ Fq[x]/(xn−1) because g(x) divides xn−1 in

Fq[x] by Theorem 3.3.12. Since the syndrome S(v) in the sense of Definition 3.2.49

and the syndrome polynomial S(v) in the sense of Definition 3.3.41 correspond to

each other via a vector space isomorphism, it is clear that S(v) shares the properties

of S(v) in Proposition 3.2.51.

For consistency, we interpret an error word e = (e0, e1, . . . , en−1) ∈ Fnq also as a

polynomial, namely as the error polynomial e(x) =
∑n−1

j=0 ejx
j ∈ Fq[x]. From (3.7)

and with a received polynomial v(x), we then obtain the code polynomial c(x) =

v(x) − e(x) which belongs to the ideal of Fq[x]/(xn − 1) consisting exactly of all

multiples of the generator polynomial g(x). The following is an easy situation in

which a most likely error polynomial can be obtained immediately.

Proposition 3.3.42 Let C be a nontrivial cyclic [n, k, d] code over Fq. If for a

received polynomial v = v(x) ∈ Fq[x]/(xn − 1) the syndrome polynomial S(v) has at

most b(d− 1)/2c nonzero coefficients, then S(v) is the most likely error polynomial.

Proof. By Definition 3.3.41, S(v)− v is a multiple of the generator polynomial g(x)

of C and so a code polynomial. In other words, S(v) and v are in the same coset of

C. We are done if we can prove that S(v) is the unique coset leader of this coset.

Suppose that there is another polynomial w ∈ Fq[x]/(xn − 1) in this coset with at

most b(d − 1)/2c nonzero coefficients. Then S(v) − w is a code polynomial. But

S(v)−w has ≤ 2b(d−1)/2c ≤ d−1 nonzero coefficients, that is, it corresponds to a

codeword c ∈ C of Hamming weight at most d− 1. Since C has minimum distance

d, it follows that c = 0 ∈ Fnq , hence w = S(v). 2

Example 3.3.43 Let C be the binary cyclic code of length 7 in Example 3.3.22.

From the generator matrix G in Example 3.3.22 we can easily determine all code-

words in C and check that d(C) = 3. Suppose that the received polynomial is

v(x) = x + x2 + x4 + x5. Dividing v(x) by the generator polynomial g(x) =

1+x2+x3 ∈ F2[x], we get the quotient x2 and the remainder x. Therefore S(v) = x.

This syndrome polynomial satisfies the condition in Proposition 3.3.42, and so the

most likely error polynomial is e(x) = x. The most likely sent code polynomial is

c(x) = v(x)− e(x) = x2 +x4 +x5, which corresponds to the codeword (0 0 1 0 1 1 0)

in C.
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In preparation for a more refined version of the syndrome decoding algorithm for

cyclic codes, we study how the syndrome polynomial changes under a cyclic shift of

the input.

Lemma 3.3.44 Let C be a nontrivial cyclic [n, k] code over Fq with generator poly-

nomial g(x). Let S(v) = S(v(x)) be the syndrome polynomial of a received polyno-

mial v = v(x) ∈ Fq[x]/(xn − 1). Then

S(xv(x)) = xS(v(x))− sn−k−1g(x),

where sn−k−1 is the coefficient of xn−k−1 in the polynomial S(v).

Proof. By the definition of S(v(x)), we can write v(x) = a(x)g(x) + S(v(x)) for

some a(x) ∈ Fq[x], where deg(S(v(x))) < deg(g(x)) = n− k. Then

xv(x) = xa(x)g(x) + xS(v(x)) = (xa(x) + sn−k−1)g(x) + xS(v(x))− sn−k−1g(x).

Furthermore,

deg(xS(v(x))− sn−k−1g(x)) ≤ max (deg(xS(v(x))), deg(sn−k−1g(x))) ≤ n− k.

The coefficient of xn−k in xS(v(x))− sn−k−1g(x) is sn−k−1− sn−k−1 ·1 = 0 since g(x)

is a monic polynomial. Therefore

deg(xS(v(x))− sn−k−1g(x)) < n− k,

and so xS(v(x))− sn−k−1g(x) is the least residue of xv(x) modulo g(x). 2

Remark 3.3.45 Given the syndrome polynomial of the cyclic shift xtv(x) of a

received polynomial v(x) ∈ Fq[x]/(xn − 1), the syndrome polynomial of xt+1v(x)

can be computed by means of Lemma 3.3.44. Thus, the syndrome polynomials of

xv(x), x2v(x), . . . can be computed recursively.

Definition 3.3.46 A word u = (u0, u1, . . . , un−1) ∈ Fnq has a cyclic run of zeros of

length ` ≥ 1 if it has a succession of ` cyclically consecutive zero coordinates.

Example 3.3.47 The word u = (0, 0, 1, 0, 0, 0, 1, 0, 0) ∈ F9
2 has a cyclic run of zeros

of length 4.

Here is another auxiliary result that we need for a refined syndrome decoding

algorithm for cyclic codes.
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Lemma 3.3.48 Let C be a nontrivial cyclic [n, k] code over Fq. Suppose that for

some received polynomial v(x) ∈ Fq[x]/(xn− 1) we have an error word e ∈ Fnq which

has a cyclic run of zeros of length at least k. Then there exists an integer t ≥ 0

such that for h = h(x) = xtv(x) ∈ Fq[x]/(xn − 1) the syndrome polynomial is given

by S(h) = r(x), where r(x) ∈ Fq[x]/(xn − 1) is the polynomial corresponding to the

cyclic shift et. Furthermore, the number of nonzero coefficients of r(x) is equal to

the Hamming weight w(e).

Proof. Since e has a cyclic run of zeros of length at least k, there exists an integer

t ≥ 0 such that the last k coordinates of the cyclic shift et are all equal to 0. Thus, if

r(x) ∈ Fq[x]/(xn− 1) is as in the lemma, then deg(r(x)) < n−k. Since deg(g(x)) =

n− k, it follows from Definition 3.3.41 that S(r(x)) = r(x). If e(x) ∈ Fq[x]/(xn− 1)

is the polynomial corresponding to e, then

h(x) ≡ xtv(x) ≡ xte(x) ≡ r(x) (mod g(x)),

and so S(h) = S(r(x)) = r(x). The last part of the lemma is trivial since a cyclic

shift does not change the Hamming weight of a word. 2

We are now ready to describe a syndrome decoding algorithm for cyclic codes

which is applicable under less restrictive conditions than those in Proposition 3.3.42.

This algorithm goes by a colorful name suggesting that we want to capture the

devious error in a trap.

Algorithm 3.3.49 (Error-Trapping Decoding Algorithm for Cyclic Codes)

Let C be a nontrivial cyclic [n, k, d] code over Fq. For a received word v ∈ Fnq , sup-

pose that the error word e ∈ Fnq has Hamming weight w(e) ≤ b(d − 1)/2c and a

cyclic run of zeros of length at least k.

Step 1: For the received polynomial v(x) ∈ Fq[x]/(xn − 1) corresponding to v,

compute the syndrome polynomials of v(x), xv(x), x2v(x), . . . by Lemma 3.3.44 un-

til an integer t with 0 ≤ t ≤ n − 1 is obtained for which the syndrome polynomial

of xtv(x) ∈ Fq[x]/(xn − 1) has at most b(d − 1)/2c nonzero coefficients. Such an

integer t exists by Lemma 3.3.48.

Step 2: By Proposition 3.3.42, et(x) := S(xtv(x)) is the most likely error polyno-

mial for the received polynomial xtv(x). Let et ∈ Fnq be the word corresponding to

et(x). A cyclic shift of et by n− t positions yields the most likely error word e.

Step 3: Compute the most likely sent codeword c as c = v − e.

Example 3.3.50 Let C be the cyclic [7, 4, 3] code over F2 with generator polyno-

mial g(x) = x3 + x2 + 1 considered in Examples 3.3.22 and 3.3.43. Let the received

polynomial be v(x) = 1 + x2 + x3 + x4. As in the error-trapping decoding algorithm

above, we assume that the error word e ∈ F7
2 has Hamming weight w(e) ≤ 1. Then
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e must have a cyclic run of zeros of length at least 6, and so all conditions in the

algorithm above are satisfied. Dividing v(x) by g(x), we get

v(x) = xg(x) + 1 + x+ x2,

and so S(v(x)) = 1 + x + x2. The condition in Step 1 of the algorithm is thus not

satisfied for t = 0. Therefore we proceed to t = 1. According to Lemma 3.3.44, we

obtain

S(xv(x)) = x(1 + x+ x2)− 1 · (1 + x2 + x3) = 1 + x.

The condition in Step 1 of the algorithm is thus not satisfied for t = 1. Therefore

we proceed to t = 2. Again by Lemma 3.3.44, we compute

S(x2v(x)) = x(1 + x)− 0 · (1 + x2 + x3) = x+ x2.

The condition in Step 1 of the algorithm is thus not satisfied for t = 2. But we are

not discouraged since we know from Lemma 3.3.48 that a suitable value of t must

exist. Hence we proceed to t = 3. Again by Lemma 3.3.44, we obtain

S(x3v(x)) = x(x+ x2)− 1 · (1 + x2 + x3) = 1.

Now the condition in Step 1 of the algorithm is satisfied. In Step 2 of the algorithm

we get e3(x) = 1 and e3 = (1 0 0 0 0 0 0) ∈ F7
2. A cyclic shift of e3 by n−t = 7−3 = 4

positions yields e = (0 0 0 0 1 0 0) ∈ F7
2. The most likely sent codeword is therefore

c = (1 0 1 1 1 0 0)− (0 0 0 0 1 0 0) = (1 0 1 1 0 0 0).

A transmission error occurred most likely in the fifth coordinate.

3.4 Bounds in coding theory

3.4.1 Existence theorems for good codes

There are some general theoretical results that establish the existence of good codes

provided that the parameters satisfy certain bounds. As usual, we write |A| for the

cardinality (that is, the number of elements) of a finite set A.

Theorem 3.4.1 (Sphere-Covering Bound) If Fq is a finite field and n and d

are integers with 1 ≤ d ≤ n, then there exists a code C ⊆ Fnq with minimum distance

d and

|C|
d−1∑
i=0

(
n

i

)
(q − 1)i ≥ qn.
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Proof. For fixed n, d, and q, let C ⊆ Fnq be a code of maximum size with d(C) = d.

If w ∈ Fnq were such that d(c,w) ≥ d for all c ∈ C, then the larger code C ∪ {w}
would still have minimum distance d. Thus, there can be no such w ∈ Fnq . In other

words, for every v ∈ Fnq there is a c ∈ C with d(c,v) ≤ d− 1. Hence

Fnq =
⋃
c∈C

B(c, d− 1),

where B(c, d− 1) is the ball with center c and radius d− 1 in the Hamming space

Fnq defined by

B(c, d− 1) = {v ∈ Fnq : d(c,v) ≤ d− 1}.

By considering cardinalities, we get

qn =
∣∣∣ ⋃
c∈C

B(c, d− 1)
∣∣∣ ≤∑

c∈C

|B(c, d− 1)| = |C|
d−1∑
i=0

(
n

i

)
(q − 1)i,

which is the desired result. Note that the formula for |B(c, d−1)| above is obtained

by first fixing the number i of coordinates where c and v differ (with 0 ≤ i ≤ d−1),

then choosing the
(
n
i

)
actual coordinate positions where c and v differ, and finally

observing that for i fixed coordinate positions this leaves exactly (q−1)i possibilities

for v. 2

Example 3.4.2 Let q = 2, n = 9, and d = 3. Then Theorem 3.4.1 ensures the

existence of a binary code C of length 9 with minimum distance 3 and |C| ≥ 512/46,

that is, with |C| ≥ 12.

The proof of Theorem 3.4.1 provides no guarantee that the code in this theorem

is linear. However, there is the following result of roughly comparable quality for

linear codes.

Theorem 3.4.3 (Gilbert-Varshamov Bound) Let n, k, and d be integers with

1 ≤ k < n, 2 ≤ d ≤ n, and

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k. (3.14)

Then there exists a linear [n, k] code over Fq with minimum distance at least d.

Proof. We first observe that

qd−2 =
d−2∑
i=0

(
d− 2

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k
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by (3.14), and so d − 1 ≤ n − k. Now we construct a certain (n − k) × n matrix

H ′ over Fq columnwise. We choose the first d − 1 column vectors of H ′ as linearly

independent vectors from Fn−kq (this is possible since d− 1 ≤ n− k). Now suppose

that the first j − 1 column vectors of H ′ (with d ≤ j ≤ n) have already been

constructed and satisfy the property that any d−1 of them are linearly independent

over Fq. There are at most

d−2∑
i=0

(
j − 1

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i

vectors from Fn−kq that can be obtained as linear combinations over Fq of d − 2 or

fewer of these j − 1 column vectors. Since (3.14) holds, it is possible to choose

a jth column vector of H ′ that is linearly independent of any d − 2 of the first

j − 1 column vectors of H ′. When this inductive construction is complete, we ar-

rive at an (n− k)× n matrix H ′ over Fq with the property that any d− 1 column

vectors of H ′ are linearly independent over Fq. The null space of H ′ (see Remark

3.2.39) is a linear code C ′ over Fq of length n with dim(C ′) ≥ k. Furthermore,

the argument in the proof of Theorem 3.2.44 shows that d(C ′) ≥ d. Now let C

be an arbitrary k-dimensional subspace of C ′. Since passing to a subspace cannot

decrease the minimum distance, we see that C is a linear code of the desired type. 2

Example 3.4.4 Let q = 2, n = 7, k = 4, and d = 3. Then the inequality (3.14)

is satisfied, and so Theorem 3.4.3 shows the existence of a binary linear [7, 4] code

with minimum distance at least 3. A simple explicit construction of such a code was

given in Example 3.2.53.

Example 3.4.5 Let q = 3, n = 10, k = 7, and d = 3. Then the inequality (3.14) is

satisfied, and so Theorem 3.4.3 guarantees the existence of a linear [10, 7] code over

F3 with minimum distance at least 3.

The procedure in the proof of Theorem 3.4.3 can, in principle, be implemented to

construct good linear codes. However, it should be noted that, for large values of d,

this method is usually impracticable. We will present efficient explicit constructions

of families of good linear codes later in this chapter.

3.4.2 Limitations on the parameters of codes

The parameters of codes cannot be chosen independently of each other. For instance,

it is obvious that for a linear [n, k, d] code the bounds 1 ≤ k ≤ n and 1 ≤ d ≤ n are

valid. In the following, we will discuss less trivial limitations on the parameters of

codes.
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Theorem 3.4.6 (Hamming Bound) Every t-error-correcting code C ⊆ Fnq satis-

fies

|C|
t∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

Proof. For all c ∈ C, let B(c, t) ⊆ Fnq be the ball with center c and radius t (compare

with the proof of Theorem 3.4.1). For distinct c1, c2 ∈ C, it follows from Definition

3.1.12 that B(c1, t) and B(c2, t) are disjoint. Thus, by comparing cardinalities in⋃
c∈C

B(c, t) ⊆ Fnq

and referring again to the proof of Theorem 3.4.1, we obtain the desired inequality. 2

Corollary 3.4.7 Every code C ⊆ Fnq with |C| ≥ 2 and minimum distance d satisfies

|C|
b(d−1)/2c∑

i=0

(
n

i

)
(q − 1)i ≤ qn. (3.15)

Proof. This follows from Theorems 3.1.14 and 3.4.6. 2

Definition 3.4.8 A code C ⊆ Fnq with |C| ≥ 2 and minimum distance d which

achieves equality in (3.15) is called perfect.

Example 3.4.9 The trivial code C = Fnq is obviously perfect. For q = 2, the

repetition code of odd length n (see Example 3.1.4) is easily seen to be perfect.

A simple computation shows that the binary linear [7, 4, 3] code constructed in

Example 3.2.53 is perfect. The last example will be generalized in Theorem 3.5.7.

Further examples of perfect codes will be presented in Subsection 3.5.2.

An inspection of the proof of Theorem 3.4.6 reveals that a perfect code C ⊆ Fnq
has the intriguing geometric property that the balls of radius b(d(C)−1)/2c around

the codewords in C are disjoint and fill up the whole space Fnq . This is like tightly

packing oranges in Fnq as if they were cubes; in Rn we can do this only with orange

juice. Because of this interpretation in terms of packing, the bound in Theorem

3.4.6 is called also the sphere-packing bound .

The following bound provides another important restriction on the parameters

of a code. The name of this bound has nothing to do with “singleton” in the sense

of a one-element set, but rather with the coding theorist Richard Singleton and his

paper [188].



3.4. BOUNDS IN CODING THEORY 151

Theorem 3.4.10 (Singleton Bound) Every code C ⊆ Fnq with |C| ≥ 2 and min-

imum distance d satisfies

|C| ≤ qn−d+1.

Proof. In each codeword in C we delete the last d − 1 coordinates. The resulting

words over Fq of length n − d + 1 are distinct since C has minimum distance d.

Therefore |C| ≤ qn−d+1, the total number of words over Fq of length n− d+ 1. 2

Corollary 3.4.11 (Singleton Bound for Linear Codes) Every linear [n, k, d] code

over Fq satisfies

d ≤ n− k + 1.

Proof. This follows from Theorem 3.4.10 since a linear [n, k, d] code C over Fq sat-

isfies |C| = qk. 2

Remark 3.4.12 There is a simple alternative proof of Corollary 3.4.11 in which we

turn to an equivalent linear code with a generator matrix G′ in standard form (see

Remark 3.2.27) and then note that all row vectors of G′ have Hamming weight at

most n− k + 1.

Theorem 3.4.10 substantiates a remark we made at the end of Subsection 3.1.2,

namely that there is a trade-off between the desiderata of a large minimum dis-

tance of a code C ⊆ Fnq and a large data transmission rate of C (which can be

expressed by saying that the ratio |C|/qn is relatively large). Indeed, Theorem

3.4.10 demonstrates that if the minimum distance d of C is large, then the ratio

|C|/qn is necessarily small.

Definition 3.4.13 A linear [n, k, d] code over Fq with d = n − k + 1 is called an

MDS code.

The acronym MDS stands for maximum distance separable, which is suggestive of

the fact that an MDS code is a linear [n, k] code that achieves the largest minimum

distance n − k + 1 allowed by the Singleton bound for linear codes. After giving

some easy examples of MDS codes, we discuss basic properties of MDS codes.

Example 3.4.14 The trivial code C1 = Fnq and the linear [n, 1, n] code C2 over Fq
with basis vector b = (b1, . . . , bn) ∈ Fnq , where bj 6= 0 for 1 ≤ j ≤ n, are MDS

codes. For every n ≥ 2, the linear [n, n − 1, 2] code C3 over Fq with basis vectors

b1, . . . ,bn−1 ∈ Fnq is an MDS code, where for i = 1, . . . , n − 1 the vector bi has

coordinate 1 in positions i and i+ 1 and coordinate 0 elsewhere.
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Proposition 3.4.15 Let C be a nontrivial linear [n, k] code over Fq with parity-

check matrix H. Then C is an MDS code if and only if any n − k column vectors

of H are linearly independent over Fq.

Proof. In view of Corollary 3.4.11, C is an MDS code if and only if d(C) ≥ n−k+1.

The rest follows from Theorem 3.2.44. 2

Theorem 3.4.16 If the nontrivial linear code C is an MDS code, then its dual code

C⊥ is also an MDS code.

Proof. Let C be a nontrivial linear [n, k] code over Fq which is an MDS code and

let H be a parity-check matrix of C. Then C⊥ is a linear [n, n − k] code over

Fq by Theorem 3.2.34. If d = d(C⊥), then d ≤ k + 1 by Corollary 3.4.11. In

order to make sure that C⊥ is an MDS code, it therefore suffices to prove that the

minimum Hamming weight w(C⊥) is at least k+ 1 (compare with Theorem 3.2.14).

Take a codeword u = (u1, . . . , un) ∈ C⊥ with w(u) ≤ k. Then there exist integers

1 ≤ j1 < j2 < · · · < jn−k ≤ n with

uj1 = uj2 = · · · = ujn−k = 0. (3.16)

Since H is a generator matrix of C⊥, there is some a ∈ Fn−kq for which u = aH. If

h>1 , . . . ,h
>
n are the column vectors of H, then (3.16) implies that a · hj1 = a · hj2 =

· · · = a·hjn−k = 0. Now hj1 ,hj2 , . . . ,hjn−k are linearly independent over Fq by Propo-

sition 3.4.15, and so these vectors form a basis of Fn−kq . It follows that a · v = 0 for

all v ∈ Fn−kq , hence a = 0 ∈ Fn−kq and u = 0 ∈ Fnq . This shows that w(C⊥) ≥ k+ 1.

2

Proposition 3.4.17 Let C be a linear [n, k] code over Fq with generator matrix

G. Then C is an MDS code if and only if any k column vectors of G are linearly

independent over Fq.

Proof. This is trivial for k = n. If 1 ≤ k ≤ n − 1, then Proposition 3.4.15 shows

that any k column vectors of G are linearly independent over Fq if and only if C⊥ is

an MDS code (since G is a parity-check matrix of C⊥ and dim(C⊥) = n− k). Now

(C⊥)⊥ = C by Corollary 3.2.35, and so we deduce from Theorem 3.4.16 that C⊥ is

an MDS code if and only if C is an MDS code. 2

Example 3.4.18 Let C be the linear [4, 2] code over F3 with generator matrix

G =

(
1 0 1 1

0 1 1 2

)
.

Then any two column vectors of G are linearly independent over F3, and so C is an

MDS code by Proposition 3.4.17.
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An important family of MDS codes, namely that of Reed-Solomon codes, will be

introduced in Subsection 3.5.3. Now we present another bound on code parameters.

Since our focus in this chapter is on linear codes, we establish the bound here only for

these codes. There is an analogous bound for arbitrary codes (see [106, Section 5.5]

and Theorem 6.4.13).

Theorem 3.4.19 (Plotkin Bound for Linear Codes) Every linear [n, k, d] code

over Fq satisfies

d ≤ n(q − 1)qk−1

qk − 1
.

Proof. For a given linear [n, k, d] code C over Fq and for j = 1, . . . , n, let λj be the

linear transformation

λj : (c1, . . . , cn) ∈ C 7→ cj ∈ Fq.

If w1 denotes the Hamming weight of words over Fq of length 1, then

∑
c∈C

w(c) =
∑
c∈C

n∑
j=1

w1(λj(c)) =
n∑
j=1

∑
c∈C

w1(λj(c)).

If the image of λj is {0}, then the last inner sum is equal to 0. Otherwise, for every

b ∈ Fq there are exactly qk−1 codewords c ∈ C with λj(c) = b, and so the last inner

sum is equal to (q − 1)qk−1. Altogether, we get∑
c∈C

w(c) ≤ n(q − 1)qk−1.

On the other hand, it is trivial that∑
c∈C

w(c) ≥ (qk − 1)d,

and so the desired bound follows. 2

Remark 3.4.20 The ternary linear [4, 2, 3] code in Example 3.4.18 is not only an

MDS code, but it also achieves equality in the Plotkin bound. In general, if a linear

[n, k, d] code C over Fq achieves equality in the Plotkin bound, then
∑

c∈C w(c) =

(qk−1)d, as we see from the proof of Theorem 3.4.19. This means that w(c) = d for

all nonzero codewords c ∈ C. Since d(u,v) = w(u − v) for all u,v ∈ Fnq by (3.5),

it follows that d(c1, c2) = d for any two distinct codewords c1, c2 ∈ C. For obvious

reasons, such a code is called an equidistant code.

Example 3.4.21 Given a finite field Fq and an integer k with qk ≥ 3, let f(x)

be the minimal polynomial of a primitive element γ ∈ Fqk over Fq. Let C be
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the irreducible cyclic [qk− 1, k] code over Fq with parity-check polynomial f(x) (see

Theorem 3.3.37). Every nonzero c ∈ C has the form c(θ) in Theorem 3.3.37 for some

θ ∈ F∗
qk

. It follows that w(c) is equal to the number of β ∈ F∗
qk

with Tr(β) 6= 0.

Since Tr(0) = 0 and the map Tr : Fqk → Fq attains each value in Fq equally often

(namely qk−1 times by Theorem 1.4.50(iii)), we deduce that w(c) = (q − 1)qk−1 for

every nonzero c ∈ C. Therefore C is an equidistant code and it achieves equality in

the Plotkin bound.

3.5 Some special linear codes

3.5.1 Hamming codes

For every finite field Fq, there is an infinite family of perfect linear codes over Fq,
namely that of Hamming codes over Fq. These codes are named after the work of

Hamming in his article [61], which is one of the early fundamental papers on coding

theory, and they are obtained by an elegant construction. For ease of explanation,

we commence with the simpler binary case.

For an integer r ≥ 2, consider an r × (2r − 1) matrix Hr over F2 whose column

vectors are exactly all 2r − 1 nonzero vectors from Fr2. For instance, for r = 3 we

can take

H3 =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .

Here we have arranged the columns in lexicographic order, with the rule that 0

precedes 1, but this is not necessary. Another possible matrix Hr for r = 3 is the

matrix H in Example 3.2.53. For every r ≥ 2, we find among the column vectors of

Hr in particular all vectors of Hamming weight 1, and so the row vectors of Hr are

linearly independent over F2. Therefore Hr can be chosen as a parity-check matrix

of a binary linear code. The length of the resulting code is n = 2r − 1 and its

dimension is n− r = 2r − 1− r.

Definition 3.5.1 For an integer r ≥ 2, let Hr be an r × (2r − 1) matrix over F2

whose column vectors are exactly all 2r − 1 nonzero vectors from Fr2. Then the

linear [2r− 1, 2r− 1− r] code over F2 with parity-check matrix Hr is called a binary

Hamming code Ham(r, 2).

The order of the columns of Hr has not been fixed, and so Ham(r, 2) is well

defined only up to equivalence of codes (see Remark 3.2.27 for the latter notion).

Therefore we speak of a binary Hamming code Ham(r, 2) and not of the binary

Hamming code Ham(r, 2), and similarly for related codes. The minimum distance of

Ham(r, 2) can be easily determined by Corollary 3.2.45. Note that all column vectors
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of Hr are nonzero and different, and so any two column vectors of Hr are linearly

independent over F2. On the other hand, the three column vectors (1 0 0 . . . 0)>,

(0 1 0 . . . 0)>, and (1 1 0 . . . 0)> of Hr are linearly dependent over F2, and so

Ham(r, 2) has minimum distance 3.

Remark 3.5.2 For every integer r ≥ 2, a suitable code Ham(r, 2) in the equivalence

class is cyclic with generator polynomial g(x) ∈ F2[x], where g(x) is the minimal

polynomial of a primitive element α ∈ F2r over F2. In order to prove this claim,

we set up the r × (2r − 1) matrix H over F2 such that, for j = 1, . . . , 2r − 1, the

jth column vector of H is the transpose of the coordinate vector of αj−1 relative

to the ordered basis {1, α, . . . , αr−1} of F2r over F2. Since α is a primitive element

of F2r , the column vectors of H run exactly through all nonzero vectors in Fr2, and

so H is a matrix of the form Hr in Definition 3.5.1 and a parity-check matrix of a

code Ham(r, 2). Furthermore, if v = (v0, v1, . . . , vn−1) ∈ Fn2 with n = 2r − 1 and

v(x) = v0 + v1x+ · · ·+ vn−1x
n−1 ∈ F2[x], then vH> is the coordinate vector of v(α)

relative to the ordered basis {1, α, . . . , αr−1}. By Theorem 3.2.37, v ∈ Ham(r, 2) if

and only if vH> = 0. The latter condition is equivalent to v(α) = 0, and this is in

turn equivalent to g(x) dividing v(x) in F2[x] by Proposition 1.4.38. Our claim is

thus established.

Remark 3.5.3 There is a variant of Ham(r, 2), namely an extended binary Ham-

ming code Ham(r, 2). For every integer r ≥ 2 and each choice of Ham(r, 2) from the

equivalence class, such an extended code is defined by

Ham(r, 2) =
{(
c1, . . . , cn,

n∑
j=1

cj

)
∈ Fn+1

2 : (c1, . . . , cn) ∈ Ham(r, 2)
}

with n = 2r − 1. The length of Ham(r, 2) is n + 1 = 2r. It is easily seen that

Ham(r, 2) is again a linear code. Since the codes Ham(r, 2) and Ham(r, 2) have the

same number of codewords, their dimensions agree, and so Ham(r, 2) has dimension

2r − 1 − r. If (c1, . . . , cn) ∈ Ham(r, 2) has the minimum nonzero Hamming weight

3, then
(
c1, . . . , cn,

∑n
j=1 cj

)
has Hamming weight 4, and so Ham(r, 2) has minimum

distance 4. In summary, Ham(r, 2) is a binary linear [2r, 2r − 1− r, 4] code.

Example 3.5.4 Consider Ham(r, 2) with r = 3 which is a binary linear [7, 4, 3]

code. As we have noted, this code was already discussed in Example 3.2.53. From

this example we get a generator matrix

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0
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of Ham(3, 2). By construction, a generator matrix G of C = Ham(3, 2) is then given

by

G =


1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1

 .

By Remark 3.5.3, C is a binary linear [8, 4, 4] code. If b1,b2,b3,b4 ∈ F8
2 are the

four row vectors of G, then it is easily verified that bi ·bj = 0 for all i, j = 1, 2, 3, 4,

and so the bilinearity of the dot product implies that u ·v = 0 for all u,v ∈ C. This

shows that C ⊆ C⊥. Furthermore, dim(C) = 4 = 8 − 4 = dim(C⊥) by Theorem

3.2.34, and so C = C⊥. In other words, C = Ham(3, 2) is a self-dual code (see

Definition 3.2.57).

How can we generalize Hamming codes from the binary case to the q-ary case

for any prime power q? Obviously, we should set up a suitable parity-check matrix

over Fq. In a simple-minded generalization of the construction in Definition 3.5.1,

we would list all nonzero vectors from Frq as columns. For instance, if q = 3 and

r = 2, this would yield the parity-check matrix

H =

(
0 0 1 1 1 2 2 2

1 2 0 1 2 0 1 2

)
.

But since the second column vector of H is a scalar multiple of the first column

vector of H, the resulting linear code has minimum distance 2 by Corollary 3.2.45.

However, we prefer a code with minimum distance 3 like a binary Hamming code

since this guarantees that the code is 1-error-correcting. The way to achieve this

is to avoid scalar multiples of already chosen column vectors in the parity-check

matrix.

Having clarified our goal, we now proceed as follows. For an integer r ≥ 2 and a

finite field Fq, we consider two nonzero vectors from Frq equivalent if one is a scalar

multiple of the other. This yields exactly (qr− 1)/(q− 1) corresponding equivalence

classes. We set up an r × [(qr − 1)/(q − 1)] matrix Hr,q over Fq by choosing as

its column vectors one vector from each of the (qr − 1)/(q − 1) equivalence classes.

Among the column vectors of Hr,q we find in particular r nonequivalent vectors of

Hamming weight 1, and so the row vectors of Hr,q are linearly independent over

Fq. Therefore Hr,q can be taken as a parity-check matrix of a linear code over

Fq. The length of the resulting code is n = (qr − 1)/(q − 1) and its dimension is

n− r = (qr − 1)/(q− 1)− r. This construction can be expressed equivalently in the

following form.

Definition 3.5.5 For an integer r ≥ 2 and a finite field Fq, let Hr,q be an r× [(qr−
1)/(q − 1)] matrix over Fq that is obtained by choosing as its column vectors one
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nonzero vector from each of the (qr− 1)/(q− 1) different one-dimensional subspaces

of Frq. Then the linear [(qr − 1)/(q − 1), (qr − 1)/(q − 1) − r] code over Fq with

parity-check matrix Hr,q is called a Hamming code Ham(r, q) over Fq.

The order of the columns of Hr,q and the specific choices of vectors from the

one-dimensional subspaces of Frq have not been fixed, and so Ham(r, q) actually

represents a family of codes with the same basic properties. A practical way to

write down Hr,q is to choose as its column vectors all nonzero vectors from Frq whose

first nonzero entry is 1.

Example 3.5.6 Take r = 2 and q = 3. We list all nonzero vectors from F2
3 whose

first nonzero entry is 1 and obtain

H2,3 =

(
1 1 1 0

2 1 0 1

)
.

The code Ham(2, 3) with parity-check matrix H2,3 is a linear [4, 2] code over F3.

Since H2,3 is in standard form, a generator matrix of Ham(2, 3) is given by

G =

(
1 0 2 1

0 1 2 2

)
.

One shows as in Example 3.5.4 that Ham(2, 3) is a self-dual code.

Theorem 3.5.7 For every integer r ≥ 2 and every finite field Fq, any Hamming

code Ham(r, q) has minimum distance 3 and is perfect.

Proof. By construction, C = Ham(r, q) satisfies d(C) ≥ 3 on account of Theorem

3.2.44. Among the column vectors of Hr,q we find h>1 , h>2 , and h>3 , where h1 =

(a, 0, 0, . . . , 0) ∈ Frq, h2 = (0, b, 0, . . . , 0) ∈ Frq, and h3 = (c, c, 0, . . . , 0) ∈ Frq for some

a, b, c ∈ F∗q. Then a−1h1 + b−1h2 − c−1h3 = 0, and so h1, h2, and h3 are linearly

dependent over Fq. Therefore d(C) = 3 by Corollary 3.2.45.

According to Definition 3.4.8, C is perfect if

1∑
i=0

(
n

i

)
(q − 1)i = qn−k, (3.17)

where n = (qr− 1)/(q− 1) and k = (qr− 1)/(q− 1)− r. The left-hand side of (3.17)

is equal to 1 + n(q − 1) = qr, and this agrees with the right-hand side of (3.17). 2

The parameters of Ham(r, q) in Definition 3.5.5 indicate that Ham(r, q) has ex-

actly qr cosets. Note that in Fnq with n = (qr − 1)/(q − 1), there are exactly

1 +n(q− 1) = qr words of Hamming weight at most 1. Different words of Hamming

weight at most 1 are in different cosets of Ham(r, q) since Ham(r, q) has minimum
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distance 3 by Theorem 3.5.7. Therefore the unique coset leaders of Ham(r, q) are

exactly the words 0 ∈ Fnq and ej,b ∈ Fnq for 1 ≤ j ≤ n and b ∈ F∗q, where ej,b is the

word whose jth coordinate is b and all other coordinates are 0.

The syndrome decoding algorithm (see Algorithm 3.2.52) now attains a partic-

ularly simple form for Hamming codes. In view of the preceding discussion, all

possible syndromes of Ham(r, q) are given by 0 ∈ Frq and S(ej,b) = bh>j ∈ Frq for

1 ≤ j ≤ n and b ∈ F∗q, where hj denotes the jth column vector of Hr,q.

Algorithm 3.5.8 (Syndrome Decoding Algorithm for Hamming Codes) Let

a Hamming code Ham(r, q) over Fq with parity-check matrix Hr,q and length n =

(qr − 1)/(q − 1) be given.

Step 1: for a received word v ∈ Fnq , compute the syndrome S(v) = vH>r,q.

Step 2: if S(v) = 0, then assume that no errors have occurred and v is the most

likely sent codeword.

Step 3: if S(v) 6= 0, then find the unique column vector hj of Hr,q such that S(v)

is a scalar multiple of h>j , say S(v) = bh>j with b ∈ F∗q.
Step 4: with j and b from Step 3, ej,b is the most likely error word and c′ = v−ej,b
is the most likely sent codeword.

Example 3.5.9 Consider the Hamming code Ham(2, 3) over F3 in Example 3.5.6.

Suppose that the received word is v = (0 1 1 0) ∈ F4
3. Then S(v) = vH>2,3 = (2 1) ∈

F2
3, and so S(v) is a scalar multiple of the transposed first column vector h>1 of H2,3,

namely S(v) = 2h>1 . It follows that e1,2 = (2 0 0 0) ∈ F4
3 is the most likely error

word and

c′ = v − e1,2 = (0 1 1 0)− (2 0 0 0) = (1 1 1 0)

is the most likely sent codeword.

Remark 3.5.10 This syndrome decoding algorithm is even simpler for binary Ham-

ming codes Ham(r, 2), since then in Step 3 of Algorithm 3.5.8 we must have b =

1 ∈ F2, and so S(v) = h>j for a uniquely determined integer j with 1 ≤ j ≤ 2r − 1.

If the columns of the parity-check matrix Hr are arranged in lexicographic order as

in the matrix H3 at the beginning of this subsection, then S(v) corresponds to the

binary representation of the integer j. The most likely error word is then the word

ej whose jth coordinate is 1 and all other coordinates are 0.

Example 3.5.11 Consider the binary Hamming code Ham(3, 2) with parity-check

matrix

H3 =

 0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

 .

Note that the first column vector (0 0 1)> of H3 corresponds to the binary represen-

tation of 1 = 0 ·22 +0 ·2+1 ·1, the second column vector (0 1 0)> of H3 corresponds
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to the binary representation of 2 = 0 · 22 + 1 · 2 + 0 · 1, and so on. Suppose that the

received word is v = (0 1 1 1 0 0 0) ∈ F7
2. Then S(v) = vH>3 = (1 0 1) ∈ F3

2, which

corresponds to the binary representation of j = 5 = 1 · 22 + 0 · 2 + 1 · 1. Therefore

the most likely error word is e5 = (0 0 0 0 1 0 0) ∈ F7
2 and

c′ = v − e5 = (0 1 1 1 0 0 0)− (0 0 0 0 1 0 0) = (0 1 1 1 1 0 0)

is the most likely sent codeword.

The dual codes of the Hamming codes also have interesting properties. These

codes run under a special name as well.

Definition 3.5.12 The dual code of a Hamming code Ham(r, q) over Fq is called a

simplex code S(r, q) over Fq.

Proposition 3.5.13 For every integer r ≥ 2 and every finite field Fq, any simplex

code S(r, q) is a linear [(qr − 1)/(q − 1), r] code over Fq.

Proof. This follows by using the values of the length and of the dimension of

Ham(r, q) in Definition 3.5.5 and then applying Theorem 3.2.34. 2

The name “simplex code” stems from the remarkable property of the codes S(r, q)

shown in the following theorem, which is reminiscent of the geometric characteristic

of a regular simplex in Euclidean space.

Theorem 3.5.14 For every integer r ≥ 2 and every prime power q, any simplex

code S(r, q) is an equidistant code. In fact, every nonzero codeword in S(r, q) has

Hamming weight qr−1. In particular, S(r, q) has minimum distance qr−1.

Proof. By definition, an r × n matrix Hr,q of the form in Definition 3.5.5 is a

generator matrix of S(r, q), where n = (qr − 1)/(q − 1). Let h>1 , . . . ,h
>
n be the

column vectors of Hr,q. Now we fix a nonzero codeword c = (c1, . . . , cn) ∈ S(r, q).

Then c = aHr,q for some a ∈ Frq with a 6= 0. It follows that cj = a · hj for

1 ≤ j ≤ n. Thus, the number of j with 1 ≤ j ≤ n and cj = 0 is equal to the

number of hj ∈ U := {u ∈ Frq : a · u = 0}. From a 6= 0 we deduce that U is an

(r − 1)-dimensional subspace of Frq, and so U contains exactly (qr−1 − 1)/(q − 1)

one-dimensional subspaces. Therefore

w(c) = n− qr−1 − 1

q − 1
=
qr − 1

q − 1
− qr−1 − 1

q − 1
= qr−1.

The last part of the theorem follows from Theorem 3.2.14. 2
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Example 3.5.15 Consider the Hamming code Ham(2, 3) in Example 3.5.6. Its dual

code S(2, 3) has a generator matrix

H2,3 =

(
1 1 1 0

2 1 0 1

)
.

By forming all linear combinations over F3 of the row vectors of H2,3, we obtain

all codewords in S(2, 3). In this way it can be verified directly that all nonzero

codewords in S(2, 3) have Hamming weight 3. Since Ham(2, 3) is self-dual, we have

S(2, 3) = Ham(2, 3) in this case.

Remark 3.5.16 In the binary case q = 2, we have demonstrated in Remark 3.5.2

that, for every integer r ≥ 2, a suitable code Ham(r, 2) is cyclic with generator

polynomial g(x) ∈ F2[x], where g(x) is the minimal polynomial of a primitive element

of F2r over F2. Its dual code S(r, 2) is therefore also cyclic by Proposition 3.3.23,

and the parity-check polynomial of S(r, 2) is g(x) according to Remark 3.3.27. In

other words, S(r, 2) is an irreducible cyclic code over F2 of length 2r − 1 (compare

with Subsection 3.3.6). It was already proved in Example 3.4.21 with q = 2 and by

a different method that S(r, 2) is an equidistant code.

Remark 3.5.17 According to Definition 3.2.54 and Theorem 3.5.14, the weight

enumerator A(x) of any simplex code S(r, q) is given by

A(x) = 1 + (qr − 1)xq
r−1 ∈ Z[x].

Since the dual code of S(r, q) is a Hamming code Ham(r, q), the MacWilliams iden-

tity in Theorem 3.2.55 yields the formula

A⊥(x) = q−r(1 + (q − 1)x)n
[
1 + (qr − 1)

( 1− x
1 + (q − 1)x

)qr−1]
= q−r

[
(1 + (q − 1)x)n + (qr − 1)(1− x)q

r−1

(1 + (q − 1)x)n−q
r−1]

for the weight enumerator A⊥(x) of Ham(r, q), where n = (qr − 1)/(q − 1). This

formula can be used to determine the number of codewords in Ham(r, q) of a given

Hamming weight.

Binary and ternary simplex codes yield interesting examples of self-orthogonal

codes. We recall from Definition 3.2.57 that a nontrivial linear code C is self-

orthogonal if C ⊆ C⊥.

Theorem 3.5.18 Every binary simplex code S(r, 2) with r ≥ 3 is self-orthogonal.

Proof. Since S(r, 2) is the dual code of Ham(r, 2), we have to prove that Ham(r, 2)⊥ ⊆
Ham(r, 2) for r ≥ 3. By Remark 3.5.2, we can assume that Ham(r, 2) is cyclic with
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generator polynomial g(x) ∈ F2[x], where g(x) is the minimal polynomial of a prim-

itive element α ∈ F2r over F2. Theorem 3.3.26 implies that Ham(r, 2)⊥ is cyclic

with generator polynomial h∗(x) ∈ F2[x], where h∗(x) is the reciprocal polynomial

of h(x) = (xn − 1)/g(x) with n = 2r − 1. Now g∗(x) is irreducible over F2 and

g(α) = 0 implies g∗(α−1) = 0. If α−1 were a root of g(x), then α−1 = α2j for

some j = 0, 1, . . . , r − 1 by Proposition 1.4.47, and so α2j+1 = 1. It follows that

2r − 1 divides 2j + 1. But 2j + 1 ≤ 2r−1 + 1 < 2r − 1 for r ≥ 3, a contradiction.

Thus g(α−1) 6= 0, and so the two irreducible polynomials g(x) and g∗(x) over F2

are coprime. Now g(x) divides xn − 1 = (1 − xn)∗ = (xn − 1)∗ = g∗(x)h∗(x) in

F2[x], and so g(x) divides h∗(x) in F2[x] by Proposition 1.4.17(ii). This shows that

Ham(r, 2)⊥ ⊆ Ham(r, 2). 2

Note that Theorem 3.5.18 cannot hold for r = 2 since S(2, 2) has dimension 2,

whereas S(2, 2)⊥ has dimension 1. We now turn to ternary simplex codes.

Theorem 3.5.19 Every ternary simplex code S(r, 3) with r ≥ 2 is self-orthogonal.

Proof. Since S(r, 3) is the dual code of Ham(r, 3), the code S(r, 3) has a generator

matrix of the form Hr,3 in Definition 3.5.5. Let its row vectors be b
(r)
1 , . . . ,b

(r)
r . We

note that w(b
(r)
i ) = 3r−1 for 1 ≤ i ≤ r by Theorem 3.5.14. Together with a2 = 1

for all a ∈ F∗3, this implies that b
(r)
i · b

(r)
i = 3r−1 = 0 ∈ F3 for 1 ≤ i ≤ r. In order

to prove that S(r, 3) is self-orthogonal, it remains to show that b
(r)
i · b

(r)
j = 0 for

1 ≤ i < j ≤ r. For this purpose, we can assume that in each column of Hr,3 the

first nonzero entry is 1, again because of a2 = 1 for all a ∈ F∗3. Permuting columns

of Hr,3 will not change the dot products b
(r)
i ·b

(r)
j , and so we can write the columns

of Hr,3 in any order. Now we proceed by induction on r. For r = 2 we can take

H2,3 =

(
1 1 1 0

0 1 2 1

)
,

and then it is clear that b
(2)
1 · b

(2)
2 = 0. Suppose that the property b

(r)
i · b

(r)
j = 0 for

1 ≤ i < j ≤ r has been shown for some r ≥ 2 and consider the matrix Hr+1,3. There

are exactly 3r column vectors of Hr+1,3 of the form
(

1
u>

)
, where u> is an arbitrary

column vector over F3 of length r, and the remaining 1
2
(3r − 1) column vectors of

Hr+1,3 are of the form
(

0
v>

)
, where v> is a column vector of Hr,3. For the sake of

concreteness, we choose the first row vector of Hr+1,3 as

b
(r+1)
1 = (1 . . . 1 0 . . . 0),

where the first 3r coordinates are 1 and the remaining 1
2
(3r − 1) coordinates are 0.

For 2 ≤ j ≤ r+ 1, the dot product b
(r+1)
1 ·b(r+1)

j is equal to the sum of the (j− 1)st

coordinates of all u ∈ Fr3, which is 3r−1(0+1+2) = 0 ∈ F3. For 2 ≤ i < j ≤ r+1, we
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write b
(r+1)
i = (c

(r+1)
i ,d

(r+1)
i ) and b

(r+1)
j = (c

(r+1)
j ,d

(r+1)
j ), where c

(r+1)
i , respectively

c
(r+1)
j , is formed by the first 3r coordinates of b

(r+1)
i , respectively b

(r+1)
j . Then

b
(r+1)
i · b(r+1)

j = c
(r+1)
i · c(r+1)

j + d
(r+1)
i · d(r+1)

j = c
(r+1)
i · c(r+1)

j

by the induction hypothesis since d
(r+1)
i and d

(r+1)
j are row vectors of Hr,3. Further-

more,

c
(r+1)
i · c(r+1)

j = 3r−2
∑
a,b∈F3

ab = 3r−2
(∑
a∈F3

a
)2

= 0 ∈ F3.

Therefore b
(r+1)
i · b(r+1)

j = 0 and the induction is complete. 2

3.5.2 Golay codes

Golay codes are very pretty flowers in the garden of coding theory. There are, up to

equivalence, only four (extended) Golay codes, namely the binary Golay code G23,

the extended binary Golay code G24, the ternary Golay code G11, and the extended

ternary Golay code G12. The subscripts indicate the lengths of these codes. Golay

codes were introduced in the brilliant one-page paper [57], but see also Example

6.3.27. The Golay codes G23 and G11 belong to the exclusive club of perfect codes.

In order to define G23, we start from the factorization

x23−1 = (x+1)(x11+x9+x7+x6+x5+x+1)(x11+x10+x6+x5+x4+x2+1) (3.18)

in F2[x] into irreducible polynomials over F2 (recall that −1 = 1 in F2). The irre-

ducibility over F2 of the two factors of degree 11 in (3.18) can be verified by consult-

ing published tables of irreducible polynomials (see for example [103, Chapter 10,

Table C]).

Definition 3.5.20 The binary Golay code G23 is the cyclic code over F2 of length

23 with generator polynomial g23(x) = x11 + x9 + x7 + x6 + x5 + x+ 1 ∈ F2[x].

We may also take the second factor of degree 11 in (3.18), which is the reciprocal

polynomial of g23(x), as the generator polynomial of a binary cyclic code of length

23, but this yields an equivalent code. It follows from Theorem 3.3.17 that G23 is a

binary cyclic [23, 12] code.

The extended binary Golay code G24 is obtained from G23 in the same way as an

extended binary Hamming code is obtained from a binary Hamming code, namely

G24 =
{(
c1, . . . , c23,

23∑
j=1

cj

)
∈ F24

2 : (c1, . . . , c23) ∈ G23

}
.



3.5. SOME SPECIAL LINEAR CODES 163

It is clear that G24 is a binary linear [24, 12] code. The code G24 was used in

the Voyager space probes that were launched towards Jupiter and Saturn in 1977.

Remarkably, Voyager 1 became the first human-made object that left the solar

system and entered interstellar space.

It requires some work to determine the minimum distances of G23 and G24. We

first study the extended binary Golay code G24 in more detail.

Proposition 3.5.21 The extended binary Golay code G24 is self-dual.

Proof. The generator polynomial g23(x) of G23 yields a generator matrix of G23

according to Theorem 3.3.19. For i = 1, . . . , 12, let bi ∈ F23
2 be the ith row vector

of this generator matrix. Then it is easily verified that b1 · bi = 1 for 1 ≤ i ≤ 12.

Since each bi is a cyclic shift of b1, it follows that bi · bj = 1 for 1 ≤ i ≤ j ≤ 12.

By construction, the vectors b′i = (bi, 1) ∈ F24
2 , i = 1, . . . , 12, are the row vectors

of a generator matrix of G24. These vectors satisfy b′i · b′j = bi · bj + 1 = 0 for

1 ≤ i ≤ j ≤ 12, and hence c · d = 0 for all c,d ∈ G24 by the bilinearity of the

dot product. This means that G24 ⊆ G⊥24. Since dim(G24) = dim(G⊥24) = 12, we

conclude that G24 = G⊥24. 2

Lemma 3.5.22 For every integer n ≥ 1 and all u = (u1, . . . , un) ∈ Fn2 and v =

(v1, . . . , vn) ∈ Fn2 , put

u ? v = (u1v1, . . . , unvn) ∈ Fn2 .

Then the Hamming weight w(u + v) of u + v satisfies

w(u + v) = w(u) + w(v)− 2w(u ? v).

Proof. As for similar results, it suffices to give the proof for n = 1 (compare with

the proof of Proposition 3.1.6(iv)). For this case, an easy calculation for all four

pairs (u, v) ∈ F2
2 verifies the desired formula. 2

Lemma 3.5.23 The Hamming weight of every codeword in G24 is a multiple of 4.

Proof. Every codeword in G24 is a sum of some of the vectors b′1, . . . ,b
′
12 in the

proof of Proposition 3.5.21. For a single vector b′i, it is clear that w(b′i) = 8 for

1 ≤ i ≤ 12. For a sum b′i + b′j (1 ≤ i ≤ j ≤ 12) of two vectors, we obtain

w(b′i + b′j) = w(b′i) + w(b′j)− 2w(b′i ? b′j) by Lemma 3.5.22, hence

w(b′i + b′j) ≡ 2w(b′i ? b′j) (mod 4).

Now b′i · b′j = 0 by Proposition 3.5.21, thus w(b′i ? b′j) is even, and so w(b′i + b′j) ≡
0 (mod 4). We then continue by induction to get the result for any number of sum-

mands. 2
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Theorem 3.5.24 The extended binary Golay code G24 is a self-dual [24, 12, 8] code.

Proof. It remains to show that d(G24) = 8. It follows from (3.18) that g23(x) has a

root α ∈ F211 which is a primitive 23rd root of unity. Since g23(x) is irreducible over

F2, all roots of g23(x) are given by Proposition 1.4.47, that is, the roots of g23(x) are

α, α2, α4, α8, α16, α32 = α9, α18, α36 = α13, α26 = α3, α6, α12.

Then Theorem 3.3.34 with C = G23, b = 1, and d = 5 yields d(G24) ≥ d(G23) ≥ 5,

and so d(G24) ≥ 8 by Lemma 3.5.23. On the other hand, there are codewords in

G24 of Hamming weight 8 (see the proof of Lemma 3.5.23), and so d(G24) = 8. 2

Theorem 3.5.25 The binary Golay code G23 is a perfect cyclic [23, 12, 7] code.

Proof. In order to determine d(G23), we note that Theorem 3.5.24 and the relation-

ship between G23 and G24 imply that d(G23) ≥ 7. On the other hand, there are

codewords in G23 of Hamming weight 7 (for instance b1 in the proof of Proposition

3.5.21), and so d(G23) = 7.

In order to show that G23 is perfect, we need to check equality in (3.15) with

q = 2, n = 23, |C| = |G23| = 212, and d = 7. Note that(
23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 1 + 23 + 253 + 1771 = 2048 = 211,

and this yields the desired result. 2

We introduce the ternary Golay code G11 by starting from the factorization

x11 − 1 = (x+ 2)(x5 + 2x3 + x2 + 2x+ 2)(x5 + x4 + 2x3 + x2 + 2) (3.19)

in F3[x] into irreducible polynomials over F3 (recall that −1 = 2 in F3). The irre-

ducibility over F3 of the two factors of degree 5 in (3.19) can be checked in [103,

Chapter 10, Table C].

Definition 3.5.26 The ternary Golay code G11 is the cyclic code over F3 of length

11 with generator polynomial g11(x) = x5 + 2x3 + x2 + 2x+ 2 ∈ F3[x].

An equivalent code is obtained by taking the second factor of degree 5 in (3.19)

as the generator polynomial of a ternary cyclic code of length 11. Theorem 3.3.17

shows that G11 is a ternary cyclic [11, 6] code. The extended ternary Golay code G12

is defined by

G12 =
{(
c1, . . . , c11,−

11∑
j=1

cj

)
∈ F12

3 : (c1, . . . , c11) ∈ G11

}
.

Then G12 is a ternary linear [12, 6] code.
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Theorem 3.5.27 The extended ternary Golay code G12 is a self-dual [12, 6, 6] code.

Proof. In order to show thatG12 is self-dual, we proceed as in the proof of Proposition

3.5.21. The generator polynomial g11(x) of G11 yields a generator matrix of G11

according to Theorem 3.3.19. For i = 1, . . . , 6, let bi ∈ F11
3 be the ith row vector

of this generator matrix. Then bi · bj = 2 for 1 ≤ i ≤ j ≤ 6. The vectors

b′i = (bi, 1) ∈ F12
3 , i = 1, . . . , 6, are the row vectors of a generator matrix of G12.

These vectors satisfy b′i · b′j = bi · bj + 1 = 0 for 1 ≤ i ≤ j ≤ 6, and we conclude as

in the proof of Proposition 3.5.21 that G12 is self-dual.

From (3.19) we see that g11(x) has a root α ∈ F35 which is a primitive 11th

root of unity. Since g11(x) is irreducible over F3, all roots of g11(x) are given by

Proposition 1.4.47, that is, the roots of g11(x) are

α, α3, α9, α27 = α5, α15 = α4.

Then Theorem 3.3.34 with C = G11, b = 3, and d = 4 yields d(G12) ≥ d(G11) ≥ 4.

Since c · c = 0 for all c ∈ G12 and a2 = 1 for a ∈ F∗3, the Hamming weight of every

c ∈ G12 is divisible by 3, and so d(G12) ≥ 6. On the other hand, since w(b′1) = 6

and b′1 ∈ G12, we get d(G12) = 6. 2

Theorem 3.5.28 The ternary Golay code G11 is a perfect cyclic [11, 6, 5] code.

Proof. Theorem 3.5.27 and the relationship betweenG11 andG12 imply that d(G11) ≥
5. On the other hand, there are codewords in G11 of Hamming weight 5 (for instance

b1 in the proof of Theorem 3.5.27), and so d(G11) = 5.

In order to show that G11 is perfect, we need to check equality in (3.15) with

q = 3, n = 11, |C| = |G11| = 36, and d = 5. Note that(
11

0

)
+

(
11

1

)
· 2 +

(
11

2

)
· 22 = 1 + 22 + 220 = 243 = 35,

and this yields the desired result. 2

3.5.3 Reed-Solomon codes and BCH codes

We consider further interesting families of linear codes. We start with Reed-Solomon

codes which are employed, for instance, in CD players. A Reed-Solomon code over

F256 is part of the CCSDS (Consultative Committee for Space Data Systems) stan-

dard for space communications. Reed-Solomon codes were first constructed in dif-

ferent incarnations by Bush [17] and Reed and Solomon [165].



166 CHAPTER 3. CODING THEORY

Definition 3.5.29 Let q ≥ 3 be a prime power, let c ∈ F∗q be a primitive element of

Fq, and let b and d be integers with b ≥ 0 and 2 ≤ d ≤ q − 1. Then the cyclic code

over Fq of length q − 1 with generator polynomial g(x) =
∏b+d−2

j=b (x− cj) ∈ Fq[x] is

called a Reed-Solomon code over Fq and denoted by RSq(b, c, d).

Theorem 3.5.30 The Reed-Solomon code RSq(b, c, d) is a cyclic [q−1, q−d, d] code

over Fq and an MDS code.

Proof. For C = RSq(b, c, d), Theorem 3.3.17 implies that dim(C) = q − 1 −
deg(g(x)) = q−1−(d−1) = q−d. Since a primitive element of Fq is a primitive nth

root of unity with n = q−1, we can apply Theorem 3.3.34 and obtain d(C) ≥ d. On

the other hand, the Singleton bound for linear codes (see Corollary 3.4.11) shows

that d(C) ≤ q− 1− (q− d) + 1 = d, and so d(C) = d. Moreover, C is an MDS code

according to Definition 3.4.13. 2

Example 3.5.31 Put q = 7, b = 1, and d = 3. Then we can take c = 3 ∈ F∗7 as a

primitive element of F7. The cyclic [6, 4, 3] code over F7 with generator polynomial

g(x) = (x− 3)(x− 32) = (x− 3)(x− 2) = x2 + 2x+ 6 ∈ F7[x]

is the Reed-Solomon code RS7(1, 3, 3).

The Reed-Solomon codes RSq(b, c, d) with b = 1 can be represented in the fol-

lowing alternative form. We recall that Fq[x]<n denotes the set of polynomials over

Fq of degree less than n.

Theorem 3.5.32 Let q ≥ 3 be a prime power, let c ∈ F∗q be a primitive element of

Fq, and let d be an integer with 2 ≤ d ≤ q − 1. Then

RSq(1, c, d) = {
(
f(1), f(c), f(c2), . . . , f(cq−2)

)
∈ Fq−1q : f ∈ Fq[x]<q−d}. (3.20)

Proof. Let C be the set on the right-hand side of (3.20). It is clear that C is a linear

code over Fq of length q − 1. Since the linear transformation

f ∈ Fq[x]<q−d 7→ uf :=
(
f(1), f(c), f(c2), . . . , f(cq−2)

)
∈ C

is bijective, we obtain dim(C) = dim(Fq[x]<q−d) = q − d. Furthermore, C is a

cyclic code since for every f ∈ Fq[x]<q−d the cyclic shift u1
f is equal to uh with

h(x) = f(c−1x) ∈ Fq[x]<q−d.

Let v(x) ∈ Fq[x] be the generator polynomial of C and let π−1(v(x)) = v =

(v0, v1, . . . , vq−2) ∈ Fq−1q be the vector corresponding to v(x) according to (3.9).

Then v = uf for some f ∈ Fq[x]<q−d. Lemma 3.3.33 shows that the Mattson-

Solomon polynomial Mv(x) of v satisfies

Mv(ci) = −vi = −f(ci) for i = 0, 1, . . . , q − 2.
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Hence the polynomial Mv(x) + f(x) of degree at most q− 2 has q− 1 distinct roots,

and so Mv(x) = −f(x). Consequently deg(Mv(x)) ≤ q − d − 1, and Definition

3.3.32 implies that v(cj) = 0 for j = 1, . . . , d − 1. Therefore
∏d−1

j=1(x − cj) divides

v(x) in Fq[x]. Now deg(v(x)) = q − 1 − dim(C) = d − 1 by Theorem 3.3.17, and

so v(x) =
∏d−1

j=1(x − cj). This means that C = RSq(1, c, d) according to Definition

3.5.29. 2

Remark 3.5.33 The fact that RSq(1, c, d) has minimum distance d can be deduced

also from Theorem 3.5.32. For every nonzero f ∈ Fq[x]<q−d, the number of its roots

is at most q− d− 1, and so with the notation in the proof of Theorem 3.5.32 we get

w(uf ) ≥ q − 1− (q − d− 1) = d. Therefore d(RSq(1, c, d)) ≥ d. On the other hand,

the Singleton bound for linear codes shows as in the proof of Theorem 3.5.30 that

d(RSq(1, c, d)) ≤ d, and so d(RSq(1, c, d)) = d.

Remark 3.5.34 The code in (3.20) can be generalized in a straightforward manner.

Let q be a prime power, let n be an integer with 2 ≤ n ≤ q, and let k be an integer

with 1 ≤ k ≤ n. Choose distinct elements c1, . . . , cn ∈ Fq and arbitrary nonzero

elements a1, . . . , an ∈ Fq. Then we introduce the linear code

C = {(a1f(c1), . . . , anf(cn)) ∈ Fnq : f ∈ Fq[x]<k}.

A code of this type is called a generalized Reed-Solomon code. It is shown as in

Remark 3.5.33 and the proof of Theorem 3.5.32 that C is a linear [n, k, n − k + 1]

code over Fq. Consequently, every generalized Reed-Solomon code is an MDS code.

Remark 3.5.35 For a Reed-Solomon code RSq(1, c, d) as in Theorem 3.5.32, the

extended Reed-Solomon code is defined by

RSq(1, c, d) =
{(
c0, c1, . . . , cq−2,−

q−2∑
j=0

cj

)
∈ Fqq : (c0, c1, . . . , cq−2) ∈ RSq(1, c, d)

}
.

By Theorem 3.5.30 it is obvious that RSq(1, c, d) is a linear [q, q − d] code over Fq.
Since

∑q−2
j=0 f(cj) = −f(0) for all primitive elements c of Fq and all f ∈ Fq[x]<q−d,

it follows from Theorem 3.5.32 that every codeword in RSq(1, c, d) has the form(
f(1), f(c), f(c2), . . . , f(cq−2), f(0)

)
∈ Fqq for some f ∈ Fq[x]<q−d.

It is then proved as in Remark 3.5.33 that RSq(1, c, d) has minimum distance d+ 1,

and so RSq(1, c, d) is an MDS code. Alternatively, the parameters of RSq(1, c, d)

can be obtained by noting that this code is a generalized Reed-Solomon code (see

Remark 3.5.34).
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Now we generalize Reed-Solomon codes in a different direction. We noted in

Subsection 3.3.5 that cyclic codes over Fq can be defined by means of roots of

polynomials over Fq. The Reed-Solomon code RSq(b, c, d) in Definition 3.5.29 is

determined via the roots cb, cb+1, . . . , cb+d−2 of its generator polynomial g(x), where

c ∈ F∗q is a primitive element of Fq, that is, a primitive (q − 1)st root of unity.

For an arbitrary finite field Fq and an integer n ≥ 2 with gcd(n, q) = 1, let now

γ be a primitive nth root of unity in a finite extension field of Fq (see Subsection

3.3.5). For given integers b and d with b ≥ 0 and 2 ≤ d ≤ n, we consider the

cyclic code over Fq determined by the roots γb, γb+1, . . . , γb+d−2. More precisely, for

i = b, b + 1, . . . , b + d − 2, let mi(x) ∈ Fq[x] be the minimal polynomial of γi over

Fq; then the generator polynomial of the cyclic code is obtained from (3.12).

Definition 3.5.36 Let q be an arbitrary prime power and let n ≥ 2 be an integer

with gcd(n, q) = 1. Let b and d be integers with b ≥ 0 and 2 ≤ d ≤ n. Then the

cyclic code over Fq of length n with generator polynomial

g(x) = lcm(mb(x),mb+1(x), . . . ,mb+d−2(x)) ∈ Fq[x], (3.21)

where we assume that deg(g(x)) < n, is called a BCH code over Fq of designed

distance d. Here mi(x) ∈ Fq[x] is the minimal polynomial of γi over Fq for b ≤ i ≤
b+ d− 2 and γ is a primitive nth root of unity in a finite extension field of Fq.

The acronym BCH stems from the initials of the inventors of BCH codes, namely

Bose and Ray-Chaudhuri [13] and Hocquenghem [65]. BCH codes over Fq are very

popular in practical applications since they permit an efficient decoding algorithm

and, for every fixed q, we can achieve an arbitrarily large minimum distance by a

suitable choice of the parameters.

Theorem 3.5.37 Every BCH code C of designed distance d has minimum distance

d(C) ≥ d.

Proof. This follows immediately from Theorem 3.3.34 and Definition 3.5.36. 2

Example 3.5.38 Let q = 2, n = 15, b = 1, and d = 5. A suitable primitive 15th

root of unity is obtained by choosing a root γ ∈ F16 of the irreducible polynomial

x4 + x + 1 over F2. Then with the notation of Definition 3.5.36, we get m1(x) =

m2(x) = m4(x) = x4 + x + 1 ∈ F2[x] and m3(x) = x4 + x3 + x2 + x + 1 ∈ F2[x].

Thus, the corresponding binary BCH code C is the binary cyclic code of length 15

with generator polynomial

g(x) = m1(x)m3(x) = x8 + x7 + x6 + x4 + 1 ∈ F2[x]
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obtained by (3.21). It follows from Theorem 3.3.17 that dim(C) = 7. Furthermore,

Theorem 3.5.37 shows that d(C) ≥ 5. Since the codeword in C corresponding to

g(x) according to (3.9) has Hamming weight 5, it follows that d(C) = 5. Therefore

C is a 2-error-correcting code by Theorem 3.1.14.

Example 3.5.39 The true minimum distance of a BCH code can be larger than

its designed distance. Let q = 2, n = 23, b = 1, and d = 5. It was noted in the

proof of Theorem 3.5.24 that a primitive 23rd root of unity is obtained as a root of

the polynomial g23(x) ∈ F2[x] in Definition 3.5.20. Again by the proof of Theorem

3.5.24, we havem1(x) = m2(x) = m3(x) = m4(x) = g23(x), and so the corresponding

binary BCH code C is the binary cyclic code of length 23 with generator polynomial

g23(x) according to (3.21). In other words, C is the binary Golay code G23 (see

Definition 3.5.20). The designed distance of C is 5, but its true minimum distance

is 7 according to Theorem 3.5.25.

Theorem 3.5.40 The dimension k of a BCH code over Fq of length n and designed

distance d satisfies k ≥ n− (d− 1)h, where h is the multiplicative order of q modulo

n. If q = 2, d = 2t+ 1 is odd, and b = 1, then k ≥ n− th.

Proof. In view of Theorem 3.3.17, it suffices to prove that the polynomial g(x)

in (3.21) satisfies deg(g(x)) ≤ (d − 1)h in the first case and deg(g(x)) ≤ th in the

second case. It was shown in the beginning of Subsection 3.3.6 that there exists a

primitive nth root of unity γ ∈ Fqh . Then for every integer i ≥ 0, the element γi is

also in Fqh , and so deg(mi(x)) ≤ h. It follows that

deg(g(x)) ≤
b+d−2∑
i=b

deg(mi(x)) ≤ (d− 1)h.

In the second case, with every γi the element γ2i is also a root of mi(x) (see Propo-

sition 1.4.47), and so m2i(x) = mi(x). Therefore

g(x) = lcm(m1(x),m3(x),m5(x), . . . ,m2t−1(x)),

hence

deg(g(x)) ≤
t−1∑
i=0

deg(m2i+1(x)) ≤ th,

and the theorem is proved in all cases. 2

Remark 3.5.41 We demonstrated in Remark 3.5.2 that for every integer r ≥ 2, a

suitable binary Hamming code Ham(r, 2) is cyclic with generator polynomial g(x) ∈
F2[x], where g(x) is the minimal polynomial of a primitive nth root of unity over

F2 with n = 2r − 1. If with q = 2 and n = 2r − 1 we put b = 1 and d = 3 in
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Definition 3.5.36, then m1(x) = m2(x) = g(x), and so Ham(r, 2) can also be viewed

as a binary BCH code of length 2r − 1 and designed distance 3. For q ≥ 3, some

Hamming codes over Fq can again be interpreted as BCH codes. Let r ≥ 2 be an

integer with gcd(r, q − 1) = 1 and put n = (qr − 1)/(q − 1). Then

n =
r−1∑
s=0

qs ≡
r−1∑
s=0

1 ≡ r (mod q − 1),

and so gcd(n, q − 1) = 1. We choose a primitive element β of Fqr , and then γ =

βq−1 ∈ Fqr is a primitive nth root of unity. We claim that for each choice of integers

u and w with 0 ≤ u < w ≤ n− 1, there is no c ∈ F∗q with γw = cγu. For otherwise

γw−u = c, hence γ(w−u)(q−1) = cq−1 = 1, and so n must divide (w − u)(q − 1). But

gcd(n, q−1) = 1, which implies that n divides w−u, a contradiction. Consequently,

the r×n matrix Hr,q with columns 1, γ, γ2, . . . , γn−1 is of the type in Definition 3.5.5,

where by a column γj (with 0 ≤ j ≤ n−1) we mean the transpose of the coordinate

vector of γj relative to a fixed ordered basis of Fqr over Fq. The linear code over

Fq with parity-check matrix Hr,q is thus a Hamming code Ham(r, q) over Fq. Now

we consider the BCH code C over Fq of length n with b = 1, d = 2, and primitive

nth root of unity γ. Then C is cyclic with generator polynomial g(x) ∈ Fq[x],

where g(x) is the minimal polynomial of γ over Fq. For v = (v0, v1, . . . , vn−1) ∈ Fnq ,

the identity vH>r,q = 0 holds if and only if the corresponding polynomial v(x) =

v0 + v1x + · · · + vn−1x
n−1 ∈ Fq[x] satisfies v(γ) = 0, and this is in turn equivalent

to g(x) dividing v(x) in Fq[x] by Proposition 1.4.38. Therefore Ham(r, q) is equal to

the BCH code C. Note that for q = 2 the condition gcd(r, q− 1) = 1 is satisfied for

all integers r ≥ 2, and so for every r ≥ 2 a suitable code Ham(r, 2) can always be

interpreted as a BCH code.

3.6 A glimpse of advanced topics

There are various generalizations of the concept of a cyclic code. A linear code

C ⊆ Fnq is constacyclic if there exists a constant element a ∈ F∗q such that, for

every (c0, c1, . . . , cn−1) ∈ C, the word (acn−1, c0, . . . , cn−2) is also in C. Cyclic codes

correspond to the special case a = 1 ∈ F∗q. The analog of Theorem 3.3.11 says

that a subset C of Fnq is a constacyclic code (for the element a ∈ F∗q) if and only

if π(C) is a nonzero ideal of the residue class ring Fq[x]/(xn − a). A discussion of

constacyclic codes can be found in Aydin and Asamov [5]. For a length n ≥ 2 and

a proper divisor l of n, a linear code C ⊆ Fnq is quasicyclic (of index l) if the cyclic

shift cl is in C for every c ∈ C. The case l = 1 yields cyclic codes. The family of

quasicyclic codes is much wider than that of cyclic codes and contains many good

codes. A structure theory of quasicyclic codes was developed by Ling and Solé [105]

(see also [93] and [104]). An expository account of quasicyclic codes is given in the

recent book of Baldi [8, Chapter 3].
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A substantial part of coding theory is devoted to finding bounds for the parame-

ters of codes, especially for linear codes. Besides the bounds in Section 3.4, another

classical bound is the Griesmer bound which says that every linear [n, k, d] code over

Fq satisfies

n ≥
k−1∑
i=0

dd/qie.

A proof of this bound is given in [106, Section 5.7]. Since dd/q0e = d and dd/qie ≥ 1

for i = 1, . . . , k − 1, the Griesmer bound implies the Singleton bound for linear

codes (see Corollary 3.4.11 for the latter bound). The linear [(qr−1)/(q−1), r, qr−1]

simplex code S(r, q) over Fq (see Definition 3.5.12) and Reed-Solomon codes over

Fq show that we can have equality in the Griesmer bound. Surveys of various other

bounds, such as the so-called linear programming bounds based on optimization

methods, are presented in [108, Chapter 17] and [162, Chapter 4].

Another direction in which bounds in coding theory have been explored is the

asymptotic theory of codes. Here one studies the behavior of code parameters as

the length of the underlying codes tends to infinity. One may consider arbitrary

codes in this theory, but we focus on the case of linear codes. It is customary in

this theory to relate the dimension k(C) and the minimum distance d(C) of a linear

code C to the length n(C) of C, and so we speak of the information rate k(C)/n(C)

and the relative minimum distance d(C)/n(C) of C. Obviously, the information

rate and the relative minimum distance belong to the unit interval [0, 1]. The basic

object in the asymptotic theory of linear codes is the following set of ordered pairs

of asymptotic relative minimum distances and asymptotic information rates. For a

fixed prime power q, let Uq be the set of points (δ, R) in the unit square [0, 1]2 for

which there exists a sequence C1, C2, . . . of linear codes over Fq with n(Ci)→∞ as

i→∞ and

lim
i→∞

d(Ci)

n(Ci)
= δ, lim

i→∞

k(Ci)

n(Ci)
= R.

Then the function αq on [0, 1] is defined by

αq(δ) = sup {R ∈ [0, 1] : (δ, R) ∈ Uq} for 0 ≤ δ ≤ 1.

Thus, αq(δ) is the largest asymptotic information rate that can be achieved for a

given asymptotic relative minimum distance δ of linear codes over Fq of increasing

length. It can be shown that Uq is the set of points in the first quadrant of the

Euclidean plane lying under or on the graph of αq. Consequently, Uq is completely

determined by the function αq.

The study of the function αq is a fascinating topic in coding theory. It is known

that αq is a nonincreasing continuous function on [0, 1] with αq(0) = 1. It follows

from the Plotkin bound in Theorem 3.4.19 that αq(δ) = 0 for (q − 1)/q < δ ≤ 1,

and the continuity of αq yields αq((q − 1)/q) = 0. The function αq is not known
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explicitly on the open interval (0, (q − 1)/q). The next best thing is then to give

lower bounds on αq(δ) for 0 < δ < (q − 1)/q, so that for a given δ in this range

we can identify at least some asymptotic information rates that are attainable. The

classical lower bound on αq is the asymptotic Gilbert-Varshamov bound

αq(δ) ≥ 1−δ logq(q−1)+δ logq δ+(1−δ) logq(1−δ) for 0 < δ <
q − 1

q
, (3.22)

where logq denotes the logarithm to the base q. A derivation of the asymptotic

Gilbert-Varshamov bound from the Gilbert-Varshamov bound in Theorem 3.4.3 is

presented for example in [148, Section 5.3]. The only way that is currently known

to improve on the bound (3.22) is by means of the sophisticated theory of algebraic-

geometry codes (see below). Standard families of elementary linear codes such as

BCH codes yield good codes of relatively short lengths, but they tend to be useless

in the asymptotic theory (compare with [108, Section 9.5]).

We mentioned in Subsection 3.5.3 that BCH codes permit an efficient decoding

algorithm. In fact, the structure of BCH codes yields information about the syn-

dromes of received words. For instance, in a suitable interpretation the coordinates

of the syndrome satisfy a linear recurrence relation. The coefficients of this linear

recurrence relation allow the determination of the error locations. The computation

of the desired linear recurrence relation is accomplished by the Berlekamp-Massey

algorithm or by the Euclidean algorithm for polynomials over finite fields. We refer

to [103, Sections 8.2 and 8.3], [108, Section 9.6], and [162, Chapter 19] for detailed

descriptions of the decoding algorithm for BCH codes.

The binary Golay code G23 and the ternary Golay code G11 belong to the family

of quadratic-residue codes. Consider first the cyclic code G23 with generator poly-

nomial g23(x) ∈ F2[x] given in Definition 3.5.20. The roots of g23(x) are powers of

the primitive 23rd root of unity α ∈ F211 and they are listed in the proof of Theorem

3.5.24. The exponents on α that yield roots of g23(x) are, in increasing order, given

by 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18. The crucial observation is now that these numbers

are exactly all quadratic residues modulo 23 in the least residue system modulo

23. Similarly, for G11 with generator polynomial g11(x) ∈ F3[x] given in Definition

3.5.26, the exponents on the primitive 11th root of unity α ∈ F35 that yield roots of

g11(x) are 1, 3, 4, 5, 9 (see the proof of Theorem 3.5.27). These numbers are exactly

all quadratic residues modulo 11 in the least residue system modulo 11. The general

definition of a quadratic-residue code is now as follows. The length of a quadratic-

residue code over Fq is an odd prime number n with gcd(n, q) = 1. Furthermore, it

is assumed that q is a quadratic residue modulo n. Let Sn be the set of all quadratic

residues modulo n in the least residue system modulo n and let α be a primitive nth

root of unity in a finite extension field of Fq. Since q is a quadratic residue modulo

n, it is easily seen that the polynomial

g(x) =
∏
s∈Sn

(x− αs)
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belongs to Fq[x]. The cyclic code over Fq of length n and with generator polynomial

g(x) is, by definition, a quadratic-residue code. It is a cyclic [n, (n + 1)/2] code.

The same construction works if Sn is replaced by the set Nn of all quadratic non-

residues modulo n in the least residue system modulo n. Expositions of the theory

of quadratic-residue codes can be found in [106, Section 8.3] and [108, Chapter 16].

Another important family of special linear codes is that of Reed-Muller codes

which is considered mainly in the binary case. Binary Reed-Muller codes are defined

for every order m ≥ 1. A binary first-order Reed-Muller code R(1, r) with an integer

r ≥ 2 is simply the dual code of an extended binary Hamming code Ham(r, 2) (see

Remark 3.5.3 for the latter codes). For r = 1 we formally put R(1, 1) = F2
2. Every

code R(1, r) is a linear [2r, r + 1] code. Generator matrices of (suitable choices of)

R(1, r) can be obtained recursively. For r = 1 a generator matrix of R(1, 1) is

G1 =

(
1 1

0 1

)
.

If the (r+ 1)× 2r matrix Gr over F2 is a generator matrix of R(1, r) for some r ≥ 1,

then a generator matrix of R(1, r + 1) is the (r + 2)× 2r+1 matrix

Gr+1 =

(
Gr Gr

0 1

)
over F2, where 0 = (0, . . . , 0) ∈ F2r

2 and 1 = (1, . . . , 1) ∈ F2r

2 . For every r ≥ 1, the

minimum distance of R(1, r) is 2r−1, and in fact all codewords in R(1, r) except 0

and 1 have Hamming weight 2r−1. A binary Reed-Muller code R(1, 5) was used in

the Mariner space probes that were launched towards Mars in 1969 and 1971. The

binary Reed-Muller codes R(m, r) of order m ≥ 2 are defined by a double recursion

on m and r. For all integers m ≥ 1 and r ≥ m, R(m, r) is a linear [2r, k, 2r−m] code

over F2 with k =
∑m

j=0

(
r
j

)
. We refer to [108, Chapters 13–15] and [162, Chapter 16]

for informative accounts of Reed-Muller codes.

A far-reaching generalization of Reed-Solomon codes leads to the family of algebraic-

geometry codes. As our starting point we take the generalized Reed-Solomon code

C in Remark 3.5.34 with aj = 1 ∈ Fq for 1 ≤ j ≤ n. The jth coordinate of a typical

codeword in C is f(cj) with cj ∈ Fq. Note that f(x) − f(cj) is divisible by x − cj
in Fq[x], and indeed f(cj) is the unique element b ∈ Fq such that x − cj divides

f(x) − b in Fq[x], or equivalently νx−cj(f(x) − b) ≥ 1. Here νx−cj is the valuation

of the rational function field Fq(x) (that is, the field of fractions of polynomials

over Fq) defined as follows: νx−cj(0) = ∞, and for a nonzero f(x) ∈ Fq(x) we put

νx−cj(f(x)) = e, where e is the unique integer such that f(x) = (x − cj)eh(x) with

h(x) ∈ Fq(x) and x − cj dividing neither the numerator nor the denominator of

h(x). This definition can be generalized by replacing the linear polynomial x − cj
by any monic irreducible polynomial p(x) over Fq, and this yields the valuation

νp(x) of Fq(x). There are two conditions in the definition of the code C, namely
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f(x) ∈ Fq[x] and deg(f(x)) ≤ k − 1. The first condition can be expressed in terms

of valuations, namely νp(x)(f(x)) ≥ 0 for all valuations νp(x) of Fq(x). The second

requirement can be formulated in terms of the valuation ν∞ of Fq(x) that is defined

as follows: ν∞(0) = ∞ and ν∞(f(x)) = − deg(f(x)) for a nonzero f(x) ∈ Fq(x).

Then deg(f(x)) ≤ k−1 is of course equivalent to ν∞(f(x)) ≥ −(k−1). The upshot

of this discussion is that the code C can be completely described by means of the

language of valuations.

Now we proceed from rational function fields to more general global function

fields and we formally define valuations. A global function field F over Fq is a finite

extension (in the sense of field theory) of the rational function field Fq(x). The step

from Fq(x) to F is analogous to the step from the field Q of rational numbers to

an algebraic number field. We call Fq the full constant field of F if every element

of F which is a root of a nonzero polynomial over Fq is actually in Fq. We write

F/Fq to signify that F is a global function field with full constant field Fq. A

valuation ν of F is a map ν : F → R ∪ {∞} satisfying the following axioms: (i)

ν(f) = ∞ if and only if f = 0; (ii) ν(fh) = ν(f) + ν(h) for all f, h ∈ F ; (iii)

ν(f + h) ≥ min(ν(f), ν(h)) for all f, h ∈ F ; (iv) the image of ν contains more than

the two elements 0 and ∞. It is a simple consequence of the axioms that ν(c) = 0

for all c ∈ F∗q. Furthermore, it is easily verified that the maps νp(x) and ν∞ in the

previous paragraph are indeed valuations of Fq(x). A place of the global function

field F is an equivalence class of valuations of F , where two valuations of F are

considered equivalent if one is obtained from the other by multiplying by a positive

constant. Every place P of F contains a uniquely determined normalized valuation

νP , that is, the image of the map νP is Z∪{∞}. Let PF denote the set of all places

of F . For F = Fq(x) there is a one-to-one correspondence between PF and the

set {p(x) ∈ Fq[x] : p(x) monic irreducible} ∪ {∞}; in other words, the normalized

valuations of Fq(x) are exactly given by νp(x) with p(x) ∈ Fq[x] monic irreducible

and ν∞.

For a global function field F/Fq and a place P ∈ PF , we introduce its valuation

ring OP = {f ∈ F : νP (f) ≥ 0}, its unique maximal ideal MP = {f ∈ F : νP (f) ≥
1}, and its residue class field OP/MP which can be identified with a finite extension

field of Fq. The degree of this extension is called the degree of the place P and

denoted by deg(P ). If deg(P ) = 1, then P is called a rational place. For a rational

place P of F/Fq and every f ∈ OP , the residue class of f modulo MP can be

identified with a unique element of Fq which is denoted by f(P ). A divisor D of F

is a formal sum

D =
∑
P∈PF

zP P

with coefficients zP ∈ Z for all P ∈ PF and all but finitely many zP = 0. Divisors

of F can be added by adding corresponding coefficients. We write D ≥ 0 if zP ≥ 0
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for all P ∈ PF . The degree deg(D) of D is defined by

deg(D) =
∑
P∈PF

zP deg(P ).

The principal divisor div(f) of f ∈ F∗ is given by

div(f) =
∑
P∈PF

νP (f)P.

The Riemann-Roch space

L(D) = {f ∈ F ∗ : div(f) +D ≥ 0} ∪ {0}

associated with the divisorD is a finite-dimensional vector space over Fq. Much more

information on global function fields can be found in the books [148] and [192].

We have now assembled all the tools that are needed for the introduction of

algebraic-geometry codes. First we return one more time to the special case of the

code C in Remark 3.5.34 with aj = 1 ∈ Fq for 1 ≤ j ≤ n. Let P∞ be the place of

Fq(x) containing the normalized valuation ν∞. Consider the divisor D = (k− 1)P∞
of Fq(x). Then by an earlier discussion it is clear that f ∈ Fq[x]<k if and only if

f ∈ L(D). For 1 ≤ j ≤ n, let Pj be the place of Fq(x) corresponding to the monic

irreducible polynomial x−cj ∈ Fq[x]. As we have seen earlier, for f ∈ L(D) we have

f − f(cj) ∈MPj , and so f(Pj) = f(cj). Therefore the code C can be described as

C = {(f(P1), . . . , f(Pn)) ∈ Fnq : f ∈ L(D)}.

It is now pretty obvious how to generalize this construction. Let n be the length

of the code to be constructed and let F/Fq be a global function field with at least

n distinct rational places. Choose distinct rational places P1, . . . , Pn of F and a

divisor D =
∑

P∈PF zP P of F with zPj = 0 for 1 ≤ j ≤ n. Then

C(P1, . . . , Pn;D) := {(f(P1), . . . , f(Pn)) ∈ Fnq : f ∈ L(D)}

is an algebraic-geometry code. It is easily seen to be a subspace of Fnq . In order to

guarantee that it has a positive dimension (and thus is a linear code in the sense of

Definition 3.2.10), conditions on the divisor D are needed. Here the genus g of F , a

nonnegative integer g depending only on F , is involved. If now g ≤ deg(D) < n, then

C(P1, . . . , Pn;D) has dimension k ≥ deg(D)+1−g. Its minimum distance d satisfies

d ≥ n − deg(D). We refer to the books [148] and [192] for detailed treatments of

algebraic-geometry codes. You may wonder why we speak of an “algebraic-geometry

code” and not of a “global-function-field code”. This has historical reasons: the first

constructions of algebraic-geometry codes used the theory of algebraic curves over

finite fields which belongs to algebraic geometry. As a matter of fact, the theory of

algebraic curves over finite fields has close links to the theory of global function fields
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(for an in-depth explanation of this connection see [148, Chapter 3]). Consequently,

algebraic-geometry codes can be completely described via global function fields.

Algebraic-geometry codes have important implications for the asymptotic theory

of codes. For every prime power q and every integer g ≥ 0, letNq(g) be the maximum

number of rational places that a global function field F/Fq of genus g can have.

Furthermore, we put

A(q) = lim sup
g→∞

Nq(g)

g
.

It is known that 0 < A(q) ≤ q1/2 − 1 for all q and that A(q) = q1/2 − 1 if q is a

square (see [147, Chapter 5]). By using algebraic-geometry codes, we get a lower

bound on the function αq in (3.22) for all prime powers q, namely

αq(δ) ≥ 1− 1

A(q)
− δ for 0 < δ <

q − 1

q
. (3.23)

A comparison of the right-hand sides of (3.22) and (3.23) shows that, at least for

squares q ≥ 49, the lower bound in (3.23) is larger than the lower bound in (3.22)

for all δ in a subinterval of (0, (q − 1)/q) containing the number (q − 1)/(2q − 1).

If one considers arbitrary (hence also nonlinear) codes, then the positive constant

logq(1+q−3) can be added on the right-hand side of (3.23). For a proof of this result

and of the bound (3.23), we refer to [148, Section 5.3].

We already encountered character sums for finite fields in Subsection 3.3.6 on

irreducible cyclic codes. There are quite a number of other fascinating applications

of character sums to coding theory. These concern mainly BCH codes, the dual

codes of BCH codes, and the theory of perfect codes. A nice survey of applications

of character sums to coding theory is presented in [162, Chapter 13].

It is a remarkable fact that codes can be used for the construction of crypto-

graphic schemes. Historically the first code-based cryptographic scheme was the

McEliece cryptosystem, a public-key cryptosystem that still remains unbroken in its

general form. As usual in cryptography, we describe the scheme from the perspec-

tive of two users Alice and Bob. Let C be a linear [n, k, d] code over Fq and let G

be a generator matrix of C. The matrix G is part of the private key of Bob. Next,

Bob chooses two more matrices over Fq, namely a nonsingular k × k matrix N and

an n × n matrix Q that is obtained from a nonsingular n × n diagonal matrix by

arbitrary row permutations. The matrices G, N , and Q form Bob’s private key.

The public key of Bob is the k × n matrix G′ = NGQ which may be viewed as a

scrambled version of G. The admissible plaintexts in the McEliece cryptosystem are

vectors u ∈ Fkq . If Alice wants to encrypt the plaintext u ∈ Fkq destined for Bob,

she chooses a random vector v ∈ Fnq with Hamming weight w(v) ≤ t := b(d− 1)/2c
and uses Bob’s public key G′ to compute the ciphertext y = uG′ + v ∈ Fnq . If

Bob receives the ciphertext y, he first computes y′ = yQ−1 = uNG + vQ−1. Now

w(y′ − uNG) = w(vQ−1) = w(v) ≤ t and uNG = (uN)G is a codeword in C.
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Therefore y′ is like a received word that can be corrected by the code C to produce

the original word uN . From this, Bob recovers the plaintext u = (uN)N−1.

A related public-key cryptosystem is the Niederreiter cryptosystem. Given the

linear code C as above, Bob chooses a parity-check matrix H of C as part of his

private key. Furthermore, Bob selects a matrix Q as in the McEliece cryptosystem

as well as a nonsingular (n− k)× (n− k) matrix M over Fq. The matrices H, M ,

and Q form Bob’s private key, whereas his public key is the (n − k) × n matrix

H ′ = MHQ which may be regarded as a scrambled version of H. The admissi-

ble plaintexts in the Niederreiter cryptosystem are column vectors x> ∈ Fnq with

Hamming weight at most t := b(d − 1)/2c. Alice encrypts x> by computing the

ciphertext z> = H ′x> using Bob’s public key H ′. The decryption proceeds again

by using a decoding algorithm for C. With corresponding choices of code parame-

ters, the McEliece and Niederreiter cryptosystems have basically equivalent security

levels (see [148, Theorem 6.4.1]). The Niederreiter cryptosystem has the advantage

that a digital signature scheme (called the CFS scheme) can be derived from it.

Detailed discussions of the McEliece and Niederreiter cryptosystems and of various

other code-based cryptographic schemes can be found in the book [8] and in the sur-

vey article [156]. It turns out that certain quasicyclic codes (see the first paragraph

of this section) are eminently suitable for code-based cryptography (see again [8]).

Exercises

3.1 Prove that a code C with minimum distance d(C) cannot correct more than

b(d(C)− 1)/2c errors in general.

3.2 Prove that a code C with minimum distance d(C) cannot detect more than

d(C)− 1 errors in general.

3.3 Consider the binary code C of length 4 consisting of the codewords

c1 = (0, 0, 0, 0), c2 = (0, 0, 0, 1), c3 = (0, 0, 1, 1),

c4 = (1, 0, 0, 0), c5 = (1, 0, 0, 1), c6 = (1, 1, 0, 0).

Suppose that the word v = (1, 1, 1, 0) ∈ F4
2 is received. Use nearest neighbor

decoding to determine the most likely codeword in C that was sent.

3.4 Let V be a vector space over Fq. Prove that a nonempty subset W of V is a

subspace of V if and only if cu + w ∈ W for all u,w ∈ W and all c ∈ Fq.

3.5 Prove that if V is a vector space over Fq, then the intersection of any collection

of subspaces of V is a subspace of V .

3.6 Prove that if V1 and V2 are subspaces of Fnq , then V1 + V2 := {v1 + v2 : v1 ∈
V1, v2 ∈ V2} is also a subspace of Fnq .
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3.7 Prove that if V1 and V2 are subspaces of Fnq , then (V1 + V2)
⊥ = V ⊥1 ∩ V ⊥2 .

3.8 Prove that if V1 and V2 are subspaces of Fnq , then (V1 ∩ V2)⊥ = V ⊥1 + V ⊥2 .

3.9 Prove in detail that multiplication of matrices over finite fields is associative.

3.10 Prove in detail that A(B + C) = AB + AC and (A + B)C = AC + BC for

matrices A, B, and C over Fq of compatible sizes.

3.11 Prove that equivalent linear codes have the same parameters n, k, and d.

3.12 Prove that if two nontrivial linear codes C1 and C2 are equivalent, then their

dual codes C⊥1 and C⊥2 are equivalent.

3.13 Prove that for a nontrivial linear code C, a parity-check matrix of C⊥ is given

by a generator matrix of C.

3.14 Consider the binary linear code C with generator matrix

G =

 1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 1 1

 .

(a) Determine a parity-check matrix of C.

(b) Set up a table of coset leaders and syndromes for C. (Note that here not

every coset has a unique coset leader, so for cosets with several possible

coset leaders you can make an arbitrary choice among the candidate coset

leaders.)

(c) Suppose that the received word is v = (1 1 0 0 1 0) ∈ F6
2. Use the

syndrome decoding algorithm to determine the most likely codeword in

C that was sent.

3.15 Consider the binary linear code C with generator matrix

G =

 1 1 0 0 1

0 1 1 1 0

1 0 1 0 0

 .

Determine the weight enumerators of C and C⊥ and check the MacWilliams

identity.

3.16 Prove that equivalent linear codes have the same weight enumerator.

3.17 Prove that every nonzero subspace of a self-orthogonal code is self-orthogonal.

3.18 Let C be a ternary self-orthogonal code. Prove that the Hamming weight of

each codeword in C is divisible by 3.
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3.19 For an odd integer n ≥ 3, let C be a binary self-orthogonal [n, (n − 1)/2]

code. Prove that a generator matrix of the dual code C⊥ is obtained from a

generator matrix of C by appending as a new row vector the all-one vector

(1, . . . , 1) ∈ Fn2 .

3.20 Prove that if a binary linear code C has the property that the Hamming weight

of each codeword in C is divisible by 4, then C is self-orthogonal.

3.21 Find a formula for the number of cyclic codes over Fq of given length n in

terms of the canonical factorization of xn − 1 ∈ Fq[x] over Fq.

3.22 For cyclic codes C1 and C2 over Fq of the same length and with generator

polynomials g1(x) and g2(x), respectively, prove that C1 ⊆ C2 if and only if

g2(x) divides g1(x) in Fq[x].

3.23 Let xn − 1 = g(x)h(x) in Fq[x] with deg(g(x)) ≥ 1 and deg(h(x)) ≥ 1. Prove

that the cyclic code over Fq with generator polynomial g(x) is self-orthogonal

if and only if the reciprocal polynomial of h(x) divides g(x) in Fq[x].

3.24 Given the binary cyclic code C of length 6 with generator polynomial g(x) =

x4 + x3 + x+ 1 ∈ F2[x], determine a generator matrix of C and a parity-check

matrix of C.

3.25 Let C be the binary cyclic code of length 7 with generator polynomial g(x) =

x3 + x+ 1 ∈ F2[x].

(a) Determine the minimum distance of C.

(b) Decode the received word (0 1 1 1 1 1 0) ∈ F7
2 with the code C.

3.26 Let C be the binary cyclic code of length 15 with generator polynomial g(x) =

x8 + x7 + x6 + x4 + 1 ∈ F2[x].

(a) Determine the minimum distance of C, for instance by considering a

parity-check matrix of C.

(b) Decode the received word

(1 1 0 0 1 1 1 0 1 1 0 0 0 1 0) ∈ F15
2

with the code C by using Algorithm 3.3.49.

3.27 Prove that there is no cyclic self-dual code over Fq when q is odd.

3.28 Prove that the Mattson-Solomon polynomial of the all-one vector (1, . . . , 1) ∈
Fnq is the constant polynomial n, where n is considered as an element of the

prime subfield of Fq.
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3.29 Let Mv(x) be the Mattson-Solomon polynomial of v ∈ Fnq , where n ≥ 2 and

gcd(n, q) = 1, and let γ be a primitive nth root of unity in a finite extension

field of Fq. Prove that for every integer t with 0 ≤ t ≤ n − 1, the Mattson-

Solomon polynomial of the cyclic shift vt is given by Mv(γ−tx).

3.30 Generalize the hypotheses in Theorem 3.3.34 by assuming that for some r ∈ N
with gcd(r, n) = 1 we have g(γb+ir) = 0 for 0 ≤ i ≤ d − 2. Show again that

the minimum distance of C is at least d.

3.31 Show by an example that a code equivalent to a cyclic code need not be cyclic.

3.32 Prove that the following is the complete list of binary MDS codes: (i) C1 = Fn2
for n ≥ 1; (ii) C2 = {0,1} with 0 ∈ Fn2 and the all-one vector 1 = (1, . . . , 1) ∈
Fn2 for n ≥ 1; (iii) every code C3 equivalent to C⊥2 for n ≥ 2. (Hint: consider

generator matrices in standard form.)

3.33 Prove the following version of the Gilbert-Varshamov bound: if n, k, and d

are integers with 1 ≤ k ≤ n, 1 ≤ d ≤ n, and

d−1∑
i=0

(
n

i

)
(q − 1)i < qn−k+1,

then there exists a linear [n, k, d] code over Fq.

3.34 Decode the received word (1 1 0 0 0 0 1) ∈ F7
2 with the Hamming code

Ham(3, 2).

3.35 Prove that G⊥23 ⊆ G23, or in other words that G⊥23 is self-orthogonal. (Hint:

consider the generator polynomials of these cyclic codes.)

3.36 Prove that G⊥11 ⊆ G11, or in other words that G⊥11 is self-orthogonal. (Hint:

consider the generator polynomials of these cyclic codes.)

3.37 Let α ∈ F16 be a root of x4 + x + 1 ∈ F2[x]. Find the minimal polynomial of

α11 over F2.

3.38 Determine the generator polynomial of a Reed-Solomon code over F16 of di-

mension 11 and find a parity-check matrix of such a code.

3.39 Prove that the dual code of a Reed-Solomon code is again a Reed-Solomon

code.

3.40 Determine the generator polynomials of all binary BCH codes of length 31 and

designed distance 5.



Chapter 4

Quasi-Monte Carlo Methods

Good lattice points and nets

are so much better bets

in tough numerical integration

since they beat stochastic simulation

hands down and in straight sets.

4.1 Numerical integration and uniform distribu-

tion

4.1.1 The one-dimensional case

There are many scientific as well as real-world applications where we run into the

problem of computing a definite integral. In calculus courses you are taught that

a definite integral
∫ b
a
f(u)du is evaluated by the fundamental theorem of integral

calculus which says that ∫ b

a

f(u)du = F (b)− F (a), (4.1)

where the function F is an antiderivative of the integrand f . What you are often

not told is that there are many cases where F cannot be expressed in finite terms

by means of elementary functions, and in such situations the formula (4.1) is useless

for computational purposes. Examples are
∫ 1

0
e−u

2
du and

∫ 1

0
(sinu)(u + 1)−1du.

We then have to settle for numerical approximations of
∫ b
a
f(u)du. The process of

approximately computing definite integrals with a sufficient degree of precision is

called numerical integration.

We start with the one-dimensional case, that is, the case considered in (4.1) where

the integrand f is a real-valued function of a single variable u. One-dimensional nu-

merical integration is an area of numerical analysis with a long tradition, and indeed

some very effective one-dimensional numerical integration techniques are known for

181
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several centuries. Classical numerical integration rules, such as the midpoint rule,

the trapezoidal rule, and Simpson’s rule, are based on approximations of the form∫ b

a

f(u)du ≈
N∑
n=1

wnf(xn),

where the integration nodes (or simply nodes) x1, . . . , xN are points lying in the

integration domain [a, b] and the coefficients w1, . . . , wN are “weights” associated

with these points. It is usually assumed that
∑N

n=1wn = b− a since this condition

guarantees that at least constant functions f are integrated correctly by the numer-

ical integration scheme. Particularly simple and attractive rules are equal-weight

rules where wn = (b − a)/N for 1 ≤ n ≤ N . We assume in the following that the

integration domain is the unit interval [0, 1]; this is achieved by a simple change of

variable.

An equal-weight rule for the interval [0, 1] has the form∫ 1

0

f(u)du ≈ 1

N

N∑
n=1

f(xn) (4.2)

with nodes x1, . . . , xN ∈ [0, 1]. A prominent equal-weight rule is the already men-

tioned midpoint rule which is given by∫ 1

0

f(u)du ≈ 1

N

N∑
n=1

f
(2n− 1

2N

)
. (4.3)

The name stems from a way of interpreting this rule, namely that we split up [0, 1]

into the N subintervals [0, 1/N ], [1/N, 2/N ], . . . , [(N − 1)/N, 1], and then we take

the midpoint of each subinterval as a node.

It is essential for practical computations that every numerical integration rule

be accompanied by an upper bound on the error that is committed by the approx-

imation to the given definite integral. As a simple illustration, we present an error

bound for the midpoint rule under a smoothness condition on the integrand.

Proposition 4.1.1 Let f be a real-valued function on [0, 1] which has a continuous

second derivative f ′′ on [0, 1]. Then for every integer N ≥ 1,∣∣∣∣∣
∫ 1

0

f(u)du− 1

N

N∑
n=1

f
(2n− 1

2N

)∣∣∣∣∣ ≤ 1

24N2
max
0≤u≤1

|f ′′(u)|. (4.4)

Proof. We write∫ 1

0

f(u)du− 1

N

N∑
n=1

f
(2n− 1

2N

)
=

N∑
n=1

∫ n/N

(n−1)/N

(
f(u)− f

(2n− 1

2N

))
du. (4.5)
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Figure 4.1: The midpoint rule

Since
∫ n/N
(n−1)/N(u− 2n−1

2N
)du = 0 for 1 ≤ n ≤ N , we obtain∫ n/N

(n−1)/N

(
f(u)−f

(2n− 1

2N

))
du =

∫ n/N

(n−1)/N

(
f(u)−f

(2n− 1

2N

)
−f ′

(2n− 1

2N

)(
u−2n− 1

2N

))
du,

and so∣∣∣∣∣
∫ n/N

(n−1)/N

(
f(u)− f

(2n− 1

2N

))
du

∣∣∣∣∣ ≤
∫ n/N

(n−1)/N

∣∣∣f(u)−f
(2n− 1

2N

)
−f ′

(2n− 1

2N

)(
u−2n− 1

2N

)∣∣∣du.
By Taylor’s theorem,∣∣∣f(u)− f

(2n− 1

2N

)
− f ′

(2n− 1

2N

)(
u− 2n− 1

2N

)∣∣∣ ≤ m

2

(
u− 2n− 1

2N

)2
for 0 ≤ u ≤ 1

with m = max0≤u≤1 |f ′′(u)|. It follows that∣∣∣∣∣
∫ n/N

(n−1)/N

(
f(u)− f

(2n− 1

2N

))
du

∣∣∣∣∣ ≤ m

2

∫ n/N

(n−1)/N

(
u− 2n− 1

2N

)2
=

m

24N3
.

Summing over n = 1, . . . , N and taking into account (4.5), we arrive at the desired

bound. 2

Remark 4.1.2 The error bound in (4.4) is in general best possible, in the sense that

we can have equality in (4.4). Just take f(u) = u2 on [0, 1], then a straightforward

calculation shows that∫ 1

0

f(u)du− 1

N

N∑
n=1

f
(2n− 1

2N

)
=

1

12N2
,
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which agrees with the right-hand side of (4.4).

For a fixed integrand f satisfying the smoothness condition in Proposition 4.1.1,

the error bound in (4.4) becomes smaller as the number N of nodes increases. More-

over, the error bound tends to 0 as N → ∞. We express the latter fact by saying

that the midpoint rule converges. Any reasonable numerical integration scheme

should have this property. We will not pursue classical numerical integration rules

any further since we want to focus on the applications of number theory to numerical

integration. We refer to the standard monograph by Davis and Rabinowitz [35] and

to the more recent book by Brass and Petras [14] for a detailed coverage of classical

numerical integration rules.

Now we return to the general equal-weight rule (4.2). We try to obtain a conver-

gent numerical integration scheme by constructing a sequence x1, x2, . . . of points in

[0, 1] such that

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(u)du

for a given integrand f . In fact, there are sequences x1, x2, . . . for which this limit

relation holds not only for a single integrand f , but for a wide family of integrands.

Such sequences are called “uniformly distributed” in number theory. For the formal

definition of a uniformly distributed sequence, we work with the family of Riemann-

integrable functions. It is customary to consider sequences of points from the half-

open interval [0, 1) since all classical constructions of uniformly distributed sequences

produce points from this interval.

Definition 4.1.3 A sequence x1, x2, . . . of points in the interval [0, 1) is uniformly

distributed (in [0, 1)) if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(u)du (4.6)

for every real-valued Riemann-integrable function f on [0, 1].

Remark 4.1.4 If you know Lebesgue integrals, then you will understand that the

limit relation (4.6) cannot hold for all Lebesgue-integrable functions on [0, 1]. Let

x1, x2, . . . be any sequence of points in [0, 1) and consider the set S = {x1, x2, . . .} ⊂
[0, 1]. Then with f being the characteristic function of S, that is, f(u) = 1 if u ∈ S
and f(u) = 0 if u ∈ [0, 1] \ S, it is trivial that the left-hand side of (4.6) is equal to

1, whereas the right-hand side of (4.6) is equal to 0.

There are various other characterizations of uniformly distributed sequences in

[0, 1) that use different families of functions for which we require the validity of

the limit relation (4.6). The following approximation principle is convenient in this

context.
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Lemma 4.1.5 Let x1, x2, . . . be a sequence of points in [0, 1) and let G be a nonempty

family of real-valued Riemann-integrable functions on [0, 1] such that

lim
N→∞

1

N

N∑
n=1

g(xn) =

∫ 1

0

g(u)du for all g ∈ G.

Let f be a real-valued Riemann-integrable function on [0, 1] such that for every ε > 0

there exist functions g1,ε, g2,ε ∈ G with g1,ε(u) ≤ f(u) ≤ g2,ε(u) for all u ∈ [0, 1] and∫ 1

0

(g2,ε(u)− g1,ε(u))du ≤ ε.

Then

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(u)du.

Proof. For every ε > 0 we obtain the chain of inequalities and identities∫ 1

0

f(u)du− ε ≤
∫ 1

0

g1,ε(u)du = lim
N→∞

1

N

N∑
n=1

g1,ε(xn)

≤ lim inf
N→∞

1

N

N∑
n=1

f(xn) ≤ lim sup
N→∞

1

N

N∑
n=1

f(xn)

≤ lim
N→∞

1

N

N∑
n=1

g2,ε(xn) =

∫ 1

0

g2,ε(u)du ≤
∫ 1

0

f(u)du+ ε.

Letting ε→ 0+, we get the desired result. 2

For a subinterval J of [0, 1], we write cJ for the characteristic function of J , that

is, cJ(u) = 1 if u ∈ J and cJ(u) = 0 if u ∈ [0, 1] \ J .

Theorem 4.1.6 A sequence x1, x2, . . . of points in [0, 1) is uniformly distributed if

and only if

lim
N→∞

1

N

N∑
n=1

cJ(xn) = λ(J) (4.7)

for every subinterval J of [0, 1], where λ(J) is the length of the interval J .

Proof. The necessity is trivial by (4.6) since cJ is Riemann-integrable and∫ 1

0

cJ(u)du = λ(J).

In order to prove the sufficiency, we note that, by linearity, the limit relation (4.6)

holds for all real-valued step functions on [0, 1] (that is, for all finite R-linear com-

binations of characteristic functions of subintervals of [0, 1]). Let G be the family of
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all real-valued step functions on [0, 1]. Then a given real-valued Riemann-integrable

function f on [0, 1] satisfies the condition in Lemma 4.1.5 by the definition of the

Riemann integral, and so an application of this lemma completes the proof. 2

Theorem 4.1.7 A sequence x1, x2, . . . of points in [0, 1) is uniformly distributed if

and only if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(u)du

for every real-valued continuous function f on [0, 1].

Proof. The necessity is trivial since every real-valued continuous function on [0, 1]

is Riemann-integrable. In order to prove the sufficiency, we show (4.7) for every

subinterval J of [0, 1]. We assume in fact that J = [a, b] with 0 < a < b < 1; the

remaining case is treated with obvious modifications. Let G be the family of all real-

valued continuous functions on [0, 1]. In view of Lemma 4.1.5, it suffices to construct,

for 0 < ε < min(2a, 2−2b, b−a), two functions g1,ε, g2,ε ∈ G such that the condition

in Lemma 4.1.5 is satisfied for f = cJ . Let g1,ε be the piecewise linear continuous

function which agrees with cJ on the set [0, a) ∪ [a + ε/2, b − ε/2] ∪ (b, 1]; on the

interval [a, a+ ε/2] the graph of g1,ε is the line segment connecting the points (a, 0)

and (a+ε/2, 1) in R2; on the interval [b−ε/2, b] the graph of g1,ε is the line segment

connecting the points (b − ε/2, 1) and (b, 0) in R2. Let g2,ε be the piecewise linear

continuous function which agrees with cJ on the set [0, a− ε/2)∪ [a, b]∪ (b+ ε/2, 1];

on the interval [a−ε/2, a] the graph of g2,ε is the line segment connecting the points

(a− ε/2, 0) and (a, 1) in R2; on the interval [b, b + ε/2] the graph of g2,ε is the line

segment connecting the points (b, 1) and (b+ ε/2, 0) in R2 (see Figure 4.2).

Then g1,ε(u) ≤ cJ(u) ≤ g2,ε(u) for all u ∈ [0, 1] and∫ 1

0

(g2,ε(u)− g1,ε(u))du = ε.

Thus, we have obtained suitable functions g1,ε, g2,ε ∈ G. 2

In number theory one often arrives at the situation where a sequence of points

in [0, 1) is obtained by taking fractional parts in a sequence of real numbers. The

fractional part {x} of a real number x is defined by {x} = x − bxc. The following

definition refers to this situation.

Definition 4.1.8 A sequence x1, x2, . . . of real numbers is uniformly distributed

modulo 1 if the sequence {x1}, {x2}, . . . of fractional parts is uniformly distributed

in [0, 1).
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Figure 4.2: The graphs of g1,ε and g2,ε

There is a famous criterion for uniform distribution modulo 1, the Weyl criterion,

which goes back all the way to the celebrated paper of Weyl [200] from 1916 in

which he introduced the general theory of uniformly distributed sequences. Hermann

Weyl (1885–1955) later moved on to even bigger things, doing fundamental work in

functional analysis, differential geometry, and mathematical physics.

Theorem 4.1.9 (Weyl Criterion) The sequence x1, x2, . . . of real numbers is uni-

formly distributed modulo 1 if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all h ∈ N. (4.8)

Proof. Let the sequence x1, x2, . . . be uniformly distributed modulo 1 and consider

the function f(u) = cos 2πhu on R for a fixed h ∈ N. Then by Definition 4.1.3,

lim
N→∞

1

N

N∑
n=1

cos 2πhxn = lim
N→∞

1

N

N∑
n=1

cos 2πh{xn} =

∫ 1

0

cos 2πhu du = 0.

Similarly, we obtain

lim
N→∞

1

N

N∑
n=1

sin 2πhxn = 0,

and the fundamental identity e2πihu = cos 2πhu+ i sin 2πhu for all u ∈ R yields the

limit relation in (4.8).

Conversely, suppose that the sequence x1, x2, . . . satisfies (4.8). Since e−2πihu is

the complex conjugate of e2πihu, the limit relation in (4.8) holds also for all negative
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integers h. Let ε > 0 be given and let f be any one of the two functions g1,ε and

g2,ε in the proof of Theorem 4.1.7. Then f(0) = f(1) = 0, and so f can be extended

to a real-valued continuous function on R with period 1. Hence by the Weierstrass

approximation theorem, for every δ > 0 there exists a trigonometric polynomial

Ψδ(u), that is, a finite linear combination of functions of the type e2πihu, h ∈ Z, with

complex coefficients, such that

max
u∈R
|f(u)−Ψδ(u)| ≤ δ. (4.9)

Now for every positive integer N ,

∣∣∣ ∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn)
∣∣∣ ≤ ∣∣∣ ∫ 1

0

(f(u)−Ψδ(u)) du
∣∣∣

+
∣∣∣ ∫ 1

0

Ψδ(u)du− 1

N

N∑
n=1

Ψδ(xn)
∣∣∣

+
∣∣∣ 1

N

N∑
n=1

(Ψδ(xn)− f(xn))
∣∣∣.

Because of (4.9), the first term and the third term on the right-hand side are both

≤ δ for all N . In view of (4.8), the second term on the right-hand side is ≤ δ for

sufficiently large N . Therefore

lim
N→∞

1

N

N∑
n=1

f({xn}) = lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(u)du.

Then the proof of Theorem 4.1.7 shows that the sequence {x1}, {x2}, . . . of fractional

parts is uniformly distributed in [0, 1), and so the sequence x1, x2, . . . is uniformly

distributed modulo 1. If you don’t like this proof via the Weierstrass approximation

theorem, for instance because you have not seen this theorem before, then you can

read the alternative proof in the last part of the proof of Theorem 4.1.14. 2

The Weyl criterion affords an elegant way of proving that the sequence of multi-

ples of an irrational number is uniformly distributed modulo 1. In fact, the following

simple characterization can be established.

Theorem 4.1.10 Let α be a real number. Then the sequence α, 2α, . . . of multiples

of α is uniformly distributed modulo 1 if and only if α is irrational.

Proof. Let α be rational, say α = a/b with a, b ∈ Z and b ≥ 1. Then none

of the fractional parts xn = {nα} with n ∈ N can be in the open interval J =

(0, 1/b), and so (4.7) is not satisfied for J . Therefore the sequence x1, x2, . . . is
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not uniformly distributed in [0, 1), and so the sequence α, 2α, . . . is not uniformly

distributed modulo 1.

Now let α be irrational and let h ∈ N. Then e2πihα 6= 1 and by the summation

formula for geometric sums we get∣∣∣ N∑
n=1

e2πihnα
∣∣∣ =

∣∣∣N−1∑
n=0

(
e2πihα

)n ∣∣∣ =

∣∣e2πihNα − 1
∣∣∣∣e2πihα − 1
∣∣ ≤ 2∣∣e2πihα − 1

∣∣ .
It follows that

lim
N→∞

1

N

N∑
n=1

e2πihnα = 0.

Therefore the sequence α, 2α, . . . is uniformly distributed modulo 1 by the Weyl

criterion. 2

The sequence {α}, {2α}, . . . of fractional parts of the multiples of an irrational

number α is called a Kronecker sequence and was historically the first example of

a uniformly distributed sequence. Kronecker sequences are named after Leopold

Kronecker (1823–1891) who proved the first nontrivial result on them, namely that

every Kronecker sequence is dense in the interval [0, 1] (that is, the points of a given

Kronecker sequence come arbitrarily close to any point of [0, 1]). The property of

a Kronecker sequence of being uniformly distributed is of course stronger than that

of being dense in [0, 1]. Kronecker is famous also for the saying: “God made the

integers, all else is the work of man.”

Now that we know examples of uniformly distributed sequences, we can employ

them in (4.6) to obtain convergent numerical integration schemes. In fact, we will

see many more examples of uniformly distributed sequences in this chapter. The

question of error bounds for the numerical integration scheme (4.6) leads to the

concept of discrepancy which we introduce below.

As a matter of fact, there are two common notions of discrepancy, the star

discrepancy D∗N(P) and the (extreme) discrepancy DN(P) of a point set P consisting

of N points in [0, 1), and an easy connection exists between the two (see Proposition

4.1.12 below). The terminology point set designates what you would expect, namely

a (finite) set of points, but there is the additional provision that the points can occur

with a certain (finite) multiplicity. For instance, in the point set consisting of the

four points 0, 1
2
, 1
2
, 3
4
, the points 0 and 3

4
occur with multiplicity 1 and the point

1
2

occurs with multiplicity 2. The corresponding set (as opposed to point set) is

{0, 1
2
, 3
4
}. The order in which the points of a point set are listed is irrelevant.

It is convenient to introduce a simple notation for the sum occurring in (4.7);

namely, for a point set P consisting of x1, . . . , xN ∈ [0, 1) and for a subinterval J of

[0, 1], we write

A(J ;P) =
N∑
n=1

cJ(xn).
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In words, A(J ;P) is the number of integers n with 1 ≤ n ≤ N such that xn ∈ J .

Note that the multiplicities of points in P are taken into account when computing the

counting function A(J ;P). For instance, for the point set P consisting of 0, 1
2
, 1
2
, 3
4

as above and for J = [0, 3
4
), the point 0 with multiplicity 1 and the point 1

2
with

multiplicity 2 lie in J , and so A(J ;P) = 1 + 2 = 3.

Definition 4.1.11 Let P be the point set consisting of the N points x1, . . . , xN ∈
[0, 1). Then the star discrepancy D∗N(P) of P is defined by

D∗N(P) = sup
0<u≤1

∣∣∣A([0, u);P)

N
− u
∣∣∣

and the (extreme) discrepancy DN(P) of P is defined by

DN(P) = sup
0≤u<v≤1

∣∣∣A([u, v);P)

N
− (v − u)

∣∣∣.
The idea of the star discrepancy and of the (extreme) discrepancy can be com-

prehended in terms of the limit relation (4.7), since for finite N these discrepancies

tell us how close we are to the limit on the right-hand side of (4.7) in the worst case.

It is trivial that always D∗N(P) ≤ 1 and DN(P) ≤ 1.

Proposition 4.1.12 Every point set P consisting of N points in [0, 1) satisfies

D∗N(P) ≤ DN(P) ≤ 2D∗N(P).

Proof. The first inequality follows immediately from the definitions. Next we note

that A([u, v);P) = A([0, v);P)− A([0, u);P), where 0 ≤ u < v ≤ 1, and therefore∣∣∣A([u, v);P)

N
− (v − u)

∣∣∣ ≤ ∣∣∣A([0, v);P)

N
− v
∣∣∣+
∣∣∣A([0, u);P)

N
− u
∣∣∣.

Taking suprema yields the second inequality in the proposition. 2

In practice one is often interested in the order of magnitude of D∗N(P) and DN(P)

as a function of N . Proposition 4.1.12 shows that from this perspective it does not

matter which of the two discrepancies we consider.

Probably the most important result on the discrepancy in terms of the number

of applications it allows is the following bound on the discrepancy by means of

exponential sums. This bound can be viewed as a quantitative version of the Weyl

criterion in Theorem 4.1.9.

Theorem 4.1.13 (Erdős-Turán Inequality) If P is the point set consisting of

the N points x1, . . . , xN ∈ [0, 1), then

DN(P) ≤ 6

H + 1
+

4

π

H∑
h=1

(1

h
− 1

H + 1

)∣∣∣ 1

N

N∑
n=1

e2πihxn
∣∣∣

for all positive integers H.
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Proof. We introduce the function

R(u) =
A([0, u);P)

N
− u =

1

N

N∑
n=1

c[0,u)(xn)− u for 0 ≤ u ≤ 1.

Since R(0) = 0 = R(1), we can extend this function to R with period 1. Next we

put

r(u) = R(u)−
∫ 1

0

R(u)du for all u ∈ R

and we note that ∫ 1

0

r(u)du = 0. (4.10)

A straightforward computation shows that for every nonzero integer h,∫ 1

0

r(u)e2πihudu =
1

N

N∑
n=1

∫ 1

0

c[0,u)(xn)e2πihudu−
∫ 1

0

ue2πihudu

=
1

N

N∑
n=1

∫ 1

xn

e2πihudu− 1

2πih

=
1

N

N∑
n=1

1

2πih
(1− e2πihxn)− 1

2πih
= − Sh

2πih

with Sh = (1/N)
∑N

n=1 e
2πihxn .

Fix a positive integer H and let a be a real number to be determined later.

By forming an appropriate linear combination of the last displayed identity and

using (4.10), we obtain

−
H∑∗

h=−H

(H + 1− |h|)e−2πiha Sh
2πih

=

∫ 1

0

r(u)
( H∑
h=−H

(H + 1− |h|)e2πih(u−a)
)
du

=

∫ 1−a

−a
r(u+ a)

( H∑
h=−H

(H + 1− |h|)e2πihu
)
du,

where the asterisk indicates that h = 0 is deleted from the range of summation.

Because of the periodicity of the integrand, the last integral may also be taken over

the interval [−1
2
, 1
2
], and so we can write∫ 1/2

−1/2
r(u+ a)

( H∑
h=−H

(H + 1− |h|)e2πihu
)
du = −

H∑∗

h=−H

(H + 1− |h|)e
−2πihaSh
2πih

. (4.11)

Elementary trigonometry shows that

e−πiHu
H∑
h=0

e2πihu =
sin(H + 1)πu

sin πu
,
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Figure 4.3: The graph of r

where the right-hand side is interpreted as H+1 if u ∈ Z. By squaring this identity,

we obtain

sin2(H + 1)πu

sin2 πu
= e−2πiHu

( H∑
h=0

e2πihu
)2

=
H∑

h=−H

(H + 1− |h|)e2πihu. (4.12)

Now we insert this formula into (4.11) and apply the triangle inequality to get∣∣∣∣∣
∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du

∣∣∣∣∣ ≤ 1

2π

H∑∗

h=−H

(H + 1

|h|
− 1
)
|Sh|.

We observe that |S−h| = |Sh| for every h ∈ N, and so∣∣∣∣∣
∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du

∣∣∣∣∣ ≤ 1

π

H∑
h=1

(H + 1

h
− 1
)
|Sh|. (4.13)

Next we put

M = sup
u∈R
|r(u)|.

The function r is continuous from the left, has only positive jumps, and is piecewise

linear with slope −1. This implies that either r(b) = −M or r(b+ 0) = M for some

b ∈ R. We treat only the second alternative, the first one being completely similar.

For b < t ≤ b+M , the properties of the function r yield

r(t) = M + r(t)− r(b+ 0) ≥M + b− t.

Now we choose a = b + 1
2
M (see Figure 4.3). Then the inequality above with

t = b+ 1
2
M + u implies that

r(u+ a) ≥ 1

2
M − u for |u| < 1

2
M.
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This shows in particular that M ≤ 1. Consequently, we get∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du

=

(∫ M/2

−M/2

+

∫ −M/2

−1/2
+

∫ 1/2

M/2

)
r(u+ a)

sin2(H + 1)πu

sin2 πu
du

≥
∫ M/2

−M/2

(
1

2
M − u

)
sin2(H + 1)πu

sin2 πu
du

−M
∫ −M/2

−1/2

sin2(H + 1)πu

sin2 πu
du−M

∫ 1/2

M/2

sin2(H + 1)πu

sin2 πu
du.

Now we use the evenness of the function (sin2(H + 1)πu)/(sin2 πu) to obtain∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du

≥ M

∫ M/2

0

sin2(H + 1)πu

sin2 πu
du− 2M

∫ 1/2

M/2

sin2(H + 1)πu

sin2 πu
du

= M

∫ 1/2

0

sin2(H + 1)πu

sin2 πu
du− 3M

∫ 1/2

M/2

sin2(H + 1)πu

sin2 πu
du.

By applying again the evenness of the function (sin2(H + 1)πu)/(sin2 πu) as well

as (4.12), we get∫ 1/2

0

sin2(H + 1)πu

sin2 πu
du =

1

2

∫ 1/2

−1/2

sin2(H + 1)πu

sin2 πu
du =

H + 1

2
,

and so ∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du ≥ H + 1

2
M − 3M

∫ 1/2

M/2

du

sin2 πu
.

Now sin πu ≥ 2u for 0 ≤ u ≤ 1
2
, and this yields∫ 1/2

M/2

du

sin2 πu
≤
∫ 1/2

M/2

du

4u2
=

1

2M
− 1

2
.

Therefore ∫ 1/2

−1/2
r(u+ a)

sin2(H + 1)πu

sin2 πu
du ≥ H + 1

2
M − 3

2
.

By combining this with (4.13), we arrive at the bound

M ≤ 3

H + 1
+

2

π

H∑
h=1

(1

h
− 1

H + 1

)
|Sh|.
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We note that

DN(P) = sup
u,v∈R

|R(v)−R(u)| = sup
u,v∈R

|r(v)− r(u)| ≤ 2M,

and this proves the Erdős-Turán inequality. 2

For a sequence S of real numbers x1, x2, . . ., we will now often write S = (xn)∞n=1.

If the xn are in [0, 1), then for every positive integer N let D∗N(S), respectively

DN(S), be the star discrepancy, respectively discrepancy, of the first N terms

x1, . . . , xN of S. There is a simple relationship between the uniform distribution

of S and the asymptotic behavior of these discrepancies.

Theorem 4.1.14 The following properties of a sequence S of points in [0, 1) are

equivalent:

(i) S is uniformly distributed in [0, 1);

(ii) limN→∞D
∗
N(S) = 0;

(iii) limN→∞DN(S) = 0.

Proof. The properties (ii) and (iii) are equivalent since D∗N(S) ≤ DN(S) ≤ 2D∗N(S)

for every N ∈ N by Proposition 4.1.12. Thus, it remains to show that (i) and (iii)

are equivalent. The fact that (iii) implies (i) is trivial in view of Theorem 4.1.6.

Finally, suppose that (i) is satisfied, so that S = (xn)∞n=1 is uniformly distributed in

[0, 1). Then Theorem 4.1.9 yields

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all h ∈ N.

Now we fix an integer H ≥ 1 and we let N →∞ in the Erdős-Turán inequality (see

Theorem 4.1.13). This yields

0 ≤ lim inf
N→∞

DN(S) ≤ lim sup
N→∞

DN(S) ≤ 6

H + 1
.

Since H can be arbitrarily large, we infer that limN→∞DN(S) = 0. 2

We continue with some simple observations about the star discrepancy which is

the main tool for obtaining error bounds in (4.2).

Lemma 4.1.15 Let P1 be the point set consisting of x1, . . . , xN ∈ [0, 1) and let P2

be the point set consisting of y1, . . . , yN ∈ [0, 1). Suppose that for some ε > 0 the

inequality |xn − yn| ≤ ε holds for 1 ≤ n ≤ N . Then

|D∗N(P1)−D∗N(P2)| ≤ ε.
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Proof. Consider any interval J = [0, u) ⊆ [0, 1). Whenever yn ∈ J , then xn ∈ J1 :=

[0,min(u+ ε, 1)); hence

A(J ;P2)

N
− λ(J) ≤ A(J1;P1)

N
− λ(J1) + ε ≤ D∗N(P1) + ε.

Whenever xn ∈ J2 := [0,max(u− ε, 0)), then yn ∈ J ; hence

A(J ;P2)

N
− λ(J) ≥ A(J2;P1)

N
− λ(J2)− ε ≥ −D∗N(P1)− ε.

Thus D∗N(P2) ≤ D∗N(P1) + ε. By interchanging the roles of P1 and P2, we obtain

D∗N(P1) ≤ D∗N(P2) + ε, and so |D∗N(P1)−D∗N(P2)| ≤ ε. 2

The following is a nice explicit formula for the star discrepancy. Since the star

discrepancy of a point set does not depend on the order in which the points of the

point set are listed, we can arrange them in nondecreasing order.

Proposition 4.1.16 Let P be the point set consisting of x1, . . . , xN ∈ [0, 1) and

suppose that x1 ≤ x2 ≤ · · · ≤ xN . Then

D∗N(P) =
1

2N
+ max

1≤n≤N

∣∣∣xn − 2n− 1

2N

∣∣∣.
Proof. Since D∗N(P) is a continuous function of x1, . . . , xN by Lemma 4.1.15, we can

assume that 0 < x1 < x2 < · · · < xN < 1. Put x0 = 0 and xN+1 = 1. Then simple

considerations show that

D∗N(P) = max
0≤n≤N

sup
xn<u≤xn+1

∣∣∣A([0, u);P)

N
− u
∣∣∣

= max
0≤n≤N

sup
xn<u≤xn+1

∣∣∣ n
N
− u
∣∣∣

= max
0≤n≤N

max
(∣∣∣ n
N
− xn

∣∣∣, ∣∣∣ n
N
− xn+1

∣∣∣)
= max

1≤n≤N
max

(∣∣∣ n
N
− xn

∣∣∣, ∣∣∣n− 1

N
− xn

∣∣∣).
Now

max
(∣∣∣ n
N
− xn

∣∣∣, ∣∣∣n− 1

N
− xn

∣∣∣) =
1

2N
+
∣∣∣xn − 2n− 1

2N

∣∣∣ for 1 ≤ n ≤ N,

and this yields the desired formula for D∗N(P). 2

Corollary 4.1.17 Every point set P consisting of N points in [0, 1) satisfies

D∗N(P) ≥ 1

2N
.
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Proof. This follows immediately from Proposition 4.1.16. 2

Remark 4.1.18 The formula for D∗N(P) in Proposition 4.1.16 implies also that

D∗N(P) = 1
2N

if and only if the points x1, . . . , xN form a permutation of the points
1
2N
, 3
2N
, . . . , 2N−1

2N
. It is of interest to observe that the latter points are exactly the

nodes of the midpoint rule with N nodes.

By using a different approach, we can prove a lower bound on DN(P) as well,

and thus we get the following companion result to Corollary 4.1.17.

Proposition 4.1.19 Every point set P consisting of N points in [0, 1) satisfies

DN(P) ≥ 1

N
.

Proof. Let x ∈ [0, 1) be any point of P . We choose ε > 0 and consider the half-open

interval J = [x− ε, x+ ε) ∩ [0, 1). Since x ∈ J , we get

A(J ;P)

N
− λ(J) ≥ 1

N
− λ(J) ≥ 1

N
− 2ε,

and so DN(P) ≥ 1
N
− 2ε. The desired bound is obtained by letting ε→ 0+. 2

Example 4.1.20 For the point set P in Remark 4.1.18 consisting of 1
2N
, 3
2N
, . . . , 2N−1

2N
,

we obtain DN(P) ≤ 2D∗N(P) = 1
N

, and so DN(P) = 1
N

by Proposition 4.1.19. There

are further examples of N points in [0, 1) with discrepancy 1
N

, for instance, the

equidistant points 0, 1
N
, . . . , N−1

N
.

We now return to the general form of an equal-weight rule for [0, 1] which, ac-

cording to (4.2), provides the approximation∫ 1

0

f(u)du ≈ 1

N

N∑
n=1

f(xn)

with nodes x1, . . . , xN ∈ [0, 1]. This numerical integration scheme is also called

quasi-Monte Carlo integration since it is a simple instance of a quasi-Monte Carlo

method , that is, a deterministic version of a Monte Carlo method (see Subsection

4.1.2). Error bounds for quasi-Monte Carlo integration can be given in terms of

the star discrepancy of the nodes. Historically the first such error bound is the

following inequality of Koksma [84] for integrands of bounded variation. Recall that

for a real-valued function f on [0, 1], its variation V (f) is defined to be

V (f) = sup
m−1∑
i=0

|f(yi+1)− f(yi)|,

where the supremum is extended over all real numbers 0 = y0 < y1 < · · · < ym = 1

with an arbitrary m ∈ N, and f has bounded variation if V (f) <∞.
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Theorem 4.1.21 (Koksma Inequality) If the real-valued function f has bounded

variation V (f) on [0, 1] and x1, . . . , xN ∈ [0, 1) are arbitrary, then∣∣∣∣∣
∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ V (f)D∗N(P),

where D∗N(P) is the star discrepancy of the point set P consisting of x1, . . . , xN .

Proof. We can assume that x1 ≤ x2 ≤ · · · ≤ xN . Put x0 = 0 and xN+1 = 1. Using

integration by parts and summation by parts, we obtain∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn) = −
∫ 1

0

udf(u) +
N∑
n=0

n

N
(f(xn+1)− f(xn))

=
N∑
n=0

∫ xn+1

xn

( n
N
− u
)
df(u).

For fixed n with 0 ≤ n ≤ N , we get∣∣∣ n
N
− u
∣∣∣ ≤ max

(∣∣∣xn − n

N

∣∣∣, ∣∣∣xn+1 −
n

N

∣∣∣) ≤ D∗N(P) for xn ≤ u ≤ xn+1

by Proposition 4.1.16, and so the desired inequality follows. 2

Remark 4.1.22 If f has a continuous first derivative f ′ on [0, 1], then we can use

df(u) = f ′(u)du in the proof of Theorem 4.1.21. Then the proof can be written in

terms of ordinary Riemann integrals, namely∣∣∣∣∣
∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤
N∑
n=0

∣∣∣∣∫ xn+1

xn

( n
N
− u
)
f ′(u)du

∣∣∣∣
≤

N∑
n=0

D∗N(P)

∫ xn+1

xn

|f ′(u)|du = D∗N(P)

∫ 1

0

|f ′(u)|du.

Now
∫ 1

0
|f ′(u)|du = V (f) under the given condition on f , and so we obtain the same

bound as in Theorem 4.1.21.

Remark 4.1.23 If S = (xn)∞n=1 is a uniformly distributed sequence in [0, 1) and

PN is the point set consisting of the first N terms x1, . . . , xN of S, then D∗N(PN) =

D∗N(S)→ 0 as N →∞ by Theorem 4.1.14. Hence the error bound V (f)D∗N(PN) in

Theorem 4.1.21 also tends to 0 as N →∞.

Continuous functions need not be of bounded variation; for instance, the function

f with f(u) = u sin(1/u) for 0 < u ≤ 1 and f(0) = 0 is continuous on [0, 1], but not

of bounded variation on [0, 1]. Therefore it is of interest to establish also an error
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bound for quasi-Monte Carlo integration with continuous integrands. Such an error

bound was shown in [124] and it uses the modulus of continuity of the integrand.

For a real-valued continuous function f on [0, 1], its modulus of continuity is defined

by

M(f ; t) = sup
u,v∈[0,1]
|u−v|≤t

|f(u)− f(v)| for all t ≥ 0.

Theorem 4.1.24 If f is a real-valued continuous function on [0, 1] and x1, . . . , xN ∈
[0, 1) are arbitrary, then∣∣∣∣∣

∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤M(f ;D∗N(P)),

where D∗N(P) is the star discrepancy of the point set P consisting of the points

x1, . . . , xN .

Proof. We can assume that x1 ≤ x2 ≤ · · · ≤ xN . The mean-value theorem for

integrals allows us to write∫ 1

0

f(u)du =
N∑
n=1

∫ n/N

(n−1)/N
f(u)du =

1

N

N∑
n=1

f(ξn)

with (n− 1)/N ≤ ξn ≤ n/N for 1 ≤ n ≤ N . Therefore∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn) =
1

N

N∑
n=1

(f(ξn)− f(xn)).

For every n with 1 ≤ n ≤ N , we obtain

|ξn − xn| ≤ max
(∣∣∣xn − n− 1

N

∣∣∣, ∣∣∣xn − n

N

∣∣∣) ≤ D∗N(P)

by Proposition 4.1.16, and so∣∣∣∣∣
∫ 1

0

f(u)du− 1

N

N∑
n=1

f(xn)

∣∣∣∣∣ ≤ 1

N

N∑
n=1

|f(ξn)− f(xn)| ≤M(f ;D∗N(P))

as desired. 2

Remark 4.1.25 Every real-valued continuous function f on the compact interval

[0, 1] is uniformly continuous, and so its modulus of continuity satisfies M(f ; t)→ 0

as t→ 0+. Therefore in the situation considered in Remark 4.1.23, the error bound

M(f ;D∗N(PN)) in Theorem 4.1.24 tends to 0 as N →∞.
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4.1.2 The multidimensional case

Numerical integration in the one-dimensional case is considered essentially a solved

problem since classical numerical integration rules do a good job for most of the

one-dimensional integrals arising in practice. The greater challenge in numerical in-

tegration is the multidimensional case, particularly if the dimension is high. There

are important practical applications where the dimension of the integral to be com-

puted goes into the hundreds or even thousands, with computational finance perhaps

being the area that produces the greatest number of high-dimensional numerical in-

tegration problems. The main task of computational finance is the calculation of

the monetary values of sophisticated financial instruments such as stock options. A

coverage of computational finance is beyond the scope of this book; we refer instead

to the comprehensive treatise by Glasserman [55].

We standardize the multidimensional numerical integration problem by consid-

ering, for a given dimension s ≥ 2, a definite integral
∫
[0,1]s

f(u)du over the s-

dimensional unit cube [0, 1]s with integration variable u = (u1, . . . , us). The classi-

cal approach to this multidimensional numerical integration problem uses Cartesian

products of one-dimensional integration rules. In such multidimensional integra-

tion rules, the node set is a Cartesian product of one-dimensional node sets and

the weights are products of corresponding weights taken from the one-dimensional

rules. These multidimensional integration rules are obtained by viewing the given

s-dimensional integral∫
[0,1]s

f(u)du =

∫ 1

0

· · ·
∫ 1

0

f(u1, . . . , us)du1 · · · dus

as an iteration of one-dimensional integrals and by applying a one-dimensional in-

tegration rule in each iteration.

We illustrate this procedure with the s-fold Cartesian product of the midpoint

rule (4.3). If we apply the midpoint rule with m ≥ 1 nodes, then the s-fold Cartesian

product attains the form∫
[0,1]s

f(u)du ≈ 1

ms

m∑
k1=1

· · ·
m∑

ks=1

f
(2k1 − 1

2m
, . . . ,

2ks − 1

2m

)
. (4.14)

The total number of nodes in (4.14) is N = ms. From the error bound for the

midpoint rule in (4.4) it follows easily that the error in (4.14) is O(m−2), provided

that the partial derivatives ∂2f/∂u2i are continuous on [0, 1]s for 1 ≤ i ≤ s. In

order to see that the error in (4.14) need not, in general, be smaller than the one-

dimensional integration error, it suffices to apply (4.14) with a function f on [0, 1]s

that depends on only one variable, in which case (4.14) reduces to (4.3).

In terms of the total number N = ms of nodes in (4.14), the error bound O(m−2)

in (4.14) is in fact O(N−2/s). With increasing dimension s, the utility of the error
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bound O(N−2/s) declines drastically. Specifically, in order to guarantee a prescribed

level of accuracy, say an error that is in absolute value at most 10−2, we must use

roughly 10s nodes. Therefore the required number of nodes increases exponentially

with the dimension s, so that even for moderately large s the computation may

become infeasible. This phenomenon is often called the curse of dimensionality .

The curse of dimensionality manifests itself in an analogous way for the Cartesian

product of any one-dimensional integration rule. For an s-fold Cartesian product,

the order of magnitude of the error bound, in terms of the total number of nodes, is

the sth root of the order of magnitude of the error bound for the one-dimensional

integration rule.

A technique to overcome the curse of dimensionality is the Monte Carlo method .

Just to be sure, this is not a foolproof scheme to win at roulette in Monte Carlo,

but a numerical method based on random sampling. The Monte Carlo method has

a fascinating history which goes back at least to the 1940s and involves famous

mathematicians like John von Neumann and Stanislaw Ulam; see [60, Section 1.2]

for a brief history of the Monte Carlo method and [42] for an account of the work of

von Neumann and Ulam on the Monte Carlo method at the Los Alamos Scientific

Laboratory. Since the Monte Carlo method was developed in the United States, it

could just as well have been called the Las Vegas method, but several of the co-

inventors of the method were of European origin (for instance, von Neumann came

from Hungary and Ulam from Poland) and they preferred Monte Carlo to Las Vegas.

The Monte Carlo method is a widely applicable computational tool, but we

consider it only in the context of numerical integration. Informative textbooks on

the general Monte Carlo method are Fishman [51] and Kalos and Whitlock [76] (and

also [119] if you know German), while Glasserman [55], Lemieux [97], and Leobacher

and Pillichshammer [98] discuss applications to computational finance.

In the Monte Carlo method for the numerical integration of our standard s-

dimensional integral
∫
[0,1]s

f(u)du, we use the Monte Carlo estimate∫
[0,1]s

f(u)du ≈ 1

N

N∑
n=1

f(xn), (4.15)

where x1, . . . ,xN are independent and uniformly distributed random samples from

[0, 1]s (in the sense of statistics). In the language of statistics, if f is Riemann-

integrable (or even only Lebesgue-integrable) on [0, 1]s, then the left-hand side

of (4.15) is the expected value of f as a random variable and the right-hand side

of (4.15) is the sample average. Approximating an expected value by a sample aver-

age as in (4.15) is a plausible principle in statistics, supported by what statisticians

call the law of large numbers. This law was poetically expressed by the writer Tom

Stoppard in his play Rosencrantz and Guildenstern Are Dead : “[This law] related

the fortuitous and the ordained into a reassuring union which we recognized as

nature. The sun came up about as often as it went down, in the long run.”
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It should be evident that the error analysis for the Monte Carlo estimate will, due

to its statistical nature, proceed by statistical and probabilistic arguments. Since

statistics and probability theory are not prerequisites for this book, we state the

results of the error analysis informally and without proof (see the textbooks on the

Monte Carlo method mentioned above for rigorous statements and proofs). First of

all, if f is (Lebesgue-)integrable, then with probability 1 we get the limit relation

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(u)du,

that is, the Monte Carlo method converges. If not only f , but also f 2 is integrable,

then with positive probability the error bound∫
[0,1]s

f(u)du− 1

N

N∑
n=1

f(xn) = O(N−1/2) (4.16)

is valid, and we can push the probability as close to 1 as we want if we choose the

implied constant on the right-hand side of (4.16) sufficiently large. The remarkable

feature of the order of magnitude N−1/2 of the error bound in (4.16) is that it does

not depend on the dimension s. Consequently, the Monte Carlo method allows us

to beat the curse of dimensionality.

The number-theoretic approach to multidimensional numerical integration pro-

ceeds, as in the one-dimensional case described in Subsection 4.1.1, by the theory

of uniform distribution of sequences. Let us start the ball rolling by generalizing

Definition 4.1.3 to the multidimensional case.

Definition 4.1.26 A sequence x1,x2, . . . of points in the half-open s-dimensional

unit cube [0, 1)s is uniformly distributed (in [0, 1)s) if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(u)du

for every real-valued Riemann-integrable function f on [0, 1]s.

The criteria for uniform distribution in [0, 1) established in Subsection 4.1.1 can

be extended to the multidimensional case in a straightforward manner (see [41,

Subsection 1.1.1] and [91, Section 1.6] for the details). For a subinterval J of [0, 1]s,

we write cJ for the characteristic function of J , that is, cJ(u) = 1 if u ∈ J and

cJ(u) = 0 if u ∈ [0, 1]s \ J . Let λs(J) denote the s-dimensional volume of J (if

you are familiar with the Lebesgue measure, then you may also think of λs as the

s-dimensional Lebesgue measure).



202 CHAPTER 4. QUASI-MONTE CARLO METHODS

Theorem 4.1.27 A sequence x1,x2, . . . of points in [0, 1)s is uniformly distributed

in [0, 1)s if and only if

lim
N→∞

1

N

N∑
n=1

cJ(xn) = λs(J)

for every subinterval J of [0, 1]s.

Theorem 4.1.28 A sequence x1,x2, . . . of points in [0, 1)s is uniformly distributed

in [0, 1)s if and only if

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(u)du

for every real-valued continuous function f on [0, 1]s.

For a point x = (x1, . . . , xs) ∈ Rs, the fractional part {x} is defined by

{x} = ({x1}, . . . , {xs}) ∈ [0, 1)s,

where {x} = x − bxc denotes as in Subsection 4.1.1 the fractional part of the real

number x.

Definition 4.1.29 A sequence x1,x2, . . . of points in Rs is uniformly distributed

modulo 1 in Rs if the sequence {x1}, {x2}, . . . of fractional parts is uniformly dis-

tributed in [0, 1)s.

The Weyl criterion in Theorem 4.1.9 can also be generalized to the multidimen-

sional case (see [41, Theorem 1.19] and [91, Section 1.6] for the details). For points

x = (x1, . . . , xs) and y = (y1, . . . , ys) in Rs, we write

x · y = x1y1 + · · ·+ xsys

for the dot product (or standard inner product) on Rs. It is again convenient to

abbreviate a sequence x1,x2, . . . of points in Rs by (xn)∞n=1.

Theorem 4.1.30 (Weyl Criterion in Rs) A sequence (xn)∞n=1 of points in Rs is

uniformly distributed modulo 1 in Rs if and only if

lim
N→∞

1

N

N∑
n=1

e2πih·xn = 0

for every lattice point h ∈ Zs with h 6= 0.

Corollary 4.1.31 A sequence (xn)∞n=1 of points in Rs is uniformly distributed mod-

ulo 1 in Rs if and only if, for every lattice point h ∈ Zs with h 6= 0, the sequence

(h · xn)∞n=1 of dot products is uniformly distributed modulo 1.
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Proof. This follows immediately from Theorems 4.1.30 and 4.1.9. 2

We use Corollary 4.1.31 to prove the following multidimensional version of The-

orem 4.1.10.

Theorem 4.1.32 For α = (α1, . . . , αs) ∈ Rs, the sequence (nα)∞n=1 of multiples of

α is uniformly distributed modulo 1 in Rs if and only if the real numbers 1, α1, . . . , αs
are linearly independent over the field Q of rational numbers.

Proof. Put xn = nα for n = 1, 2, . . . . Suppose first that 1, α1, . . . , αs are linearly

independent over Q. For every h ∈ Zs with h 6= 0, we obtain h · xn = h · (nα) =

n(h · α) for all n ≥ 1. By the given linear independence property, h · α is an

irrational number, and so the sequence (h · xn)∞n=1 is uniformly distributed modulo

1 by Theorem 4.1.10. It follows therefore from Corollary 4.1.31 that the sequence

(xn)∞n=1 is uniformly distributed modulo 1 in Rs.

Now suppose that 1, α1, . . . , αs are linearly dependent over Q, say

r1α1 + · · ·+ rsαs = r

with r1, . . . , rs, r ∈ Q and at least one ri, 1 ≤ i ≤ s, different from 0. By clearing the

denominators of r1, . . . , rs, we deduce that h0 ·α ∈ Q for some h0 ∈ Zs with h0 6= 0.

From h0 · xn = h0 · (nα) = n(h0 ·α) for all n ≥ 1 and Theorem 4.1.10 we infer that

the sequence (h0 · xn)∞n=1 is not uniformly distributed modulo 1, and so Corollary

4.1.31 shows that the sequence (xn)∞n=1 is not uniformly distributed modulo 1 in Rs.

2

For α = (α1, . . . , αs) ∈ Rs with 1, α1, . . . , αs linearly independent over Q, the se-

quence ({nα})∞n=1 of fractional parts is called an s-dimensional Kronecker sequence.

Example 4.1.33 For a given dimension s ≥ 1, let g be an irreducible polynomial

over Q of degree s + 1 which has a real root α. Then for α = (α1, . . . , αs) ∈ Rs

with αi = αi for 1 ≤ i ≤ s, the irreducibility of g over Q implies immediately that

1, α1, . . . , αs are linearly independent over Q. Therefore the sequence (nα)∞n=1 is

uniformly distributed modulo 1 in Rs by Theorem 4.1.32 and the sequence ({nα})∞n=1

of fractional parts is an s-dimensional Kronecker sequence.

Example 4.1.34 Recall that an integer m ≥ 2 is called squarefree if it is a product

of distinct prime numbers. Now, for a given integer s ≥ 2, we choose squarefree

integers m1, . . . ,ms that are pairwise coprime. We claim that 1,
√
m1, . . . ,

√
ms are

linearly independent over Q. We show even more, namely that

√
mi /∈ Q(

√
m1, . . . ,

√
mi−1) for 1 ≤ i ≤ s, (4.17)



204 CHAPTER 4. QUASI-MONTE CARLO METHODS

where Q(
√
m1, . . . ,

√
mi−1) is the smallest subfield of R containing Q,√m1, . . . ,

√
mi−1

(compare with Subsection 1.4.3). We proceed by induction on i. For i = 1 we

have to verify that
√
mi =

√
m1 /∈ Q(

√
m1, . . . ,

√
mi−1) = Q, but this is a triv-

ial fact. Suppose that we have proved (4.17) for some i with 1 ≤ i ≤ s − 1 and

any pairwise coprime squarefree integers m1, . . . ,mi. Now we consider i + 1 and

we assume, on the contrary, that
√
mi+1 ∈ Q(

√
m1, . . . ,

√
mi) = F (

√
mi) with

F being the field Q(
√
m1, . . . ,

√
mi−1). Then we can write

√
mi+1 = θ1 + θ2

√
mi

with θ1, θ2 ∈ F . If we had θ1 = 0, then
√
mi+1mi = θ2mi ∈ F , a contradiction

to the induction hypothesis (4.17) applied with the squarefree integer mi+1mi in-

stead of mi. If we had θ2 = 0, then
√
mi+1 = θ1 ∈ F , again a contradiction

to (4.17). Thus θ1θ2 6= 0, and so by squaring the identity
√
mi+1 = θ1 + θ2

√
mi we

obtain
√
mi = (2θ1θ2)

−1(mi+1 − θ21 − θ22mi) ∈ F , another contradiction to (4.17).

The proof of (4.17) by induction is now complete. As we have already observed,

this implies that 1,
√
m1, . . . ,

√
ms are linearly independent over Q. With α =

(
√
m1, . . . ,

√
ms) ∈ Rs, the sequence (nα)∞n=1 is uniformly distributed modulo 1

in Rs by Theorem 4.1.32 and the sequence ({nα})∞n=1 of fractional parts is an s-

dimensional Kronecker sequence. The special case where m1, . . . ,ms are distinct

prime numbers is often considered in practice.

We have seen in Subsection 4.1.1 that the (star) discrepancy plays a crucial

role in error bounds for one-dimensional quasi-Monte Carlo integration. The same

holds true in the multidimensional case. For a point set P consisting of N points

x1, . . . ,xN in [0, 1)s and every subinterval J of [0, 1]s, we write

A(J ;P) =
N∑
n=1

cJ(xn),

that is, A(J ;P) is the number of integers n with 1 ≤ n ≤ N for which xn ∈ J .

Definition 4.1.35 For a point set P consisting of N points in [0, 1)s, the (extreme)

discrepancy DN(P) of P is defined by

DN(P) = sup
J

∣∣∣A(J ;P)

N
− λs(J)

∣∣∣, (4.18)

where the supremum is extended over all intervals J =
∏s

i=1[yi, zi) with 0 ≤ yi <

zi ≤ 1 for 1 ≤ i ≤ s. If the supremum is extended only over the intervals J with

yi = 0 for 1 ≤ i ≤ s, then we obtain the star discrepancy D∗N(P) of P . For an

infinite sequence S of points in [0, 1)s, we write DN(S), respectively D∗N(S), for the

discrepancy, respectively star discrepancy, of the point set consisting of the first N

terms of S.

The s-dimensional generalization of Proposition 4.1.12 says that

D∗N(P) ≤ DN(P) ≤ 2sD∗N(P)
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for every point set P consisting of N points in [0, 1)s. In analogy with Theorem

4.1.14, the following criterion for uniform distribution of sequences holds in dimen-

sion s (see [41, Theorem 1.6 and Lemma 1.7]).

Theorem 4.1.36 The following properties of a sequence S of points in [0, 1)s are

equivalent:

(i) S is uniformly distributed in [0, 1)s;

(ii) limN→∞D
∗
N(S) = 0;

(iii) limN→∞DN(S) = 0.

Remark 4.1.37 There is a simple projection principle for (star) discrepancies. For

dimensions r and s with 1 ≤ r < s, consider a projection πs,r : [0, 1)s → [0, 1)r onto

a subset of r coordinates. By using a suitable permutation of coordinates, we can

assume without loss of generality that the projection is onto the first r coordinates.

Thus, for y = (y1, . . . , ys) ∈ [0, 1)s we define

πs,r(y) = (y1, . . . , yr) ∈ [0, 1)r.

Let P be the point set comprising the points x1, . . . ,xN ∈ [0, 1)s and let P(r) be the

point set consisting of the projected points πs,r(x1), . . . , πs,r(xN) ∈ [0, 1)r. Let J (r) ⊆
[0, 1)r be an interval occurring in the definition of DN(P(r)) according to (4.18) and

put J = J (r) × [0, 1)s−r ⊆ [0, 1)s. Then for every y ∈ [0, 1)s, it is clear that

πs,r(y) ∈ J (r) if and only if y ∈ J , and so A(J (r);P(r)) = A(J ;P). It follows that∣∣∣A(J (r);P(r))

N
− λr(J (r))

∣∣∣ =
∣∣∣A(J ;P)

N
− λs(J)

∣∣∣ ≤ DN(P),

and by forming the supremum over all intervals J (r) on the left-hand side we ob-

tain DN(P(r)) ≤ DN(P). In the same way it is shown that D∗N(P(r)) ≤ D∗N(P).

In particular, every s-dimensional (star) discrepancy is bounded from below by a

corresponding one-dimensional (star) discrepancy. It follows therefore from Propo-

sition 4.1.19 that always DN(P) ≥ 1/N and from Corollary 4.1.17 that always

D∗N(P) ≥ 1/(2N).

Better lower bounds on DN(P) and D∗N(P) can be established for dimensions

s ≥ 2 by using sophisticated methods. A classical lower bound is due to Roth [176]

and it says that

DN(P) ≥ D∗N(P) ≥ csN
−1(logN)(s−1)/2 (4.19)

for every point set P of N points in [0, 1)s, where cs is a positive constant depending

only on the dimension s. In the case s = 2, the factor (logN)1/2 can be replaced by

logN according to a result of Schmidt [177], that is,

DN(P) ≥ D∗N(P) ≥ cN−1 logN (4.20)



206 CHAPTER 4. QUASI-MONTE CARLO METHODS

for every point set P of N points in [0, 1)2 with an absolute constant c > 0. Proofs of

these bounds can be found in the book of Kuipers and Niederreiter [91, Section 2.2].

Minor improvements on the exponent (s−1)/2 of logN have been obtained recently

for s ≥ 3; we refer to the book of Dick and Pillichshammer [39, Section 3.2] for a

survey of these improvements.

These results clearly imply lower bounds on the (star) discrepancy of infinite

sequences. For instance, (4.19) shows that every sequence S of points in [0, 1)s

satisfies D∗N(S) ≥ csN
−1(logN)(s−1)/2 for all N ≥ 1. However, there is a simple

trick based on the following lemma which allows us to establish a better lower

bound for infinitely many N .

Lemma 4.1.38 Let s ≥ 1 and N ≥ 1 be integers and let S = (xn)∞n=1 be a sequence

of points in [0, 1)s. Let P be the point set consisting of the N points ((n−1)/N,xn) ∈
[0, 1)s+1 for n = 1, . . . , N . Then

ND∗N(P) ≤ max
1≤M≤N

MD∗M(S) + 1.

Proof. For an arbitrary interval J ⊆ [0, 1)s+1 of the form J =
∏s+1

i=1 [0, zi), it is

obvious that ((n−1)/N,xn) ∈ J if and only if xn ∈ J ′ :=
∏s+1

i=2 [0, zi) and n < Nz1+1.

If M is the largest integer < Nz1 + 1, then A(J ;P) = A(J ′;PM), where PM is the

point set consisting of the first M terms of S. Therefore

|A(J ;P)−Nλs+1(J)| ≤ |A(J ′;PM)−Mλs(J
′)|+ |Mλs(J

′)−Nλs+1(J)|
≤ MD∗M(S) + |Mλs(J

′)−Nλs+1(J)|.

Now Nz1 ≤M < Nz1 + 1, hence

0 ≤Mλs(J
′)−Nλs+1(J) ≤ (Nz1 + 1)

s+1∏
i=2

zi −N
s+1∏
i=1

zi =
s+1∏
i=2

zi ≤ 1,

and the desired result follows. 2

Theorem 4.1.39 For every dimension s ≥ 1 there exists a constant c′s > 0, de-

pending only on s, such that every sequence S of points in [0, 1)s satisfies

DN(S) ≥ D∗N(S) ≥ c′sN
−1(logN)s/2

for infinitely many positive integers N .

Proof. By Lemma 4.1.38 and (4.19) (with s replaced by s + 1), for every integer

N ≥ 1 there exists an integer M with 1 ≤M ≤ N such that

MD∗M(S) ≥ cs(logN)s/2 − 1.
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Thus, for a suitable constant c′s with 0 < c′s < cs and for sufficiently large N we get

MD∗M(S) ≥ c′s(logN)s/2 ≥ c′s(logM)s/2.

It remains to prove that there are infinitely many values of M for which the last

lower bound on MD∗M(S) holds. Suppose there were only finitely many possible

choices for M and let M∗ be the maximal choice. Then there exists a sufficiently

large integer N with

c′s(logN)s/2 > max
1≤M≤M∗

MD∗M(S). (4.21)

For this N there exists again an integer M1 with 1 ≤M1 ≤ N such that

M1D
∗
M1

(S) ≥ c′s(logN)s/2 ≥ c′s(logM1)
s/2.

We must have M1 ≤ M∗ by the definition of M∗, and so (4.21) implies that

M1D
∗
M1

(S) < c′s(logN)s/2, which is a contradiction. 2

Theorem 4.1.40 There exists an absolute constant c′ > 0 such that every sequence

S of points in [0, 1) satisfies

DN(S) ≥ D∗N(S) ≥ c′N−1 logN

for infinitely many positive integers N .

Proof. This is shown in the same way as Theorem 4.1.39, but with the bound (4.20)

instead of (4.19). 2

To what extent are these lower bounds on the (star) discrepancy best possible?

We will see in Subsection 4.2.2 that for every dimension s ≥ 1 there is a construction

of a sequence S of points in [0, 1)s for which

D∗N(S) = O(N−1(logN)s) for all N ≥ 2, (4.22)

where the implied constant is independent of N . An s-dimensional sequence S
satisfying (4.22) is called a low-discrepancy sequence. We conclude that the lower

bound in Theorem 4.1.40 for s = 1 is best possible. For s ≥ 2 there is a gap in the

exponent of logN when one compares the lower bound in Theorem 4.1.39 and the

upper bound in (4.22). The determination of the best possible exponent of logN

for s ≥ 2 is the big open problem in discrepancy theory.

In the case s = 1 we have observed in Remark 4.1.18 that for every N ≥ 1 we

can easily construct a point set P of N points in [0, 1) that achieves the minimum

value D∗N(P) = 1/(2N) of the star discrepancy of any N points in [0, 1). For s ≥ 2
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it follows immediately from (4.22) and Lemma 4.1.38 that for every N ≥ 2 we can

construct a point set P of N points in [0, 1)s for which

D∗N(P) = O(N−1(logN)s−1) (4.23)

with an implied constant independent of N (in fact, we like a constant depending

only on s). For every s ≥ 1, a point set P consisting of N points in [0, 1)s and

satisfying (4.23) is called a low-discrepancy point set. It is clear from what has been

said above that the order of magnitude in (4.23) is best possible for s = 1 and s = 2.

For s ≥ 3 we run again into the big open problem of discrepancy theory concerning

the best possible exponent of logN , in this case the version for point sets.

We already mentioned one-dimensional quasi-Monte Carlo integration in Subsec-

tion 4.1.1. The full power of this approach is achieved in the multidimensional case

where it can outperform Cartesian products of one-dimensional integration rules and

even the Monte Carlo method. Numerical integration by means of multidimensional

quasi-Monte Carlo integration uses the approximation∫
[0,1]s

f(u)du ≈ 1

N

N∑
n=1

f(xn) (4.24)

with nodes x1, . . . ,xN ∈ [0, 1)s. This looks formally like the Monte Carlo esti-

mate (4.15), but the viewpoint is different: whereas (4.15) employs random sam-

ples x1, . . . ,xN , the approximation (4.24) works with carefully chosen deterministic

points x1, . . . ,xN . The underlying idea is that the Monte Carlo method captures

the average performance of node sets, whereas in quasi-Monte Carlo integration we

look for node sets that perform better than average. There is also a major difference

in the analysis of these numerical integration techniques: the error bounds in the

Monte Carlo method are probabilistic, whereas the error bounds for quasi-Monte

Carlo integration are deterministic and typically involve some concept of discrep-

ancy.

Quasi-Monte Carlo integration is an example of a quasi-Monte Carlo method,

that is, a deterministic version of a Monte Carlo method. Quasi-Monte Carlo meth-

ods can be applied to other computational tasks, for instance, to optimization prob-

lems (see Section 4.5). Monte Carlo methods are an invention of the 1940s, as we

already mentioned earlier, and multidimensional quasi-Monte Carlo integration was

introduced shortly thereafter in the early 1950s. Indeed, the Los Alamos technical

report of Richtmyer [168] from 1951 already coined the term “quasi-Monte Carlo

method” and it proposed s-dimensional Kronecker sequences for quasi-Monte Carlo

integration. In the one-dimensional case, the paper of Koksma [84] that established

the Koksma inequality (see Theorem 4.1.21) can be considered a precursor of this

work. Systematic research on quasi-Monte Carlo methods was begun in the Soviet

Union in the late 1950s and the first book on quasi-Monte Carlo methods, namely
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that of Korobov [87], was published there in 1963. A comprehensive account of the

work on quasi-Monte Carlo methods up to 1978 is presented in the survey article of

Niederreiter [127]. More contemporary expository treatments of quasi-Monte Carlo

methods can be found in the books of Dick and Pillichshammer [39], Leobacher and

Pillichshammer [98], and Niederreiter [134]. It is remarkable that much of the basic

research on quasi-Monte Carlo methods was carried out by number theorists.

Now we lead up to the standard error bound for multidimensional quasi-Monte

Carlo integration which formally looks like Theorem 4.1.21, but where we have to be

more careful about the definition of the variation V (f). For a real-valued function

f on [0, 1]s and a subinterval J of [0, 1]s, let ∆(f ; J) be an alternating sum of the

values of f at the vertices of J (that is, function values at adjacent vertices have

opposite signs). The variation of f on [0, 1]s in the sense of Vitali is defined by

V (s)(f) = sup
R

∑
J∈R

|∆(f ; J)|,

where the supremum is extended over all partitions R of [0, 1]s into subintervals.

This is the straightforward generalization of the definition of the variation of a

function on [0, 1]. In the multidimensional case s ≥ 2, we must take into account also

the variation of projections of f since we encounter the phenomenon that V (s)(f) = 0

if f depends on fewer than s variables. In detail, for integers 1 ≤ k ≤ s and

1 ≤ i1 < i2 < · · · < ik ≤ s, let V (k)(f ; i1, . . . , ik) be the variation in the sense of

Vitali of the restriction of f to the k-dimensional face

{(u1, . . . , us) ∈ [0, 1]s : uj = 1 for j 6= i1, . . . , ik}

of the s-dimensional unit cube [0, 1]s. Then

V (f) :=
s∑

k=1

∑
1≤i1<i2<···<ik≤s

V (k)(f ; i1, . . . , ik)

is called the variation of f on [0, 1]s in the sense of Hardy and Krause. If V (f)

is finite, then we say that f has bounded variation on [0, 1]s in the sense of Hardy

and Krause. There is a useful sufficient condition for f to have bounded variation

on [0, 1]s in the sense of Hardy and Krause, namely that the partial derivative

∂sf/∂u1 · · · ∂us exists and is continuous on [0, 1]s. For later use, we record the

convenient formula for V (f) in the two-dimensional case under this smoothness

condition, namely

V (f) =

∫ 1

0

∫ 1

0

∣∣∣∂2f(u1, u2)

∂u1∂u2

∣∣∣du1du2+

∫ 1

0

∣∣∣df(u1, 1)

du1

∣∣∣du1+

∫ 1

0

∣∣∣df(1, u2)

du2

∣∣∣du2. (4.25)

With this notion of variation, the following inequality due to Hlawka [63] is valid

in the multidimensional case (see also [91, Section 2.5] for a different proof).
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Theorem 4.1.41 (Koksma-Hlawka Inequality) If the real-valued function f has

bounded variation V (f) on [0, 1]s in the sense of Hardy and Krause and x1, . . . ,xN ∈
[0, 1)s are arbitrary, then

∣∣∣ ∫
[0,1]s

f(u)du− 1

N

N∑
n=1

f(xn)
∣∣∣ ≤ V (f)D∗N(P),

where D∗N(P) is the star discrepancy of the point set P consisting of x1, . . . ,xN .

In view of the Koksma-Hlawka inequality, the strategy in quasi-Monte Carlo in-

tegration is now evident: we have basically no control over the given integrand f ,

but we can choose the point set P so as to make the star discrepancy D∗N(P), and

therefore the bound on the integration error, as small as possible. This suggests to

choose P as a low-discrepancy point set in the sense of (4.23). Then in terms of the

number N ≥ 2 of nodes, the integration error is O(N−1(logN)s−1) for integrands of

bounded variation on [0, 1]s in the sense of Hardy and Krause, which in the asymp-

totic regime is significantly smaller than the Monte Carlo error bound O(N−1/2)

in (4.16). Thus, we can expect that the quasi-Monte Carlo method outperforms the

Monte Carlo method for many types of integrands, and this is borne out by nu-

merical experiments and practical experience. For instance, the monetary values of

various sophisticated financial instruments can be computed in real time by means

of quasi-Monte Carlo integration, whereas the Monte Carlo method would take very

much longer for this task (see Paskov and Traub [158] for a famous case study).

Would number theorists of past generations have dreamed that number theory will

one day become relevant on Wall Street?

The basic difference between the Monte Carlo method and the quasi-Monte Carlo

method can be elucidated pictorially. We compare a plot of random points in the

unit square [0, 1]2 with a plot of a low-discrepancy point set in [0, 1]2 (see Figure 4.4).

The constellation of random points exhibits clusters (that is, points coming close

together) and holes (that is, relatively large regions without points), and this is

how it should be for truly random points. On the other hand, the points of a low-

discrepancy point set avoid clusters and tend to fill the holes. Overall, random

points show a somewhat chaotic behavior and low-discrepancy point sets display a

pleasing regular pattern. Numerical integration of good quality seems to favor nodes

with an equitable and nicely structured distribution on the integration domain, and

so the quasi-Monte Carlo method is better geared to numerical integration than the

Monte Carlo method.

In practice it can be convenient to have some flexibility in the choice of the

number N of nodes. For instance, we may initially work with a moderately large

value of N and decide later to increase N in order to achieve a higher accuracy in the

computation of the given integral. From the viewpoint of efficiency, it is desirable

to be able to reuse the previously computed function values in this scenario. This
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Figure 4.4: 128 random points (left) and the 128-element Hammersley point set in

the base 2 (right)

suggests that we utilize a low-discrepancy sequence and take its first N terms as the

integration nodes whenever a value of N has been selected. In this way, N can be

increased while all data from an earlier computation with a smaller N can still be

used. There is a relatively small price to pay for this convenience, namely the factor

logN by which the discrepancy bounds (4.22) and (4.23) differ.

4.2 Classical low-discrepancy sequences

4.2.1 Kronecker sequences and continued fractions

When you read the previous section carefully, you realize that the remaining major

issue in quasi-Monte Carlo integration is the construction of low-discrepancy point

sets and sequences. In view of Lemma 4.1.38, we can focus on the construction

of low-discrepancy sequences. In the one-dimensional case, Kronecker sequences

({nα})∞n=1 are low-discrepancy sequences for certain irrational numbers α. Suitable

α can be determined by means of continued fractions, as we shall see below.

Continued fractions are a standard tool in number theory, and for the sake

of convenience we review the basic facts about the continued fraction algorithm

for irrational numbers. We start from an irrational number α = α0, and further

numbers α1, α2, . . . are obtained by the recursion

αk+1 =
1

{αk}
for k = 0, 1, . . . .

Note that all αk are irrational, hence the fractional part {αk} satisfies {αk} 6= 0,

and so the definition of αk+1 makes sense. The partial quotients of α are defined by

ak = bαkc for k = 0, 1, . . . .
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Then a0 = bαc ∈ Z and ak ∈ N for k ≥ 1. We can write

αk = ak + {αk} = ak +
1

αk+1

for k = 0, 1, . . . . (4.26)

By iterating the formula (4.26), we obtain

α = α0 = a0 +
1

α1

= a0 +
1

a1 + 1
α2

= · · · ,

and this leads to the infinite expansion

α = a0 + 1/(a1 + 1/(a2 + · · · )) =: [a0; a1, a2, . . .] (4.27)

called the continued fraction expansion of α. If for some k ≥ 0 we terminate this

expansion after the partial quotient ak, then we get the kth convergent rk ∈ Q to

α. We write rk = pk/qk with pk, qk ∈ Z and qk ≥ 1. The numerators pk and the

denominators qk can be computed by the recursions

p−2 = 0, p−1 = 1, pk = akpk−1 + pk−2 for k ≥ 0,

q−2 = 1, q−1 = 0, qk = akqk−1 + qk−2 for k ≥ 0.

Note that 1 = q0 ≤ a1 = q1 < q2 < · · · .

Lemma 4.2.1 For all integers k ≥ −1, the numerators and denominators of the

convergents to α satisfy

pk−1qk − pkqk−1 = (−1)k.

Proof. This is trivial for k = −1. Suppose that for some k ≥ 0 the identity is shown

for k − 1. Then

pk−1qk − pkqk−1 = pk−1(akqk−1 + qk−2)− (akpk−1 + pk−2)qk−1

= −(pk−2qk−1 − pk−1qk−2) = −(−1)k−1 = (−1)k,

and the induction is complete. 2

Lemma 4.2.1 implies that gcd(pk, qk) = 1 for k ≥ 0, and so pk/qk yields the

rational number rk in reduced form. We need two more facts about continued

fractions.

Lemma 4.2.2 The identity

α =
pkαk+1 + pk−1
qkαk+1 + qk−1

holds for all integers k ≥ −1.
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Proof. We proceed again by induction on k. The formula is trivial for k = −1.

Suppose that it is shown for some k ≥ −1. Then by (4.26),

α =
pkαk+1 + pk−1
qkαk+1 + qk−1

=
pk
(
ak+1 + 1

αk+2

)
+ pk−1

qk
(
ak+1 + 1

αk+2

)
+ qk−1

=
pk+1 + pk

αk+2

qk+1 + qk
αk+2

=
pk+1αk+2 + pk
qk+1αk+2 + qk

,

and so the formula holds for k + 1. 2

Lemma 4.2.3 The inequality

|α− rk| < (qkqk+1)
−1

holds for all integers k ≥ 0.

Proof. By first applying Lemma 4.2.2 and then Lemma 4.2.1, we get

α− rk =
pkαk+1 + pk−1
qkαk+1 + qk−1

− pk
qk

=
pk−1qk − pkqk−1
qk(qkαk+1 + qk−1)

=
(−1)k

qk(qkαk+1 + qk−1)
.

Using αk+1 > bαk+1c = ak+1, we immediately obtain the desired inequality. 2

Since limk→∞ qk =∞, Lemma 4.2.3 implies that limk→∞ rk = α. This justifies a

posteriori the first identity in (4.27) and the terminology “kth convergent” for rk.

We note the following simple principle pertaining to a superposition P of point

sets P1, . . . ,Pm, that is, a point set P obtained by listing in some order the points

of P1, . . . ,Pm with the correct multiplicities. In the present subsection we need this

principle only in the one-dimensional case, but it holds for any dimension.

Lemma 4.2.4 Let m ≥ 1 and s ≥ 1 be integers. For j = 1, . . . ,m, let Pj be a point

set of Nj points in [0, 1)s. Let P be the superposition of P1, . . . ,Pm which contains

N =
∑m

j=1Nj points. Then

NDN(P) ≤
m∑
j=1

NjDNj(Pj)

and also

ND∗N(P) ≤
m∑
j=1

NjD
∗
Nj

(Pj).
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Proof. Let J ⊆ [0, 1)s be an interval appearing in the supremum in (4.18). Then

A(J ;P) =
∑m

j=1A(J ;Pj) by the definition of P , and so

|A(J ;P)−Nλs(J)| =
∣∣∣ m∑
j=1

(A(J ;Pj)−Njλs(J))
∣∣∣

≤
m∑
j=1

|A(J ;Pj)−Njλs(J)| ≤
m∑
j=1

NjDNj(Pj).

Taking the supremum on the left-hand side completes the proof of the first inequal-

ity. The inequality for the star discrepancy is shown similarly. 2

We are now ready to establish a discrepancy bound for one-dimensional Kro-

necker sequences. We use the notation for continued fractions introduced above.

In particular, the positive integers ak, k = 1, 2, . . ., denote partial quotients in the

continued fraction expansion (4.27) of an irrational number α.

Theorem 4.2.5 Let α be an irrational number and let S = ({nα})∞n=1 be the corre-

sponding Kronecker sequence. Every integer N ≥ 1 can be represented in the form

N =
∑l(N)

k=0 ckqk, where l(N) is the unique nonnegative integer with ql(N) ≤ N <

ql(N)+1 and where the ck are integers with 0 ≤ ck ≤ ak+1 for 0 ≤ k ≤ l(N). Then

NDN(S) <

l(N)∑
k=0
ck≥1

(ck + 1) ≤
l(N)+1∑
k=1

ak.

Proof. Since 1 = q0 ≤ q1 < q2 < · · · , the existence and uniqueness of l(N) is

guaranteed. We can write N = cl(N)ql(N) + d with integers cl(N) ≥ 1 and 0 ≤ d <

ql(N). If we had cl(N) > al(N)+1, then

N ≥ cl(N)ql(N) ≥ al(N)+1ql(N) + ql(N) ≥ ql(N)+1,

a contradiction. Therefore cl(N) ≤ al(N)+1. If d ≥ 1, then we apply this procedure to

d instead of N and, continuing in this manner, we arrive at the desired representation

for N .

Given this representation for N , we decompose the point set P consisting of the

first N terms of S into blocks of consecutive terms, namely ck blocks of length qk for

0 ≤ k ≤ l(N). Of course, we need to consider only those k with ck ≥ 1. Take such

a block of length qk for a fixed k with ck ≥ 1; it is a point set Pk consisting of the

fractional parts {nα}, n = nk, nk + 1, . . . , nk + qk − 1, for some integer nk ≥ 1. Let

pk/qk be the kth convergent to α. Then on account of Lemma 4.2.3 we can write

α =
pk
qk

+
δk

qkqk+1

with |δk| < 1.
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Thus, if n = nk + j, j = 0, 1, . . . , qk − 1, as above, then

{nα} =
{jpk
qk

+ nkα +
jδk

qkqk+1

}
.

Since gcd(pk, qk) = 1, the fractional parts {jpk/qk + nkα}, j = 0, 1, . . . , qk − 1,

form a point set Qk of qk equidistant points in [0, 1) with distance 1/qk, and so

Dqk(Qk) = 1/qk. Because∣∣∣ jδk
qkqk+1

∣∣∣ < 1

qk+1

for j = 0, 1, . . . , qk − 1,

the point set Pk is obtained by displacing modulo 1 the points of Qk in one direction

(which depends on the sign of δk) by distances < 1/qk+1. Therefore

Dqk(Pk) <
1

qk
+

1

qk+1

.

From Lemma 4.2.4 and the way in which we decomposed P , we obtain

NDN(S) = NDN(P) <

l(N)∑
k=0
ck≥1

ck

(
1 +

qk
qk+1

)
≤

l(N)∑
k=0
ck≥1

(
ck +

ak+1qk
qk+1

)
≤

l(N)∑
k=0
ck≥1

(ck + 1),

which is the first bound for NDN(S) in the theorem.

If c0 ≥ 1, then in the last step of the algorithm at the beginning of the proof we

have d = c1q1 + c0 with 1 ≤ c0 < q1, and so c0 + 1 ≤ q1 = a1. If ck = ak+1 for some

k ≥ 1, then we claim that ck−1 = 0. Indeed, if qk ≤ d < qk+1 and d = ckqk + d1 with

ck = ak+1, then

d1 = d− ckqk = d− ak+1qk < qk+1 − ak+1qk = qk−1,

and so ck−1 = 0. Using these properties of the ck, we deduce the second bound for

NDN(S) in the theorem from the first bound. 2

The order of magnitude of the discrepancy bound in Theorem 4.2.5 depends on

the size of the partial quotients of α. A particularly attractive case occurs if α has

bounded partial quotients, which means that the partial quotients of α are uniformly

bounded.

Theorem 4.2.6 Let α be an irrational number for which there exists a positive

integer K such that the partial quotients ak of α satisfy ak ≤ K for all k ≥ 1.

Then the corresponding Kronecker sequence S = ({nα})∞n=1 satisfies the discrepancy

bound

DN(S) < G(K)N−1 log(N + 1) for all N ≥ 1,

where G(K) = (K + 1)/ log(K + 1) for K 6= 2 and G(2) = 2/ log 2.
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Proof. In view of Theorem 4.2.5, it suffices to show that

s(N) :=

l(N)∑
k=0
ck≥1

(ck + 1) ≤ G(K) log(N + 1) for all N ≥ 1. (4.28)

Here s(N) is well defined if we use the coefficients ck produced by the algorithm at

the beginning of the proof of Theorem 4.2.5. We formally put s(0) = 0.

We establish (4.28) by induction on the value of l(N). If q0 < q1, then the least

possible value of l(N) is 0 and a corresponding N satisfies 1 ≤ N < q1 = a1 ≤ K.

If q0 = q1 = 1, then the least possible value of l(N) is 1 and a corresponding N

satisfies 1 ≤ N ≤ q2 − 1 = a2 ≤ K. Since s(N) = N + 1 for these N , it suffices to

verify for the first step in the induction that

N + 1 ≤ G(K) log(N + 1) for 1 ≤ N ≤ K. (4.29)

But this follows from the fact that G(K) = max1≤u≤K (u+ 1)/ log(u+ 1).

Now we consider an arbitrary l with ql > 1 and a corresponding N with l(N) = l,

hence with ql ≤ N < ql+1. We write N = clql + d with 0 ≤ d < ql. Then

s(N) = cl + 1 + s(d), and the induction hypothesis yields

s(N) ≤ cl + 1 +G(K) log(d+ 1),

which holds also for d = 0. Now N + 1 = clql + d + 1 ≥ (cl + 1)(d + 1) and

1 ≤ cl ≤ al+1 ≤ K. Thus by (4.29),

s(N) ≤ G(K) log(cl + 1) +G(K) log(d+ 1) ≤ G(K) log(N + 1)

and (4.28) is shown by induction. 2

Example 4.2.7 A famous example of an irrational number with bounded partial

quotients is α = (
√

5 − 1)/2 = 0.618 . . ., or one may also take the golden ratio

α+ 1 = (
√

5 + 1)/2. Note that α satisfies α2 + α = 1. Here a0 = bαc = 0. Next we

get α1 = α−1 = α+1, and so {α1} = α. Therefore in the next step α2 = α−1 = α+1

and {α2} = α. Hence it is clear that αk = α + 1 and ak = bαkc = 1 for all k ≥ 1.

Thus, α has the periodic continued fraction expansion

α = [0; 1, 1, 1, . . .].

The Kronecker sequence S = ({nα})∞n=1 = ({n(
√

5− 1)/2})∞n=1 is a low-discrepancy

sequence with

DN(S) <
2

log 2
N−1 log(N + 1) for all N ≥ 1
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by Theorem 4.2.6. More generally, if β is any quadratic irrational, then β has a

periodic continued fraction expansion according to a classical theorem of Lagrange

(see [172, Section III.1] for two different proofs of this result), and so β has bounded

partial quotients. Therefore ({nβ})∞n=1 is also a low-discrepancy sequence. If you

want to learn more about the beautiful theory of continued fractions, we refer again

to the book of Rockett and Szűsz [172].

In the multidimensional case, the theory of Kronecker sequences is much less sat-

isfactory. There is of course the criterion in Theorem 4.1.32 for Kronecker sequences,

but it is much harder to get strong discrepancy bounds for multidimensional Kro-

necker sequences, mainly because it is not known how to design a multidimensional

continued fraction algorithm that is every bit as good as the one-dimensional con-

tinued fraction algorithm. A probabilistic result due to Beck [9] says the following:

for a given dimension s ≥ 1, pick a point α at random from the probability space

[0, 1]s supplied with the s-dimensional Lebesgue measure; then with probability 1

the sequence S(α) := ({nα})∞n=1 is a Kronecker sequence and for every ε > 0 its

discrepancy satisfies

DN(S(α)) = O(N−1(logN)s(log logN)1+ε) for all N ≥ 3,

where the implied constant depends only on ε and α. Thus with probability 1,

Kronecker sequences are “almost” low-discrepancy sequences in the sense of (4.22).

However, for s ≥ 2 not a single explicit α is known for which the above discrepancy

bound for S(α) holds. There is a weaker deterministic result for an interesting

family of Kronecker sequences: if α = (α1, . . . , αs) ∈ Rs with algebraic numbers

α1, . . . , αs such that 1, α1, . . . , αs are linearly independent over Q, then for every

ε > 0 the discrepancy bound DN(S(α)) = O(N−1+ε) holds for all N ≥ 1, where

the implied constant depends only on ε and α (see [124]). This discrepancy bound

applies, for instance, to the points α constructed in Examples 4.1.33 and 4.1.34.

4.2.2 Halton sequences

Historically the first construction of low-discrepancy sequences for arbitrary dimen-

sions was devised by Halton [58] in 1960 and it is based on elementary number

theory. For an integer b ≥ 2, we again write Zb = {0, 1, . . . , b − 1} for the least

residue system modulo b. Every integer n ≥ 0 has a unique digit expansion

n =
∞∑
j=0

zj(n)bj (4.30)

in base b, where zj(n) ∈ Zb for all j ≥ 0 and zj(n) = 0 for all sufficiently large j.

The radical-inverse function φb in base b is defined by

φb(n) =
∞∑
j=0

zj(n)b−j−1 ∈ [0, 1) for n = 0, 1, . . . .
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Since the set of nonnegative integers is the natural domain of radical-inverse func-

tions, it is reasonable to commence the enumeration of the terms of sequences derived

from radical-inverse functions with the index n = 0.

Definition 4.2.8 For a dimension s ≥ 1 and integers b1, . . . , bs ≥ 2 that are pair-

wise coprime if s ≥ 2, the Halton sequence in the bases b1, . . . , bs is the sequence

(xn)∞n=0 with

xn = (φb1(n), . . . , φbs(n)) ∈ [0, 1)s for n = 0, 1, . . . .

Remark 4.2.9 In the case s = 1 and with b1 = b, the sequence (φb(n))∞n=0 is

called the van der Corput sequence in base b. This one-dimensional low-discrepancy

sequence was already introduced, at least for the base b = 2, by van der Corput [28]

in 1935.

Example 4.2.10 We compute the first eight terms of the van der Corput sequence

(φ2(n))∞n=0 in base 2. In the table below, we first list n in its decimal form, then n

in binary, then φ2(n) in binary, and finally φ2(n) as a rational number in reduced

form.

n 0 1 2 3 4 5 6 7

binary n 000 001 010 011 100 101 110 111

binary φ2(n) 0.000 0.100 0.010 0.110 0.001 0.101 0.011 0.111

φ2(n) 0 1
2

1
4

3
4

1
8

5
8

3
8

7
8

For the proof of the property that every Halton sequence is a low-discrepancy

sequence (see Theorem 4.2.14 below), we need several auxiliary results.

Lemma 4.2.11 Let b ≥ 2 and n ≥ 0 be integers and let v and f be positive integers

with v ≤ bf . Then φb(n) ∈ [0, vb−f ) if and only if n ∈ ∪hk=1Qk, where 1 ≤ h ≤ bf ,

each Qk is a residue class in Z with modulus mk, the residue classes Q1, . . . , Qh are

disjoint and independent of n, and
∑h

k=1m
−1
k = vb−f .

Proof. We write (v − 1)b−f =
∑f−1

j=0 djb
−j−1 with dj ∈ Zb for 0 ≤ j ≤ f − 1. Then

φb(n) ∈ [0, vb−f ) if and only if

f−1∑
j=0

zj(n)b−j−1 ≤
f−1∑
j=0

djb
−j−1,

with the notation in (4.30). This condition holds if and only if one of the following

f mutually exclusive conditions is satisfied: (C1) z0(n) ≤ d0 − 1; (C2) z0(n) = d0
and z1(n) ≤ d1 − 1; (C3) z0(n) = d0, z1(n) = d1, and z2(n) ≤ d2 − 1;. . .; (Cf )

z0(n) = d0, . . . , zf−2(n) = df−2, and zf−1(n) ≤ df−1. These conditions can be
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translated into the following congruence conditions on n: (C′1) n ≡ g0 (mod b) for

some 0 ≤ g0 ≤ d0 − 1; (C′2) n ≡ d0 + g1b (mod b2) for some 0 ≤ g1 ≤ d1 − 1; (C′3)

n ≡ d0 + d1b+ g2b
2 (mod b3) for some 0 ≤ g2 ≤ d2− 1;. . .; (C′f ) n ≡ d0 + d1b+ · · ·+

df−2b
f−2 + gf−1b

f−1 (mod bf ) for some 0 ≤ gf−1 ≤ df−1. This yields disjoint residue

classes Q1, . . . , Qh in which n must lie. The number h of residue classes satisfies

h =

f−2∑
j=0

dj + df−1 + 1 ≤ (b− 1)f + 1 ≤ bf.

As to the moduli m1, . . . ,mh of Q1, . . . , Qh, respectively, we have d0 moduli equal

to b, d1 moduli equal to b2,. . ., df−2 moduli equal to bf−1, and df−1 + 1 moduli equal

to bf . Therefore

h∑
k=1

m−1k =

f−2∑
j=0

djb
−j−1 + (df−1 + 1)b−f = (v − 1)b−f + b−f = vb−f ,

and all assertions are shown. 2

Lemma 4.2.12 For a dimension s ≥ 1, let b1, . . . , bs ≥ 2 be integers that are

pairwise coprime if s ≥ 2 and let n ≥ 0 be an integer. Let v1, . . . , vs and f1, . . . , fs
be positive integers with vi ≤ bfii for 1 ≤ i ≤ s. Then

xn = (φb1(n), . . . , φbs(n)) ∈ J :=
s∏
i=1

[0, vib
−fi
i )

if and only if n ∈ ∪Hk=1Rk, where 1 ≤ H ≤ b1 · · · bsf1 · · · fs, each Rk is a residue class

in Z with modulus mk, the residue classes R1, . . . , RH are disjoint and independent

of n, and
∑H

k=1m
−1
k = λs(J).

Proof. The case s = 1 was proved in Lemma 4.2.11, and so we can assume that

s ≥ 2. Note that xn ∈ J if and only if φbi(n) ∈ [0, vib
−fi
i ) for 1 ≤ i ≤ s. For each

fixed i = 1, . . . , s, we apply Lemma 4.2.11 and this yields the condition n ∈ ∪hik=1Q
(i)
k

for disjoint residue classes Q
(i)
1 , . . . , Q

(i)
hi

with respective moduli m
(i)
1 , . . . ,m

(i)
hi

. Fur-

thermore, hi ≤ bifi and
∑hi

k=1(m
(i)
k )−1 = vib

−fi
i for 1 ≤ i ≤ s. Since b1, . . . , bs are

pairwise coprime, we can combine these conditions for i = 1, . . . , s by the Chinese

remainder theorem to arrive at the condition n ∈ ∪Hk=1Rk in the lemma, where

1 ≤ H = h1 · · ·hs ≤ b1 · · · bsf1 · · · fs. Furthermore, the new moduli m1, . . . ,mH are

exactly all products m
(1)
k1
· · ·m(s)

ks
with 1 ≤ ki ≤ hi for 1 ≤ i ≤ s. Therefore

H∑
k=1

m−1k =
s∏
i=1

( hi∑
k=1

(m
(i)
k )−1

)
=

s∏
i=1

vib
−fi
i = λs(J),

as claimed. 2
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Lemma 4.2.13 If ui, wi ∈ [0, 1] for 1 ≤ i ≤ s, then

∣∣∣ s∏
i=1

ui −
s∏
i=1

wi

∣∣∣ ≤ s∑
i=1

|ui − wi|.

Proof. We proceed by induction on s. The case s = 1 is trivial. If the inequality is

shown for some s ≥ 1, then

∣∣∣ s+1∏
i=1

ui −
s+1∏
i=1

wi

∣∣∣ =
∣∣∣(us+1 − ws+1)

s∏
i=1

ui + ws+1

( s∏
i=1

ui −
s∏
i=1

wi

)∣∣∣
≤ |us+1 − ws+1|+ ws+1

s∑
i=1

|ui − wi| ≤
s+1∑
i=1

|ui − wi|,

and the induction is complete. 2

Theorem 4.2.14 Let s ≥ 1 be a given dimension and let b1, . . . , bs ≥ 2 be integers

that are pairwise coprime if s ≥ 2. Then the star discrepancy of the Halton sequence

S in the bases b1, . . . , bs satisfies

D∗N(S) ≤ C(b1, . . . , bs)N
−1(logN)s for all N ≥ 2

with a constant C(b1, . . . , bs) > 0 depending only on b1, . . . , bs.

Proof. We fix N ≥ 2 and let PN be the point set consisting of the first N terms

x0,x1, . . . ,xN−1 of S. We introduce the positive integers

fi =

⌈
logN

log bi

⌉
for 1 ≤ i ≤ s. (4.31)

We first consider an interval J ⊆ [0, 1)s of the form

J =
s∏
i=1

[0, vib
−fi
i )

with integers v1, . . . , vs satisfying 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s. Then applying Lemma

4.2.12 and its notation, we obtain

A(J ;PN) =
H∑
k=1

BN(Rk),

where BN(Rk) is the number of integers n with 0 ≤ n ≤ N − 1 lying in the residue

class Rk with modulus mk. Since any mk consecutive integers contain exactly one



4.2. CLASSICAL LOW-DISCREPANCY SEQUENCES 221

element of Rk, we can write BN(Rk) = bN/mkc + θN(k) with θN(k) being either 0

or 1, and so BN(Rk) = N/mk + βN(k) with |βN(k)| ≤ 1. It follows that

|A(J ;PN)−Nλs(J)| =
∣∣∣ H∑
k=1

( N
mk

+ βN(k)
)
−N

H∑
k=1

1

mk

∣∣∣
=
∣∣∣ H∑
k=1

βN(k)
∣∣∣ ≤ H ≤ b1 · · · bsf1 · · · fs

by Lemma 4.2.12. This bound holds trivially if some vi are 0, that is, if J is empty.

Now we consider an arbitrary interval J =
∏s

i=1[0, wi) ⊆ [0, 1)s appearing in

the definition of the star discrepancy. We choose integers v1, . . . , vs such that (vi −
1)b−fii ≤ wi ≤ vib

−fi
i and 1 ≤ vi ≤ bfii for 1 ≤ i ≤ s. We introduce the intervals

J1 =
s∏
i=1

[0, (vi − 1)b−fii ), J2 =
s∏
i=1

[0, vib
−fi
i ).

Then J1 ⊆ J ⊆ J2, and so

A(J1;PN)−Nλs(J1) +N(λs(J1)− λs(J2))
≤ A(J ;PN)−Nλs(J)

≤ A(J2;PN)−Nλs(J2) +N(λs(J2)− λs(J1)).

By what we have already shown for the intervals J1 and J2, we get

|A(J ;PN)−Nλs(J)| ≤ b1 · · · bsf1 · · · fs +N(λs(J2)− λs(J1)),

and an application of Lemma 4.2.13 yields

ND∗N(S) = ND∗N(PN) ≤ b1 · · · bsf1 · · · fs +N

s∑
i=1

b−fii .

By using the definition of f1, . . . , fs in (4.31), we arrive at the final result. 2

An explicit form of the discrepancy bound in Theorem 4.2.14 can be found in

[39, Theorem 3.36]. Typically, the constant C(b1, . . . , bs) in Theorem 4.2.14 becomes

smaller for smaller values of the bases b1, . . . , bs. Thus, a popular choice is to take

b1, . . . , bs as the first s prime numbers, that is, b1 = 2, b2 = 3, b3 = 5, and so on. We

observe that every s-dimensional Halton sequence is uniformly distributed in [0, 1)s

by Theorems 4.1.36 and 4.2.14.

For dimensions s ≥ 2, we can construct low-discrepancy point sets in the sense

of (4.23) by using Halton sequences and the idea in Lemma 4.1.38. Let b1, . . . , bs−1 ≥
2 be integers that are pairwise coprime if s ≥ 3. For an integer N ≥ 2, let P be the

point set consisting of the points

yn =
( n
N
, φb1(n), . . . , φbs−1(n)

)
∈ [0, 1)s for n = 0, 1, . . . , N − 1. (4.32)



222 CHAPTER 4. QUASI-MONTE CARLO METHODS

Such a point set P is called a Hammersley point set , after the work of Hammers-

ley [59]. If we want to stress the role of the integers b1, . . . , bs−1 in this construction,

then we speak of a Hammersley point set in the bases b1, . . . , bs−1.

Theorem 4.2.15 The star discrepancy of the Hammersley point set P in (4.32)

satisfies

D∗N(P) ≤ C1(b1, . . . , bs−1)N
−1(logN)s−1

with a constant C1(b1, . . . , bs−1) > 0 depending only on b1, . . . , bs−1.

Proof. This follows immediately from Lemma 4.1.38 and Theorem 4.2.14. 2

4.3 Lattice rules

4.3.1 Good lattice points

The discrepancy of a point set is easier to analyze if the point set possesses some

structure. There are two popular structures in discrepancy theory, the lattice (or

grid) structure considered in this section and the net structure in the sense of Sec-

tion 4.4.

We have already encountered a point set with an obvious lattice (or grid) struc-

ture in dimension s, namely the set of nodes of the s-fold Cartesian product of a

midpoint rule. If we start from the midpoint rule for the interval [0, 1] with m ≥ 1

nodes, then according to (4.14) the corresponding set of s-dimensional nodes is the

point set Pm,s consisting of the points(2k1 − 1

2m
, . . . ,

2ks − 1

2m

)
∈ [0, 1)s (4.33)

with k1, . . . , ks running independently through the integers 1, . . . ,m. The point

set Pm,s contains exactly N = ms points and is called a centered regular lattice.

Figure 4.5 illustrates the centered regular lattice with s = 2 and m = 6.

Intuitively, one may think that the points of Pm,s are very evenly distributed

over [0, 1]s, but it turns out that Pm,s is by no means a low-discrepancy point set

in the multidimensional case s ≥ 2. For an ε with 0 < ε ≤ 1/(2m), consider the

interval Jε = [0, 1 − 1/(2m) + ε)s ⊆ [0, 1)s occurring in the definition of the star

discrepancy. Since all points of Pm,s are contained in Jε, we get

D∗N(Pm,s) ≥
∣∣∣A(Jε;Pm,s)

N
− λs(Jε)

∣∣∣ = 1−
(

1− 1

2m
+ ε

)s
,

and letting ε→ 0+ we obtain

D∗N(Pm,s) ≥ 1−
(

1− 1

2m

)s
.
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Figure 4.5: The centered regular lattice with s = 2 and m = 6

Since 0 < 1− 1
2m

< 1, we have (1− 1
2m

)s ≤ 1− 1
2m

, and so D∗N(Pm,s) ≥ 1
2m

= 1
2
N−1/s.

Hence for s ≥ 2, the star discrepancy of Pm,s is asymptotically much larger (in terms

of N) than that of a Hammersley point set in dimension s, for instance, with the

same number N of points (compare with Theorem 4.2.15).

Therefore we launch another approach in order to arrive at point sets with lattice

structure that have a reasonably small (star) discrepancy. Let us start from the

Kronecker sequences ({nα})∞n=1 in Subsection 4.1.2; here α = (α1, . . . , αs) ∈ Rs

with 1, α1, . . . , αs linearly independent over Q. Now we replace α by a point in Rs

which is in a sense at the other extreme in terms of linear independence over Q,

namely a point all of whose coordinates are rational numbers (we may think of such

a point also as a discrete approximation of α). By putting all its coordinates on the

same positive common denominator, such a point can be written in the form (1/N)g

with an integer N ≥ 1 and g ∈ Zs. The corresponding sequence is then the sequence

({(n/N)g})∞n=1 of fractional parts. It is obvious that this sequence is periodic with

period length N , and so we consider only the points in the first period, that is, the

points {(n/N)g} with n = 1, . . . , N . We denote this point set by P(g, N). Clearly,

the lattice point g matters only modulo N , and so the positive integer N is called

the modulus of P(g, N). We say informally that g is a good lattice point modulo N

if the (star) discrepancy of P(g, N) is in some sense small. The point sets P(g, N)

were first introduced by the number theorist Korobov [85] in 1959 and were also

proposed independently by Hlawka [64]. Figure 4.6 shows the point set P(g, N)

with g = (1, 21) ∈ Z2 and N = 34.

We want to avoid the trivial case N = 1, and so we always assume that N ≥ 2.

The first major issue is to derive a discrepancy bound for the point sets P(g, N).

This is accomplished by a principle of discrete Fourier analysis for residue class rings

of Z. The philosophy of this principle is connected also with the Weyl criterion in
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Figure 4.6: A good lattice point set

Rs (see Theorem 4.1.30).

We need some notation for the formulation and the proof of this principle. For

an integer M ≥ 2, let C(M) = (−M/2,M/2] ∩ Z and put C∗(M) = C(M) \ {0}.
Note that C(M) is a complete residue system modulo M which is, as far as possible,

symmetric around 0. Furthermore, let Cs(M) be the Cartesian product of s copies

of C(M) and put C∗s (M) = Cs(M) \ {0}. We set

r(h,M) =

{
M sin(π|h|/M) for h ∈ C∗(M),

1 for h = 0.

For h = (h1, . . . , hs) ∈ Cs(M), we put

r(h,M) =
s∏
i=1

r(hi,M).

Proposition 4.3.1 For an integer M ≥ 2 and for z1, . . . , zN ∈ Zs, let P be the

point set consisting of the fractional parts {M−1z1}, . . . , {M−1zN}. Then

DN(P) ≤ s

M
+

∑
h∈C∗s (M)

1

r(h,M)

∣∣∣ 1

N

N∑
n=1

χM(h · zn)
∣∣∣,

where χM(z) = e2πiz/M for all z ∈ Z.

Proof. For k = (k1, . . . , ks) ∈ Zs, let A(k) be the number of integers n with

1 ≤ n ≤ N and zn ≡ k (mod M), where a congruence between vectors is meant

componentwise. Then

A(k) =
N∑
n=1

1

M s

∑
h∈Cs(M)

χM(h · (zn − k)),
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since the inner sum has the value M s if zn ≡ k (mod M) and the value 0 otherwise.

Therefore

A(k)− N

M s
=

1

M s

∑
h∈C∗s (M)

χM(−h · k)
N∑
n=1

χM(h · zn). (4.34)

Now let J =
∏s

i=1[ui, wi) ⊆ [0, 1)s be an arbitrary interval occurring in the definition

of DN(P). For each i = 1, . . . , s, let [ai/M, bi/M ] be the largest closed subinterval

of [ui, wi) with integers 0 ≤ ai ≤ bi ≤ M − 1. The case where for some i there is

no such subinterval of [ui, wi) can be easily dealt with, since then A(J ;P) = 0 and

wi − ui < 1/M , hence∣∣∣A(J ;P)

N
− λs(J)

∣∣∣ = λs(J) <
1

M
≤ s

M
. (4.35)

In the remaining case, the integers a1, . . . , as and b1, . . . , bs are well defined and we

can write

A(J ;P)

N
− λs(J) =

∑
k∈Zs

ai≤ki≤bi

(A(k)

N
− 1

M s

)
+

1

M s

s∏
i=1

(bi − ai + 1)− λs(J).

Now by the choice of the ai and bi we obtain∣∣∣bi − ai + 1

M
− (wi − ui)

∣∣∣ ≤ 1

M
for 1 ≤ i ≤ s,

and so an application of Lemma 4.2.13 yields∣∣∣A(J ;P)

N
− λs(J)

∣∣∣ ≤ s

M
+
∣∣∣ ∑

k∈Zs
ai≤ki≤bi

(A(k)

N
− 1

M s

)∣∣∣. (4.36)

Furthermore, (4.34) shows that

∣∣∣ ∑
k∈Zs

ai≤ki≤bi

(A(k)

N
− 1

M s

)∣∣∣ ≤ 1

M s

∑
h∈C∗s (M)

∣∣∣ ∑
k∈Zs

ai≤ki≤bi

χM(h·k)
∣∣∣∣∣∣ 1

N

N∑
n=1

χM(h·zn)
∣∣∣. (4.37)

For fixed h = (h1, . . . , hs) ∈ C∗s (M), we can write

∣∣∣ ∑
k∈Zs

ai≤ki≤bi

χM(h · k)
∣∣∣ =

∣∣∣ ∑
k∈Zs

0≤ki≤bi−ai

χM(h · k)
∣∣∣ =

s∏
i=1

∣∣∣ bi−ai∑
ki=0

χM(hiki)
∣∣∣.

If hi = 0, then

∣∣∣ bi−ai∑
ki=0

χM(hiki)
∣∣∣ = bi − ai + 1 ≤M =

M

r(hi,M)
.
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For hi ∈ C∗(M), the summation formula for geometric series and simple trigonom-

etry yield∣∣∣ bi−ai∑
ki=0

χM(hiki)
∣∣∣ =

∣∣∣χM(hi(bi − ai + 1))− 1

χM(hi)− 1

∣∣∣ =
∣∣∣sin(πhi(bi − ai + 1)/M)

sin(πhi/M)

∣∣∣
≤ 1

sin(π|hi|/M)
=

M

r(hi,M)
.

Therefore ∣∣∣ ∑
k∈Zs

ai≤ki≤bi

χM(h · k)
∣∣∣ ≤ s∏

i=1

M

r(hi,M)
=

M s

r(h,M)
.

We use this in (4.37) and arrive at the inequality∣∣∣ ∑
k∈Zs

ai≤ki≤bi

(A(k)

N
− 1

M s

)∣∣∣ ≤ ∑
h∈C∗s (M)

1

r(h,M)

∣∣∣ 1

N

N∑
n=1

χM(h · zn)
∣∣∣.

By inserting this bound into (4.36), we obtain∣∣∣A(J ;P)

N
− λs(J)

∣∣∣ ≤ s

M
+

∑
h∈C∗s (M)

1

r(h,M)

∣∣∣ 1

N

N∑
n=1

χM(h · zn)
∣∣∣.

In view of (4.35), this inequality holds for all intervals occurring in the definition of

DN(P), and so the desired result follows. 2

The second step towards a discrepancy bound for the point sets P(g, N) is to

apply Proposition 4.3.1 to these point sets. As we will see in the proof of Theorem

4.3.3 below, this leads to the quantity introduced in the following definition. It is

convenient to put

r(h) =
s∏
i=1

max(1, |hi|) (4.38)

for all h = (h1, . . . , hs) ∈ Zs.

Definition 4.3.2 For all g ∈ Zs and all integers N ≥ 2, we put

R(g, N) =
∑
h

1

r(h)
,

where we sum over all h ∈ C∗s (N) with h · g ≡ 0 (mod N). We use the standard

convention that an empty sum is equal to 0.

Theorem 4.3.3 For all g ∈ Zs and all integers N ≥ 2, the discrepancy of the point

set P(g, N) satisfies

DN(P(g, N)) ≤ s

N
+

1

2
R(g, N).
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Proof. By Proposition 4.3.1 with M = N and zn = ng for 1 ≤ n ≤ N , we obtain

DN(P(g, N)) ≤ s

N
+

∑
h∈C∗s (N)

1

r(h, N)

∣∣∣ 1

N

N∑
n=1

χN(nh · g)
∣∣∣.

The last sum is easily evaluated: it is equal to N if h · g ≡ 0 (mod N) and, by

the summation formula for geometric series, equal to 0 otherwise. This immediately

yields the bound

DN(P(g, N)) ≤ s

N
+

∑
h∈C∗s (N)

h·g≡0 (mod N)

1

r(h, N)
.

The final result is obtained from r(h, N) ≥ 2r(h) for all h ∈ C∗s (N), which follows

in turn from sin(πu) ≥ 2u for 0 ≤ u ≤ 1
2
. 2

Now that we know a discrepancy bound for the point sets P(g, N), we can

utilize these point sets in quasi-Monte Carlo integration and we get an error bound

by means of the Koksma-Hlawka inequality (see Theorem 4.1.41); note that trivially

D∗N(P(g, N)) ≤ DN(P(g, N)).

There is another approach to error bounds for the point sets P(g, N) that exploits

the special structure of these point sets. In order to describe this approach, we

first embark on a brief excursion into Fourier analysis. The classical setting of

Fourier analysis is the one-dimensional case where one considers real-valued periodic

functions f on R with a period that we normalize to be 1. The unit interval [0, 1] is

thus a period interval of f . Under a reasonable regularity assumption on f , let us

say continuity, we can introduce the Fourier coefficient f̂(h) for every h ∈ Z by

f̂(h) =

∫ 1

0

f(u)e−2πihudu.

Then we associate with f its formal Fourier series∑
h∈Z

f̂(h)e2πihu for all u ∈ R.

Under an additional hypothesis on f , for instance that the second derivative of

f exists and is continuous on R, it can be shown that the Fourier series of f is

absolutely convergent and represents f . Hence in this case we get a true identity

f(u) =
∑
h∈Z

f̂(h)e2πihu = lim
m→∞

m∑
h=−m

f̂(h)e2πihu for all u ∈ R.
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Remark 4.3.4 If the second derivative f ′′ of f exists and is continuous on R, then

the absolute convergence of the Fourier series of f can be proved easily by using

integration by parts. To begin with,

f̂(h) =

∫ 1

0

f(u)e−2πihudu =
[
f(u)

e−2πihu

−2πih

]1
u=0
−
∫ 1

0

f ′(u)
e−2πihu

−2πih
du

=
1

2πih

∫ 1

0

f ′(u)e−2πihudu

for every nonzero h ∈ Z. Another integration by parts yields

f̂(h) =
1

(2πih)2

∫ 1

0

f ′′(u)e−2πihudu.

Therefore

|f̂(h)| ≤ (2π|h|)−2 max
0≤u≤1

|f ′′(u)| ,

and the absolute convergence of the Fourier series of f follows from the convergence

of the series
∑∞

h=1 h
−2.

We proceed analogously for an arbitrary dimension s ≥ 1. Instead of the basic

functions e2πihu (with h ∈ Z) in one-dimensional Fourier analysis, we use the func-

tions e2πih·u (with h ∈ Zs) in the s-dimensional case. The given real-valued function

f on Rs is now periodic of period 1 in each variable, and so the s-dimensional unit

cube [0, 1]s is a period interval of f . Let us assume right away that the function

f is sufficiently smooth. For an integer k ≥ 2, let Ck(Rs/Zs) be the function class

consisting of the real-valued periodic functions f on Rs of period 1 in each variable

for which all partial derivatives

∂k1+···+ksf

∂uk11 · · · ∂ukss
with 0 ≤ ki ≤ k for 1 ≤ i ≤ s

exist and are continuous on Rs. For f ∈ Ck(Rs/Zs) and h ∈ Zs, we introduce the

Fourier coefficient

f̂(h) =

∫
[0,1]s

f(u)e−2πih·u du.

It can be shown by a similar method as in Remark 4.3.4 (but using multidimensional

integration by parts when s ≥ 2) that

|f̂(h)| ≤ c(f)r(h)−k for all h ∈ Zs, (4.39)

where the constant c(f) ≥ 0 depends only on f and where r(h) is as in (4.38). We

refer to Zaremba [205], [206, Section 2] for the details. The bound (4.39) readily

implies that the Fourier series ∑
h∈Zs

f̂(h)e2πih·u
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of f is absolutely convergent. It also represents f , and so we arrive at the identity

f(u) =
∑
h∈Zs

f̂(h)e2πih·u = lim
m→∞

∑
h=(h1,...,hs)∈Zs

|hi|≤m

f̂(h)e2πih·u for all u ∈ Rs.

Now we examine quasi-Monte Carlo integration for an integrand f ∈ Ck(Rs/Zs)
with a point set P(g, N). The quasi-Monte Carlo approximation is∫

[0,1]s
f(u)du ≈ 1

N

N∑
n=1

f
({ n

N
g
})

=
1

N

N∑
n=1

f
( n
N

g
)
,

where we are allowed to drop the fractional parts since f has period 1 in each

variable.

Theorem 4.3.5 Let s ≥ 1 be an arbitrary dimension. Let f ∈ Ck(Rs/Zs) for some

integer k ≥ 2, let N ≥ 2 be an integer, and let g ∈ Zs. Then∣∣∣ ∫
[0,1]s

f(u)du− 1

N

N∑
n=1

f
( n
N

g
)∣∣∣ ≤ c(f)Pk(g, N),

where c(f) ≥ 0 is the constant in (4.39) and where

Pk(g, N) =
∑
h

r(h)−k

with the summation running over all nonzero h ∈ Zs with h · g ≡ 0 (mod N).

Proof. Since f is represented by its Fourier series and since the value of the integral

of f over [0, 1]s is the Fourier coefficient f̂(0), we can write

1

N

N∑
n=1

f
( n
N

g
)
−
∫
[0,1]s

f(u)du =
1

N

N∑
n=1

∑
h∈Zs

f̂(h)e2πi(n/N)h·g − f̂(0)

=
1

N

∑
h∈Zs

f̂(h)
N∑
n=1

e2πi(n/N)h·g − f̂(0)

=
1

N

∑
h∈Zs, h 6=0

f̂(h)
N∑
n=1

e2πi(n/N)h·g.

Now using the bound (4.39), we obtain

∣∣∣ ∫
[0,1]s

f(u)du− 1

N

N∑
n=1

f
( n
N

g
)∣∣∣ ≤ c(f)

N

∑
h∈Zs, h 6=0

r(h)−k
∣∣∣ N∑
n=1

χN(nh · g)
∣∣∣

with the notation in Proposition 4.3.1. By an observation in the proof of Theorem

4.3.3, the last sum is equal to N if h · g ≡ 0 (mod N) and equal to 0 otherwise.
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This leads immediately to the desired result. 2

As it stands, Theorem 4.3.5 holds only for periodic integrands, but there are

periodization techniques by which it can be extended to nonperiodic integrands.

The simplest idea in the one-dimensional case is to take a function f on [0, 1] and

replace it by the function f1 given by

f1(u) =
1

2
(f(u) + f(1− u)) for 0 ≤ u ≤ 1.

Since f1(0) = f1(1), the function f1 can be extended periodically to R with period 1.

Furthermore, if f is Riemann-integrable on [0, 1], then so is f1 and∫ 1

0

f1(u)du =

∫ 1

0

f(u)du.

Therefore the numerical integration problem for f is the same as that for f1, but f1
is periodic. In this sense, periodicity is not a serious restriction in numerical inte-

gration. More sophisticated periodization techniques, also for the multidimensional

case, are covered in Sloan and Joe [189, Section 2.12] and Zaremba [206, Section 3].

Another approach to using the method of good lattice points for nonperiodic inte-

grands is based on modified vertex weights (see [144] and [189, Chapter 8]).

We have now two quantities governing the error in quasi-Monte Carlo integration

with a point set P(g, N): the number R(g, N) furnishing the discrepancy bound in

Theorem 4.3.3 and the number Pk(g, N) yielding the error bound for integrands in

Ck(Rs/Zs) according to Theorem 4.3.5. In order to obtain a small value of R(g, N),

and thus a small discrepancy bound, we have to choose the lattice point g ∈ Zs in

such a way that all summands r(h)−1 in the definition of R(g, N) (see Definition

4.3.2) are small, or equivalently, that the values of r(h) are large for all h ∈ C∗s (N)

with h · g ≡ 0 (mod N). A similar strategy applies to Pk(g, N) in view of its

definition in Theorem 4.3.5: in order to make Pk(g, N) small, choose g ∈ Zs in such

a way that r(h) is large for all nonzero h ∈ Zs with h ·g ≡ 0 (mod N). This analogy

between these quantities makes it plausible that Pk(g, N) can be bounded in terms

of R(g, N). The proof of the following inequality from [134, Theorem 5.5] is quite

technical, and so we state this result without proof.

Proposition 4.3.6 Let k ≥ 2, s ≥ 1, and N ≥ 2 be integers, and let g ∈ Zs be

such that each coordinate of g is coprime to N . Then

Pk(g, N) ≤ R(g, N)k + c(k, s)N−k

with a constant c(k, s) > 0 depending only on k and s.

There is a crucial issue remaining, namely how small, for given integers s ≥ 1 and

N ≥ 2, we can make R(g, N) by a suitable choice of the lattice point g ∈ Zs. Such
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an advantageous choice of g corresponds to what we earlier called a good lattice

point modulo N . The trouble is that, except for easy low-dimensional cases (see

Example 4.3.15 below), no explicit constructions of good lattice points modulo N

are available. Finding such explicit constructions in arbitrary dimensions is indeed

the outstanding open problem in the theory of good lattice points, and it seems to

be a hard nut to crack.

One way around this difficulty is to randomize the problem in some sense, that is,

we investigate the average quality of the lattice points g ∈ Zs (in terms of R(g, N))

for fixed s and N . Thus, instead of trying to reach for the absolute minimum of

R(g, N) for fixed s and N , we are less ambitious and settle for the average value of

R(g, N). To our great relief, this average value is reasonably small. The case s = 1

is trivial since then g has only one coordinate which we take to be 1 (or any integer

coprime to N); then R(g, N) = 0 by the convention in Definition 4.3.2. The analysis

of the average value of R(g, N) is considerably easier if N is a prime number. Since

g matters only modulo N , it suffices to average R(g, N) over g ∈ Cs(N).

Theorem 4.3.7 Let s ≥ 2 be a dimension and let N be a prime number. Then

Ms(N) :=
1

N s

∑
g∈Cs(N)

R(g, N) <
1

N
(2 logN + 2)s.

Proof. By the definition of R(g, N) in Definition 4.3.2, we get

Ms(N) =
1

N s

∑
g∈Cs(N)

∑
h∈C∗s (N)

h·g≡0 (mod N)

1

r(h)
=

1

N s

∑
h∈C∗s (N)

S(h)

r(h)
,

where S(h) is the number of g ∈ Cs(N) with h · g ≡ 0 (mod N). If we write

h = (h1, . . . , hs) and g = (g1, . . . , gs), then the last condition means that

h1g1 + · · ·+ hsgs ≡ 0 (mod N). (4.40)

If h ∈ C∗s (N), then hi 6≡ 0 (mod N) for some i with 1 ≤ i ≤ s. Thus, for every choice

of g1, . . . , gi−1, gi+1, . . . , gs ∈ C(N), the value of gi ∈ C(N) is uniquely determined

by (4.40) since N is a prime number. Therefore S(h) = N s−1 for all h ∈ C∗s (N) and

Ms(N) =
1

N

∑
h∈C∗s (N)

1

r(h)
<

1

N

∑
h∈Cs(N)

1

r(h)
.

By invoking (4.38), we get∑
h∈Cs(N)

1

r(h)
=
( ∑
h∈C(N)

1

max (1, |h|)

)s
.
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For N ≥ 3, we use the standard method of comparing sums and integrals to obtain

∑
h∈C(N)

1

max (1, |h|)
= 3 + 2

(N−1)/2∑
h=2

1

h
≤ 3 + 2

∫ (N−1)/2

1

du

u

= 3 + 2 log
N − 1

2
< 2 logN + 2.

This bound holds trivially for N = 2. A combination of the inequalities and identi-

ties above yields the theorem. 2

Corollary 4.3.8 For every dimension s ≥ 2 and every prime number N , there

exists a lattice point g ∈ Zs with

R(g, N) <
1

N
(2 logN + 2)s.

Proof. This follows immediately from Theorem 4.3.7. 2

Corollary 4.3.9 For every dimension s ≥ 2 and every prime number N , there

exists a lattice point g ∈ Zs for which the discrepancy of the point set P(g, N)

satisfies

DN(P(g, N)) <
1

2N
(2 logN + 2)s +

s

N
.

Proof. This follows immediately from Theorem 4.3.3 and Corollary 4.3.8. 2

Corollary 4.3.10 For every dimension s ≥ 2 and every prime number N , there

exists a lattice point g ∈ Zs for which

Pk(g, N) ≤ c1(k, s)N
−k(logN)ks for all integers k ≥ 2,

where the constant c1(k, s) > 0 depends only on k and s.

Proof. By averaging in Theorem 4.3.7 not over all g ∈ Cs(N), but only over the

(N−1)s lattice points g ∈ Cs(N) with all coordinates nonzero, we get such a g with

R(g, N) = O(N−1(logN)s), where the implied constant depends only on s. The

rest follows from Proposition 4.3.6. 2

Let us now ponder the practical implications of the last two corollaries. Corollary

4.3.9 yields point sets consisting of N points in [0, 1)s, with a prime number N , for

which the discrepancy, and therefore also the star discrepancy, is at most of the order

of magnitude N−1(logN)s. These point sets are not necessarily low-discrepancy
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point sets in the technical sense of (4.23), but their star discrepancy is off by at most

a factor logN from the bound in (4.23). These point sets are therefore serviceable

for quasi-Monte Carlo integration and they have the sympathetic feature that their

points are very easy to compute once the lattice point g is known.

Corollary 4.3.10 shows that there are good lattice points g ∈ Zs modulo a prime

number N for which the quasi-Monte Carlo method in Theorem 4.3.5 has a rate

of convergence N−k(logN)ks for integrands f ∈ Ck(Rs/Zs). The exponent ks of

logN can be improved to k(s− 1) by a refined argument due to Bakhvalov [7]. The

rate of convergence N−k (up to logarithmic factors) for f ∈ Ck(Rs/Zs) is really

gratifying since it says that the convergence is faster for smoother integrands. This

phenomenon is well known in the one-dimensional case (see [35, Chapter 2]). The

method of good lattice points extends this phenomenon to the multidimensional

case in an elegant fashion. All this is in sharp contrast to the Monte Carlo method

where the rate of convergence is N−1/2 no matter how smooth the integrand is.

Remark 4.3.11 We restricted the discussion of existence theorems for good lattice

points to prime moduli N since this case is much easier to handle. However, ex-

istence theorems for good lattice points of the same quality in terms of the orders

of magnitude are available also for composite moduli N . This generalization was

achieved by Niederreiter [126]. The basic step is to consider, for every integer N ≥ 2,

the set

Gs(N) = {g = (g1, . . . , gs) ∈ Cs(N) : gcd(gi, N) = 1 for 1 ≤ i ≤ s} (4.41)

of lattice points. The set Gs(N) has exactly φ(N)s elements, where φ is Euler’s

totient function. Then the analog of Theorem 4.3.7 says that for all integers s ≥ 2

and N ≥ 2, the corresponding average value As(N) satisfies

As(N) :=
1

φ(N)s

∑
g∈Gs(N)

R(g, N) = O(N−1(logN)s)

with an implied constant depending only on s. An even sharper result providing an

asymptotic expansion for As(N) can be found in [134, Theorem 5.10]. This yields

right away analogs of Corollaries 4.3.8 and 4.3.9 for all integers N ≥ 2. Since the

condition on g in Proposition 4.3.6 is satisfied for all g ∈ Gs(N), we also get an

analog of Corollary 4.3.10, namely that for all integers s ≥ 2 and N ≥ 2 there exists

a lattice point g ∈ Gs(N) for which

Pk(g, N) = O(N−k(logN)ks) for all integers k ≥ 2,

where the implied constant depends only on k and s. For many values of N , the

exponent ks of logN can be improved to k(s− 1) + 1 or even k(s− 1) (see [135]).
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All existence theorems for good lattice points presented so far are nonconstruc-

tive, since they are based on the argument that there must exist a lattice point g0

for which R(g0, N) is at least as small as the average of R(g, N) over a set of candi-

date lattice points g. But no information is given in the proofs about how to obtain

such a good lattice point g0. For a long time, good lattice points were produced by

brute-force computer search, and this approach is feasible as long as the dimension

s and the modulus N are not too large. Note that if we search for an s-dimensional

good lattice point modulo N in the set Cs(N), then a priori we have to consider

N s candidates.

There is a more constructive strategy that builds an s-dimensional good lattice

point coordinate by coordinate, starting with the first coordinate and ending with

the sth coordinate. The corresponding algorithm is known in the literature as the

CBC (for component-by-component) algorithm. It is a type of greedy algorithm

which proceeds by finding, in a certain sense, local minima of the quantity R(g, N).

It is convenient to put

G(N) = {g ∈ C(N) : gcd(g,N) = 1}.

Algorithm 4.3.12 (CBC Algorithm) Let the integers s ≥ 2 and N ≥ 2 be

given.

Step 1: choose g1 = 1.

Step 2: Suppose that for some dimension d with 1 ≤ d ≤ s − 1, the coordinates

g1, . . . , gd ∈ G(N) have already been constructed. Then find an integer gd+1 ∈
G(N) that minimizes R((g1, . . . , gd, b), N) as a function of b ∈ G(N). This recursive

procedure stops once the coordinate gs has been obtained.

The final output of the CBC algorithm is a lattice point g = (g1, . . . , gs) ∈
G(N)s = Gs(N), in the notation of (4.41). In the course of the CBC algorithm

we compute (s− 1)φ(N) values of R(·, N), whereas in a brute-force search over the

whole set Gs(N) we compute φ(N)s values of R(·, N). Therefore the CBC algorithm

is much more efficient than brute-force search.

What can we say about the lattice point g ∈ Gs(N) produced by the CBC

algorithm? The following result provides an answer for the simplest case where N

is a prime number.

Theorem 4.3.13 Let s ≥ 2 be a given dimension and let N be a prime number.

Then the lattice point g ∈ Gs(N) produced by the CBC algorithm satisfies

R(g, N) <
1

N − 1
(2 logN + 2)s.

Proof. We prove by induction on d = 1, . . . , s that

R((g1, . . . , gd), N) <
1

N − 1
(2 logN + 2)d. (4.42)
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This is trivial for d = 1 since R(g1, N) = R(1, N) = 0. Suppose that (4.42) has

been shown for some d with 1 ≤ d ≤ s− 1. Note that G(N) = C∗(N) since N is a

prime number. Therefore by Step 2 in Algorithm 4.3.12 with gd = (g1, . . . , gd) and

h ∈ Cd(N),

R((gd, gd+1), N) ≤ 1

N − 1

∑
b∈C∗(N)

R((gd, b), N)

=
1

N − 1

∑
b∈C∗(N)

∑
(h,k)∈C∗

d+1
(N)

(h,k)·(gd,b)≡0 (mod N)

1

r(h) max(1, |k|)

=
1

N − 1

∑
(h,k)∈C∗d+1(N)

1

r(h) max(1, |k|)
∑

b∈C∗(N)
(h,k)·(gd,b)≡0 (mod N)

1.

The contribution of the terms with k = 0 in the last double sum is equal to (N −
1)R(gd, N). By splitting off these terms, we get with gd+1 = (g1, . . . , gd, gd+1),

R(gd+1, N) ≤ R(gd, N) +
1

N − 1

∑
h∈Cd(N)

1

r(h)

∑
k∈C∗(N)

1

|k|
∑

b∈C∗(N)
(h,k)·(gd,b)≡0 (mod N)

1.

For fixed h ∈ Cd(N) and k ∈ C∗(N), the congruence (h, k) · (gd, b) = h · gd + kb ≡
0 (mod N) has at most one solution b ∈ C∗(N) since N is a prime number. Hence

using the induction hypothesis (4.42) and bounds in the proof of Theorem 4.3.7, we

obtain

R(gd+1, N) ≤ R(gd, N) +
1

N − 1

∑
h∈Cd(N)

1

r(h)

∑
k∈C∗(N)

1

|k|

<
1

N − 1
(2 logN + 2)d +

1

N − 1
(2 logN + 2)d(2 logN + 1)

=
1

N − 1
(2 logN + 2)d+1.

This completes the proof of (4.42) by induction, and putting d = s in (4.42) yields

the result of the theorem. 2

It is remarkable that Theorem 4.3.13 is practically of the same quality as the

nonconstructive existence result in Corollary 4.3.8. Clearly, Corollary 4.3.9 with 1
2N

replaced by 1
2(N−1) and Corollary 4.3.10 hold also for the lattice point g ∈ Gs(N)

in Theorem 4.3.13. An extension of Theorem 4.3.13 to composite moduli N was

achieved by Sinescu and Joe [186] and it yields again the order of magnitude

N−1(logN)s for the quantity R(g, N) with g ∈ Gs(N) being the lattice point pro-

duced by the CBC algorithm.

Now we come to another fruitful idea in the search for good lattice points, namely

to reduce the size of the search space by restricting the form of the lattice points.
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The most popular special form is

g(a) := (1, a, a2, . . . , as−1) ∈ Zs (4.43)

which is called the Korobov form because it was proposed by Korobov [86]. The

lattice point g(a) depends also on s, but for the sake of simplicity we suppress this

dependence in the notation; the dimension s will always be clear from the context.

Since g(a) matters only modulo a given integer N ≥ 2, we can confine the integer

a to a complete residue system modulo N , say a ∈ ZN = {0, 1, . . . , N − 1} or

a ∈ C(N). Hence there are only N candidates g(a) in the search space, as opposed

to N s candidates when the lattice points run through the set Cs(N). The following

result, which is an analog of Theorem 4.3.7, guarantees that the strategy of limiting

the search to lattice points of Korobov form is successful, at least in the case of

prime moduli.

Theorem 4.3.14 Let s ≥ 2 be a dimension and let N be a prime number. Then

Ks(N) :=
1

N

N−1∑
a=0

R(g(a), N) <
s− 1

N
(2 logN + 2)s.

Proof. By inserting the definition of R(g(a), N) into the expression for Ks(N), we

obtain as in the proof of Theorem 4.3.7 that

Ks(N) =
1

N

∑
h∈C∗s (N)

T (h)

r(h)
,

where T (h) is the number of a ∈ ZN with h · g(a) ≡ 0 (mod N). If we write

h = (h1, . . . , hs), then the last condition means that

h · g(a) = h1 + h2a+ h3a
2 + · · ·+ hsa

s−1 ≡ 0 (mod N).

For fixed h ∈ C∗s (N), this is a polynomial congruence modulo N in the unknown a

with a nonzero polynomial of degree at most s − 1. Since N is a prime number, it

follows that T (h) ≤ s − 1 (apply Theorem 1.4.27 to the finite field FN). We infer

that

Ks(N) ≤ s− 1

N

∑
h∈C∗s (N)

1

r(h)
<
s− 1

N
(2 logN + 2)s

by a bound in the proof of Theorem 4.3.7. 2

In terms of N , the upper bound in Theorem 4.3.14 has the same order of mag-

nitude N−1(logN)s as that in Theorem 4.3.7. Therefore Theorem 4.3.14 has conse-

quences like Corollaries 4.3.8, 4.3.9, and 4.3.10 for lattice points of Korobov form,

with upper bounds of the same order of magnitude in N as in those corollaries.
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Example 4.3.15 Except for the trivial one-dimensional case, there is only the two-

dimensional case in which general explicit constructions of good lattice points are

known. The nicest such construction uses Fibonacci numbers. Recall that the

sequence F1, F2, . . . of Fibonacci numbers is the sequence of positive integers defined

recursively by F1 = F2 = 1 and Fk+2 = Fk+1 + Fk for k ≥ 1. Thus F3 = 2, F4 = 3,

F5 = 5, F6 = 8, and so on. The Fibonacci sequence is closely connected with the

irrational number α = (
√

5− 1)/2 considered in Example 4.2.7. We showed in that

example that α has the periodic continued fraction expansion

α = [0; 1, 1, 1, . . .].

Then by the recursions stated prior to Lemma 4.2.1, the numerators pk and the

denominators qk of the convergents pk/qk to α are given by pk = Fk and qk = Fk+1 for

all k ≥ 1. This suggests the following construction of two-dimensional good lattice

points. As a modulus we take N = Fm for some integer m ≥ 3. Note that there are

composite numbers among the Fibonacci numbers, for example F6 = 8 and F8 = 21,

and so the restriction to prime moduli as in most of our discussion of good lattice

points is not needed here. The lattice point corresponding to the modulus N = Fm is

g = (1, Fm−1). This lattice point is of Korobov form. We will show that g is a good

lattice point moduloN in the strong sense that P(g, N) is actually a two-dimensional

low-discrepancy point set. First we consider the sequence S = ({nFm−1/Fm})∞n=0.

We make the crucial observation that in the proof of the discrepancy bound in

Theorem 4.2.5, the fact that α is irrational is not used explicitly, but only the

properties of the convergents to α are relevant. This entails that the argument in

the proof of Theorem 4.2.5 applies also to the first M terms of the sequence S as long

as M ≤ N = Fm. Therefore the consequence of Theorem 4.2.5 stated in Theorem

4.2.6 applies as well for this range of M . Since in our case K = 1 in Theorem 4.2.6,

we obtain

DM(S) <
2

log 2
M−1 log(M + 1) for 1 ≤M ≤ N.

Next we recall that P(g, N) consists of the points ({n/Fm}, {nFm−1/Fm}) ∈ [0, 1)2

with n = 1, . . . , N = Fm. Note that for n = Fm we get ({n/Fm}, {nFm−1/Fm}) =

(0, 0), and so P(g, N) can be described also as the point set consisting of the points( n

Fm
,
{nFm−1

Fm

})
∈ [0, 1)2 for n = 0, 1, . . . , N − 1 = Fm − 1.

Therefore we can apply Lemma 4.1.38, and using the trivial fact that D∗M(S) ≤
DM(S) for all M ≥ 1 we get

D∗N(P(g, N)) <
2

log 2
· log(N + 1)

N
+

1

N
.

Thus, P(g, N) is indeed a two-dimensional low-discrepancy point set in the sense

of (4.23). This is excellent news since it yields an improvement on the quality of lat-
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tice points promised by the existence result in Corollary 4.3.9 and by the CBC algo-

rithm in Theorem 4.3.13 for s = 2. A detailed analysis of the special two-dimensional

point sets P(g, N) built on Fibonacci numbers can be found in Zaremba [204]. The

case where N = F9 = 34 is illustrated in Figure 4.6. Unfortunately, nobody has

managed to extend this elegant construction to higher dimensions in such a way

that it at least matches the existence result in Corollary 4.3.9.

4.3.2 General lattice rules

The issue here is to generalize the method of good lattice points so as to bring out

its salient features. We commence by regarding this method from a group-theoretic

perspective. For a given dimension s ≥ 1, the Euclidean space Rs is an abelian

group under addition (of real numbers for s = 1 and of vectors for s ≥ 2). Since Zs

is a subgroup of Rs, we can form the factor group Rs/Zs which is sometimes called

the s-dimensional torus group. For s = 1 the set R/Z is geometrically similar to a

circle since the endpoints 0 and 1 of the unit interval [0, 1] belong to the same coset

0+Z ∈ R/Z and can therefore be identified. Similarly for s = 2, we can think of the

set R2/Z2 as being obtained by identifying opposite sides of the unit square [0, 1]2,

and then we arrive at the geometric shape of a doughnut (or a torus in the technical

jargon). For s ≥ 3 we get higher-dimensional tori (not to be confused with torii

which, as everybody knows, is a gateway of a Shintō shrine) .

Now let us consider a point set P(g, N) in Subsection 4.3.1 with a dimension s ≥
1, a lattice point g ∈ Zs, and a modulus N ≥ 2. By definition, the points of P(g, N)

are the fractional parts xn := {(n/N)g} with n = 1, . . . , N . The corresponding

cosets in Rs/Zs are given by

xn + Zs =
{ n
N

g
}

+ Zs =
n

N
g + Zs = n

( 1

N
g + Zs

)
for n = 1, . . . , N.

For n = N we have xN + Zs = g + Zs = 0 + Zs, the identity element of the group

Rs/Zs. Therefore the cosets xn+Zs for n = 1, . . . , N form the finite cyclic subgroup

of Rs/Zs generated by (1/N)g + Zs.
If the point set P(g, N) is viewed in this way, then the following generalization is

obvious. Let L/Zs be any finite subgroup of Rs/Zs and let yn +Zs with yn ∈ [0, 1)s

for n = 1, . . . , N be the distinct cosets making up the group L/Zs. The point set

consisting of the points y1, . . . ,yN is called a lattice point set and the corresponding

quasi-Monte Carlo approximation∫
[0,1]s

f(u)du ≈ 1

N

N∑
n=1

f(yn) (4.44)

is called a lattice rule.

The name “lattice rule” stems from a geometric interpretation of the group-

theoretic approach above. If we envisage the union L = ∪Nn=1(yn + Zs) of cosets as
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a subset of Rs, then L is an s-dimensional lattice. Here by an s-dimensional lattice

we mean a discrete additive subgroup of Rs that is not contained in any proper

linear subspace of Rs. Equivalently, an s-dimensional lattice is obtained by taking s

linearly independent vectors b1, . . . ,bs ∈ Rs (hence a basis of the vector space Rs)

and forming the set

L =
{ s∑

i=1

kibi : ki ∈ Z for 1 ≤ i ≤ s
}

(4.45)

of all linear combinations of b1, . . . ,bs with coefficients that are integers. The lat-

tices corresponding to lattice rules must have an additional property stipulated in

the following definition.

Definition 4.3.16 An s-dimensional lattice is called an s-dimensional integration

lattice if it contains Zs as a subset.

Instead of a finite subgroup L/Zs of Rs/Zs, we can then take an s-dimensional

integration lattice L as the starting point. The intersection L∩ [0, 1)s is a finite set

since L is discrete, and this finite set of points in [0, 1)s forms again a lattice point

set.

The cornerstone for the analysis of the discrepancy of general lattice point sets is

again Proposition 4.3.1, as in the special case of the point sets P(g, N). This leads

naturally to the following concept.

Definition 4.3.17 The dual lattice L⊥ of the s-dimensional integration lattice L is

defined by

L⊥ = {h ∈ Zs : h · y ∈ Z for all y ∈ L}.

Example 4.3.18 Let us consider the special case of the integration lattice L cor-

responding to a point set P(g, N). We know that

L =
N⋃
n=1

( n
N

g + Zs
)
.

Thus, the elements y ∈ L are exactly given by y = (n/N)g + k for some n =

1, . . . , N and some k ∈ Zs. For h ∈ Zs we therefore obtain h ∈ L⊥ if and only if

(n/N)h ·g + h ·k ∈ Z for all n = 1, . . . , N and all k ∈ Zs. But h ·k is automatically

an integer, and so the last condition is equivalent to (n/N)h·g ∈ Z for n = 1, . . . , N .

It suffices to require this for n = 1, hence the condition says that (1/N)h · g ∈ Z,

and therefore

L⊥ = {h ∈ Zs : h · g ≡ 0 (mod N)}.

It is no accident that we have already seen this condition in the analysis of the point

sets P(g, N), for instance in Definition 4.3.2 and Theorem 4.3.5. The dual lattice

plays a crucial role in the analysis of general lattice point sets as well.
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Lemma 4.3.19 Let y1, . . . ,yN ∈ [0, 1)s be the points of the lattice point set cor-

responding to the s-dimensional integration lattice L, or equivalently to the finite

subgroup L/Zs of Rs/Zs. If h ∈ Zs, then

N∑
n=1

e2πih·yn =

{
N for h ∈ L⊥,
0 for h /∈ L⊥.

Proof. The group A := L/Zs is finite and also abelian as a subgroup of Rs/Zs.
Therefore we can talk about characters of A. For fixed h ∈ Zs we put

χh(y + Zs) = e2πih·y for all y ∈ L.

The map χh is well defined since the right-hand side does not depend on the rep-

resentative that we pick from the coset y + Zs. Furthermore, χh is obviously a

character of the additive group A. Now we can write

N∑
n=1

e2πih·yn =
∑
a∈A

χh(a).

The last sum, being a character sum for the finite abelian group A of order N , is

equal to N if the character χh is trivial and equal to 0 if χh is nontrivial (compare

with Theorem 1.3.34). Moreover, χh is trivial if and only if h · y ∈ Z for all y ∈ L,

that is, if and only if h ∈ L⊥. 2

The following definition generalizes Definition 4.3.2 and the subsequent result

generalizes Theorem 4.3.3. We avoid a trivial case by assuming from now on that a

lattice point set contains at least two points.

Definition 4.3.20 For an s-dimensional integration lattice L with N := |L/Zs| ≥
2, we put

R(L) =
∑

h∈F (L)

1

r(h)

with F (L) = C∗s (N)∩L⊥. We again use the convention that an empty sum is equal

to 0.

Theorem 4.3.21 Let L be an s-dimensional integration lattice and let P be the

corresponding lattice point set with N ≥ 2 points. Then

DN(P) ≤ s

N
+

1

2
R(L).

Proof. Let y1, . . . ,yN be the points of P . From the fact that the group L/Zs

has order N , it follows that Nyn ∈ Zs for 1 ≤ n ≤ N . Therefore we can apply

Proposition 4.3.1 with M = N , which yields

DN(P) ≤ s

N
+

∑
h∈C∗s (N)

1

r(h, N)

∣∣∣ 1

N

N∑
n=1

e2πih·yn
∣∣∣.
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Lemma 4.3.19 shows that

DN(P) ≤ s

N
+
∑

h∈F (L)

1

r(h, N)
.

The final step of the proof is the same as in the proof of Theorem 4.3.3. 2

It should be quite obvious that there is a complete analog of Theorem 4.3.5 for

general lattice rules, namely that for integrands f ∈ Ck(Rs/Zs) for some integer

k ≥ 2 and for an s-dimensional integration lattice L, the error in (4.44) satisfies the

bound ∣∣∣ ∫
[0,1]s

f(u)du− 1

N

N∑
n=1

f(yn)
∣∣∣ ≤ c(f)Pk(L),

where

Pk(L) =
∑

h∈L⊥\{0}

r(h)−k.

The proof of this bound is again based on Lemma 4.3.19. An analog of Propo-

sition 4.3.6, that is, a bound on Pk(L) in terms of R(L), can be found in [134,

Theorem 5.26].

For the proof of the following theorem, we need a notion from group theory. Let

A be a finite abelian group with the additive notation and let G and H be subgroups

of A. Then A is said to be the direct sum of G and H, written A = G⊕H, if every

element a ∈ A can be written as a = g + h with uniquely determined g ∈ G and

h ∈ H (or equivalently, if for every a ∈ A there is a representation a = g + h with

some g ∈ G and h ∈ H and if G ∩ H = {0}). Each of G and H is called a direct

summand of A. We proceed similarly for more than two direct summands, using the

characterization in terms of the unique sum representation. We refer to Definition

1.3.22 for the concept of the exponent of A.

Lemma 4.3.22 Let A be a finite abelian group and let E = E(A) be the exponent

of A. Then every cyclic subgroup of A of order E is a direct summand of A.

Proof. We proceed by induction on the order of A. The case A = {0} is trivial.

Now we take a finite abelian group A of order greater than 1 and we assume that

the lemma is already shown for all finite abelian groups of smaller order than A.

Let C = 〈c〉 be a cyclic subgroup of A of order E. If C = A, then A = C ⊕ {0}
and C is a direct summand of A. If C 6= A, then we choose b ∈ A\C such that ord(b)

is minimal among all elements of A \ C. Now b 6= 0 ∈ A implies that ord(b) ≥ 2,

and so we can talk about prime factors of ord(b). Take any prime factor p of ord(b)

and consider the p-fold sum d = pb. Then ord(d) = ord(b)/p < ord(b), and in view

of the definition of b we must have d ∈ C. Therefore d = nc for some n ∈ N. Now

ord(b)n

p
c =

ord(b)

p
(nc) =

ord(b)

p
d = 0 ∈ A,
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and so E divides ord(b)n/p by Lemma 1.3.10. But ord(b) divides E by Proposition

1.3.24, and therefore p divides n, say n = jp for some j ∈ N. For the element

b− jc /∈ C (recall that b /∈ C = 〈c〉) we obtain

p(b− jc) = pb− (jp)c = d− nc = d− d = 0 ∈ A,

and so ord(b − jc) = p. The minimality property of ord(b) implies that ord(b) ≤
ord(b− jc) = p. Since p is a prime factor of ord(b), it follows that ord(b) = p.

We introduce the cyclic subgroup B = 〈b〉 of A of order p. The intersection B∩C
is a subgroup of B, and we deduce from Lagrange’s theorem (see Theorem 1.3.21)

and b /∈ C that B∩C = {0}. Now we consider the factor group A := A/B. Let m be

the order of the element c+B ∈ A. Then m(c+B) = 0 ∈ A, that is, mc+B = 0+B,

and so mc ∈ B. But also mc ∈ C, hence mc = 0 ∈ A since B ∩ C = {0}, and so

E divides m by Lemma 1.3.10. Furthermore E(c + B) = Ec + B = 0 + B, and so

m = E.

Thus, we arrive at the following situation: A is a finite abelian group of smaller

order than A, it contains the cyclic subgroup C := 〈c+B〉 of order E, and E is the

exponent of A since the exponent of a factor group of A cannot be larger than the

exponent of A. Therefore we can apply the induction hypothesis to A. This yields

a subgroup H of A with A = C ⊕ H. Now H gives rise to the subgroup H of A

that consists of all h ∈ A with h + B ∈ H. Note that B ⊆ H. It is then clear that

every a ∈ A can be written in the form a = g + h with some g ∈ C and h ∈ H. We

obtain A = C ⊕H if we can show that C ∩H = {0}. So let tc ∈ H for some t ∈ N.

Then tc + B ∈ H, but also tc + B = t(c + B) ∈ C, and so tc + B ∈ C ∩ H. This

intersection consists only of the coset 0 + B, and therefore tc ∈ B. This implies

tc ∈ B ∩ C = {0} as desired. 2

Now we return to the finite abelian group L/Zs and we apply the theory of finite

abelian groups, and in particular Lemma 4.3.22, in order to derive a canonical form

of lattice point sets.

Theorem 4.3.23 For every dimension s ≥ 1 and every integer N ≥ 2, an s-

dimensional lattice point set with N points consists exactly of all fractional parts{ r∑
i=1

(ki/ni)gi

}
with ki ∈ Z, 0 ≤ ki < ni for 1 ≤ i ≤ r,

where the integer r with 1 ≤ r ≤ s and the integers n1, . . . , nr ≥ 2 with ni+1 dividing

ni for 1 ≤ i ≤ r − 1 and n1 · · ·nr = N are uniquely determined. Furthermore, the

lattice points g1, . . . ,gr ∈ Zs are linearly independent and for each i = 1, . . . , r the

greatest common divisor of all coordinates of gi and of ni is equal to 1.

Proof. Let A := L/Zs be the finite abelian group of order N corresponding to the

given lattice point set. First we establish a suitable direct sum decomposition of A
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by the following procedure. Let n1 ≥ 2 be the exponent of A and let C1 be a cyclic

subgroup of A of order n1. If C1 = A, then we stop. Otherwise, we apply Lemma

4.3.22 and obtain A = C1⊕A2 with a subgroup A2 of A of order at least 2. Let n2 ≥ 2

be the exponent of A2. Then n2 divides n1 by Proposition 1.3.24. Furthermore, A2

has a cyclic direct summand C2 of order n2 by Lemma 4.3.22. Continuing in this

way, we arrive after finitely many steps at a decomposition A = C1 ⊕ · · · ⊕ Cr,

where Ci is a cyclic group of order ni ≥ 2 for 1 ≤ i ≤ r and ni+1 divides ni for

1 ≤ i ≤ r − 1. A comparison of orders yields N = n1 · · ·nr. The number r and

the orders n1, . . . , nr of the direct summands in this decomposition are uniquely

determined by the multiset (that is, the set with multiplicities of elements taken

into account) of orders of all elements of A.

For i = 1, . . . , r, let ci ∈ Rs be such that ci+Zs is a generator of the cyclic group

Ci. Since Ci has order ni, we have nici ∈ Zs, and so ci = (1/ni)gi for some gi ∈ Zs.
Since ci + Zs ∈ Ci has order ni, the greatest common divisor of all coordinates of

gi and of ni is equal to 1. Furthermore, it follows from A = C1 ⊕ · · · ⊕ Cr that the

points of the given lattice point set are as indicated in the theorem.

If c1, . . . , cr were linearly dependent, then 0 ∈ Rs could be written as a nontrivial

linear combination of c1, . . . , cr with rational coefficients. By clearing denominators,

we get
∑r

i=1 jici = 0 with integers j1, . . . , jr not all 0 and satisfying gcd(j1, . . . , jr) =

1. This yields the identity

r∑
i=1

ji(ci + Zs) = 0 + Zs

in the group A. The direct sum decomposition A = C1 ⊕ · · · ⊕ Cr implies that

ji(ci + Zs) is the identity element of Ci for 1 ≤ i ≤ r, and so ni divides ji for

1 ≤ i ≤ r. Since nr divides all ni, we infer that nr ≥ 2 divides j1, . . . , jr. But this

is a contradiction to gcd(j1, . . . , jr) = 1. Therefore c1, . . . , cr, and so g1, . . . ,gr, are

linearly independent. In particular, it follows that r ≤ s. Now all claims in the

theorem are proved. 2

Definition 4.3.24 The uniquely determined integer r in Theorem 4.3.23 is called

the rank of the lattice point set and the uniquely determined integers n1, . . . , nr in

Theorem 4.3.23 are called the invariants of the lattice point set.

Example 4.3.25 Consider a point set P(g, N) from Subsection 4.3.1 with g =

(g1, . . . , gs) ∈ Zs satisfying gcd(g1, . . . , gs, N) = 1. Then according to Definition

4.3.24, P(g, N) is a lattice point set of rank 1 and its only invariant is n1 = N .

If d := gcd(g1, . . . , gs, N) > 1, then all points of P(g, N) occur with the same

multiplicity d, and so this case is not interesting in practice.
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Figure 4.7: A shifted centered regular lattice

Example 4.3.26 Take the centered regular lattice in (4.33) with m ≥ 2 and shift

it so that the origin belongs to the shifted point set. The points of the shifted point

set are (k1
m
, . . . ,

ks
m

)
∈ [0, 1)s

with k1, . . . , ks running independently through the integers 0, 1, . . . ,m−1. We refer

to Figure 4.7 for an illustration with s = 2 and m = 6. The corresponding subgroup

A of Rs/Zs is obviously the direct sum A = C⊕· · ·⊕C of s copies of a cyclic group

C of order m. The uniqueness of the rank and of the invariants of lattice point sets

implies that our lattice point set has rank s and invariants n1, . . . , ns with ni = m

for 1 ≤ i ≤ s. The lattice corresponding to this example is L = (1/m)Zs. The dual

lattice of L is L⊥ = mZs.

Example 4.3.27 The preceding example suggests the following general procedure.

Let L be an s-dimensional integration lattice and let m ≥ 2 be an integer. Then

the scaled version (1/m)L of L is again an s-dimensional integration lattice which

can be thought of as a copy of L with scaling factor 1/m. The corresponding lattice

rule is called a copy rule. If y1, . . . ,yN are the points of L in [0, 1)s, then all points

of L are given by yn + k with 1 ≤ n ≤ N and k running through Zs. The points of

(1/m)L are therefore given by (1/m)yn + (1/m)k with 1 ≤ n ≤ N and k running

through Zs. It is now easy to find the points of (1/m)L belonging to [0, 1)s, and

indeed the lattice point set corresponding to (1/m)L consists of the msN points

1

m
yn +

1

m
(k1, . . . , ks) ∈ [0, 1)s,

where 1 ≤ n ≤ N and k1, . . . , ks run independently through the integers 0, 1, . . . ,m−
1. This point set can be viewed geometrically as follows: subdivide the s-dimensional

unit cube into ms smaller cubes each of side length 1/m, and in each smaller cube
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choose an appropriately shifted and scaled-down version (by the factor 1/m) of the

points y1, . . . ,yN . Sloan and Joe [189, Sections 6.4 and 6.5] make a good case for

the choice m = 2 which can improve the performance of certain lattice rules.

Much more is known about general lattice rules, and we refer you to [134, Chap-

ter 5] and [189] if you want to learn more about them.

4.4 Nets and (t, s)-sequences

4.4.1 Basic facts about nets

We continue with the investigation of one of the key problems in quasi-Monte Carlo

integration, namely the construction of low-discrepancy point sets. A rich source

of low-discrepancy point sets is supplied by the theory of so-called nets or more

precisely (t,m, s)-nets. The philosophy behind the concept of a net is very simple.

In view of the definition of the discrepancy of a point set P consisting of N points in

[0, 1)s (see Definition 4.1.35), it is clear that in order to arrive at a low-discrepancy

point set P , we need to make the counting function A(J ;P) roughly equal to Nλs(J)

for all half-open subintervals J of [0, 1)s. In an ideal world, A(J ;P) would be exactly

equal to Nλs(J) for all such intervals J , but this is impossible because of the lower

bounds on DN(P) stated in Subsection 4.1.2, or because of the even simpler reason

that A(J ;P) is an integer and Nλs(J) is not always an integer. However, what is in

fact feasible is to request the identity A(J ;P) = Nλs(J) for a large finite family of

intervals J . The intuitive idea is then that if A(J ;P) = Nλs(J) for many intervals

J , then P should overall be a low-discrepancy point set. This expectation is borne

out by the results to be described below.

Some care has to be taken concerning the actual form of the intervals J for which

we request that A(J ;P) = Nλs(J). The following examples provide a clue and lead

to the notion introduced in Definition 4.4.3 below.

Example 4.4.1 For integers b ≥ 2 and m ≥ 0, consider the equidistant point set P
consisting of the bm rational numbers 0, 1/bm, 2/bm, . . . , (bm − 1)/bm in [0, 1). If we

want A(J ;P) = Nλs(J) = bmλ(J), then the length λ(J) of the interval J ⊆ [0, 1)

must of course be a rational number with denominator bm. The smallest intervals of

this type have length b−m. Indeed, every half-open interval Ja := [ab−m, (a+ 1)b−m)

with a ∈ Z and 0 ≤ a < bm satisfies A(Ja;P) = bmλ(Ja) since A(Ja;P) = 1, that is,

Ja contains exactly one point of the point set P . Furthermore, the intervals Ja form

a partition of [0, 1) and any union J of intervals Ja satisfies again A(J ;P) = bmλ(J).

The same holds if we replace P by the first bm terms of the van der Corput sequence

S = (φb(n))∞n=0 in base b (see Remark 4.2.9), since the first bm terms of S are just a

rearrangement of the numbers 0, 1/bm, 2/bm, . . . , (bm − 1)/bm.
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Example 4.4.2 For integers b ≥ 2 and m ≥ 1, let P be the two-dimensional

Hammersley point set in (4.32) with N = bm and b1 = b, that is, P consists of the

bm points

yn =
( n
bm
, φb(n)

)
∈ [0, 1)2 for n = 0, 1, . . . , bm − 1.

Clearly, if A(J ;P) = Nλs(J) = bmλ2(J), then the area λ2(J) of the interval (in this

case the rectangle) J must be a rational number with denominator bm. The smallest

rectangles of this type have area b−m. In view of the b-adic nature of the points yn
of P , it is natural to consider b-adic rectangles

J = [a1b
−d1 , (a1 + 1)b−d1)× [a2b

−d2 , (a2 + 1)b−d2) ⊆ [0, 1)2 (4.46)

with a1, a2, d1, d2 ∈ Z, d1 ≥ 0, d2 ≥ 0, 0 ≤ a1 < bd1 , and 0 ≤ a2 < bd2 . The

condition λ2(J) = b−m means that d1 + d2 = m. We claim that each rectangle J

in (4.46) with d1 +d2 = m contains exactly one point of P . For n = 0, 1, . . . , bm− 1,

it is obvious that yn ∈ J if and only if a1b
m−d1 = a1b

d2 ≤ n < (a1 + 1)bd2 and

φb(n) ∈ [a2b
−d2 , (a2 + 1)b−d2). The last condition amounts to saying that the first

d2 b-adic digits of φb(n) are prescribed, or equivalently that in the digit expansion

n =
∑∞

j=0 zj(n)bj of n in (4.30) the digits z0(n), z1(n), . . . , zd2−1(n) are prescribed.

But in the range a1b
d2 ≤ n < (a1 + 1)bd2 there is exactly one value of n with these

prescribed digits, and so we get indeed A(J ;P) = 1 = bmλ2(J). The intervals J

in (4.46) with fixed d1 and d2 form a partition of [0, 1)2 and any disjoint union J1
of these intervals with d1 + d2 = m satisfies again A(J1;P) = bmλ2(J1).

Definition 4.4.3 Let b ≥ 2 and s ≥ 1 be integers. A half-open subinterval J of

[0, 1)s of the form

J =
s∏
i=1

[aib
−di , (ai + 1)b−di) (4.47)

with ai, di ∈ Z, di ≥ 0, and 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary

interval in base b.

Now we can let the cat out of the bag: the idea behind the concept of a net P in

base b is that we request that each elementary interval in base b with a prescribed

volume gets the same share of points of P . The following general definition of nets

was introduced by Niederreiter [130], while special cases were considered earlier by

Sobol’ [190] and Faure [49].

Definition 4.4.4 Let b ≥ 2 and s ≥ 1 be integers and let t and m be integers with

0 ≤ t ≤ m. A (t,m, s)-net in base b is a point set P consisting of bm points in [0, 1)s

such that A(J ;P) = bmλs(J) = bt for every elementary interval J ⊆ [0, 1)s in base

b with λs(J) = bt−m.
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Figure 4.8: A (0, 4, 2)-net in base 2; every two-dimensional elementary interval in

base 2 of area 2−4 contains exactly one point of the net

Example 4.4.5 The point set in Example 4.4.1 is a (0,m, 1)-net in base b. The

point set in Example 4.4.2 is a (0,m, 2)-net in base b.

Example 4.4.6 Every point set of bm points in [0, 1)s is a (t,m, s)-net in base b

with t = m. For m ≥ 1 we claim that we get a (t,m, s)-net in base b with t = m− 1

by taking the points(n
b
,
n

b
, . . . ,

n

b

)
∈ [0, 1)s for n = 0, 1, . . . , b− 1

on the main diagonal of the s-dimensional unit cube, each with multiplicity bt =

bm−1. To begin with, this yields a point set P of bm points in [0, 1)s. According to

Definition 4.4.4, we have to consider elementary intervals J ⊆ [0, 1)s in base b with

λs(J) = bt−m = b−1. Because of the symmetry in the points of P , it suffices to look

at intervals J of the form J = [ab−1, (a+1)b−1)× [0, 1)s−1 with a ∈ Z and 0 ≤ a < b.

It is clear that (n/b, n/b, . . . , n/b) ∈ J if and only if n = a. Therefore A(J ;P) = bt

and P is indeed an (m− 1,m, s)-net in base b.

Example 4.4.7 The centered regular lattice in (4.33) can, in certain cases, be con-

sidered in a nontrivial way as a net. For integers b ≥ 2, r ≥ 1, and s ≥ 1, let P be

the point set consisting of the points

xk1,...,ks =
(2k1 − 1

2br
, . . . ,

2ks − 1

2br

)
∈ [0, 1)s

with k1, . . . , ks running independently through the integers 1, . . . , br. With m = rs

the number of points in P is (br)s = bm. We claim that P is an (m− r,m, s)-net in

base b. Let J ⊆ [0, 1)s be an elementary interval in base b with λs(J) = b−r. Then
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J has the form (4.47) with d1 + · · · + ds = r, and we must have 0 ≤ di ≤ r for

1 ≤ i ≤ s. Now xk1,...,ks ∈ J if and only if

2ki − 1 ∈ [2aib
r−di , (2ai + 2)br−di) for 1 ≤ i ≤ s.

For fixed i = 1, . . . , s, this condition holds exactly for ki = aib
r−di + 1, . . . , aib

r−di +

br−di , that is, for exactly br−di values of ki. Therefore

A(J ;P) =
s∏
i=1

br−di = brs−(d1+···+ds) = bm−r,

and the claim is established.

Proposition 4.4.8 Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. If P is a

(t,m, s)-net in base b, then P is also a (v,m, s)-net in base b for every integer v

with t ≤ v ≤ m.

Proof. It suffices to show that if t < m, then P is also a (t + 1,m, s)-net in base b.

Let J ⊆ [0, 1)s be an elementary interval in base b with λs(J) = bt+1−m. Then J has

the form (4.47) with d1 + · · ·+ ds = m− t− 1. For c = 0, 1, . . . , b− 1, we introduce

an elementary interval Jc in base b given by

Jc = [a1b
−d1 + cb−d1−1, a1b

−d1 + (c+ 1)b−d1−1)×
s∏
i=2

[aib
−di , (ai + 1)b−di).

Then λs(Jc) = bt−m, and so A(Jc;P) = bt for 0 ≤ c ≤ b − 1 by the definition of a

(t,m, s)-net in base b. Since J is the disjoint union of J0, J1, . . . , Jb−1, we obtain

A(J ;P) =
b−1∑
c=0

A(Jc;P) = bt+1

as desired. 2

Three of the four parameters t, m, s, and b of a (t,m, s)-net in base b are easy

to determine: b is the base, s is the dimension, and m can be read off from the

number of points in the net (which is bm). The parameter t is also crucial since

it tells us how small we can make an elementary interval J in base b and still get

the perfect equidistribution property A(J ;P) = bmλs(J) in Definition 4.4.4. The

number t is called the quality parameter of a (t,m, s)-net in base b. Definition

4.4.4 and Proposition 4.4.8 indicate that t should be small in order to get strong

equidistribution properties of the net.

Proposition 4.4.8 is a simple instance of what is called a propagation rule for

nets, that is, a rule that starts from one net or several nets and produces a net with

new parameters. Here are two more propagation rules for nets that are simple but

useful.
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Proposition 4.4.9 Let b ≥ 2, s ≥ 2, and 0 ≤ t ≤ m be integers and let r be an

integer with 1 ≤ r < s. If P is a (t,m, s)-net in base b and P(r) is as in Remark

4.1.37 the projection of P onto the first r coordinates, then P(r) is a (t,m, r)-net in

base b.

Proof. The argument is similar to that in Remark 4.1.37. Let J (r) ⊆ [0, 1)r be an ele-

mentary interval in base b with λr(J
(r)) = bt−m and put J = J (r)× [0, 1)s−r ⊆ [0, 1)s.

Then J is an elementary interval in base b with λs(J) = bt−m. Since a projected

point is in J (r) if and only if the original point is in J , we obtain A(J (r);P(r)) =

A(J ;P) = bt by the definition of a (t,m, s)-net in base b, and so we are done. 2

Proposition 4.4.10 Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. Then given a

(t,m, s)-net in base b, we can construct a (t, k, s)-net in base b for every integer k

with t ≤ k ≤ m.

Proof. Let P be the given (t,m, s)-net in base b and fix an integer k with t ≤ k ≤ m.

Consider the elementary interval J0 = [0, bk−m) × [0, 1)s−1 ⊆ [0, 1)s in base b with

λs(J0) = bk−m. Note that P is a (k,m, s)-net in base b by Proposition 4.4.8, and so

A(J0;P) = bk by the definition of a (k,m, s)-net in base b. Let x1, . . . ,xbk be the

points of P that belong to J0. Let τ : J0 → [0, 1)s be the map defined by

τ(u1, u2, . . . , us) = (bm−ku1, u2, . . . , us) for (u1, u2, . . . , us) ∈ J0.

Now we claim that the point set R consisting of the points τ(x1), . . . , τ(xbk) is

a (t, k, s)-net in base b. Take an elementary interval J ⊆ [0, 1)s in base b with

λs(J) = bt−k. Then for 1 ≤ n ≤ bk, it is clear that τ(xn) ∈ J if and only if

xn ∈ τ−1(J) ⊆ J0, and furthermore τ−1(J) is an elementary interval in base b with

λs(τ
−1(J)) = bk−mλs(J) = bt−m. It follows that A(J ;R) = A(τ−1(J);P) = bt by

the definition of a (t,m, s)-net in base b, and the proof is complete. 2

The quality parameter t of a (t,m, s)-net in base b should be as small as pos-

sible in order to optimize the equidistribution properties of the net. Since t is, by

definition, a nonnegative integer, the most favorable value of t is t = 0. This raises

the question of whether we can always achieve t = 0 for any choice of the remaining

parameters m, s, and b of a net. Unfortunately, the answer is no, and this provides

further support for the conjecture that we are not living in the best of all possible

worlds. In fact, the following theorem imposes a serious restriction on the existence

of (0,m, s)-nets in base b.

Theorem 4.4.11 Let b ≥ 2 and m ≥ 2 be integers. Then a (0,m, s)-net in base b

can exist only if s ≤ b+ 1.
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Proof. We proceed by contradiction and assume that there exists a (0,m, s)-net in

base b for some integers m ≥ 2 and s ≥ b + 2. Then Proposition 4.4.9 implies that

there exists a (0,m, b + 2)-net in base b and Proposition 4.4.10 shows that there

exists a (0, 2, b+ 2)-net P in base b. Let x1, . . . ,xb2 be the points of P and put

xn =
(
x(1)n , . . . , x(b+2)

n

)
∈ [0, 1)b+2 for n = 1, . . . , b2.

For i = 1, . . . , b+ 2 and n = 1, . . . , b2, we set

a(i)n = bbx(i)n c ∈ Zb = {0, 1, . . . , b− 1}.

We take these integers a
(i)
n and form the (b+ 2)× b2 array

a
(1)
1 a

(1)
2 . . . a

(1)

b2

a
(2)
1 a

(2)
2 . . . a

(2)

b2

...
...

...

a
(b+2)
1 a

(b+2)
2 . . . a

(b+2)

b2

Now we consider a pair of rows of this array, say the ith row and the jth row with

1 ≤ i < j ≤ b+2. For a given ordered pair (z1, z2) ∈ Z2
b , we have (a

(i)
n , a

(j)
n ) = (z1, z2)

if and only if x
(i)
n ∈ [z1/b, (z1 + 1)/b) and x

(j)
n ∈ [z2/b, (z2 + 1)/b), that is, if and

only if xn lies in the interval J =
∏b+2

k=1 Ik ⊆ [0, 1)b+2 with Ii = [z1/b, (z1 + 1)/b),

Ij = [z2/b, (z2 + 1)/b), and Ik = [0, 1) for k ∈ {1, . . . , b + 2} \ {i, j}. Now J is

an elementary interval in base b with λb+2(J) = b−2, and so the definition of a

(0, 2, b + 2)-net in base b implies that A(J ;P) = b2λb+2(J) = 1. In other words,

there is a one-to-one correspondence between the ordered pairs (a
(i)
n , a

(j)
n ) from Z2

b

and the integers n = 1, . . . , b2. The b2 ordered pairs (a
(i)
n , a

(j)
n ), n = 1, . . . , b2, run

exactly through Z2
b . We express this by saying that the ith row and the jth row

of our array are orthogonal. Since this holds for any distinct i and j, we use the

terminology that the rows of our array are mutually orthogonal.

It is a consequence of the mutual orthogonality of the rows of our array that each

element of Zb occurs exactly b times in each row of the array. Now we normalize the

array in the following way. For each i = 1, . . . , b+ 2, we choose a permutation ψi of

Zb such that ψi(a
(i)
1 ) = 0, and then we transform the ith row (a

(i)
1 . . . a

(i)

b2 ) of the

array into the row (ψi(a
(i)
1 ) . . . ψi(a

(i)

b2 )), that is, we apply ψi to each entry of the ith

row. This amounts to a renaming of the elements, and so the mutual orthogonality

of the rows of the array is preserved. Furthermore, in the new normalized array all

entries in the first column are equal to 0.

Finally, we take the normalized array, delete its first column, and thus obtain a

(b + 2) × (b2 − 1) subarray. In each row of this subarray, exactly b − 1 entries are

equal to 0, and so the total number of 0’s in the subarray is (b+ 2)(b− 1). On the

other hand, consider any of the b2 − 1 columns of the subarray and suppose that it

contains the element 0, say in the ith row. If there were a second entry 0 in this
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column, say in the jth row with j 6= i, then this would violate the orthogonality of

the ith row and the jth row of the normalized array (recall that the first entry in

each row of the normalized array is equal to 0). Hence each of the b2− 1 columns of

the (b+ 2)× (b2− 1) subarray contains at most one entry equal to 0. It follows that

the total number of 0’s in the subarray is ≤ b2− 1 = (b+ 1)(b− 1) < (b+ 2)(b− 1),

which is the desired contradiction. 2

Remark 4.4.12 The condition m ≥ 2 is needed for the validity of Theorem 4.4.11

since Example 4.4.6 shows that there exists a (0, 0, s)-net in base b and also a (0, 1, s)-

net in base b for every b ≥ 2 and every dimension s ≥ 1.

Remark 4.4.13 Theorem 4.4.11 can be refined for various values of b by using the

combinatorial theory of latin squares. A latin square of order b ≥ 2 is a b× b array

of elements from Zb (or from any other set with b elements) such that each row

and each column is a permutation of Zb. A well-known example from the puzzle

pages of newspapers is a sudoku which is a latin square of order 9 with Z9 replaced

by {1, . . . , 9} and with additional requirements (see Figure 4.9). Two latin squares

S1 = (s
(1)
ij )1≤i,j≤b and S2 = (s

(2)
ij )1≤i,j≤b of order b are orthogonal if the b2 ordered

pairs (s
(1)
ij , s

(2)
ij ) ∈ Z2

b , i, j = 1, . . . , b, are all distinct. A collection S1, . . . , Sk of

latin squares of order b is mutually orthogonal if Sg and Sh are orthogonal for all

1 ≤ g < h ≤ k. There is a maximum cardinality for a collection of mutually

orthogonal latin squares of order b and this maximum cardinality is denoted by

M(b). Then it was proved in [130] that if b ≥ 2 and m ≥ 2 are integers, then a

(0,m, s)-net in base b can exist only if s ≤ M(b) + 2. Since M(b) ≤ b − 1 for all

b ≥ 2, Theorem 4.4.11 is a consequence of the result in [130]. We have M(b) = b− 1

if b is a prime power, but there are values of b for which M(b) is unexpectedly small,

for instance M(b) = 1 for b = 6. Thus, for m ≥ 2 a (0,m, s)-net in base 6 can exist

only if s ≤ 3. A book on latin squares that includes the connection with nets was

written by Laywine and Mullen [94].

The first discrepancy bound for general (t,m, s)-nets in base b was established

in [130] (see also [134, Theorem 4.10]), and it shows that a (t,m, s)-net in base b is a

low-discrepancy point set if t is small compared to m, for instance if t = 0. Various

improvements on the constants in this discrepancy bound were achieved later. We

state without proof the following discrepancy bound which is obtained by combining

results from [89] and [50].

Theorem 4.4.14 Let b ≥ 2, s ≥ 1, and m ≥ 1 be integers and let t be an integer

with 0 ≤ t ≤ m. Then the star discrepancy D∗N(P) of a (t,m, s)-net P in base b

with N = bm satisfies

ND∗N(P) ≤ bb
2/2c

b2 − 1
· bt

(s− 1)!

( b− 1

2 log b

)s−1
(logN)s−1 +B(b, s)bt(logN)s−2,
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9 2 4 3 8 6 1 5 7

3 8 5 7 1 2 4 6 9

6 7 1 4 5 9 2 3 8

2 1 9 8 4 3 5 7 6

7 5 3 6 9 1 8 2 4

8 4 6 5 2 7 3 9 1

4 9 8 2 6 5 7 1 3

5 6 7 1 3 8 9 4 2

1 3 2 9 7 4 6 8 5

Figure 4.9: A sudoku, a latin square of order 9

where the constant B(b, s) > 0 depends only on b and s.

It is again evident from Theorem 4.4.14 that we prefer small values of the qual-

ity parameter t in a (t,m, s)-net in base b. This is in conformity with an earlier

observation that smaller values of t imply stronger equidistribution properties of

a (t,m, s)-net in base b. Because of the exponential dependence on t of the dis-

crepancy bound in Theorem 4.4.14, even a small decrease in the value of t yields a

considerable payoff in the discrepancy bound. Therefore it is worthwhile to work

hard on the minimization of the value of t.

4.4.2 Digital nets and duality theory

Apart from some simple illustrations of the concept of a net in the preceding subsec-

tion, we have not yet seen concrete examples of good nets in arbitrary dimensions.

What is still lacking in our presentation is an effective general instrument for the

construction of nets. Such a tool is available in the case where the base b is a

prime power, and in agreement with earlier practice in this book we write then q for

the prime power. It should not come as a surprise that the reason why prime-power

bases are special is that for a prime power q there exists a finite field with q elements,

or of order q in the terminology of Section 1.4. The construction principle for nets

that we will describe in the following is called the digital method and it is based on

the theory of vector spaces and matrices over finite fields. We refer to Subsections

3.2.1 and 3.2.3 for a brief account of this theory. For the sake of completeness, it

should be mentioned that versions of the digital method are available also for bases

that are not prime powers (see [130] and [134, Section 4.3]), but the method is much

more powerful for prime-power bases.

We focus on a simplified version of the digital method for prime-power bases and

refer to [130] and [134, Section 4.3] for the more general original version. Let q be

an arbitrary prime power and let Fq be the finite field of order q. Let s ≥ 1 be a

given dimension and let m ≥ 1 be an integer. In order to obtain a (t,m, s)-net in
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base q, we have to construct qm suitable points in [0, 1)s. The crucial step in the

construction is to choose m×m matrices C(1), . . . , C(s) over Fq, that is, one matrix

for each of the s coordinate directions of points in [0, 1)s. Next we set up the map

Tm : Fmq → [0, 1) by putting

Tm(h) =
m∑
j=1

ψ(hj)q
−j (4.48)

for every column vector h = (h1, . . . , hm)> ∈ Fmq , where ψ : Fq → Zq is a fixed

bijection from Fq onto the least residue system Zq modulo q. For each column

vector v ∈ Fmq , we compute the matrix-vector products C(i)v ∈ Fmq for 1 ≤ i ≤ s,

and then we associate with the vector v the point

(Tm(C(1)v), . . . , Tm(C(s)v)) ∈ [0, 1)s. (4.49)

By letting v range over all qm possibilities in Fmq , we arrive at a point set consisting

of qm points in [0, 1)s.

Definition 4.4.15 The point set P consisting of the qm points in (4.49) is called

a digital net over Fq. If P forms a (t,m, s)-net in base q for some integer t with

0 ≤ t ≤ m, then P is called a digital (t,m, s)-net over Fq. The matrices C(1), . . . , C(s)

are the generating matrices of P .

Example 4.4.16 Let s = 1, let q be an arbitrary prime power, and let m ≥ 1 be

an integer. We choose C(1) to be the m × m identity matrix over Fq. Then for

any bijection ψ : Fq → Zq in (4.48), the corresponding digital net P over Fq agrees

with the equidistant point set in Example 4.4.1 for b = q. This point set P is a

(0,m, 1)-net in base q by Example 4.4.5, and so P is a digital (0,m, 1)-net over Fq
and C(1) is its generating matrix.

Example 4.4.17 Let s = 2, let q be an arbitrary prime power, and let m ≥ 1 be

an integer. We choose C(1) to be the m × m identity matrix over Fq. Let C(2) =

(cij)1≤i,j≤m be the m×m antidiagonal matrix over Fq with cij = 1 if i+j = m+1 and

cij = 0 otherwise. Then for any bijection ψ : Fq → Zq in (4.48), the corresponding

digital net P agrees with the point set in Example 4.4.2 for b = q. This point set P
is a (0,m, 2)-net in base q by Example 4.4.5, and so P is a digital (0,m, 2)-net over

Fq and C(1) and C(2) are its generating matrices.

We know from Example 4.4.6 that t = m is always a possible value of the

quality parameter for a digital net over Fq consisting of qm points. Hence every

s-dimensional digital net over Fq with qm points is a digital (t,m, s)-net over Fq for

some value of t. We want to figure out by all means how we can obtain values of

t smaller than m. It transpires that the quality parameter of a digital net depends
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only on its generating matrices and in fact on a certain linear independence property

of the rows of the generating matrices. The following definition is convenient in this

context.

Definition 4.4.18 Let q be a prime power, let m ≥ 1 and s ≥ 1 be integers, and

let d be an integer with 0 ≤ d ≤ m. The system {h(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s}

of vectors is a (d,m, s)-system over Fq if for all nonnegative integers d1, . . . , ds with∑s
i=1 di = d, the system {h(i)

j ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly independent

over Fq. Here an empty system (which occurs for d = 0) is considered linearly

independent over Fq.

It is clear from this definition that the property of being a (d,m, s)-system over

Fq is the stronger the larger the value of d. We consider now the m×m generating

matrices C(1), . . . , C(s) over Fq of a digital net over Fq. For 1 ≤ i ≤ s and 1 ≤ j ≤ m,

let c
(i)
j ∈ Fmq denote the jth row vector of the matrix C(i).

Theorem 4.4.19 Let q be a prime power, let m ≥ 1 and s ≥ 1 be integers, and let

t be an integer with 0 ≤ t ≤ m. Then a digital net over Fq with m ×m generating

matrices C(1), . . . , C(s) over Fq is a digital (t,m, s)-net over Fq if and only if the

system {c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} of row vectors of C(1), . . . , C(s) is a

(d,m, s)-system over Fq with d = m− t.

Proof. Let

J =
s∏
i=1

[aiq
−di , (ai + 1)q−di) ⊆ [0, 1)s

be an elementary interval in base q of the form (4.47) with b = q. Put d =
∑s

i=1 di,

so that λs(J) = q−d. We can assume that d ≥ 1, for otherwise we have the trivial

case J = [0, 1)s. For a column vector v ∈ Fmq , the corresponding point in (4.49) lies

in J if and only if

Tm(C(i)v) ∈ [aiq
−di , (ai + 1)q−di) for 1 ≤ i ≤ s.

This condition means that for 1 ≤ i ≤ s the first di q-adic digits of Tm(C(i)v) and

aiq
−di agree, and this amounts to saying that Cd,mv = b for some column vector

b ∈ Fdq depending only on J , where Cd,m is a d × m matrix over Fq whose row

vectors are given by the row vectors c
(i)
j , 1 ≤ j ≤ di, 1 ≤ i ≤ s, of the generating

matrices in some order. If the given digital net is a digital (t,m, s)-net over Fq, then

with d = m − t the equation Cd,mv = b has exactly qt solutions v ∈ Fmq for ev-

ery b ∈ Fdq . This implies that the system {c(i)
j ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ s}

is linearly independent over Fq, and since this holds for all choices of nonneg-

ative integers d1, . . . , ds with
∑s

i=1 di = m − t = d, we infer that the system

{c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a (d,m, s)-system over Fq with d = m − t.
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The converse holds for the same reasons. 2

If we want to minimize the value of t for given generating matrices of a digital

net, then according to Theorem 4.4.19 we have to maximize the value of d, and this

leads naturally to the following concept.

Definition 4.4.20 The figure of merit %(C(1), . . . , C(s)) ofm×mmatrices C(1), . . . , C(s)

over Fq is defined to be the largest integer d such that the system of row vectors of

C(1), . . . , C(s) is a (d,m, s)-system over Fq.

Corollary 4.4.21 A digital net over Fq with m×m generating matrices C(1), . . . , C(s)

over Fq is a digital (t,m, s)-net over Fq with

t = m− %(C(1), . . . , C(s)),

and this is the least value of t for this digital net.

Proof. This follows from Theorem 4.4.19 and Definition 4.4.20. 2

It is an obvious consequence of Definitions 4.4.18 and 4.4.20 that the figure of

merit %(C(1), . . . , C(s)) of m×m matrices C(1), . . . , C(s) over Fq always satisfies 0 ≤
%(C(1), . . . , C(s)) ≤ m. Corollary 4.4.21 signalizes that we should design generating

matrices with a large figure of merit in order to obtain digital nets with a small

quality parameter.

Example 4.4.22 Let P be the digital net over Fq in Example 4.4.16. Its generating

matrix C(1) is the m×m identity matrix over Fq. Since the row vectors of C(1) are

linearly independent over Fq, it is evident that %(C(1)) = m. Therefore Corollary

4.4.21 implies that P is a digital (0,m, 1)-net over Fq, and this agrees with the result

in Example 4.4.16.

Example 4.4.23 Consider the digital net P over Fq in Example 4.4.17 with the

generating matrices C(1) and C(2) stipulated there. We claim that %(C(1), C(2)) = m.

For k = 1, . . . ,m, let sk be the kth unit vector in Fmq , that is, the vector with kth

coordinate equal to 1 and all other coordinates equal to 0. Now we take two integers

d1 ≥ 0 and d2 ≥ 0 with d1 + d2 = m. The first d1 row vectors of C(1) are the unit

vectors s1, s2, . . . , sd1 and the first d2 = m−d1 row vectors of C(2) are the unit vectors

sm, sm−1, . . . , sd1+1. Therefore the system {c(i)
j ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ 2} of

row vectors of C(1) and C(2) consists exactly of all unit vectors s1, . . . , sm in Fmq , and

these unit vectors are obviously linearly independent over Fq. Thus, we have indeed

%(C(1), C(2)) = m. Hence Corollary 4.4.21 implies that P is a digital (0,m, 2)-net

over Fq, in accordance with the result in Example 4.4.17.
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Remark 4.4.24 It follows from Theorem 4.4.11 and Corollary 4.4.21 that for inte-

gers m ≥ 2 and s ≥ q + 2, there cannot exist m×m matrices C(1), . . . , C(s) over Fq
with figure of merit %(C(1), . . . , C(s)) = m. This can be proved also directly by the

theory of vector spaces. If there were such matrices C(1), . . . , C(s), then their row

vectors would form an (m,m, s)-system S = {c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s}

over Fq. Then {c(1)
1 , . . . , c

(1)
m } is a basis of the vector space Fmq . In the representation

of each vector c
(i)
1 , 2 ≤ i ≤ s, as a linear combination of these basis vectors, the

coefficient of c
(1)
m must be nonzero by the definition of an (m,m, s)-system over Fq.

Thus for each i = 2, . . . , s, there exists a nonzero fi ∈ Fq such that fic
(i)
1 − c

(1)
m is

a linear combination of c
(1)
1 , . . . , c

(1)
m−1. Let bi ∈ Fq be the coefficient of c

(1)
m−1 in the

last linear combination. Since s ≥ q + 2, two of the elements b2, . . . , bs of Fq must

be identical, say bh = bk for some subscripts h and k with 2 ≤ h < k ≤ s. Then by

subtraction we see that fhc
(h)
1 − fkc

(k)
1 is a linear combination of c

(1)
1 , . . . , c

(1)
m−2 (or

equal to 0 ∈ Fmq if m = 2), and this is a contradiction to S being an (m,m, s)-system

over Fq.

Remark 4.4.25 At this stage we can already observe some connections between

digital nets and linear codes. Let C be a linear [s, k] code over Fq with 1 ≤ k ≤ s−1

and with minimum distance d(C) ≥ d + 1 for some integer d ≥ 1. Then a parity-

check matrix H of C is an (s − k) × s matrix over Fq, say with column vectors

c(1), . . . , c(s). Hence by Theorem 3.2.44, any d of the vectors c(1), . . . , c(s) are linearly

independent over Fq. Thus, the construction of a good linear code obliges us to find

a list of s vectors c(1), . . . , c(s), that is, a 1 × s array of vectors, with the indicated

linear independence property for a large value of d. The construction of a good

digital (t,m, s)-net over Fq challenges us to find an m× s array of vectors c
(i)
j ∈ Fmq ,

1 ≤ j ≤ m, 1 ≤ i ≤ s, with the linear independence property captured by the

definition of a (d,m, s)-system over Fq with a large value of d (see Definition 4.4.18

and Theorem 4.4.19). In this sense, we can think of the construction of good digital

nets over Fq as being a harder problem than the construction of good linear codes

over Fq. We will see further links between digital nets and linear codes in the duality

theory for digital nets described below and later on in Theorem 4.4.35.

A basic fact about linear codes is the connection between minimum distance and

Hamming weights in Theorem 3.2.14. There is an equally fundamental relationship

between the quality parameter of a digital net and generalizations of Hamming

weights, and this is the pivot of the duality theory for digital nets developed by

Niederreiter and Pirsic [139].

Let q be a prime power and let m ≥ 1 be an integer. We introduce a weight

function vm on Fmq by putting vm(b) = 0 if b = 0 ∈ Fmq , and for b = (b1, . . . , bm) ∈
Fmq with b 6= 0 we let vm(b) be the largest value of j with 1 ≤ j ≤ m such that

bj 6= 0.



4.4. NETS AND (T, S)-SEQUENCES 257

Definition 4.4.26 Let q be a prime power and let m ≥ 1 and s ≥ 1 be integers.

Write a vector B ∈ Fmsq as the concatenation of s vectors of length m, that is,

B = (b(1), . . . ,b(s)) ∈ Fmsq with b(i) ∈ Fmq for 1 ≤ i ≤ s. Then the NRT weight

Vm(B) of B is defined by

Vm(B) =
s∑
i=1

vm(b(i)).

The NRT weight is named after the work of Niederreiter, Rosenbloom, and Ts-

fasman. The NRT weight was first introduced by Niederreiter [129] in the context of

research on low-discrepancy point sets, and it was later applied in coding theory by

Rosenbloom and Tsfasman [174]. If the distance dm(A,B) of A,B ∈ Fmsq is defined

by dm(A,B) = Vm(A−B), then the pair (Fmsq , dm) forms a metric space (compare

with Remark 3.1.8) called the NRT space. For m = 1 the NRT space reduces to

the Hamming space (Fsq, d1) with d1 being the Hamming distance on Fsq (see again

Remark 3.1.8).

Example 4.4.27 Let q = 2, m = 5, s = 2, and consider the vector

B = (0, 0, 1, 1, 0, 1, 0, 1, 0, 0) ∈ F10
2 .

Then B = (b(1),b(2)) with b(1) = (0, 0, 1, 1, 0) ∈ F5
2 and b(2) = (1, 0, 1, 0, 0) ∈ F5

2.

Clearly v5(b
(1)) = 4 and v5(b

(2)) = 3, and therefore V5(B) = v5(b
(1)) + v5(b

(2)) = 7

by Definition 4.4.26. Note that if we keep the same vector B, but change m and s

to m = 2 and s = 5, then an easy computation shows that V2(B) = 6. Thus, on the

same vector space Fmsq the NRT weight function Vm depends on m, and this is why

we write m in the subscript of V .

The following definition of minimum distance is inspired by Theorem 3.2.14 in

coding theory. For the reason given in Example 4.4.27, it is important to point out

the dependence on m in the notation for this minimum distance.

Definition 4.4.28 Let q be a prime power and let m ≥ 1 and s ≥ 1 be integers.

Then the minimum distance δm(N ) of a nonzero linear subspace N of Fmsq is defined

by

δm(N ) = min
B∈N\{0}

Vm(B).

It is trivial that always δm(N ) ≥ 1. As to an upper bound, it is remarkable

that the classical Singleton bound for linear codes (see Corollary 3.4.11) can be

generalized to the minimum distance δm(N ). The Singleton bound corresponds to

the case m = 1 in the following proposition. As in Chapter 3, we write dim(N ) for

the dimension of a finite-dimensional vector space N over Fq.
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Proposition 4.4.29 Let q be a prime power and let m ≥ 1 and s ≥ 1 be integers.

Then every nonzero linear subspace N of Fmsq satisfies

δm(N ) ≤ ms− dim(N ) + 1.

Proof. Put k = dim(N ) and let π : N → Fkq be the linear transformation that maps

B ∈ N to the k-tuple of the last k coordinates of B. If π is surjective, then there

exists a nonzero B1 ∈ N with

π(B1) = (1, 0, . . . , 0) ∈ Fkq .

Then Vm(B1) ≤ ms − k + 1. If π is not surjective, then it follows from dim(N ) =

dim(Fkq) that there exists a nonzero B2 ∈ N with π(B2) = 0 ∈ Fkq . Hence

Vm(B2) ≤ ms− k, and so in both cases we get the desired bound. 2

Now we come to the gist of the duality theory for digital nets. Let P be a

digital net over Fq with m×m generating matrices C(1), . . . , C(s) over Fq. We set up

an m ×ms matrix M over Fq which depends only on C(1), . . . , C(s) by proceeding

as follows: for j = 1, . . . ,m, the jth row of M is obtained by concatenating the

transposes of the jth columns of C(1), . . . , C(s). Equivalently, the transpose M> of

M is the ms ×m matrix over Fq that is produced by putting the m ×m matrices

C(1), . . . , C(s) on top of each other.

Example 4.4.30 Let q = 3, m = 3, and s = 2, and let P be the digital net over F3

with generating matrices

C(1) =

 1 1 1

0 1 2

0 0 1

 , C(2) =

 1 2 1

0 1 1

0 0 1

 .

It is easily checked that %(C(1), C(2)) = 3, and so P is a digital (0, 3, 2)-net over F3

by Corollary 4.4.21. The matrix M associated with P is

M =

 1 0 0 1 0 0

1 1 0 2 1 0

1 2 1 1 1 1

 .

Note that the transpose M> of M can be formally written as

M> =

(
C(1)

C(2)

)
.

We continue with the m × ms matrix M over Fq and define the row space of

the digital net P over Fq to be the linear subspace M of Fmsq generated by the

row vectors of M ; that is, M consists of all linear combinations over Fq of the row
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vectors of M . Next we take the row space M and form its dual space M⊥, which

according to Definition 3.2.30 is given by

M⊥ = {B ∈ Fmsq : B ·M = 0 for all M ∈M},

where · denotes the dot product on Fmsq (see Definition 3.2.17). It is obvious that

dim(M) ≤ m, and so M⊥ is a linear subspace of Fmsq with dim(M⊥) = ms −
dim(M) ≥ ms − m by Theorem 3.2.34 (the excluded cases k = 0 and k = n in

Theorem 3.2.34 are trivial). The case of the dimension s = 1 is not of interest in

the theory of digital nets over Fq since we know from Example 4.4.16 that for every

integer m ≥ 1 there exists a digital (t,m, 1)-net over Fq with the optimal value t = 0

of the quality parameter. Hence we can focus on the case s ≥ 2, and then M⊥ is

a nonzero linear subspace of Fmsq since dim(M⊥) ≥ ms − m ≥ m ≥ 1. We can

therefore talk about the minimum distance δm(M⊥). The following theorem is the

keystone of the duality theory for digital nets.

Theorem 4.4.31 Let q be a prime power and let m ≥ 1 and s ≥ 2 be integers. Let

P be an s-dimensional digital net over Fq with m×m generating matrices over Fq
and let M ⊆ Fmsq be its row space. Then an integer t with 0 ≤ t ≤ m is a quality

parameter of P if and only if the dual space M⊥ of M satisfies

δm(M⊥) ≥ m− t+ 1.

Proof. Let C(1), . . . , C(s) be the generating matrices of P . As usual, we write c
(i)
j

for the jth row vector of C(i), where 1 ≤ j ≤ m and 1 ≤ i ≤ s. In view of Theorem

4.4.19, we have to prove that the system {c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a

(d,m, s)-system over Fq if and only M⊥ satisfies δm(M⊥) ≥ d+ 1.

Let M be the m×ms matrix over Fq constructed from C(1), . . . , C(s) as above.

We take any vector B ∈ Fmsq and write it as B = (b(1), . . . ,b(s)) with

b(i) = (b
(i)
1 , . . . , b

(i)
m ) ∈ Fmq for 1 ≤ i ≤ s.

Then a linear dependence relation

s∑
i=1

m∑
j=1

b
(i)
j c

(i)
j = 0 ∈ Fmq (4.50)

can be put in the form BM> = 0 ∈ Fmq (recall the description of M> prior to

Example 4.4.30). Furthermore, the identity BM> = 0 holds if and only if B is

orthogonal to each column vector of M> (or in other words to each row vector of

M), that is, if and only if B ∈M⊥.

Now assume that {c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a (d,m, s)-system over

Fq. Consider any nonzero vector B = (b(1), . . . ,b(s)) ∈ M⊥. Then from the above
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we get the linear dependence relation (4.50). Put vm(b(i)) = ei for 1 ≤ i ≤ s. Then

s∑
i=1

ei∑
j=1

b
(i)
j c

(i)
j = 0 ∈ Fmq .

Since not all coefficients b
(i)
j are 0, the system {c(i)

j ∈ Fmq : 1 ≤ j ≤ ei, 1 ≤ i ≤ s} is

linearly dependent over Fq. Thus, the definition of a (d,m, s)-system over Fq implies

that
∑s

i=1 ei ≥ d+ 1. Therefore

Vm(B) =
s∑
i=1

vm(b(i)) =
s∑
i=1

ei ≥ d+ 1,

and so δm(M⊥) ≥ d+ 1.

Conversely, assume that δm(M⊥) ≥ d+ 1. We have to verify that every system

{c(i)
j ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ s} with nonnegative integers d1, . . . , ds satisfying∑s
i=1 di = d is linearly independent over Fq. Suppose, on the contrary, that such a

system were linearly dependent over Fq, that is, that there exist coefficients b
(i)
j ∈ Fq,

not all 0, such that
s∑
i=1

di∑
j=1

b
(i)
j c

(i)
j = 0 ∈ Fmq .

Define b
(i)
j = 0 for di < j ≤ m, 1 ≤ i ≤ s. Then

s∑
i=1

m∑
j=1

b
(i)
j c

(i)
j = 0 ∈ Fmq .

This is a linear dependence relation of the form (4.50), and by what was demon-

strated earlier in the proof, this leads to a nonzero vector B ∈ M⊥. Hence

δm(M⊥) ≥ d+ 1 implies that Vm(B) ≥ d+ 1. On the other hand, vm(b(i)) ≤ di for

1 ≤ i ≤ s by the definition of the b
(i)
j , and so

Vm(B) =
s∑
i=1

vm(b(i)) ≤
s∑
i=1

di = d.

This is the desired contradiction. 2

Corollary 4.4.32 Let q be a prime power and let m ≥ 1 and s ≥ 2 be integers.

Then from every linear subspace N of Fmsq with dim(N ) ≥ ms−m we can construct

a digital (t,m, s)-net over Fq with

t = m− δm(N ) + 1.
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Proof. Put M = N⊥ ⊆ Fmsq . Then dim(M) = ms − dim(N ) ≤ m. By using basis

vectors of M as row vectors and supplementing them by zero vectors from Fmsq as

needed, we can set up an m × ms matrix M over Fq whose row vectors generate

M. In the same way as m × m generating matrices C(1), . . . , C(s) over Fq led to

an m × ms matrix over Fq, we can start from the matrix M and recover m × m

matrices C(1), . . . , C(s) over Fq. Let P be the digital net over Fq with generating

matrices C(1), . . . , C(s). Then by construction, M is the row space of P . Theorem

4.4.31 shows that the possible values of the quality parameter t of P satisfy t ≥
m− δm(M⊥) + 1 = m− δm(N ) + 1. The least possible value is t = m− δm(N ) + 1,

but we have to ascertain that it satisfies 0 ≤ t ≤ m. The inequality t ≤ m is trivial

since δm(N ) ≥ 1. Furthermore, Proposition 4.4.29 implies that

t = m− δm(N ) + 1 ≥ m−ms+ dim(N ) ≥ 0

since dim(N ) ≥ ms−m by assumption. 2

Example 4.4.33 We return to the digital (0,m, 2)-net P over Fq in Example 4.4.17

and discuss it from the viewpoint of duality theory. Since the generating matrices

C(1) and C(2) of P are symmetric, we can write the m× 2m matrix M over Fq in an

obvious notation as M =
(
C(1) | C(2)

)
. Therefore the row spaceM of P consists of

all vectors

C = (c1, c2, . . . , cm, cm, . . . , c2, c1) ∈ F2m
q (4.51)

with c1, . . . , cm running independently through Fq. Now we take a vector B of the

form

B = (b1, b2, . . . , bm,−bm, . . . ,−b2,−b1) ∈ F2m
q (4.52)

with arbitrary b1, . . . , bm ∈ Fq. Then for every vector C in (4.51) we get B ·C = 0,

and so B ∈ M⊥. Note that dim(M⊥) = 2m− dim(M) = m, and so the vectors B

in (4.52) yield exactly the dual spaceM⊥ ofM. We want to deduce from Theorem

4.4.31 that t = 0 is a quality parameter of the digital net P over Fq. To this end, we

have to prove that δm(M⊥) ≥ m+ 1. Consequently, we take any nonzero vector B

in (4.52) and we write as usual B = (b(1),b(2)), here with b(1) = (b1, b2, . . . , bm) ∈ Fmq
and b(2) = (−bm, . . . ,−b2,−b1) ∈ Fmq . We must have b(1) 6= 0 ∈ Fmq , so let us say

that vm(b(1)) = j ≥ 1. Then bj 6= 0, so in the vector b(2) we find the coordinate

−bj 6= 0 in the position m − j + 1. Therefore vm(b(2)) ≥ m − j + 1, and so

Vm(B) = vm(b(1)) + vm(b(2)) ≥ j + m − j + 1 = m + 1. Thus, we get indeed

δm(M⊥) ≥ m+ 1.

Example 4.4.34 Consider the digital (0, 3, 2)-net P over F3 in Example 4.4.30.

The matrix M associated with P is given in that example, and so the row spaceM
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of P consists of all linear combinations over F3 of the row vectors of M . The vectors

B1 = (2, 2, 2, 1, 0, 0) ∈ F6
3,

B2 = (0, 2, 1, 0, 1, 0) ∈ F6
3,

B3 = (0, 0, 2, 0, 0, 1) ∈ F6
3

are orthogonal to all row vectors of M , and so B1,B2,B3 ∈M⊥. Since dim(M⊥) =

6−dim(M) = 3 and B1,B2,B3 are linearly independent over F3, the subspaceM⊥

of F6
3 consists of all linear combinations over F3 of B1,B2,B3. We want to show

by Theorem 4.4.31 that t = 0 is a quality parameter of the digital net P over F3.

This will be achieved if we prove that δ3(M⊥) ≥ 4. We take any nonzero vector

B ∈M⊥ and write as usual B = (b(1),b(2)) with b(1) ∈ F3
3 and b(2) ∈ F3

3. Note that

for every nontrivial linear combination over F3 of B1,B2,B3, we obtain v3(b
(1)) ≥ 1

and v3(b
(2)) ≥ 1. If V3(B) = 2, then necessarily v3(b

(2)) = 1. But then B = aB1

for some a ∈ F∗3, hence V3(B) = 4, a contradiction. If V3(B) = 3, then again we

cannot have v3(b
(2)) = 1, and so we must have v3(b

(2)) = 2 and v3(b
(1)) = 1. We

deduce from v3(b
(2)) = 2 that B = bB1 + cB2 with b, c ∈ F3 and c 6= 0. But then

v3(b
(1)) ≥ 2 and V3(B) ≥ 4, again a contradiction. Thus, we must have δ3(M⊥) ≥ 4,

and since V3(B1) = 4, we get in fact δ3(M⊥) = 4.

4.4.3 Constructions of digital nets

We have already seen some examples of digital nets in the preceding subsection, and

now we present several systematic constructions of larger families of digital nets. We

start with an intriguing application of linear codes to the theory of digital nets. The

broad impact of coding theory on digital nets is in fact a remarkable phenomenon,

and it can be expected that more links between these areas will be discovered in the

future. We use the standard notation for linear codes from Section 3.2, namely that

a linear [n, k, d] code over Fq is a linear code over Fq of length n, dimension k, and

minimum distance d.

Theorem 4.4.35 Let q be a prime power and let n, k, and d be integers with

3 ≤ d ≤ n and 1 ≤ k ≤ n − 1. Then from a linear [n, k, d] code over Fq we

can derive a digital (n− k − d+ 1, n− k, s)-net over Fq, where s = b2n/(d− 1)c if

d is odd and s = b(2n− 2)/(d− 2)c if d is even.

Proof. We first note that we always have n− k − d+ 1 ≥ 0 by the Singleton bound

for linear codes in Corollary 3.4.11. Furthermore, the definition of s implies that

s ≥ 2.

Let H be a parity-check matrix of a given linear [n, k, d] code over Fq. Then

H is an (n − k) × n matrix over Fq whose column vectors h1, . . . ,hn ∈ Fn−kq have

the property that any d− 1 of them are linearly independent over Fq (see Theorem
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3.2.44). In view of Theorem 4.4.19, it suffices to derive a (d − 1, n − k, s)-system

{c(i)
j ∈ Fn−kq : 1 ≤ j ≤ n− k, 1 ≤ i ≤ s} over Fq.
We commence with the case where d ≥ 3 is odd and we put a = (d− 1)/2. Note

that then s = bn/ac. Now we determine the vectors c
(i)
j ∈ Fn−kq , 1 ≤ j ≤ 2a = d−1,

1 ≤ i ≤ s, according to the following table.

i = 1 i = 2 i = 3 . . . i = s

c
(i)
1 h1 ha+1 h2a+1 . . . h(s−1)a+1

c
(i)
2 h2 ha+2 h2a+2 . . . h(s−1)a+2

...
...

...
...

...

c
(i)
a ha h2a h3a . . . hsa

c
(i)
a+1 h2a ha ha . . . ha

c
(i)
a+2 h2a−1 ha−1 ha−1 . . . ha−1

...
...

...
...

...

c
(i)
2a ha+1 h1 h1 . . . h1

The vectors c
(i)
j for 2a + 1 = d ≤ j ≤ n − k and 1 ≤ i ≤ s can be chosen

arbitrarily in Fn−kq . The largest subscript r of a vector hr in the table above is

r = sa = bn/aca ≤ n, and so all entries in the table make sense.

We claim that {c(i)
j ∈ Fn−kq : 1 ≤ j ≤ n−k, 1 ≤ i ≤ s} is a (d−1, n−k, s)-system

over Fq. For any nonnegative integers d1, . . . , ds with
∑s

i=1 di = d− 1 = 2a, we have

to show that the system

S = Sd1,...,ds = {c(i)
j ∈ Fn−kq : 1 ≤ j ≤ di, 1 ≤ i ≤ s}

is linearly independent over Fq. Note first that all vectors hr in the upper a × s

subarray of the table above have different subscripts r, and so any d − 1 of them

are linearly independent over Fq by the given linear independence property of the

vectors h1, . . . ,hn. Consequently, if di ≤ a for 1 ≤ i ≤ s, then the system S is

linearly independent over Fq. In the remaining case, di > a holds for some i, and

since
∑s

i=1 di = 2a, this holds for exactly one i = i0. If i0 = 1, then d1 = a+ b with

1 ≤ b ≤ a, and from the column i = 1 in the table above we pick the vectors

h1,h2, . . . ,ha,h2a,h2a−1, . . . ,h2a−b+1.

From the other columns we select altogether a−b vectors, and in the entire collection

of the chosen vectors hr all subscripts r are different. Hence again the corresponding

system S is linearly independent over Fq. Finally, if i0 ≥ 2, then di0 = a + b with

1 ≤ b ≤ a, and from the column i = i0 in the table above we pick the vectors

h(i0−1)a+1,h(i0−1)a+2, . . . ,hi0a,ha,ha−1, . . . ,ha−b+1.

From the other columns we select altogether a−b vectors, and for the same reason as

before the corresponding system S is linearly independent over Fq. This completes

the proof for the case where d is odd.
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Now we consider the case where d ≥ 4 is even and we put a = (d−2)/2. Note that

then s = b(n− 1)/ac. We determine the vectors c
(i)
j ∈ Fn−kq , 1 ≤ j ≤ 2a+ 1 = d− 1,

1 ≤ i ≤ s, according to the following table.

i = 1 i = 2 i = 3 . . . i = s

c
(i)
1 h1 ha+1 h2a+1 . . . h(s−1)a+1

c
(i)
2 h2 ha+2 h2a+2 . . . h(s−1)a+2

...
...

...
...

...

c
(i)
a ha h2a h3a . . . hsa

c
(i)
a+1 hsa+1 hsa+1 hsa+1 . . . hsa+1

c
(i)
a+2 h2a ha ha . . . ha

c
(i)
a+3 h2a−1 ha−1 ha−1 . . . ha−1

...
...

...
...

...

c
(i)
2a+1 ha+1 h1 h1 . . . h1

The vectors c
(i)
j for 2a + 2 = d ≤ j ≤ n − k and 1 ≤ i ≤ s can be chosen

arbitrarily from Fn−kq . The largest subscript r of a vector hr in the table above is

r = sa+ 1 = b(n− 1)/aca+ 1 ≤ n, and so all entries in the table make sense.

We claim that {c(i)
j ∈ Fn−kq : 1 ≤ j ≤ n−k, 1 ≤ i ≤ s} is a (d−1, n−k, s)-system

over Fq. For any nonnegative integers d1, . . . , ds with
∑s

i=1 di = d− 1 = 2a+ 1, we

have to verify that the system

T = Td1,...,ds = {c(i)
j ∈ Fn−kq : 1 ≤ j ≤ di, 1 ≤ i ≤ s}

is linearly independent over Fq. As before, the case where di ≤ a for 1 ≤ i ≤ s is

obvious. In the remaining case, there is again exactly one i = i0 with di > a. A

similar analysis as in the case d odd shows that the system T is linearly indepen-

dent over Fq. The only new potential problem is that we may pick the vector hsa+1

twice, but since this vector appears only in row a + 1 of the table above and since∑s
i=1 di = 2a+ 1 < 2(a+ 1), this cannot happen. 2

Example 4.4.36 If we want to achieve the optimal value t = 0 of the quality

parameter in Theorem 4.4.35, then we have to use a linear [n, k, d] code over Fq with

d = n− k + 1, that is, an MDS code over Fq (see Definition 3.4.13). An interesting

family of MDS codes is formed by the generalized Reed-Solomon codes in Remark

3.5.34. In particular, for every prime power q and every integer k with 1 ≤ k ≤ q,

we obtain a linear [q, k, q− k+ 1] code over Fq from Remark 3.5.34. We first choose

q ≥ 3 and k = q − 2. Then d = q − k + 1 = 3 is odd, and so s = b2q/2c = q

in Theorem 4.4.35. Therefore Theorem 4.4.35 yields a digital (0, 2, q)-net over Fq.
Next we choose q ≥ 4 and k = q − 3. Then d = q − k + 1 = 4 is even, and so

s = b(2q − 2)/2c = q − 1 in Theorem 4.4.35. Therefore Theorem 4.4.35 yields a
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digital (0, 3, q−1)-net over Fq. By similar arguments, the choice q ≥ 5 and k = q−4

yields a digital (0, 4, bq/2c)-net over Fq, and many other examples of this type can

be derived from Theorem 4.4.35 and generalized Reed-Solomon codes.

A rather wide family of digital nets is that of hyperplane nets introduced by

Pirsic, Dick, and Pillichshammer [161]. The construction of hyperplane nets is

based on the duality theory for digital nets described in Subsection 4.4.2. Let q be

a prime power and let m ≥ 1 and s ≥ 2 be integers. Together with the finite field

Fq we consider also its extension field Fqm with qm elements. Let W = Fsqm be the

standard s-dimensional vector space over Fqm . Then W can be viewed also as a

vector space over Fq, and since W contains exactly (qm)s = qms vectors, it follows

from Proposition 3.2.6 that W has dimension ms as a vector space over Fq. Next

we choose an ordered basis B of Fqm over Fq, for instance as in Remark 3.2.7. Now

let β = (β1, . . . , βs) ∈ W be arbitrary. For each i = 1, . . . , s, the element βi ∈ Fqm
has a coordinate vector τ(βi) ∈ Fmq relative to the ordered basis B. Then

σ(β) = (τ(β1), . . . , τ(βs)) ∈ Fmsq for all β ∈ W

defines a bijective linear transformation σ : W → Fmsq from W onto Fmsq .

For the construction of a hyperplane net, we fix a vector α ∈ W and we put

Wα := {β ∈ W : α · β = 0},

where · is the dot product on W . It is clear that Wα is a linear subspace of W , both

for W as a vector space over Fqm and over Fq. If α = 0 ∈ W , then Wα = W , and

so dim(Wα) = ms as a vector space over Fq. If α 6= 0, then Wα contains exactly

(qm)s−1 = qms−m vectors, and so dim(Wα) = ms − m as a vector space over Fq.
Note that if α 6= 0, then Wα may be interpreted geometrically as a hyperplane,

and this explains the terminology “hyperplane net”. In any case, we can say that

dim(Wα) ≥ ms −m. Next we let Nα = σ(Wα) ⊆ Fmsq be the image of Wα under

σ. Since σ is a bijective linear transformation, Nα is a linear subspace of Fmsq with

dim(Nα) = dim(Wα) ≥ ms − m, and so we are in a position to apply Corollary

4.4.32.

Definition 4.4.37 Let q be a prime power and let m ≥ 1 and s ≥ 2 be integers.

For a given α ∈ W = Fsqm , the digital net Pα over Fq obtained from Corollary 4.4.32

by using the linear subspace Nα of Fmsq constructed above is called a hyperplane net

over Fq.

It follows from Corollary 4.4.32 that Pα is a digital (t,m, s)-net over Fq with

t = m − δm(Nα) + 1. As usual in the duality theory for digital nets, we strive

to make the minimum distance δm(Nα) as large as possible. The following result

establishes a lower bound on δm(Nα) that can always be satisfied by a suitable choice

of α ∈ W .
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Theorem 4.4.38 For every prime power q and all integers m ≥ 1 and s ≥ 2, there

exists an α ∈ W = Fsqm such that

δm(Nα) ≥ m+ 1− d(s− 1) logq(m+ 1)e,

where logq denotes the logarithm to the base q.

Proof. We proceed by an elimination method: we weed out those α ∈ W for which

δm(Nα) ≤ m− d(s− 1) logq(m+ 1)e and we show that there is still an α0 ∈ W left

over, which then necessarily satisfies δm(Nα0) ≥ m+ 1− d(s− 1) logq(m+ 1)e.
For every integer d with 0 ≤ d ≤ m, the number of b ∈ Fmq with vm(b) = d is

given by εdq
d, where ε0 = 1 and εd = (q − 1)/q for 1 ≤ d ≤ m. Thus, for a fixed

integer k with 1 ≤ k ≤ ms and for (d1, . . . , ds) ∈ Zs with 0 ≤ di ≤ m for 1 ≤ i ≤ s

and
∑s

i=1 di = k, the number of B = (b(1), . . . ,b(s)) ∈ Fmsq with vm(b(i)) = di for

1 ≤ i ≤ s is equal to
∏s

i=1 εdiq
di . This number is at most

(q − 1)qd1+···+ds−1 = (q − 1)qk−1

since at least one di is positive. Furthermore, the number of (d1, . . . , ds) ∈ Zs with

0 ≤ di ≤ m for 1 ≤ i ≤ s and
∑s

i=1 di = k is bounded from above by (m + 1)s−1,

since for each of d1, . . . , ds−1 there are at most m + 1 possibilities and there is at

most one choice for ds for any given d1, . . . , ds−1, and k. Altogether, we have shown

that the number Aq(k,m, s) of B ∈ Fmsq with Vm(B) = k satisfies

Aq(k,m, s) ≤ (q − 1)(m+ 1)s−1qk−1.

Next we estimate the number of α = (α1, . . . , αs) ∈ W with δm(Nα) = k. For

such an α, there exists a vector B ∈ Nα with Vm(B) = k. We take such a B ∈ Nα
and note that by the definition of Nα there exists a unique β = (β1, . . . , βs) ∈
Wα \ {0} with σ(β) = B. Now β ∈ Wα means that

α · β = α1β1 + · · ·+ αsβs = 0.

Since at least one βi 6= 0, the number of α ∈ W with α · β = 0 is exactly qm(s−1).

It follows that the number of α ∈ W with δm(Nα) = k is at most

Aq(k,m, s)q
m(s−1) ≤ (q − 1)(m+ 1)s−1qm(s−1)+k−1.

Finally, we put K = m− d(s− 1) logq(m+ 1)e and we note that we can assume

K ≥ 1, for otherwise the theorem is trivial. Then by what we have already shown,

the number of α ∈ W with δm(Nα) ≤ K is at most

(q − 1)(m+ 1)s−1qm(s−1)
K∑
k=1

qk−1 < (m+ 1)s−1qm(s−1)+K

≤ (m+ 1)s−1qm(s−1)+m−(s−1) logq(m+1) = qms.
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The set W has qms elements, and so there exists an α0 ∈ W with δm(Nα0) ≥ K+ 1.

2

Corollary 4.4.39 For every prime power q and all integers m ≥ 1 and s ≥ 2, there

exists an α ∈ W = Fsqm such that the hyperplane net Pα in Definition 4.4.37 is a

digital (t,m, s)-net over Fq with

t ≤ d(s− 1) logq(m+ 1)e.

Proof. This follows from Corollary 4.4.32 and Theorem 4.4.38. 2

If we choose an α ∈ W according to Corollary 4.4.39, then it follows from

Theorem 4.4.14 that the star discrepancy D∗N(Pα) of the corresponding hyperplane

net Pα with N = qm satisfies

D∗N(Pα) ≤ c(q, s)N−1(logN)2s−2

with a constant c(q, s) > 0 depending only on q and s. It turns out that for s ≥ 3

one can find even better hyperplane nets by using the general principle of the CBC

algorithm for good lattice points (see Algorithm 4.3.12). In the present context, the

idea is to construct a good vector α = (α1, . . . , αs) ∈ W coordinate by coordinate,

by starting with α1 = 1 ∈ Fqm and computing αd+1 ∈ Fqm , 1 ≤ d ≤ s − 1, by

minimizing a certain quantity that depends on the previously computed coordinates

α1, . . . , αd and a variable element γ ranging over Fqm . This has the effect that in the

bound on D∗N(Pα) above we can replace the exponent 2s−2 of logN by s, provided

that we use a vector α ∈ W obtained from this CBC algorithm. We refer to [39,

Section 11.3] for the details.

We mentioned good lattice points in the paragraph above, and there is actually an

analog of lattice point sets in the context of digital nets. The construction of lattice

point sets in Section 4.3 is based on the arithmetic of rational numbers, whereas the

analog for digital nets employs the arithmetic of rational functions over a finite field.

Let Fq(x) be the field of rational functions over Fq which consists of all fractions

g(x)/f(x) of polynomials with a numerator g(x) ∈ Fq[x] and a nonzero denominator

f(x) ∈ Fq[x]. Here q is as usual an arbitrary prime power. The arithmetic in Fq(x)

is as expected; the only difference compared to classical rational functions, say over

the real numbers, is that the arithmetic for the coefficients is performed in the finite

field Fq.
We need a technical tool, namely the expansion of a rational function over Fq

into a sort of power series. We will require the same tool again in Subsection 4.4.5

on the construction of (t, s)-sequences. So bear with us in a brief interlude about

expanding rational functions into formal Laurent series. For a rational function
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g(x)/f(x) ∈ Fq(x) as above, let the leading term of f(x) be axm with a ∈ F∗q and

an integer m = deg(f(x)) ≥ 0. Then we can write

f(x) = axm(1− b1x−1 − · · · − bmx−m)

for some b1, . . . , bm ∈ Fq. By proceeding in a purely formal way, we obtain

g(x)

f(x)
=

g(x)

axm(1− b1x−1 − · · · − bmx−m)

= a−1x−mg(x)
∞∑
k=0

(b1x
−1 + · · ·+ bmx

−m)k,

and so finally
g(x)

f(x)
=
∞∑
r=w

erx
−r (4.53)

with coefficients er ∈ Fq and an integer w. The formal expression
∑∞

r=w erx
−r is

called a formal Laurent series over Fq in the variable x−1. It can contain infinitely

many powers x−1, x−2, . . . with negative exponents, but only finitely many powers

of x with nonnegative exponents. In contrast to power series in real and complex

analysis, there is no issue of convergence for formal Laurent series. Two formal

Laurent series over Fq are identical if for all powers of x (with arbitrary exponents

from Z) the two corresponding coefficients agree. Formal Laurent series over Fq can

be added and multiplied just as is done for polynomials, or as you learned to do for

power series in real and complex analysis. There is also division for formal Laurent

series, but we do not need this operation. Altogether, the set Fq((x−1)) of all formal

Laurent series over Fq in the variable x−1 forms a field. The fact that there exists

the expansion g(x)/f(x) =
∑∞

r=w erx
−r in (4.53) can be interpreted as saying that

Fq(x) is a subfield of Fq((x−1)). We note in passing that if deg(g(x)) < deg(f(x)),

then we can take w ≥ 1 in (4.53).

Example 4.4.40 Let q = 3 and consider the rational function (x + 1)/(x2 + 1) ∈
F3(x). By proceeding as in the computation leading to (4.53), we obtain

x+ 1

x2 + 1
=

x+ 1

x2(1− 2x−2)
= x−2(x+ 1)(1 + 2x−2 + x−4 + 2x−6 + · · · )

= (x+ 1)(x−2 + 2x−4 + x−6 + 2x−8 + · · · )
= x−1 + x−2 + 2x−3 + 2x−4 + x−5 + x−6 + · · · ∈ F3((x

−1)).

Since deg(x+ 1) < deg(x2 + 1), only powers of x with negative exponents appear in

the formal Laurent series expansion of (x+ 1)/(x2 + 1).

Next we introduce a degree map ν on Fq((x−1)) which is a natural extension

of the degree map on the polynomial ring Fq[x]. We put ν(f) = deg(f) for a
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nonzero f ∈ Fq[x] as well as ν(0) = −∞ for the zero polynomial 0 ∈ Fq[x]. For a

nonzero rational function g/f ∈ Fq(x) with nonzero g, f ∈ Fq[x], we put ν(g/f) =

ν(g)−ν(f). Note that in this definition it does not matter whether g/f is in reduced

form or not. Finally, if a nonzero E =
∑∞

r=w erx
−r ∈ Fq((x−1)) is given, then we

can assume that ew 6= 0. Then by definition ν(E) = −w, that is, ν(E) is the largest

exponent of x that actually appears in the expression for E. This is of course in line

with the general idea of a degree. So, for instance, if E = x−3 + x−5 + x−6 + · · · ∈
F2((x

−1)), then ν(E) = −3. The computation leading to (4.53) demonstrates that

if E = g/f is a nonzero rational function over Fq, then the definition of ν(E) and

the earlier definition of ν(g/f) agree. We have the usual rules for degrees, such as

ν(E1E2) = ν(E1) + ν(E2) for all E1, E2 ∈ Fq((x−1)).
Now that we are familiar with formal Laurent series expansions of rational func-

tions over Fq, we employ this device in a construction of digital nets over Fq which

is due to Niederreiter [133]. As promised, these digital nets will by and large be

analogous to lattice point sets, although this is not evident at the outset. As often

in the construction of digital nets, we assume that the dimension s satisfies s ≥ 2

since the one-dimensional case is trivial (see Example 4.4.16). We choose a poly-

nomial f ∈ Fq[x] with deg(f) = m ≥ 1. This polynomial plays a similar role as

the modulus N in the point set P(g, N) defined in Subsection 4.3.1. Furthermore,

we choose polynomials g1, . . . , gs ∈ Fq[x] with deg(gi) < m for 1 ≤ i ≤ s and we

collect them in the s-tuple g = (g1, . . . , gs) ∈ Fq[x]s. The polynomial f and the

s-tuple g are the basic ingredients of the construction. It is convenient to use again

a notation that we introduced in Section 3.3 on cyclic codes, namely for an integer

m ≥ 1 we write Fq[x]<m for the set of all polynomials g ∈ Fq[x] with deg(g) < m.

Consequently, we will often write g ∈ Fq[x]s<m for an s-tuple g as above.

The actual construction of the digital net proceeds by defining its s generating

matrices C(1), . . . , C(s) over Fq. For each i = 1, . . . , s, we consider the rational

function gi(x)/f(x) ∈ Fq(x). Since deg(gi) < m = deg(f) by assumption, its formal

Laurent series expansion has the form

gi(x)

f(x)
=
∞∑
r=1

e(i)r x
−r (4.54)

with coefficients e
(i)
r ∈ Fq for all r ≥ 1. These coefficients serve as entries of the

m×m generating matrix C(i) = (c
(i)
j,k)1≤j≤m, 0≤k≤m−1 over Fq. In detail, we set

c
(i)
j,k = e

(i)
j+k ∈ Fq for 1 ≤ i ≤ s, 1 ≤ j ≤ m, 0 ≤ k ≤ m− 1. (4.55)

With these generating matrices C(1), . . . , C(s), we apply the digital method and we

obtain the point set P(g, f) called a polynomial lattice point set. According to

Corollary 4.4.21, P(g, f) is a digital (t,m, s)-net over Fq with quality parameter

t = m− %(C(1), . . . , C(s)).



270 CHAPTER 4. QUASI-MONTE CARLO METHODS

We want to find out how the figure of merit %(C(1), . . . , C(s)) depends on the

inputs g and f of P(g, f). According to Definitions 4.4.18 and 4.4.20, we have to

study linear independence properties of the row vectors c
(i)
j , 1 ≤ j ≤ m, of the

matrices C(i), 1 ≤ i ≤ s. Note that

c
(i)
j = (c

(i)
j,0, c

(i)
j,1, . . . , c

(i)
j,m−1) ∈ Fmq for 1 ≤ j ≤ m, 1 ≤ i ≤ s, (4.56)

where the coordinates c
(i)
j,k are given by (4.55). For the sake of convenience, we

introduce the “dot product” h · g for h = (h1, . . . , hs) ∈ Fq[x]s by putting

h · g =
s∑
i=1

higi ∈ Fq[x].

Lemma 4.4.41 The vectors c
(i)
j in (4.56) satisfy

s∑
i=1

m∑
j=1

hi,jc
(i)
j = 0 ∈ Fmq (4.57)

with all hi,j ∈ Fq if and only if f divides h·g in Fq[x], where h = (h1, . . . , hs) ∈ Fq[x]s

with

hi(x) =
m∑
j=1

hi,jx
j−1 ∈ Fq[x] for 1 ≤ i ≤ s.

Proof. By comparing coordinates, we see that the linear dependence relation (4.57)

is equivalent to
s∑
i=1

m∑
j=1

hi,je
(i)
j+k = 0 for 0 ≤ k ≤ m− 1. (4.58)

For each i = 1, . . . , s, we obtain by (4.54) that

hi(x)gi(x)

f(x)
=
( m∑
j=1

hi,jx
j−1
)( ∞∑

r=1

e(i)r x
−r
)

=
m∑
j=1

∞∑
r=1

hi,je
(i)
r x

j−1−r

=
m∑
j=1

hi,j

∞∑
k=1−j

e
(i)
j+kx

−k−1.

Thus for k ≥ 0, the coefficient of x−k−1 in higi/f is
∑m

j=1 hi,je
(i)
j+k. Therefore the

condition (4.58) is equivalent to the property that for 0 ≤ k ≤ m− 1, the coefficient

of x−k−1 in
∑s

i=1 higi/f is 0. This means that

1

f
h · g = P + E,

where P ∈ Fq[x] and E ∈ Fq((x−1)) with ν(E) < −m. The last identity is equivalent

to

h · g − Pf = Ef.
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The left-hand side is a polynomial over Fq, whereas on the right-hand side ν(Ef) =

ν(E) + ν(f) < 0 since ν(f) = deg(f) = m. This is possible if and only if Ef = 0,

that is, if and only if f divides h · g in Fq[x]. 2

Remark 4.4.42 If integers s ≥ 2 and m ≥ 1 and an s-tuple g = (g1, . . . , gs) ∈
Fq[x]s<m are given, then there always exists a nonzero s-tuple h ∈ Fq[x]s<m such that

h · g = 0. This is trivial if gi = 0 for 1 ≤ i ≤ s. If at least one gi is nonzero, say

without loss of generality g1 6= 0, then h = (g2,−g1, 0, . . . , 0) ∈ Fq[x]s<m is a suitable

nonzero s-tuple h. This simple argument shows that the minimum in the following

theorem is extended over a nonempty set.

Theorem 4.4.43 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

f ∈ Fq[x] with deg(f) = m and let g ∈ Fq[x]s<m. Then the figure of merit of the

generating matrices C(1), . . . , C(s) of the polynomial lattice point set P(g, f) is given

by

%(C(1), . . . , C(s)) = %(g, f) := s− 1 + min
h

s∑
i=1

deg(hi),

where the minimum is extended over all nonzero s-tuples h = (h1, . . . , hs) ∈ Fq[x]s<m
with f dividing h · g in Fq[x]. Here we use the convention deg(0) = −1.

Proof. By Definitions 4.4.18 and 4.4.20, there exist integers d1, . . . , ds with 0 ≤ di ≤
m for 1 ≤ i ≤ s and

s∑
i=1

di = %(C(1), . . . , C(s)) + 1

such that the system {c(i)
j ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly dependent over

Fq. Hence there exist coefficients hi,j ∈ Fq, 1 ≤ j ≤ di, 1 ≤ i ≤ s, not all 0, such

that
s∑
i=1

di∑
j=1

hi,jc
(i)
j = 0 ∈ Fmq .

By putting hi,j = 0 for di < j ≤ m, 1 ≤ i ≤ s, we obtain a linear dependence

relation as in (4.57) in Lemma 4.4.41. This lemma implies that f divides h · g in

Fq[x], with a nonzero s-tuple h = (h1, . . . , hs) ∈ Fq[x]s as in the lemma. Note also

that deg(hi) ≤ di − 1 < m, and so the definition of %(g, f) in the theorem shows

that

%(g, f) ≤ s− 1 +
s∑
i=1

deg(hi) ≤ s− 1 +
s∑
i=1

(di − 1) = %(C(1), . . . , C(s)).

In order to prove the converse inequality, we observe that by the definition of

%(g, f) in the theorem, there exists a nonzero s-tuple h = (h1, . . . , hs) ∈ Fq[x]s<m
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with f dividing h · g in Fq[x] and with

%(g, f) = s− 1 +
s∑
i−1

deg(hi).

Then Lemma 4.4.41 yields a linear dependence relation

s∑
i=1

di∑
j=1

hi,jc
(i)
j = 0 ∈ Fmq ,

where not all hi,j ∈ Fq are 0 and where di = deg(hi) + 1 for 1 ≤ i ≤ s (here the con-

vention deg(0) = −1 is used). It follows now from the definition of %(C(1), . . . , C(s))

that

%(C(1), . . . , C(s)) ≤
s∑
i=1

di − 1 =
s∑
i=1

(deg(hi) + 1)− 1 = %(g, f),

and so we are done. 2

Corollary 4.4.44 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

f ∈ Fq[x] with deg(f) = m and let g ∈ Fq[x]s<m. Then the polynomial lattice point

set P(g, f) is a digital (t,m, s)-net over Fq with

t = m− %(g, f),

where %(g, f) is as in Theorem 4.4.43.

Proof. This follows from Corollary 4.4.21 and Theorem 4.4.43. 2

Example 4.4.45 Let q be an arbitrary prime power and let f0(x), f1(x), . . . be

the sequence of Fibonacci polynomials over Fq defined recursively by f0(x) = 1,

f1(x) = x, and fk+2(x) = xfk+1(x) + fk(x) for k ≥ 0. It is obvious that deg(fk) = k

for all k ≥ 0. Now for the dimension s = 2 and for an integer m ≥ 1, we take

f = fm and g = gm = (1, fm−1) ∈ Fq[x]2<m in the construction of polynomial lattice

point sets. In this case by definition

%(gm, fm) = 1 + min
(h1,h2) 6=0

(deg(h1) + deg(h2)),

where (h1, h2) ∈ Fq[x]2<m and fm divides h1 +h2fm−1. We claim that %(gm, fm) = m

for allm ≥ 1. Since we can take (h1, h2) = (fm−1,−1), it is clear that %(gm, fm) ≤ m.

Hence we want to prove that for every nonzero pair (h1, h2) ∈ Fq[x]2<m with fm
dividing h1 + h2fm−1, the inequality deg(h1) + deg(h2) ≥ m − 1 is satisfied. This

is trivial for m = 1. Now we proceed by induction and suppose that the assertion
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is true for some m ≥ 1. Then we consider a nonzero pair (h1, h2) ∈ Fq[x]2 with

deg(h1) ≤ m, deg(h2) ≤ m, and fm+1 dividing h1 + h2fm. We have to verify that

deg(h1)+deg(h2) ≥ m. Since obviously h2 6= 0, we can assume that deg(h1) ≤ m−1.

Let us write h1 +h2fm = Pfm+1 for some P ∈ Fq[x]. A comparison of degrees shows

that deg(h2) + m = deg(P ) + m + 1, and so deg(P ) = deg(h2) − 1. Therefore

0 ≤ deg(P ) ≤ m− 1. Next we note that

h1(x) + h2(x)fm(x) = P (x)fm+1(x) = P (x)xfm(x) + P (x)fm−1(x),

and so fm divides h1−Pfm−1. Hence by the induction hypothesis deg(h1)+deg(P ) ≥
m − 1, which implies that deg(h1) + deg(h2) ≥ m and completes the induction. It

follows now from Corollary 4.4.44 that for all m ≥ 1 the polynomial lattice point

set P(gm, fm) is a digital (0,m, 2)-net over Fq. This example may be perceived as

an analog for polynomial lattice point sets of the construction of two-dimensional

good lattice points in Example 4.3.15.

For higher dimensions s, the situation for polynomial lattice point sets is similar

to that for good lattice points and for hyperplane nets, meaning that there are the-

oretical existence results for good parameters, but no known explicit constructions

of good polynomial lattice point sets. We establish such an existence result for good

polynomial lattice point sets by using the same elimination method as in the proof

of Theorem 4.4.38 for hyperplane nets. This similarity is not too surprising since it

is known that polynomial lattice point sets belong to the family of hyperplane nets

(see [39, Section 11.1]).

Theorem 4.4.46 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

the polynomial f ∈ Fq[x] be irreducible over Fq with deg(f) = m. Then there exists

an s-tuple g ∈ Fq[x]s<m with

%(g, f) ≥ m− d(s− 1) logq(m+ 1)e,

where %(g, f) is as in Theorem 4.4.43 and where logq denotes the logarithm to the

base q.

Proof. We write

%(g, f) + 1 = min
h

s∑
i=1

(deg(hi) + 1),

where the minimum is extended over all nonzero s-tuples h = (h1, . . . , hs) ∈ Fq[x]s<m
with f dividing h · g in Fq[x]. We recall the convention deg(0) = −1.

For every integer d with 0 ≤ d ≤ m, the number of h ∈ Fq[x] with deg(h)+1 = d

is given by εdq
d, where ε0 = 1 and εd = (q − 1)/q for 1 ≤ d ≤ m. We can therefore

use the same arguments as in the proof of Theorem 4.4.38 to show that for every
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integer k with 1 ≤ k ≤ m, the number Bq(k,m, s) of h = (h1, . . . , hs) ∈ Fq[x]s with∑s
i=1(deg(hi) + 1) = k satisfies

Bq(k,m, s) ≤ (q − 1)(m+ 1)s−1qk−1.

For a fixed h = (h1, . . . , hs) ∈ Fq[x]s counted by Bq(k,m, s), we determine the

number of g = (g1, . . . , gs) ∈ Fq[x]s<m with f dividing h · g in Fq[x]. Since f is

irreducible over Fq by the hypothesis, the residue class field Fq[x]/(f(x)) is a finite

field of order qm (compare with Remark 1.4.46). The condition that f divides h · g
in Fq[x] can be expressed as the equation

h · g = h1g1 + · · ·+ hsgs = 0

in Fq[x]/(f(x)). From 1 ≤ k ≤ m we infer that hi 6= 0 in Fq[x]/(f(x)) for at least

one i with 1 ≤ i ≤ s, and since we are in a finite field of order qm, it follows that

the number of solutions g ∈ Fq[x]s<m of h · g = 0 is equal to qm(s−1). Therefore the

number of g ∈ Fq[x]s<m for which there exists an h ∈ Fq[x]s counted by Bq(k,m, s)

such that f divides h · g in Fq[x] is at most

Bq(k,m, s)q
m(s−1) ≤ (q − 1)(m+ 1)s−1qm(s−1)+k−1.

Now we put K = m− d(s− 1) logq(m + 1)e as in the proof of Theorem 4.4.38 and

we sum from k = 1 to k = K. Since there are qms candidate s-tuples g ∈ Fq[x]s<m,

we conclude as in the proof of Theorem 4.4.38 that there is one such g0 ∈ Fq[x]s<m
with %(g0, f) + 1 ≥ K + 1, that is, with %(g0, f) ≥ K. 2

Corollary 4.4.47 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

the polynomial f ∈ Fq[x] be irreducible over Fq with deg(f) = m. Then there exists

an s-tuple g ∈ Fq[x]s<m such that the polynomial lattice point set P(g, f) is a digital

(t,m, s)-net over Fq with

t ≤ d(s− 1) logq(m+ 1)e.

Proof. This follows from Corollary 4.4.44 and Theorem 4.4.46. 2

Corollary 4.4.47 has the same consequence for the star discrepancy of P(g, f)

as in the statement in the paragraph following the proof of Corollary 4.4.39. In the

context of polynomial lattice point sets, the order of magnitude N−1(logN)2s−2 in

that discrepancy bound can be improved for s ≥ 3 to N−1(logN)s by two different

methods: a CBC algorithm for polynomial lattice point sets (see [39, Subsection

10.2.2]) and an analog for polynomial lattice point sets of the averaging technique

in Theorem 4.3.7 (see [134, Theorem 4.43]).
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We conclude the discussion of polynomial lattice point sets by presenting a de-

scription of these point sets which is completely analogous to that of the lattice

point sets P(g, N) in Subsection 4.3.1. The essential tool is an analog of the map

Tm in (4.48). For an integer m ≥ 1, the map Um : Fq((x−1))→ [0, 1) is given by

Um(
∞∑
r=w

erx
−r) =

m∑
r=max(1,w)

ψ(er)q
−r

for every formal Laurent series
∑∞

r=w erx
−r ∈ Fq((x−1)), where ψ : Fq → Zq is the

same bijection as in (4.48).

Theorem 4.4.48 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

f ∈ Fq[x] with deg(f) = m and let g = (g1, . . . , gs) ∈ Fq[x]s<m. Then the polynomial

lattice point set P(g, f) consists of the points

(Um(vg1/f), . . . , Um(vgs/f)) ∈ [0, 1)s,

where v runs through the qm polynomials in Fq[x]<m.

Proof. We fix an integer i with 1 ≤ i ≤ s and a polynomial v(x) =
∑m−1

j=0 vjx
j ∈

Fq[x]<m with v0, v1, . . . , vm−1 ∈ Fq. Using the expansion in (4.54), we obtain

v(x)gi(x)

f(x)
=
(m−1∑
j=0

vjx
j
)( ∞∑

k=1

e
(i)
k x
−k
)

=
m−1∑
j=0

∞∑
k=1

vje
(i)
k x

j−k

=
∞∑

r=2−m

( m−1∑
j=max(1−r,0)

vje
(i)
j+r

)
x−r.

The definition of the map Um yields

Um(vgi/f) =
m∑
r=1

ψ
(m−1∑
j=0

vje
(i)
j+r

)
q−r.

If we associate with the polynomial v ∈ Fq[x]<m the column vector

v = (v0, v1, . . . , vm−1)
> ∈ Fmq

and take into account (4.48) and the formula (4.55) for the entries of the generating

matrix C(i) of P(g, f), then we easily see that Um(vgi/f) = Tm(C(i)v). The proof is

completed by referring to (4.49) and the fact that there is a one-to-one correspon-

dence between the polynomials v ∈ Fq[x]<m and the column vectors v ∈ Fmq . 2

The last construction of digital nets in this subsection is based on polynomial

arithmetic over finite fields. These digital nets were introduced quite recently by
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Hofer and Niederreiter [67] and they are called Vandermonde nets since their struc-

ture is reminiscent of that of Vandermonde matrices (αj−1i )1≤i,j≤m in linear algebra.

The construction of Vandermonde nets works with the residue class ring Fq[x]/(f(x))

for a polynomial f(x) ∈ Fq[x] of degree m ≥ 1. We set up the map κf : Fq[x]→ Fmq
as follows. Every h ∈ Fq[x] has a unique representative h ∈ Fq[x]<m in its residue

class modulo f , namely the least residue h of h modulo f . Here Fq[x]<m de-

notes as before the set of all polynomials over Fq of degree less than m. Now

h(x) =
∑m−1

r=0 erx
r with e0, e1, . . . , em−1 ∈ Fq, and we put

κf (h) = (e0, e1, . . . , em−1) ∈ Fmq .

It is obvious that κf is a linear transformation between vector spaces over Fq.
The actual construction of Vandermonde nets proceeds by defining m×m gen-

erating matrices C(1), . . . , C(s) over Fq. We exclude the trivial one-dimensional case

and assume that the dimension s satisfies s ≥ 2. The basic constituents of a Vander-

monde net are the same as for a polynomial lattice point set. We choose a polynomial

f ∈ Fq[x] with deg(f) = m ≥ 1 and an s-tuple g = (g1, . . . , gs) ∈ Fq[x]s<m. The first

generating matrix C(1) has the row vectors c
(1)
1 , . . . , c

(1)
m with c

(1)
j = κf (g

j−1
1 ) ∈ Fmq for

1 ≤ j ≤ m. For i = 2, . . . , s, the jth row vector c
(i)
j of C(i) is given by c

(i)
j = κf (g

j
i )

for 1 ≤ j ≤ m. The Vandermonde net V(g, f) is the digital net over Fq with

generating matrices C(1), . . . , C(s).

In order to determine the figure of merit %(C(1), . . . , C(s)) (see Definition 4.4.20) of

the generating matrices C(1), . . . , C(s) of V(g, f), we introduce some more notation.

We put

Hq,m = xFq[x]<m = {h ∈ Fq[x] : deg(h) ≤ m, h(0) = 0}.

Furthermore, we write h ◦ g for the composition of two polynomials h, g ∈ Fq[x],

that is, (h ◦ g)(x) = h(g(x)). Next, for f ∈ Fq[x] with deg(f) = m and g =

(g1, . . . , gs) ∈ Fq[x]s<m as above, we let L(g, f) be the set of all s-tuples h =

(h1, . . . , hs) ∈ Fq[x]<m × Hs−1
q,m such that f divides

∑s
i=1(hi ◦ gi) in Fq[x]. Let us

accentuate the interesting fact that there is some similarity with a condition in The-

orem 4.4.43 for polynomial lattice point sets: there we had f dividing
∑s

i=1 higi in

Fq[x] and now we require that f divides
∑s

i=1(hi ◦ gi) in Fq[x].

Remark 4.4.49 Under the usual conditions s ≥ 2 and m ≥ 1, the set L(g, f)

contains at least one nonzero s-tuple h. In order to see this, we start from the

obvious fact that the m+ 1 vectors κf (1), κf (g1), κf (g
2
1), . . . , κf (g

m−1
1 ), κf (g2) in Fmq

must be linearly dependent over Fq. Hence for some b0, b1, . . . , bm ∈ Fq, not all 0,

we obtain
m−1∑
j=0

bjκf (g
j
1) + bmκf (g2) = 0 ∈ Fmq .
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Since κf is a linear transformation, this can also be written as

κf

(m−1∑
j=0

bjg
j
1 + bmg2

)
= 0 ∈ Fmq .

The definition of κf implies that f divides
∑m−1

j=0 bjg
j
1 + bmg2 in Fq[x]. Now we

introduce the polynomials

h1(x) =
m−1∑
j=0

bjx
j, h2(x) = bmx, hi(x) = 0 for 3 ≤ i ≤ s.

Then h = (h1, . . . , hs) ∈ Fq[x]<m ×Hs−1
q,m is a nonzero s-tuple belonging to L(g, f).

In view of Remark 4.4.49, the set L′(g, f) := L(g, f) \ {0} is nonempty. We

have to utilize two different degree functions on Fq[x], but they differ only in the

way they are defined at the zero polynomial 0 ∈ Fq[x]. First, there is the standard

degree function deg on Fq[x] with the convention deg(0) = −1 in Theorem 4.4.43.

Second, we use the degree function deg∗ defined by deg∗(h) = deg(h) for h ∈ Fq[x]

with h 6= 0 and deg∗(0) = 0.

Theorem 4.4.50 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

f ∈ Fq[x] with deg(f) = m and let g ∈ Fq[x]s<m. Then the figure of merit of the

generating matrices C(1), . . . , C(s) of the Vandermonde net V(g, f) is given by

%(C(1), . . . , C(s)) = µ(g, f) := min
(h1,...,hs)∈L′(g,f)

(
deg(h1) +

s∑
i=2

deg∗(hi)
)
.

Proof. Let d1, . . . , ds be integers with 0 ≤ di ≤ m for 1 ≤ i ≤ s and
∑s

i=1 di ≥ 1

such that there exists a linear dependence relation

s∑
i=1

di∑
j=1

bi,jc
(i)
j = 0 ∈ Fmq , (4.59)

where all bi,j ∈ Fq and not all of them are 0. Here we can assume that bi,di 6= 0 if

di ≥ 1. By the definition of the row vectors c
(i)
j of the generating matrices, (4.59) is

equivalent to
d1∑
j=1

b1,jκf (g
j−1
1 ) +

s∑
i=2

di∑
j=1

bi,jκf (g
j
i ) = 0 ∈ Fmq .

Because of the linearity of κf , this is in turn equivalent to

κf

( d1∑
j=1

b1,jg
j−1
1 +

s∑
i=2

di∑
j=1

bi,jg
j
i

)
= 0 ∈ Fmq .
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This means that f divides
∑s

i=1(hi ◦ gi) in Fq[x], where

h1(x) =

d1∑
j=1

b1,jx
j−1 ∈ Fq[x]<m, hi(x) =

di∑
j=1

bi,jx
j ∈ Hq,m for 2 ≤ i ≤ s.

Therefore (4.59) is equivalent to h = (h1, . . . , hs) belonging to L′(g, f). Further-

more, by the definitions of the degree functions deg and deg∗, it is evident that

deg(h1) = d1 − 1 and deg∗(hi) = di for 2 ≤ i ≤ s, and so

deg(h1) +
s∑
i=2

deg∗(hi) =
s∑
i=1

di − 1. (4.60)

By the definition of %(C(1), . . . , C(s)), there exist d1, . . . , ds as above with
∑s

i=1 di =

%(C(1), . . . , C(s)) + 1. Consequently, there is an h ∈ L′(g, f) with the left-hand side

of (4.60) equal to %(C(1), . . . , C(s)). Hence the definition of µ(g, f) in the theorem

implies that µ(g, f) ≤ %(C(1), . . . , C(s)). Conversely, there exists an h ∈ L′(g, f)

with the left-hand side of (4.60) equal to µ(g, f). This yields a linear dependence

relation (4.59) with
∑s

i=1 di = µ(g, f) + 1, and so %(C(1), . . . , C(s)) ≤ µ(g, f). 2

Corollary 4.4.51 Let q be a prime power and let s ≥ 2 and m ≥ 1 be integers. Let

f ∈ Fq[x] with deg(f) = m and let g ∈ Fq[x]s<m. Then the Vandermonde net V(g, f)

is a digital (t,m, s)-net over Fq with

t = m− µ(g, f),

where µ(g, f) is as in Theorem 4.4.50.

Proof. This follows from Corollary 4.4.21 and Theorem 4.4.50. 2

Remark 4.4.52 You may wonder why there is a certain asymmetry in the definition

of the row vectors c
(i)
j of the generating matrices of V(g, f). Remember that we

defined c
(1)
j = κf (g

j−1
1 ) for 1 ≤ j ≤ m, but c

(i)
j = κf (g

j
i ) for 2 ≤ i ≤ s and 1 ≤ j ≤ m.

A symmetric definition, which would also produce a perfect Vandermonde structure,

would be c
(i)
j = κf (g

j−1
i ) for 1 ≤ i ≤ s and 1 ≤ j ≤ m. But with this definition we

would obtain

c
(i)
1 = κf (1) = (1, 0, . . . , 0) ∈ Fmq for 1 ≤ i ≤ s,

and so in particular c
(1)
1 and c

(2)
1 would be linearly dependent over Fq. Therefore

%(C(1), . . . , C(s)) = 1, and we would get an uninteresting digital (m − 1,m, s)-net

over Fq.
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There are several parallels between Vandermonde nets and polynomial lattice

point sets. For instance, there is an existence result for large values of the figure

of merit µ(g, f) comparable to Theorem 4.4.46, there is an existence theorem for

Vandermonde nets with small star discrepancy by an averaging technique, and there

is a CBC algorithm for computing parameters of good Vandermonde nets. All this

can be found in the paper [67].

We have one more card up our sleeve, namely an explicit construction of Van-

dermonde nets with optimal quality parameter t = 0 that goes beyond the two-

dimensional case. For polynomial lattice point sets, an explicit construction yielding

t = 0 for arbitrary m and q is known only for the dimension s = 2 (see Example

4.4.45). This explicit construction of Vandermonde nets is also due to Hofer and

Niederreiter [67] and proceeds as follows. Let q be an arbitrary prime power, let s

be a dimension with 2 ≤ s ≤ q + 1, and let m ≥ 2 be an integer. As usual, we

choose a polynomial f ∈ Fq[x] with deg(f) = m. For simplicity we assume that f

is irreducible over Fq, but the astute reader will observe that more general choices

of f are possible as well. Next we select s − 1 distinct elements c2, . . . , cs of Fq.
This is feasible since s − 1 ≤ q. Finally, we put g1(x) = x ∈ Fq[x]<m and, for each

i = 2, . . . , s, let gi(x) ∈ Fq[x]<m be the polynomial that is uniquely determined by

the congruence

gi(x)(x− ci) ≡ 1 (mod f(x)).

Note that gi(x) exists since Fq[x]/(f(x)) is a field. With these polynomials g1, . . . , gs,

we set up the s-tuple g = (g1, . . . , gs) ∈ Fq[x]s<m.

Theorem 4.4.53 Let q be a prime power and let s and m be integers with 2 ≤ s ≤
q + 1 and m ≥ 2. Let f ∈ Fq[x] be irreducible over Fq with deg(f) = m and let

g ∈ Fq[x]s<m be the s-tuple of polynomials constructed above. Then the Vandermonde

net V(g, f) is a digital (0,m, s)-net over Fq.

Proof. According to Corollary 4.4.51, we have to show that µ(g, f) = m. We prove

this by contradiction and suppose that µ(g, f) ≤ m − 1. Then by the definition

of µ(g, f) in Theorem 4.4.50, there exists an s-tuple h = (h1, . . . , hs) ∈ L′(g, f)

with
∑s

i=1 di ≤ m − 1, where d1 = deg(h1) and di = deg∗(hi) for 2 ≤ i ≤ s. Put

hi(x) =
∑di

j=1 hi,jx
j for 2 ≤ i ≤ s with all hi,j ∈ Fq. Then f(x) divides

s∑
i=1

(hi ◦ gi)(x) = h1(x) +
s∑
i=2

di∑
j=1

hi,jgi(x)j

in Fq[x]. Multiplying by
∏s

k=2(x− ck)dk , we deduce that f(x) divides

h1(x)
s∏

k=2

(x− ck)dk +
s∑
i=2

( di∑
j=1

hi,jgi(x)j
)

(x− ci)di
s∏
k=2
k 6=i

(x− ck)dk
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in Fq[x]. Now gi(x)j(x − ci)j ≡ 1 (mod f(x)) for 2 ≤ i ≤ s and j ≥ 1, and so by

working with congruences modulo f(x) we see that f(x) divides

M(x) := h1(x)
s∏

k=2

(x− ck)dk +
s∑
i=2

( di∑
j=1

hi,j(x− ci)di−j
) s∏

k=2
k 6=i

(x− ck)dk

in Fq[x]. Now we consider deg(M). The first term of M(x) has degree ≤
∑s

k=1 dk ≤
m−1. In the sum

∑s
i=2 in the expression for M(x), a term appears only if di ≥ 1 and

such a term has degree ≤
∑s

k=2 dk−1 ≤
∑s

k=1 dk ≤ m−1 since d1 = deg(h1) ≥ −1.

Altogether we obtain deg(M) ≤ m− 1 < deg(f). Since f(x) divides M(x) in Fq[x],

it follows that M(x) is the zero polynomial in Fq[x]. If we assume that dr ≥ 1 for

some r ∈ {2, . . . , s}, then substituting x = cr in M(x) we get

0 = M(cr) =
dr∑
j=1

hr,j(cr − cr)dr−j
s∏
k=2
k 6=r

(cr − ck)dk = hr,dr

s∏
k=2
k 6=r

(cr − ck)dk .

Since the last product is nonzero, we deduce that hr,dr = 0. But this is a con-

tradiction to deg∗(hr) = dr. Thus we have shown that di = 0 for 2 ≤ i ≤ s,

and so hi = 0 ∈ Fq[x] for 2 ≤ i ≤ s. Since M = 0 ∈ Fq[x], it follows that also

h1 = 0 ∈ Fq[x]. This is the final contradiction, since h ∈ L′(g, f) means in particu-

lar that h is a nonzero s-tuple. 2

Remark 4.4.54 In principle, the construction in Theorem 4.4.53 works also in the

case s = 1. The vectors κf (g
j−1
1 ) = κf (x

j−1) ∈ Fmq for 1 ≤ j ≤ m are then just the

row vectors of the m×m identity matrix over Fq, and so the construction coincides

with that in Example 4.4.16. The remarkable fact about Theorem 4.4.53 is that the

condition s ≤ q+1 is best possible. This follows from Theorem 4.4.11 which implies

that if m ≥ 2, then a (0,m, s)-net in base q can exist only if s ≤ q + 1. Thus, for

a prime power q and an integer m ≥ 2, we can say that a (0,m, s)-net in base q

exists if and only if s ≤ q + 1, and if it exists, then we can even construct a digital

(0,m, s)-net over Fq.

4.4.4 (t, s)-sequences

We have seen that the theory of (t,m, s)-nets provides a systematic way of obtaining

point sets with small discrepancy. An analogous approach to the construction of low-

discrepancy sequences is afforded by the theory of (t, s)-sequences. In a nutshell:

what (t,m, s)-nets are for point sets, (t, s)-sequences are for (infinite) sequences.

Note that in this chapter we have not yet advanced very far with the construction

of low-discrepancy sequences in the sense of the discrepancy bound (4.22). Up

to now we encountered only one construction of low-discrepancy sequences that
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works in any dimension, namely that of Halton sequences in Subsection 4.2.2. Many

more examples of low-discrepancy sequences are furnished by the theory of (t, s)-

sequences.

Informally, a (t, s)-sequence in base b is a sequence of points in [0, 1)s such that

certain blocks of terms form (t,m, s)-nets in base b with t independent of m. Since

a (t,m, s)-net in base b consists of bm points, the lengths of the blocks taken from

the sequence must be powers of b. The formal definition is as follows. We again use

the abbreviation (xn)∞n=0 for the sequence of points x0,x1, . . . .

Definition 4.4.55 Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. A (t, s)-sequence in base

b is a sequence (xn)∞n=0 of points in [0, 1)s with the property that, for all integers

k ≥ 0 and m > t, the point set consisting of the xn with kbm ≤ n < (k + 1)bm is a

(t,m, s)-net in base b.

Example 4.4.56 For an arbitrary base b ≥ 2 and the dimension s = 1, let us

consider the van der Corput sequence (xn)∞n=0 in base b given by xn = φb(n) for all

n ≥ 0 (see Remark 4.2.9). We claim that this sequence is a (0, 1)-sequence in base b.

We prove this by taking integers k ≥ 0 and m ≥ 1 and looking at the bm points xn
with kbm ≤ n < (k+1)bm. We have to show that these bm points form a (0,m, 1)-net

in base b. We proceed by the definition of such a net in Definition 4.4.4 and consider

any one-dimensional elementary interval J = [ab−m, (a + 1)b−m) in base b with

a ∈ Z and 0 ≤ a < bm. Note that φb(n) ∈ [ab−m, (a + 1)b−m) means that the first

m b-adic digits of φb(n) are prescribed, or equivalently that in the digit expansion

n =
∑∞

j=0 zj(n)bj of n in (4.30) the digits z0(n), z1(n), . . . , zm−1(n) are prescribed.

But in the range kbm ≤ n < (k + 1)bm there is exactly one value of n with these

prescribed digits, and so J contains exactly one point xn with kbm ≤ n < (k+ 1)bm.

Thus, we have verified that the van der Corput sequence in base b is a (0, 1)-sequence

in base b. Historically, the van der Corput sequence in base b served as the model

for the definition of a (t, s)-sequence in base b.

As for (t,m, s)-nets in base b, the parameter t of a (t, s)-sequence in base b is

called the quality parameter, and we want this parameter to be as small as possible.

We have trivial consequences of two results in Subsection 4.4.1. First, Proposition

4.4.8 implies that if b ≥ 2, s ≥ 1, and t ≥ 0 are integers and if S is a (t, s)-sequence

in base b, then S is also a (v, s)-sequence in base b for every integer v ≥ t. Second,

Proposition 4.4.9 shows that if b ≥ 2, s ≥ 2, and t ≥ 0 are integers and if a (t, s)-

sequence in base b is given, then by projection we get a (t, r)-sequence in base b for

every dimension r with 1 ≤ r < s.

It is inherent in Definition 4.4.55 that once we get hold of a (t, s)-sequence in base

b, then we automatically obtain (t,m, s)-nets in base b for infinitely many values of

m. By a simple trick that we already used in Lemma 4.1.38 and (4.32), we can

actually construct infinitely many (s+ 1)-dimensional nets.



282 CHAPTER 4. QUASI-MONTE CARLO METHODS

Proposition 4.4.57 Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. If (xn)∞n=0 is a

(t, s)-sequence in base b, then for every integer m ≥ t the points

yn = (nb−m,xn) ∈ [0, 1)s+1 for n = 0, 1, . . . , bm − 1

form a (t,m, s+ 1)-net in base b.

Proof. Let P be the point set consisting of y0,y1, . . . ,ybm−1. Let

J =
s+1∏
i=1

[aib
−di , (ai + 1)b−di) ⊆ [0, 1)s+1

with ai, di ∈ Z, di ≥ 0, and 0 ≤ ai < bdi for 1 ≤ i ≤ s+ 1 be an (s+ 1)-dimensional

elementary interval in base b with λs+1(J) = bt−m, that is, with
∑s+1

i=1 di = m − t.
Now yn ∈ J if and only if a1b

m−d1 ≤ n < (a1 + 1)bm−d1 and

xn ∈ J ′ :=
s+1∏
i=2

[aib
−di , (ai + 1)b−di).

Since m− d1 = t+
∑s+1

i=2 di ≥ t and (xn)∞n=0 is a (t, s)-sequence in base b, the point

set P ′ consisting of the xn with a1b
m−d1 ≤ n < (a1 + 1)bm−d1 is a (t,m− d1, s)-net

in base b (note that this holds trivially if m − d1 = t). Now J ′ is an s-dimensional

elementary interval in base b with λs(J
′) = bt−(m−d1), and so A(J ′;P ′) = bt by the

definition of a (t,m− d1, s)-net in base b. Therefore A(J ;P) = bt as desired. 2

Theorem 4.4.58 Let b ≥ 2 be an integer. Then a (0, s)-sequence in base b can

exist only if s ≤ b.

Proof. Let s ≥ 1 be a dimension for which there exists a (0, s)-sequence in base

b. Then Proposition 4.4.57 yields a (0, 2, s + 1)-net in base b. It follows now from

Theorem 4.4.11 that s+ 1 ≤ b+ 1, and so s ≤ b. 2

A discrepancy bound for (t,m, s)-nets in base b was formulated in Theorem

4.4.14. By using this bound and Definition 4.4.55, one can derive a discrepancy

bound for (t, s)-sequences in base b. The following bound, which we state without

proof, is obtained by combining results from [89] and [50].

Theorem 4.4.59 Let b ≥ 2, s ≥ 1, and t ≥ 0 be integers. Then the star discrepancy

D∗N(S) of a (t, s)-sequence S in base b satisfies

ND∗N(S) ≤ bb
2/2c

b2 − 1
· b

t

s!

( b− 1

2 log b

)s
(logN)s + C(b, s)bt(logN)s−1

for all N ≥ 2, where the constant C(b, s) > 0 depends only on b and s.
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It is a striking consequence of the discrepancy bound in Theorem 4.4.59 that

any (t, s)-sequence in base b is a low-discrepancy sequence in the technical sense

of (4.22), and so is in particular uniformly distributed in [0, 1)s by Theorem 4.1.36.

Theorem 4.4.59 indicates again that small values of the quality parameter t are

preferable in a (t, s)-sequence in base b. If the base b ≥ 2 is fixed, then Theorem

4.4.58 shows, regrettably, that the optimal value t = 0 can be achieved only for

finitely many dimensions s.

The only example of a (t, s)-sequence in base b that we have encountered so far

is the simple (0, 1)-sequence in base b described in Example 4.4.56. In general, the

construction of (t, s)-sequences in base b for dimensions s ≥ 2 is a challenging task

since the requirements in Definition 4.4.55 are quite severe. What we need, first of

all, is a systematic way of approaching the problem of constructing (t, s)-sequences,

and we take our cue from the digital method for the construction of nets presented

in Subsection 4.4.2. There the basic ingredients were generating matrices over a

finite field.

The digital method for the construction of (t, s)-sequences works again with

generating matrices, but now the generating matrices are of infinite size, in line

with the aim that we want to construct an infinite sequence rather than a finite

point set. What complicates matters further is the fact that we need to exercise

more care about the order in which the points of the sequence are listed. For a finite

point set and its (star) discrepancy, the order of the points is irrelevant. For an

infinite sequence, not only its (star) discrepancy but even its distribution properties

depend a lot on the way the points of the sequence are listed, as the following easy

example demonstrates.

Example 4.4.60 Let S = (xn)∞n=1 be any uniformly distributed sequence of distinct

points in [0, 1), such as a Kronecker sequence. Then Theorem 4.1.6 implies that there

are infinitely many xn in the interval [0, 1
2
) and infinitely many xn in the interval

[1
2
, 1). Let n1 < n2 < · · · be all those subscripts n for which xn ∈ [0, 1

2
) and let

m1 < m2 < · · · be all those subscripts n for which xn ∈ [1
2
, 1). Now we rearrange

the sequence S into a sequence S ′ = (yn)∞n=1 as follows. We put y1 = xn1 , y2 = xn2 ,

y3 = xm1 , y4 = xn3 , y5 = xn4 , y6 = xm2 , and so on in an obvious fashion; that is,

we always pick the two still unused xn ∈ [0, 1
2
) with the least subscripts and then

the one still unused xn ∈ [1
2
, 1) with the least subscript. Then it is obvious that for

every integer N ≥ 1 and for J = [0, 1
2
) we get

∑3N
n=1 cJ(yn) = 2N , and so

lim
N→∞

1

3N

3N∑
n=1

cJ(yn) =
2

3
6= λ(J).

Hence by Theorem 4.1.6, the sequence S ′ is not uniformly distributed in [0, 1). Note

that S and S ′ coincide as sets, but they differ as sequences since the same points

are listed in a different order. The lesson of this example is that a changed order

can completely change the distribution behavior.
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After these preparations, we get down to business and describe the digital method

for the construction of (t, s)-sequences in detail. Let q be an arbitrary prime power

and let Fq be the finite field of order q. Let Fωq be the set of all sequences of elements

of Fq with only finitely many nonzero terms. We think of these sequences also as

column vectors of infinite length. We set up the map T∞ : Fωq → [0, 1), which is an

analog of the map Tm in (4.48), by putting

T∞(h) =
∞∑
j=1

ψ(hj)q
−j (4.61)

for every column vector h = (h1, h2, . . .)
> ∈ Fωq , where ψ : Fq → Zq is a fixed

bijection with ψ(0) = 0. Note that T∞(h) is always a number in [0, 1) with a finite

digit expansion in base q.

For a given dimension s ≥ 1, we choose ∞×∞ matrices C(1), . . . , C(s) over Fq,
where by an ∞×∞ matrix we mean a matrix with denumerably many rows and

columns. Each matrix C(i), i = 1. . . . , s, must have the property that each column

of C(i) contains only finitely many nonzero entries. Remember that we want to

construct a sequence x0,x1, . . . of points in [0, 1)s. In order to define xn, we take an

integer n ≥ 0 and let

n =
∞∑
r=1

zr(n)qr−1 (4.62)

be its unique digit expansion in base q, where zr(n) ∈ Zq for all r ≥ 1 and zr(n) = 0

for all sufficiently large r. Next we fix a bijection η : Zq → Fq with η(0) = 0. Then

we associate with the integer n the column vector

n = (η(z1(n)), η(z2(n)), . . .)>

of infinite length. Because of the conditions on the zr(n) and on η, we can guarantee

that n ∈ Fωq .

For a fixed i with 1 ≤ i ≤ s, we form now the matrix-vector product C(i)n. This

is again a column vector of infinite length and its jth entry is the “dot product” of

the jth row of C(i) with n. This “dot product”, defined in analogy with Definition

3.2.17, is formally an infinite sum. This may cause a problem since there is no

concept of convergence in Fq, but the fact that η(zr(n)) = 0 for all sufficiently large

r implies that the “dot product” is just a finite sum and therefore meaningful. We

actually want to make sure that C(i)n belongs to Fωq ; recall that this means that

this column vector has only finitely many nonzero coordinates. Let r0 ∈ N be such

that η(zr(n)) = 0 for all r > r0. For all j ≥ 1, the jth coordinate of C(i)n is the

“dot product” of the jth row (c
(i)
j1 , c

(i)
j2 , . . .) of C(i) with n, and so it is given by

r0∑
r=1

c
(i)
jr η(zr(n)) ∈ Fq. (4.63)
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Now we consider the first r0 columns of C(i). By assumption, each of these columns

contains only finitely many nonzero entries, and so there exists a j0 ∈ N such that

c
(i)
jr = 0 for all j ≥ j0 and 1 ≤ r ≤ r0. Consequently, the element in (4.63) is equal

to 0 for j ≥ j0, and so we get indeed C(i)n ∈ Fωq . Therefore it makes sense to define

xn = (T∞(C(1)n), . . . , T∞(C(s)n)) ∈ [0, 1)s for n = 0, 1, . . . , (4.64)

where T∞ is the map in (4.61).

Definition 4.4.61 The sequence S = (xn)∞n=0 defined in (4.64) is called a digital

sequence over Fq and the matrices C(1), . . . , C(s) are the generating matrices of S.

If S is a (t, s)-sequence in base q for some integer t ≥ 0, then S is called a digital

(t, s)-sequence over Fq.

Example 4.4.62 Let s = 1, let q be an arbitrary prime power, and let the bijections

ψ : Fq → Zq and η : Zq → Fq be inverse maps of each other. We choose the

generating matrix C(1) to be the ∞×∞ identity matrix over Fq which is defined in

the obvious fashion. Then it is easily seen that the corresponding digital sequence

over Fq is the van der Corput sequence in base q. We learned in Example 4.4.56

that this sequence is a (0, 1)-sequence in base q, and so the van der Corput sequence

in base q is a digital (0, 1)-sequence over Fq.

Every s-dimensional digital net over Fq with m × m generating matrices is a

digital (t,m, s)-net over Fq for some value of t, in the worst case for t = m. The

analogous statement for digital sequences over Fq is not correct. There are bad

choices of the ∞×∞ generating matrices that do not produce (t, s)-sequences in

base q, no matter how large we make t; for instance, let s ≥ 2 and let the s generating

matrices all be equal. The following theorem provides insight into the condition that

the ∞×∞ generating matrices C(1), . . . , C(s) have to satisfy in order to obtain a

digital (t, s)-sequence over Fq. For i = 1, . . . , s and every integer m ≥ 1, we write

C
(i)
m for the upper left m ×m submatrix of C(i). Furthermore, we use the figure of

merit introduced in Definition 4.4.20.

Theorem 4.4.63 Let q be a prime power, let s ≥ 1 be an integer, and let C(1), . . . , C(s)

be the ∞×∞ generating matrices over Fq of a digital sequence S over Fq. If

t := sup
m∈N

(m− %(C(1)
m , . . . , C(s)

m ))

is finite, then S is a digital (t, s)-sequence over Fq.

Proof. We have to verify the various net properties in Definition 4.4.55, and so

we fix integers k ≥ 0 and m > t and we consider the points xn in (4.64) with

kqm ≤ n < (k + 1)qm. In this range, the q-adic digits zr(n) of n in (4.62) are
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prescribed for r > m, whereas the zr(n) with 1 ≤ r ≤ m can range freely over Zq.

In order to prove the desired net property, we take an elementary interval

J =
s∏
i=1

[aiq
−di , (ai + 1)q−di) ⊆ [0, 1)s

in base q with ai, di ∈ Z, di ≥ 0, and 0 ≤ ai < qdi for 1 ≤ i ≤ s and with

λs(J) = qt−m, that is, with
∑s

i=1 di = m− t. Then (4.64) shows that xn ∈ J if and

only if

T∞(C(i)n) ∈ [aiq
−di , (ai + 1)q−di) for 1 ≤ i ≤ s.

Since C(i)n ∈ Fωq and ψ(0) = 0, the q-adic expansion of T∞(C(i)n) in (4.61) is

finite, and so the condition above means that for 1 ≤ i ≤ s the first di q-adic

digits of T∞(C(i)n) and aiq
−di agree. For each j ≥ 1, the jth coordinate of C(i)n

is the “dot product” of the jth row c
(i)
j of C(i) with n. Now in the given range

kqm ≤ n < (k + 1)qm, the coordinates η(zr(n)) of n are fixed for r > m, and so the

jth coordinate of C(i)n can be written as

c
(i)
j,m · (η(z1(n)), . . . , η(zm(n))) + b

(i)
k,m

with c
(i)
j,m being the jth row vector of the submatrix C

(i)
m of C(i) and with b

(i)
k,m ∈ Fq

depending only on k, m, and C(i), but not on n. Thus, with

v = (η(z1(n)), . . . , η(zm(n)))> ∈ Fmq ,

the condition that for 1 ≤ i ≤ s the first di q-adic digits of T∞(C(i)n) and aiq
−di

agree is equivalent to Cm−t,mv = b for some column vector b ∈ Fm−tq independent

of n, where Cm−t,m is an (m − t) × m matrix over Fq whose row vectors are the

c
(i)
j,m with 1 ≤ j ≤ di, 1 ≤ i ≤ s. The definition of t in the theorem implies that

%(C
(1)
m , . . . , C

(s)
m ) ≥ m− t, and so by the definition of the figure of merit the system

{c(i)
j,m ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s} is an (m − t,m, s)-system over Fq. Therefore

the system {c(i)
j,m ∈ Fmq : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly independent over Fq, and

so the equation Cm−t,mv = b has exactly qt solutions v ∈ Fmq . Since η is a bijection,

this yields exactly qt integers n with kqm ≤ n < (k + 1)qm such that xn ∈ J , and

the desired net property is established. 2

Example 4.4.64 We return to Example 4.4.62 and consider the generating matrix

C(1) there. For every integer m ≥ 1, the upper left m×m submatrix C
(1)
m of C(1) is

the m×m identity matrix over Fq. It is trivial that %(C
(1)
m ) = m, and so the value

of t in Theorem 4.4.63 is t = 0. This is consistent with the conclusion in Example

4.4.62.

We conclude this subsection by establishing an analog of Proposition 4.4.57 for

digital (t, s)-sequences over Fq.
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Proposition 4.4.65 Let q be a prime power and let s ≥ 1 and t ≥ 0 be integers.

If a digital (t, s)-sequence over Fq is given, then for every integer m ≥ max(1, t) we

can construct a digital (t,m, s+ 1)-net over Fq.

Proof. We fix the integer m ≥ max(1, t). As we can see from the proof of Theorem

4.4.63, the property of being a digital (t, s)-sequence over Fq depends only on its

generating matrices and not on the bijections ψ and η. Thus, we are free to choose

ψ : Fq → Zq and η : Zq → Fq as inverse maps of each other. Now let (xn)∞n=0 be a

digital (t, s)-sequence over Fq with ∞×∞ generating matrices C(1), . . . , C(s) over

Fq. Then by Proposition 4.4.57, the points

yn = (nq−m,xn) ∈ [0, 1)s+1 for n = 0, 1, . . . , qm − 1

form a (t,m, s + 1)-net in base q. The definition of such a net and also the proof

of Proposition 4.4.57 show that for the verification of this net property, we need to

consider only (s + 1)-dimensional elementary intervals J in base q as in the proof

of Proposition 4.4.57 with
∑s+1

i=1 di = m − t (where we write q for b), and so in

particular with di ≤ m for 1 ≤ i ≤ s + 1. For checking whether xn ∈ J , only the

first m q-adic digits of each coordinate matter. Thus, if pn ∈ [0, 1)s is the point that

is obtained by truncating each coordinate of xn after the first m q-adic digits, then

the points

wn = (nq−m,pn) ∈ [0, 1)s+1 for n = 0, 1, . . . , qm − 1

form again a (t,m, s+ 1)-net in base q.

Now we construct m×m generating matrices D(1), . . . , D(s+1) over Fq as follows.

For i = 1 we let D(1) = (cij)1≤i,j≤m be the antidiagonal matrix with cij = 1 if

i + j = m + 1 and cij = 0 otherwise. For 2 ≤ i ≤ s + 1 we put D(i) = C
(i−1)
m with

the notation in Theorem 4.4.63. If we write the column vector v ∈ Fmq in (4.49) in

the form

v = (η(z1(n)), . . . , η(zm(n)))>

with z1(n), . . . , zm(n) running independently through Zq and representing n for

0 ≤ n ≤ qm − 1 via (4.62), then it is straightforward to verify that the points

w0,w1, . . . ,wqm−1 form a digital (t,m, s + 1)-net over Fq with generating matrices

D(1), . . . , D(s+1). 2

4.4.5 A construction of (t, s)-sequences

We describe a construction that, for every dimension s ≥ 1 and every prime power

q, produces a digital (t, s)-sequence over Fq for some value of the quality parameter

t. This construction is due to Niederreiter [131] and it was historically the first
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construction achieving this task. We present a special case of this construction that

is sufficient for our purposes and we refer to the paper [131] for the general case.

Given a dimension s ≥ 1 and a prime power q, the basic ingredients of the

construction are s distinct monic polynomials p1, . . . , ps ∈ Fq[x] that are irreducible

over the finite field Fq. We put li = deg(pi) for 1 ≤ i ≤ s. The essential technical

device is the expansion of rational functions over Fq into formal Laurent series over

Fq that we already employed in Subsection 4.4.3 in the context of polynomial lattice

point sets. Concretely, for 1 ≤ i ≤ s and for integers j and k with j ≥ 1 and

0 ≤ k < li, we consider the rational function xk/pi(x)j ∈ Fq(x). Since deg(xk) =

k < li ≤ jli = deg(pi(x)j), its formal Laurent series expansion has the form

xk

pi(x)j
=
∞∑
r=1

e(i)(j, k, r)x−r ∈ Fq((x−1)) (4.65)

with coefficients e(i)(j, k, r) ∈ Fq. From these coefficients we derive the entries of the

∞×∞ generating matrices C(1), . . . , C(s) over Fq. We write C(i) = (c
(i)
jr )j≥1, r≥1 for

1 ≤ i ≤ s. For given i, j, r with 1 ≤ i ≤ s, j ≥ 1, and r ≥ 1, we determine the entry

c
(i)
jr as follows. We express the integer j − 1 uniquely as j − 1 = Q(i, j)li + k(i, j)

with integers Q(i, j) and k(i, j) satisfying Q(i, j) ≥ 0 and 0 ≤ k(i, j) < li. Then we

put

c
(i)
jr = e(i)(Q(i, j) + 1, k(i, j), r) ∈ Fq for 1 ≤ i ≤ s, j ≥ 1, r ≥ 1. (4.66)

There is a condition that we need to check, namely that each column of C(i),

i = 1, . . . , s, contains only finitely many nonzero entries. If we fix i and an integer

r ≥ 1, then the entries in the rth column of C(i) are the elements c
(i)
jr for j = 1, 2, . . . .

With ν denoting again the degree map on Fq((x−1)) introduced in Subsection 4.4.3,

we obtain

ν(xk/pi(x)j) = deg(xk)− deg(pi(x)j) = k − jli < li − jli,

and so ν(xk/pi(x)j) → −∞ as j → ∞. This means that e(i)(j, k, r) = 0 for all

sufficiently large j, and so (4.66) implies that c
(i)
jr = 0 for all sufficiently large j.

The resulting generating matrices C(1), . . . , C(s) yield an s-dimensional digi-

tal sequence over Fq, called a Niederreiter sequence with generating polynomials

p1, . . . , ps ∈ Fq[x]. It is remarkable that this construction always produces a digital

(t, s)-sequence over Fq with a known value of t.

Theorem 4.4.66 Let q be a prime power, let s ≥ 1 be an integer, and let p1, . . . , ps ∈
Fq[x] be distinct monic irreducible polynomials over Fq. Then a Niederreiter sequence

with generating polynomials p1, . . . , ps is a digital (t, s)-sequence over Fq with

t =
s∑
i=1

(deg(pi)− 1).
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Proof. With the given value of t, it suffices to show by Theorem 4.4.63 that

%(C
(1)
m , . . . , C

(s)
m ) ≥ m − t for all m ∈ N. This is trivial for m ≤ t, and so we

can assume that m > t. If

c
(i)
j,m = (c

(i)
j1 , . . . , c

(i)
jm) ∈ Fmq

denotes the jth row vector of C
(i)
m , then we have to verify that the system {c(i)

j,m :

1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly independent over Fq for any integers d1, . . . , ds ≥ 0

with
∑s

i=1 di = m− t. Let ni = ddi/lieli for 1 ≤ i ≤ s be the least multiple of li that

is greater than or equal to di. Then we prove even more, namely that the system

{c(i)
j,m : 1 ≤ j ≤ ni, 1 ≤ i ≤ s} is linearly independent over Fq.
Thus, suppose that

s∑
i=1

ni∑
j=1

bi,jc
(i)
j,m = 0 ∈ Fmq

for some bi,j ∈ Fq. A comparison of coordinates yields

s∑
i=1

ni∑
j=1

bi,jc
(i)
jr = 0 for 1 ≤ r ≤ m. (4.67)

Consider the rational function

R :=
s∑
i=1

ni∑
j=1

bi,j
xk(i,j)

pi(x)Q(i,j)+1
=
∞∑
r=1

( s∑
i=1

ni∑
j=1

bi,jc
(i)
jr

)
x−r,

where we used (4.65) and (4.66) in the second identity. Note that ν(R) < −m
by (4.67). For 1 ≤ i ≤ s we can write

ni∑
j=1

bi,j
xk(i,j)

pi(x)Q(i,j)+1
=

ni/li∑
h=1

hli∑
j=(h−1)li+1

bi,jx
j−1−(h−1)li

pi(x)h

=

ni/li∑
h=1

1

pi(x)h

li−1∑
k=0

bi,(h−1)li+k+1x
k =

ni/li∑
h=1

fih(x)

pi(x)h
,

where

fih(x) =

li−1∑
k=0

bi,(h−1)li+k+1x
k ∈ Fq[x] for 1 ≤ h ≤ ni/li. (4.68)

If we put g(x) =
∏s

i=1 pi(x)ni/li , then Rg is a polynomial. On the other hand,

ν(Rg) < −m+ deg(g) = −m+
s∑
i=1

ni ≤ −m+
s∑
i=1

(di + li − 1)

= −m+m− t+
s∑
i=1

(li − 1) = 0.
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This is possible only if Rg = 0, and so R = 0. Hence we obtain

s∑
i=1

ni/li∑
h=1

fih
phi

= R = 0. (4.69)

If we can show that fih = 0 ∈ Fq[x] for 1 ≤ h ≤ ni/li, 1 ≤ i ≤ s, then all bi,j = 0

and we are done. There is nothing to prove if ni = 0, and so we consider only

those i with ni ≥ 1, that is, with ni ≥ li. We multiply (4.69) by g and obtain the

polynomial identity

s∑
i=1

( ni/li∑
h=1

fihp
(ni/li)−h
i

) s∏
a=1
a 6=i

pna/laa = 0. (4.70)

Now we fix an integer i with ni ≥ li. Then pi divides the right-hand side of (4.70),

and so pi must divide the left-hand side. It follows that pi divides

( ni/li∑
h=1

fihp
(ni/li)−h
i

) s∏
a=1
a 6=i

pna/laa .

Since pi does not divide the last product, pi must divide the last sum by Propo-

sition 1.4.17(ii), and so pi divides fih for h = ni/li. But deg(fih) < li = deg(pi)

by (4.68), and so fih = 0 for h = ni/li. This means that the terms in (4.69) corre-

sponding to h = ni/li with ni ≥ li drop out. By repeating this argument sufficiently

often, we arrive at the desired conclusion that fih = 0 for 1 ≤ h ≤ ni/li, 1 ≤ i ≤ s. 2

Remark 4.4.67 The result of Theorem 4.4.66 is best possible since it was proved by

Dick and Niederreiter [38] that a Niederreiter sequence with generating polynomials

p1, . . . , ps ∈ Fq[x] cannot be a digital (v, s)-sequence over Fq for an integer v <∑s
i=1(deg(pi)− 1).

Example 4.4.68 For every prime power q, there are exactly q distinct monic linear

polynomials over Fq which are of course automatically irreducible over Fq. Hence

for every dimension s with 1 ≤ s ≤ q, we can choose distinct monic linear polynomi-

als p1, . . . , ps ∈ Fq[x]. Then by Theorem 4.4.66, a Niederreiter sequence with these

generating polynomials p1, . . . , ps is a digital (0, s)-sequence over Fq. This result is

noteworthy since Theorem 4.4.58 says that s ≤ q is a necessary condition for the

existence of a (0, s)-sequence in base q. Therefore we get the elegant statement that

for a prime power q, a (0, s)-sequence in base q exists if and only if s ≤ q, and if

s ≤ q holds, then we can even construct a digital (0, s)-sequence over Fq. For the

Niederreiter sequences that are digital (0, s)-sequences over Fq, the generating ma-

trices can be written down in a nice explicit form (see [134, Remark 4.52]). With the
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approach via these explicit generating matrices, these digital (0, s)-sequences over Fq
were constructed earlier by Faure [49] for prime numbers q and by Niederreiter [130]

for arbitrary prime powers q.

Example 4.4.69 If we combine the construction in Example 4.4.68 with Proposi-

tion 4.4.65, then for every prime power q, for every dimension s with 2 ≤ s ≤ q+ 1,

and for every integer m ≥ 1 we obtain a digital (0,m, s)-net over Fq. Such digital

nets were also constructed in Theorem 4.4.53 by a different method. The existence

of these digital nets over Fq for s = 1 is known from Example 4.4.16. As soon as

m ≥ 2, the condition s ≤ q + 1 is best possible in the light of Theorem 4.4.11.

Remark 4.4.70 Given a prime power q and a dimension s ≥ 1, the problem of

minimizing the value of the quality parameter t in Theorem 4.4.66 is easy to solve.

We just have to choose for p1, . . . , ps distinct monic irreducible polynomials of least

degrees. More formally, we list all monic irreducible polynomials over Fq (there are

infinitely many of them by Proposition 1.4.43) in a sequence according to nonde-

creasing degrees and then we let p1, . . . , ps be the first s terms of this sequence.

With such a choice for p1, . . . , ps, we put

Pq(s) =
s∑
i=1

(deg(pi)− 1).

The polynomials p1, . . . , ps are not uniquely determined since we are not saying

anything about the order in which monic irreducible polynomials over Fq of the

same degree are listed, but the number Pq(s) is well defined. For instance, for q = 2

and s = 6 we can take p1(x) = x, p2(x) = x+1, p3(x) = x2+x+1, p4(x) = x3+x+1,

p5(x) = x3 + x2 + 1, p6(x) = x4 + x + 1, and so P2(6) = 8. For every prime power

q and every integer s ≥ 1, we get a digital (Pq(s), s)-sequence over Fq by Theorem

4.4.66. For 1 ≤ s ≤ q we obtain Pq(s) = 0 by Example 4.4.68, and for s > q we

know the bound

Pq(s) < s(logq s+ logq logq s+ 1),

where logq denotes the logarithm to the base q (see [134, Theorem 4.54] for a proof

of this bound).

Theorem 4.4.66 has an appealing consequence that we already advertised at the

beginning of this subsection, namely that for every prime power q and every integer

s ≥ 1, there exists a digital (t, s)-sequence over Fq for some value of t. From the

practical point of view, there is great interest in the least value of t that can be

achieved by any kind of construction with the digital method, and this leads to the

following definition.

Definition 4.4.71 For every prime power q and every integer s ≥ 1, let dq(s) be

the least value of t for which there exists a digital (t, s)-sequence over Fq.
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Example 4.4.68 shows that dq(s) = 0 for 1 ≤ s ≤ q and Theorem 4.4.58 implies

that dq(s) ≥ 1 for s ≥ q + 1. For a fixed prime power q, the following theorem says

that dq(s) grows at least linearly as a function of s as s tends to ∞. The proof of

this result uses concepts and facts from coding theory (see Chapter 3).

Theorem 4.4.72 The lower bound

dq(s) ≥
s

q
− logq

(q − 1)s+ q + 1

2

holds for all prime powers q and all integers s ≥ 1.

Proof. We fix q and s and observe that for t = dq(s) there exists a digital (t, s)-

sequence over Fq. Then Proposition 4.4.65 shows that for every integer m > t there

is a digital (t,m, s + 1)-net over Fq. We put h = b(q − 1)s/qc + 1 and consider

m = t+ h. If s+ 1 ≤ m, then

dq(s) = t = m− h ≥ s+ 1− (q − 1)s/q − 1 = s/q

and we are done. Thus, we can assume that s + 1 > m. By Theorem 4.4.19,

our digital (t,m, s + 1)-net over Fq with m = t + h yields an (h,m, s + 1)-system

{c(i)
j ∈ Fmq : 1 ≤ j ≤ m, 1 ≤ i ≤ s + 1} over Fq. We apply the definition of an

(h,m, s+1)-system over Fq (see Definition 4.4.18) only to the vectors c
(i)
j with j = 1.

Then we infer that any h of the vectors c
(i)
1 , 1 ≤ i ≤ s+ 1, are linearly independent

over Fq.
Now we set up the m × (s + 1) matrix H over Fq with the column vectors

c
(1)
1 , . . . , c

(s+1)
1 . Then we consider the subspace {v ∈ Fs+1

q : vH> = 0 ∈ Fmq } of Fs+1
q .

This is a linear code over Fq of length s + 1, of dimension at least s + 1 −m, and

with minimum distance at least h+ 1 (see the proof of Theorem 3.2.44). By passing

to an (s + 1 − m)-dimensional subspace of this linear code, we arrive at a linear

[s + 1, s + 1−m] code C over Fq with minimum distance d(C) ≥ h + 1. We apply

the Plotkin bound in Theorem 3.4.19 to the linear code C, and this yields

h+ 1 ≤ d(C) ≤ (s+ 1)(q − 1)qs−m

qs+1−m − 1
.

A straightforward manipulation using m = t+ h shows that

qt+h−s ≥ (h+ 1)q − (s+ 1)(q − 1)

h+ 1
,

and by taking logarithms to the base q we obtain

dq(s) = t ≥ s− h+ logq

(
q − (s+ 1)(q − 1)

h+ 1

)
.
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Next we note that h = b(q − 1)s/qc+ 1 ≤ (q − 1)s/q + 1, hence

dq(s) ≥
s

q
− 1 + logq

(
q − (s+ 1)(q − 1)

h+ 1

)
.

Furthermore h ≥ s− s/q + 1/q, therefore

q − (s+ 1)(q − 1)

h+ 1
≥ 2q

(q − 1)s+ q + 1
,

and the desired lower bound on dq(s) follows. 2

With Pq(s) as in Remark 4.4.70, we obviously have dq(s) ≤ Pq(s) for all prime

powers q and all integers s ≥ 1. The upper bound on Pq(s) in Remark 4.4.70 implies

that, for fixed q, the quantity dq(s) is at most of the order of magnitude s log s. On

the other hand, Theorem 4.4.72 shows that dq(s) is at least of the order of magnitude

s. Actually, dq(s) has the order of magnitude s as a function of s as s tends to ∞,

but this can be proved only by deeper methods which are beyond the scope of this

book (see Section 4.5 for a sketch of these methods).

4.5 A glimpse of advanced topics

There are various notions of discrepancy besides the extreme discrepancy and the

star discrepancy. For a point set P consisting of N points in [0, 1)s, we introduce a

function of u = (u1, . . . , us) ∈ [0, 1]s by

RP(u) = N−1A
( s∏
i=1

[0, ui);P
)
− u1 · · ·us.

Then the star discrepancy D∗N(P) of P is the supremum norm of the function RP on

[0, 1]s. For a real number p ≥ 1, the Lp norm of the function RP on [0, 1]s is called

the Lp discrepancy of P . The case p = 2 has received special attention. The lower

bound of Roth [176] in (4.19) is actually a lower bound on the L2 discrepancy of P .

Other concepts of discrepancy are obtained by extending the supremum in (4.18) not

only over subintervals of [0, 1]s, but over more general sets such as convex subsets

of [0, 1]s. This leads then also to error bounds for quasi-Monte Carlo integration for

wider classes of integration domains, for instance for convex integration domains or

for Jordan-measurable integration domains. We refer to [127, Sections 2 and 3] and

[134, Chapter 2] for discussions of these topics.

Quasi-Monte Carlo methods can be applied not only to numerical integration,

but to a variety of other tasks in computational mathematics. We mention the

numerical solution of integral equations, of integro-differential equations, and of

linear partial differential equations. Perhaps more surprising are applications to
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approximation theory and to the computation of eigenvalues of matrices. We refer to

[41, Chapter 3] for some of these applications. A theory that is quite well developed

is that of the quasi-Monte Carlo method for the computation of maxima and minima

of real-valued functions, also called quasirandom search (see [134, Chapter 6]).

Much more can be said about lattice rules and there is even a book devoted

entirely to lattice rules (see [189]). With every s-dimensional lattice L we can

associate an s × s generator matrix B whose row vectors b1, . . . ,bs form a basis

of L in the sense of (4.45). If L is an integration lattice, then the absolute value

of the determinant of B is equal to 1/N , where N is the number of points in the

lattice point set corresponding to L. Furthermore, a generator matrix of the dual

lattice L⊥ of the integration lattice L is given by (B>)−1, that is, the inverse of

the transpose of B. We proved existence theorems for good lattice rules of rank 1

in Subsection 4.3.1, and there are also existence theorems for good lattice rules of

higher rank (see [134, Section 5.4] and [189]). An important development for the

practical computation of good lattice points is the fast CBC algorithm of Nuyens

and Cools [154] which is based on fast Fourier transform techniques.

There are more constructions of nets and (t, s)-sequences than those presented in

Subsections 4.4.3 and 4.4.5. A detailed expository account of further constructions

can be found in the book of Dick and Pillichshammer [39]. A fascinating issue is that

of the exact order of magnitude of the quantity dq(s) introduced in Definition 4.4.71,

where we fix the prime power q and consider dq(s) as a function of the dimension

s. A lower bound on dq(s) of the order of magnitude s was established in Theorem

4.4.72. This is actually the exact order of magnitude of dq(s), but to prove this we

need also an upper bound on dq(s) of the same order of magnitude. This means

that for every s ≥ 1 we have to construct a digital (t, s)-sequence over Fq with t

growing linearly as a function of s. All the known constructions that achieve this

rate of growth use the theory of global function fields outlined in Section 3.6.

The family of Niederreiter-Xing sequences was the first family of constructions

that produced an upper bound on dq(s) of the order of magnitude s. The main

papers here are [146] and [203], and accounts of these constructions are also given

in the books [39, Chapter 8] and [147, Chapter 8]. There is a minor technical

issue that arises in these and several other constructions, namely that it cannot be

guaranteed any more that the∞×∞ generating matrices C(1), . . . , C(s) over Fq have

the property that each column of each generating matrix contains only finitely many

nonzero entries. This situation is remedied by slightly modifying the definition of a

(t, s)-sequence in base b. Let [x]b,m ∈ [0, 1)s denote the point that is obtained by the

coordinatewise m-digit truncation in base b of the point x ∈ [0, 1]s. Then we say

that for integers b ≥ 2, s ≥ 1, and t ≥ 0, a sequence (xn)∞n=0 of points in the closed

s-dimensional unit cube [0, 1]s is a (t, s)-sequence in base b in the broad sense if, for

all integers k ≥ 0 and m > t, the points [xn]b,m with kbm ≤ n < (k + 1)bm form a

(t,m, s)-net in base b. A (t, s)-sequence in base b satisfying the original Definition
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4.4.55 is then called a (t, s)-sequence in base b in the narrow sense. Analogously,

we speak of digital (t, s)-sequences over Fq in the broad sense and in the narrow

sense. The main results on (t, s)-sequences in base b in the narrow sense, such as

the discrepancy bound in Theorem 4.4.59 with an obvious notion of star discrepancy

for sequences of points in [0, 1]s, hold just as well for (t, s)-sequences in base b in the

broad sense.

Now we sketch a construction from the family of Niederreiter-Xing sequences,

namely the construction in [146] using rational places. For a given prime power

q and a given integer s ≥ 1, we choose a global function field F/Fq containing at

least s + 1 rational places. Let P∞, P1, . . . , Ps be s + 1 distinct rational places of

F . Furthermore, we choose a divisor D ≥ 0 of F with dim(L(D + jPi)) = j + 1 for

1 ≤ i ≤ s and all integers j ≥ 0. Then for each i = 1, . . . , s and j ≥ 1, there is an

element

f
(i)
j ∈ L(D + jPi) \ L(D + (j − 1)Pi).

Next we pick an element y ∈ F with νP∞(y) = 1. Recall that in the rational function

field Fq(x) there is an expansion into formal Laurent series in terms of powers of x

(see Subsection 4.4.3). There is an analogous expansion in the global function field

F in terms of powers of y. For the elements f
(i)
j above, these expansions can be

written in the form

f
(i)
j = y−v

∞∑
r=0

b
(i)
j,r y

r for 1 ≤ i ≤ s and j ≥ 1,

where all coefficients b
(i)
j,r ∈ Fq and where the integer v ≥ 0 is the coefficient of P∞

in the representation of the divisor D as a formal linear combination of places. For

i = 1, . . . , s, we now set up the ∞×∞ generating matrix C(i) = (c
(i)
j,r)j≥1, r≥0 over

Fq by putting

c
(i)
j,r =

{
b
(i)
j,r for j ≥ 1 and 0 ≤ r ≤ v − 1,

b
(i)
j,r+1 for j ≥ 1 and r ≥ v.

These generating matrices C(1), . . . , C(s) yield a digital (t, s)-sequence over Fq in the

broad sense with t = g, the genus of the global function field F .

The problem of optimizing this construction of Niederreiter-Xing sequences leads

naturally to the quantity Vq(s) which, for every prime power q and every integer

s ≥ 1, is defined as the least integer g ≥ 0 for which there exists a global function

field F/Fq of genus g containing at least s + 1 rational places. Then obviously

dq(s) ≤ Vq(s), where we include digital (t, s)-sequences over Fq in the broad sense in

the definition of dq(s). The quantity Vq(s) can be bounded by means of the so-called

class field theory of global function fields. As a consequence, for every prime power

q we get the bound

dq(s) ≤
cs

log q
+ 1 for all s ≥ 1,
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where c > 0 is an absolute constant. This bound settles the problem of the exact

order of magnitude of dq(s) as a function of s. Various other bounds on dq(s) can

be derived from Niederreiter-Xing sequences. For instance, the agreeable bound

dq(s) ≤ 5s for all prime powers q and all s ≥ 1 is an immediate consequence of [203,

Theorem 3]. For special values of q some better bounds are possible; for instance if

q is a square, then

dq(s) ≤
ps

q1/2 − 1
for all s ≥ 1,

where p is the unique prime factor of q. Detailed information on these and other

bounds for dq(s) is available in [147, Sections 8.3 and 8.4].

There are other constructions based on global function fields that yield digital

(g, s)-sequences over Fq, just like the Niederreiter-Xing sequence described above.

A relatively simple one is that of Hofer and Niederreiter [66] which does not require

the auxiliary divisor D in the Niederreiter-Xing construction. The construction by

Niederreiter and Yeo [149] stands out because it is the only known construction of

(t, s)-sequences that operates for every dimension s and that is not based on the

digital method. In fact, this construction is a relative of the construction of Halton

sequences in Subsection 4.2.2, in the sense that it uses a sort of radical-inverse

function in the context of global function fields.

We presented the details and the proof for only one construction of (t, s)-sequences

that works for every dimension s, namely the construction of Niederreiter sequences

in Subsection 4.4.5. This construction can be applied only for prime-power bases q.

What can be said about bases b that are not prime powers? The approach for such

a base b is to use again a digital method, but instead of a finite field one employs

a finite commutative ring R with identity and of cardinality b as the underlying

algebraic structure. A convenient choice is obtained by writing b =
∏r

h=1 qh as a

product of pairwise coprime prime powers q1, . . . , qr and by letting R be the direct

product R =
∏r

h=1 Fqh of finite fields. Then constructions that work over finite fields

can be extended to R by a direct-product procedure.

A quantity that is more general than dq(s) is the number tb(s) which is defined,

for all integers b ≥ 2 and s ≥ 1, as the least value of t for which there exists a (t, s)-

sequence in base b (in the broad sense, say). It is obvious that for prime powers q the

inequality tq(s) ≤ dq(s) holds for all s ≥ 1. By using the direct-product procedure

mentioned above, together with the Niederreiter-Xing construction, it was shown

in [146] that for every base b ≥ 2 the upper bound

tb(s) ≤
cs

log q(b)
+ 1

is valid for all s ≥ 1, where c > 0 is an absolute constant and where q(b) is the

smallest prime power in the factorization of b into pairwise coprime prime powers.

On the other hand, there is a lower bound on tb(s) which, for fixed b, is also linear
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in s, and so tb(s) has the exact order of magnitude s just like dq(s). We refer to

[147, Chapter 8] for more information on (t, s)-sequences in arbitrary bases b.

Exercises

4.1 Prove that a sequence (xn)∞n=1 of points in [0, 1) is uniformly distributed if and

only if (4.7) holds for every subinterval J of [0, 1] with rational endpoints.

4.2 Prove that if finitely many terms of a sequence that is uniformly distributed

modulo 1 are deleted or changed in an arbitrary manner, then the resulting

sequence is still uniformly distributed modulo 1.

4.3 Prove that if the sequences (xn)∞n=1 and (yn)∞n=1 are uniformly distributed

modulo 1, then the “mixed” sequence x1, y1, x2, y2, . . . , xn, yn, . . . is uniformly

distributed modulo 1.

4.4 Prove that the sequence 0
1
, 0
2
, 1
2
, 0
3
, 1
3
, 2
3
, . . . , 0

k
, 1
k
, . . . , k−1

k
, . . . constructed in an

obvious blockwise manner is uniformly distributed.

4.5 Let m be a nonzero integer and let c be a real number. Prove that if the

sequence (xn)∞n=1 is uniformly distributed modulo 1, then so is the sequence

(mxn + c)∞n=1.

4.6 Let (xn)∞n=1 and (yn)∞n=1 be two sequences of real numbers such that limn→∞(xn−
yn) = c for some c ∈ R. Prove that if (xn)∞n=1 is uniformly distributed modulo

1, then so is (yn)∞n=1. (Hint: use Theorem 4.1.9.)

4.7 Prove that if (xn)∞n=1 is uniformly distributed modulo 1 and the sequence

(yn)∞n=1 of real numbers satisfies

lim
N→∞

1

N

N∑
n=1

|yn| = 0,

then (xn + yn)∞n=1 is uniformly distributed modulo 1. (Hint: use Theorem

4.1.9.)

4.8 For a point set P consisting of N points in [0, 1)s with s ≥ 1, show that any

given point in [0, 1)s can occur at most bNDN(P)c times in P .

4.9 Let x1, . . . , xN ∈ [0, 1) be such that, for some constants c > 0 and C1 >

0, the bound
∣∣∑N

n=1 e
2πihxn

∣∣ ≤ C1h
c holds for all integers h with 1 ≤ h ≤

N1/(c+1). Prove that the point set P consisting of x1, . . . , xN satisfies DN(P) ≤
C2N

−1/(c+1) with a constant C2 > 0 depending only on c and C1.

4.10 Establish an s-dimensional version of Lemma 4.1.15 for every s ≥ 2.
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4.11 Theorem 4.1.21 implies that, with the notation in this theorem,

∣∣∣ 1

N

N∑
n=1

xn −
1

2

∣∣∣ ≤ D∗N(P)

for all x1, . . . , xN ∈ [0, 1). Prove that this is best possible in the sense that

for every constant c < 1 there exist points x1, . . . , xN ∈ [0, 1), where N may

depend on c, such that

∣∣∣ 1

N

N∑
n=1

xn −
1

2

∣∣∣ ≥ cD∗N(P).

(Hint: consider point sets of the form

0, . . . , 0︸ ︷︷ ︸
m

,
1

N
,

2

N
, . . . ,

N −m
N

,

where m ∈ N with m ≤ N is suitably chosen.)

4.12 Let x1, . . . , xN be real numbers and let D∗N be the star discrepancy of their

fractional parts. Prove that

∣∣∣ N∑
n=1

e2πixn
∣∣∣ ≤ 4ND∗N .

4.13 For every point set P consisting of N points in [0, 1)2, prove that DN(P) ≤
4D∗N(P). (Hint: express an arbitrary half-open subinterval of [0, 1)2 in terms

of half-open subintervals anchored at the origin.)

4.14 Generalize the preceding exercise and show that DN(P) ≤ 2sD∗N(P) for every

point set P consisting of N points in [0, 1)s with s ≥ 2.

4.15 Prove in detail that if the real-valued function f on [0, 1]s with s ≥ 2 depends

on fewer than s variables, then the variation V (s)(f) of f on [0, 1]s in the sense

of Vitali satisfies V (s)(f) = 0.

4.16 With the notation for continued fractions in Subsection 4.2.1, prove that

pkqk−2 − pk−2qk = (−1)kak for all k ≥ 0.

4.17 Prove that the star discrepancy of the point set Pm,s in Subsection 4.3.1 is

equal to 1−
(
1− 1

2m

)s
.
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4.18 Let m ≥ 2 and s ≥ 1 be integers and let P be the point set consisting of the

N = ms points (k1
m
, . . . ,

ks
m

)
∈ [0, 1)s

with k1, . . . , ks running independently through the integers 0, 1, . . . ,m − 1.

Prove that D∗N(P) = 1−
(
1− 1

m

)s
.

4.19 For every g ∈ Zs with s ≥ 2 and every integer N ≥ 2, define

%(g, N) = min
h

r(h),

where the minimum is extended over all nonzero h ∈ Zs with h·g ≡ 0 (mod N)

and where r(h) is given by (4.38). Prove that 1 ≤ %(g, N) ≤ N/2.

4.20 Let g, N, and %(g, N) be as in the preceding exercise. Prove that

D∗N(P(g, N)) ≥ Cs
%(g, N)

with a constant Cs > 0 depending only on s. This shows that %(g, N) must

be large for a good lattice point g modulo N . (Hint: apply Theorem 4.1.41

with a function f of the form f(u) = cos (2πh · u) for a suitable h ∈ Zs.)

4.21 Let L be the two-dimensional lattice corresponding to P(g, N) with g =

(1, 5) ∈ Z2 and N = 8. Determine the dual lattice L⊥ explicitly and com-

pute the number %(g, N) in Exercise 4.19.

4.22 Consider the two-dimensional lattice point set consisting of the six points given

by the fractional parts
{
j1
(
1
2
, 0
)

+ j2
(
1
3
, 1
3

)}
with j1 ∈ {0, 1} and j2 ∈ {0, 1, 2}.

Determine the rank and the invariants of this lattice point set.

4.23 Prove that if there exists a (t,m, s)-net in base b, then for every integer h ≥ 1

there exists a (t+ h,m+ h, s)-net in base b.

4.24 Prove that if there exists a digital (t,m, s)-net over Fq, then for every integer

h ≥ 1 there exists a digital (t+ h,m+ h, s)-net over Fq.

4.25 Prove that every (ht, hm, s)-net in base b with an integer h ≥ 1 is a (t,m, s)-net

in base bh.

4.26 Prove that if there exists a (t1,m1, s1)-net in base b and a (t2,m2, s2)-net in

base b, then there exists a (t,m1 +m2, s1 + s2)-net in base b with

t = max (m1 + t2,m2 + t1).

(Hint: consider the (s1 + s2)-dimensional direct product of the s1-dimensional

net and the s2-dimensional net.)
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4.27 Prove that in Definition 4.4.18 we can replace the condition
∑s

i=1 di = d by∑s
i=1 di ≤ d and we still have the stated linear independence property.

4.28 Prove that if C(1) is the 4 × 4 identity matrix over F2 and the matrices C(2)

and C(3) over F2 are given by

C(2) =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , C(3) =


1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

 ,

then C(1), C(2), and C(3) are generating matrices of a digital (0, 4, 3)-net

over F2.

4.29 There is an analog of the Korobov form (4.43) of lattice points in the context

of polynomial lattice point sets. Choose f, g ∈ Fq[x] with deg(f) = m ≥ 1 and

determine g = (g1, . . . , gs) ∈ Fq[x]s<m by gi ≡ gi−1 (mod f) and deg(gi) < m

for 1 ≤ i ≤ s. Under the assumption that f is irreducible over Fq, prove an

analog of Theorem 4.4.46 for s-tuples g ∈ Fq[x]s<m of Korobov form.

4.30 Show first that f(x) = x3 + 2x + 1 ∈ F3[x] is irreducible over F3 and then

construct explicitly a quadruple g ∈ F3[x]4<3 that yields a digital (0, 3, 4)-net

over F3 according to Theorem 4.4.53.

4.31 Compute the quantity Pq(s) in Remark 4.4.70 for q = 2 and s = 10.

4.32 Compute the quantity Pq(s) in Remark 4.4.70 for q = 3 and s = 8.



Chapter 5

Pseudorandom Numbers

Random numbers, pseudo or true,

better look like out of the blue.

But what to do on a day

when the sky is black or gray,

there we don’t have any clue.

5.1 General principles

5.1.1 Random number generation

We pointed out in Subsection 4.1.2 that the Monte Carlo method for numerical

integration uses random samples, but we did not say anything about how to produce

random samples. Maybe we were wise to keep quiet, because nobody really knows

how to generate honest-to-goodness random samples in practice. On the other

hand, the purely theoretical framework for random sampling is clear: we have a set

with at least two elements, we are given a probability distribution (or a probability

measure) on this set, and we want to pick elements from this set that fairly represent

the probability distribution. But how do we decide whether the sampling is fair?

Normally in mathematics there is a definition to which we refer for the verification

of a property, but here no generally accepted definition of a fair random sample is

codified, unless we deceive ourselves and tolerate tautologies like “a random sample

is a collection of elements chosen at random”.

Notwithstanding this conundrum about random samples, the procedure of ran-

dom sampling is widely used in many walks of life. It is of course the mainstay

of applied statistics where information on large populations is obtained by drawing

and investigating a relatively small random sample. A typical example is an opinion

poll in which only a tiny percentage of the populace is queried. This small group

of people should form, as the statisticians say, a “representative sample” in terms

of demographic categories like age, gender, and social class. Therefore it loosely

301
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captures the idea of a “fair random sample” mentioned earlier. However, when one

considers how often pollsters err, it is evident that the emphasis here is more on

“loosely” than on “captures”. At any rate, the craft of polling is a good case in

point for the difficulty of practical random sampling.

Let us stay with the serious applications of random sampling for a short while

before we turn to the frivolous ones. In the realm of scientific computing, the

Monte Carlo method has a great demand for random samples, and this not only

for numerical integration, but also for solving integral equations, boundary-value

problems with partial differential equations, and linear-algebra problems involving

matrices of large size, as well as for the optimization of functions and for many

other tasks. Ever since the invention of the Monte Carlo method, problems of

computational physics were treated by this method, a prominent example being

particle transport through a solid medium in nuclear physics. This problem is of

crucial importance for the safety of nuclear reactors.

Monte Carlo methods belong to the wider family of simulation methods which

strive to gain information about complex and large-scale systems by random sam-

pling. For instance, you may think of the management of production processes in a

big factory or flight-scheduling problems for a global airline. In these examples, the

supply of resources, the demand for the company’s products, or the preferences and

frequency of passengers are random processes that have to be simulated.

There is also the area of probabilistic algorithms in scientific computing and

computer science where random samples are required. A probabilistic algorithm is

basically like any other computational procedure inasmuch as it follows well-defined

steps that can be programmed in software, but in certain steps of the algorithm

we are allowed to make random choices. These choices come from a specified set

and are produced by random sampling. For some computational tasks, probabilistic

algorithms tend to arrive at the desired answer faster than conventional determin-

istic algorithms. In this book, you can find examples of probabilistic algorithms in

Subsections 2.3.3, 2.4.2, 6.5.1, 6.6.1, and 6.6.2.

But believe it or not, the biggest consumer of random samples nowadays is the

gaming industry, by which we mean not only things like slot machines in casinos,

but also computer games. Take the typical slot machine: it contains an electronic

device that selects “at random” one out of the several thousand possible combi-

nations of fruits and other objects on the display. As a matter of fact, somebody

has programmed this device and it runs through an algorithm that produces the

supposedly random outcomes in real time. If you can hack this algorithm, then you

could make millions at your local casino, provided the management does not become

suspicious of your lucky streak and bans you from the premises. Similar features

appear in computer games where various scenarios are selected “randomly”, but in

reality according to a deterministic algorithm unbeknown to the user.

With these numerous applications of random sampling, it is evident that much
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thought has been spent on the actual generation of random samples. At the be-

ginning of this subsection, we described the framework for random sampling in an

abstract manner, namely a set with at least two elements and a probability distri-

bution on it. In practice, the set from which the random samples are drawn will

be of a concrete nature, for instance, the set {0, 1} of bits, a finite set of integers,

the set R of real numbers, or a set of points in a Euclidean space. The problem of

sampling from such typical concrete sets can usually be reduced to that of sampling

from R. In the latter case, we speak of random number generation.

Using statistical terminology, the task of random number generation presents

itself in the following form: given a target distribution function F on R, generate

a sequence of real numbers that simulates a sequence of independent and identi-

cally distributed random variables with distribution function F . You may think

of a distribution function F as a real-valued nondecreasing function on R with

limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. The intuitive meaning of the distribution

function F is that, for all x ∈ R, the probability Pr(r ≤ x) that a random number

r satisfies r ≤ x is equal to F (x). We do not specify the mathematical definition

of “independent” and rather appeal again to intuition: independence signifies that

the choice of a random sample or of a random number is not influenced by previous

choices of random samples or of random numbers in the same sampling procedure.

Just think of so-called fair coin tosses for an illustration: if you know the outcomes

of a run of fair coin tosses, then this should not give you any clue about the outcome

of the next fair coin toss.

It is customary to break up the task of random number generation into two steps:

(i) generate random numbers for an easy standardized distribution function on R;

(ii) transform the random numbers in step (i) into random numbers with the given

target distribution function F on R. As the easy standardized distribution function

we choose the uniform distribution function U on R defined by U(x) = 0 for x < 0,

U(x) = x for 0 ≤ x ≤ 1, and U(x) = 1 for x > 1 (see Figure 5.1). Random numbers

whose target distribution function is U are called uniform random numbers. For

uniform random numbers r we have Pr(r < 0) ≤ Pr(r ≤ 0) = U(0) = 0 and

Pr(r > 1) = 1 − Pr(r ≤ 1) = 1 − U(1) = 0, and so we can assume that uniform

random numbers belong to the interval [0, 1]. We emphasize that uniform random

numbers satisfy the property that, for all 0 < x ≤ 1, the probability of a uniform

random number from [0, 1] falling into the subinterval [0, x] is equal to x. There

is of course a formal similarity here with the concept of a uniformly distributed

sequence (compare with Theorem 4.1.6), and this explains why the theory of uniform

distribution of sequences plays a role in the analysis of uniform (pseudo)random

numbers as we shall see.

In this book, we focus on uniform (pseudo)random numbers since it is in this

area where the applications of number theory occur. The transformation step (ii)

listed above involves the theory of special functions and elementary statistics, but
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Figure 5.1: The graph of U

no number theory. Therefore we just say a few words about step (ii). Consider the

case where the target distribution function F is strictly increasing and continuous

on R. Then it is clear that the image of F is the open interval (0, 1) and that the

inverse function F−1 : (0, 1)→ R exists. Since uniform random numbers attain the

values 0 and 1 with probability 0, we can assume here that the uniform random

numbers r1, r2, . . . generated in step (i) above lie in the open interval (0, 1). Now

we determine a sequence x1, x2, . . . of real numbers by xn = F−1(rn) for all n ≥ 1.

Then

Pr(xn ≤ x) = Pr(F−1(rn) ≤ x) = Pr(rn ≤ F (x)) = F (x)

for all x ∈ R, and so x1, x2, . . . can be viewed as a sequence of random numbers with

target distribution function F . For obvious reasons, this transformation method is

called the inversion method.

Example 5.1.1 Consider a so-called Cauchy distribution function F which is de-

fined by

F (x) =
1

2
+

1

π
arctan(x/σ) for all x ∈ R,

where σ is a positive constant. Then F is strictly increasing and continuous on R,

limx→−∞ F (x) = 0, and limx→∞ F (x) = 1. Hence F is a distribution function for

which we can apply the inversion method. The inverse function F−1 of F is given

by

F−1(x) = σ tan

(
π

(
x− 1

2

))
for 0 < x < 1.

In this case, the function values of F−1 can be efficiently computed by using standard

mathematical software.

There are many situations where there is no nice closed-form expression for the

inverse function F−1 of a given distribution function F , and in such cases the in-

version method is not practical. However, various other methods for transforming
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uniform random numbers into random numbers with a prescribed nonuniform target

distribution function are available. Methods geared to common distribution func-

tions such as the family of normal distribution functions were extensively studied

and can be very efficient. The voluminous book [36] is devoted entirely to these

transformation methods, and a more recent treatment of this topic can be found

in [71].

The first attempts to generate (uniform) random numbers on a large scale used

physical devices such as automated roulette wheels, gadgets producing white noise,

and counts of the emission of radiated particles. There was the legendary machine

ERNIE (Electronic Random Number Indicator Equipment) that picked the winning

numbers in the British Premium Bonds lottery for many years. Some machine-

generated random numbers were even published in the form of tables, such as those

in the RAND tables [164] that were widely employed in their time, but printing

random numbers on paper and thus codifying them for eternity somehow seems to

defeat the conventional idea of random numbers. An account of physical methods

for the generation of random numbers is given in the book edited by Shreider [185,

Chapter VI].

However, the utilization of physically generated random numbers is problematic.

In the first place, the generated random numbers may have a small bias because of

measurement errors due to imperfect equipment or because the underlying physical

process is not sufficiently well understood and actually follows a probability distri-

bution that is somewhat different from the anticipated one. Extensive statistical

testing is mandatory in order to detect a possible bias (see Subsection 5.1.2 for

such tests). Then there is the crucial issue of reproducibility: just like laboratory

experiments, scientific computations must be reproducible by other experts for the

purpose of verification. For computations involving physically generated random

numbers, this means that the random numbers have to be stored so that they are

available when the same computation is repeated. A high-level Monte Carlo com-

putation with many runs may consume up to 1012 random numbers, and the storage

of so many random numbers can be cumbersome and error-prone.

In view of the inconvenience of physically generated random numbers, practition-

ers switched to deterministic algorithms that generate random numbers in a quick

and user-friendly way in a computer and depend only on a few input parameters.

Even large bulks of random numbers can then be produced “on the fly” as one says,

that is, in real time as they are needed, and so the problems of reproducibility and

storage are vanquished. It is an additional advantage of such computer-generated

random numbers that they can often be subjected to a rigorous theoretical analysis,

and this will be illustrated in the present chapter. Suitable theoretical results may

alleviate to some extent the need for time-consuming statistical testing of computer-

generated random numbers. To be sure, it is of course an oxymoron to speak of ran-

dom numbers generated by a deterministic algorithm. Therefore the terminology
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pseudorandom numbers is frequently used for computer-generated random numbers.

We follow this terminology as it allows for a tidy differentiation from “true” random

numbers (whatever these may be). Furthermore, we restrict the usage to uniform

pseudorandom numbers. Thus, in this book, pseudorandom numbers are numbers

that are generated by a deterministic algorithm and that attempt to simulate the

uniform distribution function U on R.

The deterministic algorithms for generating pseudorandom numbers, and often

also certain parameters in these algorithms, have to be chosen very carefully in order

to arrive at pseudorandom numbers of good quality. There is a long history of bad

choices of algorithms and parameters in this area, and we will of course steer away

from these known bad choices. A memorable lesson about the judicious choice of

algorithms is contained in the title of the classical paper [29]: “Random number

generation is too important to be left to chance”. Or to quote the leading computer

scientist Donald Knuth [81, Section 3.1]: “Random numbers should not be generated

with a method chosen at random. Some theory should be used.”

5.1.2 Testing pseudorandom numbers

Pseudorandom numbers are generated by deterministic algorithms, and from this

angle there is a priori absolutely no guarantee that they will do what they are

supposed to do, namely to simulate the uniform distribution function U on R and

to possess desirable statistical independence properties. Therefore quality control is

indispensable in the business of pseudorandom number generation. As the famous

dictum ascribed alternately to Mark Twain or to Lenin or to Ronald Reagan says:

“Confidence is good, but control is better.”

There are several categories according to which we can assess the quality of pseu-

dorandom numbers, such as statistical, structural, and complexity-theoretic criteria.

One may also add ease of implementation and speed of the algorithm producing

pseudorandom numbers, but in the age of high-speed computers the time spent

on generating pseudorandom numbers is minuscule. Already in 1990 the computer

expert Fred James at the nuclear research center CERN in Geneva noted in his pa-

per [73]: “This [efficiency] was considered very important in the early days, but with

the kind of computations being performed now, both the computer time and memory

space taken by random number generation are increasingly insignificant and can al-

most always be neglected.” We will discuss several statistical tests for pseudorandom

numbers in this subsection. Structural criteria refer to aspects such as period length

and lattice structure, and we will investigate such properties for specific methods

of pseudorandom number generation. Complexity-theoretic requirements are not so

important for pseudorandom numbers used in Monte Carlo methods and simulation

methods, but they are essential in pseudorandom bit generation for cryptography

(see Section 5.4).
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The statistical testing of pseudorandom numbers operates in a setting where we

are given a sequence x0, x1, . . . of pseudorandom numbers in the interval [0, 1) and

a large integer N . The statistical tests use the first N terms x0, x1, . . . , xN−1 of

the sequence or a slightly longer initial segment of the sequence. In each test we

compute a certain test quantity and compare it with a benchmark, namely the value

of the test quantity for a “truly random” sequence. The benchmark value is usually

obtained by probability theory.

An absolute must is the uniformity test (or equidistribution test) which checks

whether the given pseudorandom numbers really follow our standardized target dis-

tribution function, namely the uniform distribution function U on R. To this end, we

calculate the star discrepancyD∗N of the numbers x0, x1, . . . , xN−1. Note that the def-

inition of the star discrepancy in Definition 4.1.11 indicates that D∗N represents the

maximal deviation between the actual distribution of the numbers x0, x1, . . . , xN−1
and the ideal distribution function U . There is a law of the iterated logarithm for

the star discrepancy due to Chung [25] which says that

lim sup
N→∞

(2N)1/2D∗N(S)

(log logN)1/2
= 1

with probability 1, that is, for a “truly random” sequence S of points in [0, 1).

In particular D∗N(S) = O
(
N−1/2(log logN)1/2

)
for all N ≥ 3, where the implied

constant may depend on the sequence S. For some algorithms for pseudorandom

number generation, the star discrepancy D∗N can be bounded by means of a mathe-

matical theorem, and then no computations have to be performed for the uniformity

test.

The permutation test examines the relative ordering among successive pseudo-

random numbers. We choose an integer s ≥ 2 and form the s-tuples

(xn, xn+1, . . . , xn+s−1) for n = 0, 1, . . . , N − 1.

Note that here the first N + s − 1 terms of the given sequence of pseudorandom

numbers are needed, and similar statements hold for the following statistical tests.

There are s! possible relative orderings among the entries of such an s-tuple and

these orderings are equiprobable. We determine the frequency of each ordering,

with some convention for breaking ties of entries, and we use the maximal deviation

of these frequencies from the expected number of occurrences as the basis for a

statistical test.

A very popular test, not only for pseudorandom numbers but also in other appli-

cations of statistics, is the serial correlation test . This is a test for the interdepen-

dence between xn and xn+h, where h ≥ 1 is a given integer. The test is performed

by calculating the serial correlation coefficient

σ
(h)
N :=

MN(xnxn+h)− (MN(xn))2

MN(x2n)− (MN(xn))2
,
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whereMN(vn) = N−1
∑N−1

n=0 vn denotes the mean value of real numbers v0, v1, . . . , vN−1
and where we assume that the denominator is nonzero. If xn and xn+h are statisti-

cally almost independent, then the absolute value |σ(h)
N | is small. It is a drawback

of this test that the converse does not necessarily hold. The serial correlation test

is widely used since serial correlation coefficients can be computed quickly.

The serial test is a more severe test for the statistical independence of successive

pseudorandom numbers and is a multidimensional version of the uniformity test (see

above). For a fixed dimension s ≥ 2, we put

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . , N − 1.

Let P(s)
N be the point set consisting of the points x0,x1, . . . ,xN−1. Then we con-

sider the star discrepancy D∗N(P(s)
N ) of this point set. The appropriate statistical

benchmark result is the s-dimensional law of the iterated logarithm for the star

discrepancy due to Kiefer [79]. This law affirms that

lim sup
N→∞

(2N)1/2D∗N(S)

(log logN)1/2
= 1

with probability 1, that is, for a “truly random” sequence S of points in [0, 1)s.

In particular D∗N(S) = O
(
N−1/2(log logN)1/2

)
for all N ≥ 3, where the implied

constant may depend on the sequence S. As for the uniformity test, we can give

theoretical bounds on the star discrepancy D∗N(P(s)
N ) in some cases.

Remark 5.1.2 It is intuitively clear that the serial test is stronger than the serial

correlation test, in the sense that a small star discrepancy implies a small serial

correlation coefficient, and we can also support this by a formal argument. For

simplicity, we consider only the serial correlation coefficient σ
(h)
N with h = 1, but we

can proceed similarly for any integer h ≥ 1. Let x0, x1, . . . , xN−1 be pseudorandom

numbers in [0, 1) with small star discrepancy D∗N , say D∗N ≤ 1
100

. First we inspect

the denominator

Den(σ
(1)
N ) = MN(x2n)− (MN(xn))2

of σ
(1)
N . By simple algebraic manipulations, we get

Den(σ
(1)
N ) =

1

N

N−1∑
n=0

x2n −
( 1

N

N−1∑
n=0

xn

)2
=

1

12
+
( 1

N

N−1∑
n=0

x2n −
1

3

)
−
( 1

N

N−1∑
n=0

xn −
1

2

)
−
( 1

N

N−1∑
n=0

xn −
1

2

)2
.

The last three bracketed expressions can be bounded by the Koksma inequality (see

Theorem 4.1.21). Note that an increasing function g on [0, 1] has bounded variation
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V (g) = g(1) − g(0), and so the functions g1(x) = x and g2(x) = x2 on [0, 1] satisfy

V (g1) = V (g2) = 1. Consequently,

Den(σ
(1)
N ) ≥ 1

12
− 2D∗N − (D∗N)2 ≥ 1

12
− 2

100
−
(

1

100

)2

>
1

16
. (5.1)

For the numerator Num(σ
(1)
N ) of σ

(1)
N we obtain

|Num(σ
(1)
N )| = |MN(xnxn+1)− (MN(xn))2|

≤
∣∣∣MN(xnxn+1)−

1

4

∣∣∣+
∣∣∣(MN(xn))2 − 1

4

∣∣∣
≤
∣∣∣MN(xnxn+1)−

1

4

∣∣∣+
3

2

∣∣∣MN(xn)− 1

2

∣∣∣
≤
∣∣∣MN(xnxn+1)−

1

4

∣∣∣+
3

2
D∗N .

We can bound the term
∣∣MN(xnxn+1)− 1

4

∣∣ by the Koksma-Hlawka inequality (see

Theorem 4.1.41). We introduce the point set P(2)
N consisting of the points

xn = (xn, xn+1) ∈ [0, 1)2 for n = 0, 1, . . . , N − 1

and the function f(x, y) = xy on [0, 1]2. The variation V (f) of f on [0, 1]2 in the

sense of Hardy and Krause is given by

V (f) =

∫ 1

0

∫ 1

0

∣∣∣∂2f(x, y)

∂x∂y

∣∣∣dxdy +

∫ 1

0

∣∣∣df(x, 1)

dx

∣∣∣dx+

∫ 1

0

∣∣∣df(1, y)

dy

∣∣∣dy = 3

according to (4.25), and so the Koksma-Hlawka inequality produces the bound

∣∣∣MN(xnxn+1)−
1

4

∣∣∣ =
∣∣∣ 1

N

N−1∑
n=0

f(xn)−
∫ 1

0

∫ 1

0

f(x, y)dxdy
∣∣∣ ≤ 3D∗N(P(2)

N ).

If we use also the inequality D∗N ≤ D∗N(P(2)
N ) which is derived from the projection

principle in Remark 4.1.37, then we obtain

|Num(σ
(1)
N )| ≤ 3D∗N(P(2)

N ) +
3

2
D∗N ≤

9

2
D∗N(P(2)

N ).

Together with the lower bound on Den(σ
(1)
N ) in (5.1), this yields

|σ(1)
N | =

|Num(σ
(1)
N )|

|Den(σ
(1)
N )|

< 16 · 9

2
D∗N(P(2)

N ) = 72D∗N(P(2)
N ).

Hence a small star discrepancy D∗N(P(2)
N ) implies a small serial correlation coeffi-

cient σ
(1)
N .
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There are many more statistical tests for pseudorandom numbers, and some

experts have even designed entire batteries of tests such as the DIEHARD test

battery (see [54, Section 6.2]). The name of this test battery is an amusing pun

since DieHard is a popular brand of car batteries in the United States, but maybe it

refers also to the eponymous series of action movies starring Bruce Willis in which

his stamina is tested in the extreme. The classical treatment of statistical tests for

pseudorandom numbers is given in the book of Knuth [81, Section 3.3].

It should be evident that a deterministic sequence of numbers cannot perform

well under all conceivable tests for randomness. Therefore the user of pseudorandom

numbers should be aware of the specific desirable statistical properties of the ran-

dom numbers for the computational task at hand and should choose pseudorandom

numbers that are known to pass the corresponding statistical tests. For instance,

if all that is needed is the statistical independence of any two successive uniform

random numbers, then pseudorandom numbers passing the two-dimensional serial

test are quite sufficient for this particular purpose.

5.2 The linear congruential method

5.2.1 Basic properties

It is striking that practically all currently employed methods for generating uniform

pseudorandom numbers use number-theoretic or algebraic techniques. One of the

first methods in the history of pseudorandom number generation was the linear con-

gruential method which was introduced by the number theorist Derrick H. Lehmer

at a conference at Harvard University in 1949 (see [96]). This method is still popular

because of its simplicity. We need only two parameters for this method, namely a

large integer m and an integer a with gcd(a,m) = 1. Let Zm = {0, 1, . . . ,m − 1}
again denote the least residue system modulo m. Then we choose an initial value

z0 ∈ Zm with gcd(z0,m) = 1 and we generate a sequence z0, z1, . . . of elements of

Zm by the recursion

zn+1 ≡ azn (mod m) for n = 0, 1, . . . . (5.2)

From this sequence, we derive the linear congruential pseudorandom numbers

xn =
zn
m
∈ [0, 1) for n = 0, 1, . . . . (5.3)

In this context, m is referred to as the modulus and a as the multiplier. Since a

matters only modulo m, we assume that a ∈ Zm.

These definitions immediately yield some simple consequences. For instance, the

recursion (5.2) for the integers zn implies the explicit formula

zn ≡ anz0 (mod m) for n = 0, 1, . . . . (5.4)
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Then the pseudorandom numbers xn are given by the fractional parts

xn =
{ 1

m
anz0

}
for n = 0, 1, . . . . (5.5)

Let T be the multiplicative order of a modulo m, that is, T is the least positive

integer h such that ah ≡ 1 (mod m). Then zn+T = zn for all n ≥ 0, and so the

sequence (zn)∞n=0 is purely periodic with period length T . Since gcd(z0,m) = 1, the

number T is actually the least period length. The numbers xn are obtained from

the integers zn by multiplying by the constant 1/m, and so the sequence (xn)∞n=0

has the same least period length. In general, for a periodic sequence (wn)∞n=0 we

write per(wn) for the least period length of (wn)∞n=0. We summarize the information

about the least period length of (xn)∞n=0 as follows.

Proposition 5.2.1 Let (xn)∞n=0 be a sequence of linear congruential pseudorandom

numbers with modulus m and multiplier a. Then per(xn) = T , where T is the

multiplicative order of a modulo m.

One may question whether it is prudent to admit pseudorandom numbers that

are rational numbers with the same denominator m. Certainly, such numbers would

be unlikely if we were to draw truly random samples from the uniform distribution on

the interval [0, 1]. However, there is the pragmatic viewpoint that once we entrust

a computer with the generation of pseudorandom numbers, then we have to live

with the fact that such a machine can represent real numbers only with a finite

precision. From this perspective, it is legitimate to work with rational pseudorandom

numbers having a finite precision. For instance, if your computer has a 32-bit

processor, then it is reasonable and practical to generate only rational numbers

with denominator 232.

Another issue is that of the periodicity of sequences of linear congruential pseudo-

random numbers. Again, truly random samples would definitely not exhibit periodic

patterns, so there is a problem here from a scrupulous statistical point of view. But

as before we adopt a pragmatic stance and we concede that if the period length is

significantly larger than the number of pseudorandom numbers actually consumed

in a computation, then the user will not “notice” the periodicity of the sequence of

pseudorandom numbers. In the case of linear congruential pseudorandom numbers,

we have per(xn) = T ≤ m on account of Proposition 5.2.1, and so the modulus m

should be considerably larger than the total number of linear congruential pseudo-

random numbers used in a computation. It must be added that every algorithm

currently utilized in practice for pseudorandom number generation produces peri-

odic sequences, and so this issue of periodicity is not something particular for the

linear congruential method.

Now we address the question of the choice of the two parameters m and a in

the linear congruential method. We have already observed that the modulus m
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should be quite large, for reasons of a fine discretization of the interval [0, 1] and of

a sufficiently large period length. On the other hand, for ease of implementation it

is convenient for the modulus to fit into the word size of the processor. For instance,

for a 32-bit processor it is preferable to have m ≤ 232. Furthermore, the theory

of the linear congruential method is nicer if m is a prime number or a power of

2. Again for a 32-bit processor, popular choices for the modulus are the Mersenne

prime m = 231 − 1 (see Subsection 6.6.3 for Mersenne primes) or m = 232. For

higher precision and period length, one may take m = 248 or m = 264 or the prime

numbers m = 248 − 59, m = 263 − 25, or m = 264 − 59.

The selection of good multipliers a is a subtler affair. The primary requirement is

of course that the generated sequence of linear congruential pseudorandom numbers

should have a large period length, and this means in view of Proposition 5.2.1 that

the multiplicative order T of a modulo m should be large. Once m has been fixed, it

is therefore reasonable to choose a such that T is as large as possible for this value

of m. This is easy if m is a prime number, for then the largest possible value of T

is φ(m) = m − 1 and this value of T is attained if and only if a is a primitive root

modulo m (see Definition 1.2.19). In the other interesting case, namely when m is a

power of 2, the following result provides the desired information. Note that we can

ignore very small values of m since they are irrelevant for our purpose.

Proposition 5.2.2 Let m = 2k with an integer k ≥ 3. Then the largest value of a

multiplicative order modulo m is 2k−2. For k ≥ 4, an integer a has multiplicative

order 2k−2 modulo m if and only if a ≡ ±3 (mod 8).

Proof. For every integer k ≥ 1 and every odd integer a, let tk(a) be the multiplicative

order of a modulo 2k. Then atk(a) = 2kb + 1 for some b ∈ Z, hence by squaring we

get

a2tk(a) = 22kb2 + 2k+1b+ 1 ≡ 1 (mod 2k+1),

and so

tk+1(a) ≤ 2tk(a). (5.6)

Since t3(a) ≤ 2 for all odd a ∈ Z, it follows from (5.6) that tk(a) ≤ 2k−2 for all

k ≥ 3. For odd a 6≡ 1 (mod 8) it is trivial that t3(a) = 2, and so we can assume that

k ≥ 4 from now on. Every a ≡ ±1 (mod 8) satisfies t4(a) ≤ 2, and so (5.6) implies

in this case that tk(a) ≤ 2k−3 for all k ≥ 4. From φ(2k) = 2k−1 we infer that tk(a) is

always a power of 2 (compare with Remark 1.3.12). Thus, we can finish the proof

by showing that a2
k−3 6≡ 1 (mod 2k) for a ≡ ±3 (mod 8). In fact, we prove for such

a that

a2
k−3 ≡ 2k−1 + 1 (mod 2k) for all k ≥ 4.

This is trivial for k = 4. If the assertion is shown for some k ≥ 4, then a2
k−3

=

2kd+ 2k−1 + 1 = 2k−1(2d+ 1) + 1 for some d ∈ Z, and so by squaring we obtain

a2
k−2

= 22k−2(2d+ 1)2 + 2k(2d+ 1) + 1 ≡ 2k + 1 (mod 2k+1),
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which completes the induction. 2

Remark 5.2.3 In the literature one has also considered the so-called inhomoge-

neous case in the linear congruential method where the recursion (5.2) is replaced

by

zn+1 ≡ azn + c (mod m) for n = 0, 1, . . . . (5.7)

Here m is again a large integer and we choose a, c ∈ Zm with gcd(a,m) = 1 and

c 6= 0. The pseudorandom numbers xn are again obtained by (5.3). This case

adds of course a slight complication, but it is of interest since we can sometimes

achieve per(xn) = per(zn) = m. For instance, let m = 2k with an integer k ≥ 3, let

a ≡ 5 (mod 8), and let c be odd. Then it follows from (5.7) by induction on n that

zn ≡ anz0 +
an − 1

a− 1
c (mod 2k) for n = 0, 1, . . . .

This implies that

zn − z0 ≡
an − 1

a− 1
((a− 1)z0 + c) (mod 2k) for n = 0, 1, . . . .

Since (a− 1)z0 + c is odd, we have zn = z0 for some positive integer n if and only if

2k divides (an− 1)/(a− 1). Now a− 1 is divisible by 4 but not by 8, and so zn = z0
for some n ∈ N if and only if an ≡ 1 (mod 2k+2). The least n ∈ N for which this

holds is n = 2(k+2)−2 = 2k by Proposition 5.2.2, and so per(xn) = per(zn) = 2k = m.

The performance of linear congruential pseudorandom numbers under the uni-

formity test in Subsection 5.1.2 is easy to describe if we apply this test to the full

period and if the least period length is close to the modulus. Let S = (xn)∞n=0

be a sequence of linear congruential pseudorandom numbers with modulus m and

least period length T = per(xn). Let D∗T (S) be the star discrepancy of the first T

terms of S, that is, D∗T (S) is the star discrepancy of the pseudorandom numbers

in the full period. The simplest case is T = m, which can sometimes be achieved

by using the inhomogeneous recursion (5.7) as shown in Remark 5.2.3. If T = m,

then it is evident that the numbers x0, x1, . . . , xT−1 in the full period run exactly

through all rational numbers in [0, 1) with denominator m in some order. Therefore

D∗T (S) = 1/m by Proposition 4.1.16.

From now on, unless stated explicitly otherwise, we discuss only linear congruen-

tial pseudorandom numbers derived from the original homogeneous recursion (5.2).

If m is a prime number and T = m − 1, then the numbers x0, x1, . . . , xT−1 are

1/m, 2/m, . . . , (m− 1)/m in some order. Therefore again D∗T (S) = 1/m by Propo-

sition 4.1.16. Another interesting case is m = 2k with an integer k ≥ 4 and

a ≡ 5 (mod 8). Then T = 2k−2 = m/4 by Proposition 5.2.2. Furthermore, (5.4)

implies that zn ≡ z0 (mod 4) for all n ≥ 0, and so the point set consisting of
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x0, x1, . . . , xT−1 is equal to the point set consisting of all rational numbers in [0, 1)

of the form b/m with an integer b ≡ z0 (mod 4). Since z0 ≡ ±1 (mod 4), a straight-

forward computation based on Proposition 4.1.16 shows that D∗T (S) = 3/m.

If T is considerably smaller than the modulus m, then we cannot expect such

simple explicit formulas for D∗T (S), but we can provide upper bounds on D∗T (S).

We focus on the case where the modulus is a prime number, and we write as usual

p for a prime number. Results for other moduli can also be obtained, but they are

more complicated (see [125]). We need the following bound on exponential sums.

For M ∈ N we put χM(z) = e2πiz/M for all z ∈ Z.

Lemma 5.2.4 Let p be a prime number and let a, b, d ∈ Z with gcd(a, p) = gcd(b, p) =

1. Let T be the multiplicative order of a modulo p. Then

∣∣∣ T−1∑
n=0

χp(ba
n)χT (dn)

∣∣∣ ≤ {(p− T )1/2 if d ≡ 0 (mod T ),

p1/2 otherwise.

Proof. We use a method from the proof of Lemma 3.3.38. It is convenient to put

s(b, d) =
T−1∑
n=0

χp(ba
n)χT (dn).

The general term of this sum, viewed as a function of n, is periodic with period

length T . Hence for every integer r ≥ 0 we can write

s(b, d) =
T−1∑
n=0

χp(ba
n+r)χT (d(n+ r)),

and so

|s(b, d)| =
∣∣∣ T−1∑
n=0

χp(ba
ran)χT (dn)

∣∣∣ = |s(bar, d)|.

Since the integers b, ba, . . . , baT−1 are pairwise incongruent modulo p and not divis-

ible by p, it follows by putting s(0, d) =
∑T−1

n=0 χT (dn) that

T |s(b, d)|2 =
T−1∑
r=0

|s(bar, d)|2

≤
p−1∑
g=1

|s(g, d)|2 =

p−1∑
g=0

|s(g, d)|2 − |s(0, d)|2

=
T−1∑
h,j=0

χT (d(h− j))
p−1∑
g=0

χp(g(ah − aj))− |s(0, d)|2

= pT − |s(0, d)|2.
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Here in the penultimate step, we expanded |s(g, d)|2 by using |u|2 = uu for all

u ∈ C. Note also that in the last step, in the double sum over h and j only the

terms with h = j yield a nonzero contribution. Now s(0, d) = T if d ≡ 0 (mod T )

and s(0, d) = 0 otherwise, and so we arrive at the desired bounds. 2

Now we can establish an upper bound on the discrepancy DT (S), and there-

fore also on the star discrepancy D∗T (S), for a sequence S of linear congruential

pseudorandom numbers with prime modulus.

Theorem 5.2.5 Let S = (xn)∞n=0 be a sequence of linear congruential pseudorandom

numbers with prime modulus p ≥ 3 and let T = per(xn). Then

DT (S) <
(p− T )1/2

T

(
log p+

1

3

)
+

1

p
.

Proof. We use Proposition 4.3.1 with s = 1 and M = p together with the explicit

formula (5.5) to obtain

DT (S) ≤ 1

p
+

1

T

∑
h∈C∗(p)

1

r(h, p)

∣∣∣ T−1∑
n=0

χp(hz0a
n)
∣∣∣.

Now T is the multiplicative order of the multiplier a modulo p by Proposition 5.2.1,

and so Lemma 5.2.4 with d = 0 yields∣∣∣ T−1∑
n=0

χp(hz0a
n)
∣∣∣ ≤ (p− T )1/2 for all h ∈ C∗(p).

We conclude that

DT (S) ≤ 1

p
+

(p− T )1/2

T

∑
h∈C∗(p)

1

r(h, p)
.

We recall that r(h, p) = p sin(π|h|/p) for h ∈ C∗(p), and so

∑
h∈C∗(p)

1

r(h, p)
=

2

p

(p−1)/2∑
h=1

1

sin(πh/p)
≤

(p−1)/2∑
h=1

1

h

since sin(πu) ≥ 2u for 0 ≤ u ≤ 1
2
. Now

(p−1)/2∑
h=1

1

h
= 1 +

(p−1)/2∑
h=2

1

h
≤ 1 +

∫ (p−1)/2

1

du

u
= 1 + log

p− 1

2
,

and therefore ∑
h∈C∗(p)

1

r(h, p)
< log p+

1

3
. (5.8)
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This completes the proof. 2

We realize that the discrepancy bound in Theorem 5.2.5 does not yield an im-

provement on the trivial bound DT (S) ≤ 1 if T is too small. In fact, T should be

significantly larger than p1/2 in order to obtain a nontrivial discrepancy bound. If

T has the order of magnitude p, say T = (p − 1)/2 or T = (p − 1)/4, then the

discrepancy bound in Theorem 5.2.5 is of the order of magnitude p−1/2 log p, which

is in good accordance with the law of the iterated logarithm for the uniformity test

(see Subsection 5.1.2).

In applications of sequences of linear congruential pseudorandom numbers in

Monte Carlo methods and simulation methods, we should use initial segments of

the sequence that are shorter than the full period, since periodicity is excessively

nonrandom and any influence of the periodicity property on the computation could

prove ruinous. Therefore it is imperative that we study the discrepancies DN(S) and

D∗N(S) also for N strictly less than the least period length T of the sequence S of

linear congruential pseudorandom numbers. We now require a bound on exponential

sums with N < T terms.

Lemma 5.2.6 Let p ≥ 3 be a prime number and let a, b ∈ Z with gcd(a, p) =

gcd(b, p) = 1. Let T be the multiplicative order of a modulo p and assume that

T ≥ 2. Then∣∣∣N−1∑
n=0

χp(ba
n)
∣∣∣ < p1/2

(
log T +

1

3

)
+
N

T
(p− T )1/2 for 1 ≤ N < T.

Proof. Our starting point is the identity

N−1∑
n=0

χp(ba
n) =

T−1∑
n=0

χp(ba
n)

N−1∑
r=0

1

T

T−1∑
d=0

χT (d(n− r)) (5.9)

which holds since the innermost sum is equal to T if n = r and equal to 0 if n 6= r.

We rewrite this identity in the form

N−1∑
n=0

χp(ba
n) =

1

T

T−1∑
d=0

(N−1∑
r=0

χT (−dr)
)( T−1∑

n=0

χp(ba
n)χT (dn)

)
.

By taking absolute values, we get∣∣∣N−1∑
n=0

χp(ba
n)
∣∣∣ ≤ 1

T

T−1∑
d=0

∣∣∣N−1∑
r=0

χT (dr)
∣∣∣∣∣∣ T−1∑
n=0

χp(ba
n)χT (dn)

∣∣∣,
and an application of Lemma 5.2.4 yields∣∣∣N−1∑

n=0

χp(ba
n)
∣∣∣ ≤ p1/2

T

T−1∑
d=1

∣∣∣N−1∑
r=0

χT (dr)
∣∣∣+

N

T
(p− T )1/2. (5.10)
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Now for 1 ≤ d ≤ T − 1,

∣∣∣N−1∑
r=0

χT (dr)
∣∣∣ =

∣∣∣N−1∑
r=0

(e2πid/T )r
∣∣∣ =
|e2πidN/T − 1|
|e2πid/T − 1|

≤ 1

sin(πd/T )
,

and so
T−1∑
d=1

∣∣∣N−1∑
r=0

χT (dr)
∣∣∣ ≤ T−1∑

d=1

1

sin(πd/T )
≤ 2

bT/2c∑
d=1

1

sin(πd/T )
.

Next we use sin(πu) ≥ 2u for 0 ≤ u ≤ 1
2
, and then as in the proof of Theorem 5.2.5

we obtain
T−1∑
d=1

∣∣∣N−1∑
r=0

χT (dr)
∣∣∣ ≤ T

bT/2c∑
d=1

1

d
< T (log T +

1

3
).

By plugging this bound into (5.10), we arrive at the desired inequality. 2

Theorem 5.2.7 Let S = (xn)∞n=0 be a sequence of linear congruential pseudorandom

numbers with prime modulus p ≥ 3 and let T = per(xn) ≥ 2. Then for 1 ≤ N < T ,

DN(S) <
p1/2

N

(
log p+

1

3

)(
log T +

1

3

)
+

(p− T )1/2

T

(
log p+

1

3

)
+

1

p
.

Proof. We proceed in analogy with the proof of Theorem 5.2.5. First of all, Propo-

sition 4.3.1 now yields

DN(S) ≤ 1

p
+

1

N

∑
h∈C∗(p)

1

r(h, p)

∣∣∣N−1∑
n=0

χp(hz0a
n)
∣∣∣.

Next Lemma 5.2.6 implies that

DN(S) <
1

p
+

1

N

(
p1/2

(
log T +

1

3

)
+
N

T
(p− T )1/2

) ∑
h∈C∗(p)

1

r(h, p)
.

Finally, an application of (5.8) produces the desired bound. 2

Since always T ≤ p−1, the discrepancy bound in Theorem 5.2.7 can be written in

the simplified form DN(S) = O(N−1p1/2(log p)2). If T is equal to or close to p−1 and

if N is of the same order of magnitude as T (for example if N is about one percent

of T ), then DN(S) = O(p−1/2(log p)2), which is in reasonably good accordance with

the law of the iterated logarithm for the uniformity test (see Subsection 5.1.2).
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5.2.2 Connections with good lattice points

The uniformity test for linear congruential pseudorandom numbers discussed in the

preceding subsection is not a severe judge of multipliers. Note that the only way

the multiplier enters into the formulas and bounds for the (star) discrepancy there

is via the least period length T of the sequence of linear congruential pseudorandom

numbers, or equivalently via the multiplicative order T of the multiplier a modulo m.

However, for a fixed value of T there can be many multipliers with that multiplicative

order modulo m, but the uniformity test does not discriminate between them. Even

in the common case where the modulus is a prime number p and T has the largest

possible value T = p − 1 for this modulus, very bad choices of multipliers a with

T = p− 1 are possible (see Example 5.2.12 below).

We have to employ a more demanding statistical test in order to detect good

multipliers and weed out bad ones, and such a test is the serial test (see Subsection

5.1.2). We focus on the case of a prime modulus p and a multiplier a that is a

primitive root modulo p. Then the least period length T is equal to p− 1 by Propo-

sition 5.2.1. Let S = (xn)∞n=0 be a corresponding sequence of linear congruential

pseudorandom numbers. For a given integer s ≥ 2, we analyze the s-dimensional

serial test for these pseudorandom numbers. To this end, we form the points

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . .

Since xn = zn/p by (5.3), we can write xn = (1/p)zn with

zn = (zn, zn+1, . . . , zn+s−1) ∈ Zs
p for n = 0, 1, . . . .

By using (5.4) and interpreting a congruence between vectors componentwise, we

obtain

zn ≡ (anz0, a
n+1z0, . . . , a

n+s−1z0) ≡ anz0g(a) (mod p) for n = 0, 1, . . . , (5.11)

where

g(a) = (1, a, a2, . . . , as−1) ∈ Zs.

Now we get a feeling of déjà vu because this lattice point is an old acquaintance:

it is a lattice point of Korobov form introduced in (4.43) in Subsection 4.3.1. This

observation is the beginning of an interesting story about the relationship between

linear congruential pseudorandom numbers and good lattice points.

Let us follow this story further. First of all, we examine the full period of the

given sequence S = (xn)∞n=0 of linear congruential pseudorandom numbers, that is,

we consider the first p − 1 terms of S. Consequently, we take n = 0, 1, . . . , p − 2

in (5.11). Now a is a primitive root modulo p and gcd(z0, p) = 1, and so for

n = 0, 1, . . . , p− 2 the coefficients anz0 of g(a) on the right-hand side of (5.11) run

modulo p through the set {1, . . . , p − 1} in some order. It follows that the point
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set consisting of x0,x1, . . . ,xp−2 agrees with the point set comprising the fractional

parts {n
p

g(a)
}
∈ [0, 1)s for n = 1, . . . , p− 1. (5.12)

The point set (5.12), which we denote by P∗(g(a), p), is nothing else but the point

set P(g, N) introduced in Subsection 4.3.1, with g = g(a) and N = p, though with

the origin deleted. Since P∗(g(a), p) and P(g(a), p) differ by only one point, it is

fairly obvious that the discrepancies of these two point sets should be basically the

same. The following lemma puts this in a quantitative form.

Lemma 5.2.8 The point set P∗(g(a), p) in (5.12) satisfies

Dp−1(P∗(g(a), p)) ≤ p

p− 1
Dp(P(g(a), p)) +

1

p− 1
.

Proof. Since P∗(g(a), p) is P(g(a), p) with the origin 0 deleted, we obtain

A(J ;P∗(g(a), p)) = A(J ;P(g(a), p))− ε(J)

for every subinterval J of [0, 1)s, where ε(J) = 1 if 0 ∈ J and ε(J) = 0 if 0 /∈ J .

Therefore

A(J ;P∗(g(a), p))− (p− 1)λs(J) = (A(J ;P(g(a), p))− pλs(J)) + λs(J)− ε(J),

and so

|A(J ;P∗(g(a), p))− (p− 1)λs(J)| ≤ pDp(P(g(a), p)) + 1,

which yields the desired result. 2

Consequently, we are in the agreeable situation that we can exploit all results

on lattice point sets in Subsection 4.3.1. With R(g(a), p) given by Definition 4.3.2,

we arrive for instance at the following discrepancy bound that pertains to the s-

dimensional serial test for the full period of a sequence of linear congruential pseu-

dorandom numbers with prime modulus p and with the multiplier a being a primitive

root modulo p.

Theorem 5.2.9 Let p be a prime number and let a be a primitive root modulo

p. Then for every dimension s ≥ 2, the discrepancy of the point set P∗(g(a), p)

in (5.12) satisfies

Dp−1(P∗(g(a), p)) ≤ s+ 1

p− 1
+

p

2p− 2
R(g(a), p).

Proof. This follows from Theorem 4.3.3 and Lemma 5.2.8. 2
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Remember that we apply the s-dimensional serial test to our given sequence of

linear congruential pseudorandom numbers because we want to discriminate between

the various multipliers a that are primitive roots modulo p. The quantity R(g(a), p)

is such a discriminator and it is small only for good choices of a. We could be

tempted to apply Theorem 4.3.14 which implies that for every dimension s ≥ 2 and

every prime number p there exists an integer a ∈ Zp = {0, 1, . . . , p − 1} such that

R(g(a), p) = O(p−1(log p)s). But unfortunately there is no guarantee that a is a

primitive root modulo p. Thus, we have to prove a version of Theorem 4.3.14 where

a is confined to be a primitive root modulo p. We recall from Remark 1.4.35 that

there are exactly φ(p − 1) primitive roots modulo p in the least residue system Zp
modulo p.

Theorem 5.2.10 Let s ≥ 2 be a dimension and let p be a prime number. Then

As(p) :=
1

φ(p− 1)

∑
a∈Q(p)

R(g(a), p) <
s− 1

φ(p− 1)
(2 log p+ 2)s,

where Q(p) is the set of primitive roots modulo p in the least residue system modulo p.

Proof. Trivial modifications of the proof of Theorem 4.3.14 yield the result. 2

Corollary 5.2.11 For every dimension s ≥ 2 and every prime number p, there ex-

ists a primitive root a modulo p such that the discrepancy of the point set P∗(g(a), p)

in (5.12) satisfies

Dp−1(P∗(g(a), p)) <
s+ 1

p− 1
+

(s− 1)p

(2p− 2)φ(p− 1)
(2 log p+ 2)s.

Proof. This follows from Theorems 5.2.9 and 5.2.10. 2

Since for every prime number p ≥ 3 the bound φ(p−1) ≥ cp/(log log p) holds with

an absolute constant c > 0 (see [62, Chapter 18]), Corollary 5.2.11 demonstrates the

existence of a primitive root a modulo p for which the discrepancy of P∗(g(a), p) is

at most of the order of magnitude p−1(log p)s log log p. In fact, since this discrepancy

bound is derived from an upper bound on the average value As(p) in Theorem 5.2.10,

it can be expected that a good proportion of the primitive roots a modulo p will

lead to this order of magnitude for the discrepancy bound.

Example 5.2.12 There are many prime numbers p for which the integer 2 is a

primitive root modulo p, for instance p = 3, 5, 11, 13, 19, 29, 37, 53, and so on. It

follows in fact from a result of Hooley [68], which was proved under the assumption

of the extended Riemann hypothesis, that for a positive proportion of all prime

numbers p the integer 2 is a primitive root modulo p. Let us now take a prime
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number p for which 2 is a primitive root modulo p. Then we consider a sequence

of linear congruential pseudorandom numbers with modulus p and multiplier a = 2.

The least period length T of this sequence has the largest possible value T = p−1 for

the modulus p. Now we apply the two-dimensional serial test to the full period of this

sequence. This means that we study the discrepancy of the point set P = P∗(g(a), p)

in (5.12) with s = 2 and g(a) = g(2) = (1, 2) ∈ Z2. Thus, P consists of the

points (n/p, {2n/p}) ∈ [0, 1)2 with n = 1, . . . , p − 1. We observe that the interval

J = [1
4
, 1
2
)× [0, 1

2
) does not contain any point of P , for if n

p
∈ [1

4
, 1
2
), then 2n

p
∈ [1

2
, 1).

It follows that

Dp−1(P) ≥
∣∣∣A(J ;P)

p− 1
− λ2(J)

∣∣∣ = λ2(J) =
1

8

for all possible values of p. Hence the behavior of these linear congruential pseu-

dorandom numbers under the two-dimensional serial test, and a fortiori under ev-

ery higher-dimensional serial test, is really awful, whereas the behavior under the

uniformity test is perfectly satisfactory. These pseudorandom numbers also yield

catastrophic results in certain Monte Carlo computations. As an example, take the

simple function f(u1, u2) = cos 2π(2u1 − u2) for (u1, u2) ∈ [0, 1]2. The integral of f

over [0, 1]2 is equal to 0. On the other hand, f(x) = 1 for all points x of P . Thus,

if we use as pseudorandom samples some points from P , then the sample average

is always equal to 1, no matter how many points we take. This very bad behavior

is the fault of the multiplier since Corollary 5.2.11 shows that for the prime moduli

considered in this example, there certainly exist very good choices for the multiplier.

A rule of thumb can be deduced from this example, namely that a good multiplier

should not be too small compared to the modulus.

Now we return to the point set P∗(g(a), p) in (5.12). By an argument in the

beginning of Subsection 4.3.2, all points of P∗(g(a), p) lie on the s-dimensional lattice

Ls(a, p) =

p⋃
n=1

(n
p

g(a) + Zs
)
. (5.13)

Thus, the points of P∗(g(a), p) form a very regular pattern in the sense that they all

fall on the lattice Ls(a, p) (see Figure 5.2 for an illustration). In everyday language

you could call this the structure of a grid. Marsaglia [110] expressed this memorably

by the phrase “Random numbers fall mainly in the planes”, a clever pun on a

popular song from the musical My Fair Lady. Obviously, this lattice structure or

grid structure is not at all what one would expect from truly random numbers and

points. On account of this phenomenon, some practitioners are shying away from

using linear congruential pseudorandom numbers in really challenging simulation

problems.

The lattice Ls(a, p) in (5.13), like any s-dimensional lattice, can be represented in

the form (4.45) with s linearly independent vectors b1, . . . ,bs ∈ Rs. In fact, for the
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Figure 5.2: The point set P∗(g(a), p) with g(a) = (1, 3) and p = 17

specific lattice Ls(a, p) we can take b1 = (1/p)g(a) and bi = ei for 2 ≤ i ≤ s, where

ei is the ith vector in the standard ordered basis of Rs, that is, e2 = (0, 1, 0, . . . , 0) ∈
Rs, . . . , es = (0, . . . , 0, 1) ∈ Rs. This information is very helpful when plotting, and

also when analyzing, the lattice Ls(a, p). Some researchers investigated the lattices

of the form Ls(a, p) and the point sets P∗(g(a), p) from a geometric viewpoint and

made recommendations of good multipliers a for the modulus p on this basis. Typical

geometric criteria are the following: (i) the minimum number of parallel hyperplanes

on which all points of P∗(g(a), p) lie (this number should be as large as possible);

(ii) the maximum distance between adjacent hyperplanes taken over all families of

parallel hyperplanes that contain all points of P∗(g(a), p) (this distance should be

as small as possible). An easily readable account of this approach is given in [81,

Section 3.3.4].

We emphasized in the context of the uniformity test for a sequence of linear

congruential pseudorandom numbers that the discrepancy has to be investigated

also for parts of the period of the sequence. The same holds of course for the serial

test. The appropriate discrepancy bound can be established also for the case where

the least period length T is less than p − 1, and the full period can be included in

that case as well.

Theorem 5.2.13 Let (xn)∞n=0 be a sequence of linear congruential pseudorandom

numbers with prime modulus p ≥ 3 and let T = per(xn) ≥ 2. For a given dimension

s ≥ 2 and for an integer N with 1 ≤ N ≤ T , let P be the point set consisting of the

points

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . , N − 1.

Then

DN(P) <
p1/2

N

(
log p+

4

3

)s(
log T +

4

3

)
+

1

2
R(g(a), p) +

s

p
.
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Proof. We start from the explicit formula

xn =
{1

p
anz0g(a)

}
for n = 0, 1, . . . , N − 1;

compare with (5.11). Then we apply Proposition 4.3.1 with M = p and we obtain

DN(P) ≤ s

p
+

1

N

∑
h∈C∗s (p)

1

r(h, p)

∣∣∣N−1∑
n=0

χp(a
nz0h · g(a))

∣∣∣.
If h · g(a) ≡ 0 (mod p), then the last exponential sum is equal to N . Otherwise, we

can use Lemmas 5.2.4 and 5.2.6 to get∣∣∣N−1∑
n=0

χp(a
nz0h · g(a))

∣∣∣ < p1/2
(

log T +
1

3

)
+
N

T
(p− T )1/2 < p1/2

(
log T +

4

3

)
.

Therefore

DN(P) <
s

p
+
p1/2

N

(
log T +

4

3

) ∑
h∈C∗s (p)

h·g(a)6≡0 (mod p)

1

r(h, p)
+

∑
h∈C∗s (p)

h·g(a)≡0 (mod p)

1

r(h, p)
.

Furthermore by (5.8),∑
h∈C∗s (p)

h·g(a)6≡0 (mod p)

1

r(h, p)
<

∑
h∈Cs(p)

1

r(h, p)
=
(

1 +
∑

h∈C∗(p)

1

r(h, p)

)s
<
(

log p+
4

3

)s
.

Finally, as in the proof of Theorem 4.3.3 we obtain∑
h∈C∗s (p)

h·g(a)≡0 (mod p)

1

r(h, p)
≤ 1

2

∑
h∈C∗s (p)

h·g(a)≡0 (mod p)

1

r(h)
=

1

2
R(g(a), p),

and this completes the proof. 2

We conclude from Theorem 5.2.13 that the multiplier a for the modulus p should

be chosen in such a way that the quantity R(g(a), p) is small. An analogous rule

holds for prime-power moduli. We refer to [128] for an in-depth discussion of the

serial test for linear congruential pseudorandom numbers.

Example 5.2.14 Modern mathematical software typically advocates and employs

good parameters in the linear congruential method. For instance, the GNU Scien-

tific Library recommends among others the CRAY-system pseudorandom number

generator RANF which uses the linear congruential method with modulus m = 248

and multiplier

a = 44485709377909.

This multiplier satisfies a ≡ 5 (mod 8), and so we get least period length 246 by

Propositions 5.2.1 and 5.2.2. If we use this multiplier in the inhomogeneous re-

cursion (5.7) with an odd integer c, then we can achieve least period length 248

according to Remark 5.2.3. This least period length exceeds by far the total number

of pseudorandom numbers utilized in a routine simulation problem.



324 CHAPTER 5. PSEUDORANDOM NUMBERS

5.3 Nonlinear methods

5.3.1 The general nonlinear method

The lattice structure produced by linear congruential pseudorandom numbers (see

Subsection 5.2.2) can be perceived as a deficiency of these pseudorandom numbers.

This shortcoming becomes particularly pronounced if we make a bad choice of the

multiplier, as we have seen with dramatic effect in Example 5.2.12. But even if

we select the multiplier with care, the lattice structure is still there and can cause

problems in Monte Carlo computations. For instance, consider the following gener-

alization of Example 5.2.12.

Example 5.3.1 Let S = (xn)∞n=0 be a sequence of linear congruential pseudoran-

dom numbers with a prime modulus p and an arbitrary multiplier a satisfying

gcd(a, p) = 1. For an arbitrary dimension s ≥ 2, let h = (h1, . . . , hs) ∈ Zs be

such that h 6= 0 and h · g(a) ≡ 0 (mod p). With u = (u1, . . . , us), we introduce the

function F on [0, 1]s given by

F (u) = cos 2π(h1u1 + · · ·+ hsus) for all u ∈ [0, 1]s.

Then the integral of F over [0, 1]s is equal to 0. On the other hand, at all points

xn = (xn, xn+1, . . . , xn+s−1), n = 0, 1, . . . ,

we get the function value F (xn) = 1 by (5.11), and so every sample average with

these pseudorandom points has the value 1.

Further flaws of linear congruential pseudorandom numbers were pointed out in

the literature. A case in point is the paper [43] where plausible geometric mea-

sures for the distribution of pseudorandom points in the unit square are studied

and where it is revealed that pseudorandom points obtained from linear congru-

ential pseudorandom numbers have a completely skew distribution with regard to

these geometric measures. The book of Ripley [170, Sections 3.1 and 3.2] exposes

some strange phenomena that arise when we use linear congruential pseudorandom

numbers as inputs in certain algorithms for transforming uniform pseudorandom

numbers into nonuniform pseudorandom numbers.

The problems with the linear congruential method stem from the simple linear

nature of the recursion (5.2) at the heart of the method. In order to eliminate

defects like the lattice structure, some features of nonlinearity should be introduced

in the algorithms generating pseudorandom numbers. So why not replace the linear

function of zn on the right-hand side of (5.2) by a nonlinear function? This is

the starting point of nonlinear methods for pseudorandom number generation. You

may have heard of fractal geometry (its stars are the Mandelbrot set and Julia sets)
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which builds on a similar philosophy: iterating linear maps is boring, but iterating

nonlinear maps can be exciting.

Let us now get down to business and implement this idea of a nonlinear method

for generating pseudorandom numbers. For simplicity we choose a prime modulus

p (which should again be large), and then we generalize (5.2) and generate elements

z0, z1, . . . of Zp by choosing an initial value z0 ∈ Zp and using the recursion

zn+1 ≡ ψ(zn) (mod p) for n = 0, 1, . . .

with a map ψ : Zp → Z. Since the values of ψ matter only modulo p, it suffices to

view ψ as a map ψ : Zp → Zp, that is, ψ is a self-map of Zp. The recursion can then

be written in the simpler form zn+1 = ψ(zn) for n = 0, 1, . . . . How do we figure out

to what extent ψ is nonlinear? Here it is convenient to view the least residue system

Zp modulo p as the finite field Fp with p elements. Then there is the following nice

description of self-maps of Fp which works in fact for any finite field Fq.

Proposition 5.3.2 Let q be a prime power and let ψ : Fq → Fq be a self-map of the

finite field Fq. Then there exists a uniquely determined polynomial f ∈ Fq[x] with

deg(f) < q such that ψ(c) = f(c) for all c ∈ Fq.

Proof. We consider the polynomial

f(x) =
∑
b∈Fq

ψ(b)
(
1− (x− b)q−1

)
∈ Fq[x].

Since 1 − aq−1 has the value 1 for a = 0 ∈ Fq and the value 0 for a ∈ F∗q, we get

ψ(c) = f(c) for all c ∈ Fq. It is obvious that deg(f) < q. If g ∈ Fq[x] is another

polynomial with deg(g) < q such that ψ(c) = g(c) for all c ∈ Fq, then (f − g)(c) = 0

for all c ∈ Fq. Hence the polynomial f − g has at least q distinct roots. But

deg(f − g) < q, thus f − g must be the zero polynomial, and so f = g. 2

We are now ready to describe the final form of the nonlinear (congruential)

method for the generation of pseudorandom numbers. Let p be a large prime number

and select a polynomial f ∈ Fp[x]. Then we generate a sequence (zn)∞n=0 of elements

of Fp by choosing an initial value z0 ∈ Fp and using the recursion

zn+1 = f(zn) for n = 0, 1, . . . . (5.14)

Since we do not want a linear method, we assume that 2 ≤ deg(f) < p. Now we

identify Fp with Zp and we derive nonlinear (congruential) pseudorandom numbers

by setting

xn =
zn
p
∈ [0, 1) for n = 0, 1, . . . . (5.15)

As for the linear congruential method, the first issue is again the least period

length. Since per(xn) = per(zn), it suffices to study the periodicity properties of
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the sequence (zn)∞n=0. Note that in a full period of (zn)∞n=0 all terms are distinct

because of the recursion (5.14), and so always per(zn) ≤ p. There is no simple

criterion in terms of f for getting per(zn) = p. Contrary to the situation in the

linear congruential method, the sequence (zn)∞n=0 may now have a preperiod.

Example 5.3.3 We can achieve per(zn) = p by cheating a little bit. We put the

cart before the horse, in the sense that we first construct a sequence (zn)∞n=0 and

determine the polynomial f ∈ Fp[x] afterwards. Let z0, z1, . . . , zp−1 be a list of all

elements of Fp. By periodic continuation with period p we get the sequence (zn)∞n=0.

In this way we guarantee that per(zn) = p. Now let ψ be the self-map of Fp defined

by ψ(zn) = zn+1 for 0 ≤ n ≤ p− 1. By Proposition 5.3.2, ψ can be represented by a

polynomial f ∈ Fp[x] with deg(f) < p. It is clear from this construction that with

this polynomial f , the recursion (5.14) generates the sequence (zn)∞n=0. Obviously,

this example is only of academic interest, but at least it demonstrates that the value

per(zn) = p is attained for every prime number p with a suitable choice of f .

It is trivial that per(zn) = p if and only if the full period of (zn)∞n=0 contains

all elements of Fp. In view of (5.14), this yields the simple necessary condition

that the polynomial f must attain all values in Fp. In other words, the self-map

c ∈ Fp 7→ f(c) ∈ Fp of Fp must be surjective. Since this is a self-map of a finite

set, it is surjective if and only if it is injective, and consequently it is surjective if

and only if it is bijective. When it is injective, then it follows from (5.14) that the

sequence (zn)∞n=0 is purely periodic, that is, there is no preperiod. Such bijective

self-maps of finite fields are interesting in several applications, and so we introduce

the following concept for arbitrary finite fields.

Definition 5.3.4 Let q be a prime power. A polynomial f ∈ Fq[x] for which the

map c ∈ Fq 7→ f(c) ∈ Fq is bijective is called a permutation polynomial of Fq.

Example 5.3.5 It is obvious that every linear polynomial over Fq is a permutation

polynomial of Fq. A power xk ∈ Fq[x] with k ≥ 1 is a permutation polynomial of

Fq if and only if it maps a primitive element b of Fq into another primitive element

of Fq. Now bk is a primitive element of Fq if and only if gcd(k, q − 1) = 1, and

so xk is a permutation polynomial of Fq if and only if gcd(k, q − 1) = 1. Since

compositions of permutation polynomials of Fq are again permutation polynomials

of Fq, any polynomial axk + c with a ∈ F∗q, c ∈ Fq, k ≥ 1, and gcd(k, q − 1) = 1 is a

permutation polynomial of Fq.

Remark 5.3.6 We recall that it is a necessary condition for per(zn) = p that

the polynomial f in (5.14) is a permutation polynomial of Fp. However, this is

not a sufficient condition. For a prime number p ≥ 5, consider the polynomial

f(x) = xp−2 ∈ Fp[x]. Then f is a permutation polynomial of Fp by Example 5.3.5.

The map ψ : c ∈ Fp 7→ f(c) ∈ Fp representing f satisfies ψ(0) = 0 and ψ(c) = c−1

for c ∈ F∗p. Therefore zn+2 = ψ(ψ(zn)) = zn for all n ≥ 0, and so per(zn) ≤ 2.
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It is, on first glance, somewhat surprising that certain degrees are excluded from

the degrees of permutation polynomials of a given finite field.

Proposition 5.3.7 Let q be a prime power. Then a polynomial f ∈ Fq[x] with

deg(f) = d ≥ 2 and d dividing q − 1 cannot be a permutation polynomial of Fq.

Proof. First we show that∑
c∈Fq

ck = 0 for k = 0, 1, . . . , q − 2. (5.16)

This is trivial for k = 0 with the standard convention 00 = 1 ∈ Fq. For 1 ≤ k ≤ q−2

we choose a primitive element b of Fq, and using bk 6= 1 ∈ Fq for 1 ≤ k ≤ q − 2 we

obtain ∑
c∈Fq

ck =
∑
c∈F∗q

ck =

q−2∑
j=0

(bj)k =

q−2∑
j=0

(bk)j =
bk(q−1) − 1

bk − 1
= 0.

Now we suppose that f ∈ Fq[x] with deg(f) = d ≥ 2 and d dividing q − 1 were a

permutation polynomial of Fq. Then∑
c∈Fq

f(c)(q−1)/d =
∑
c∈Fq

c(q−1)/d = 0

by (5.16). We write f(x)(q−1)/d = axq−1 + g(x) with a ∈ F∗q, g ∈ Fq[x], and deg(g) ≤
q − 2. Then again by (5.16),∑

c∈Fq

f(c)(q−1)/d =
∑
c∈Fq

(
acq−1 + g(c)

)
= a

∑
c∈Fq

cq−1.

Finally, ∑
c∈Fq

cq−1 =
∑
c∈F∗q

cq−1 =
∑
c∈F∗q

1 = −1,

and we arrive at a contradiction. 2

Now we return to the recursion (5.14) with 2 ≤ d := deg(f) < p and we note

again that if per(zn) = p, then necessarily f must be a permutation polynomial of

Fp. By Proposition 5.3.7, the degrees d = 2 and d = p − 1 are excluded, and so d

satisfies 3 ≤ d ≤ p− 2.

Next we discuss the uniformity test for nonlinear pseudorandom numbers. If the

sequence S = (xn)∞n=0 of nonlinear pseudorandom numbers given by (5.15) is purely

periodic and per(xn) = per(zn) = p, then the first p terms x0, x1, . . . , xp−1 of S run

exactly through the rational numbers 0, 1/p, . . . , (p − 1)/p in some order. Hence

in this case we get the simple formula Dp(S) = D∗p(S) = 1/p for the discrepancy

and the star discrepancy. But for parts of the period and also for the case where
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per(xn) = per(zn) < p, results on the (star) discrepancy of the sequence S are

much harder to obtain. In principle, one tries to apply the same method as in

Subsection 5.2.1, that is, to establish bounds on exponential sums as in Lemma

5.2.6, but now more powerful tools have to be utilized. In particular, we need

the following celebrated and deep result due to André Weil (1906–1998), one of

the leading mathematicians of the 20th century (see [102, Section 5.4] and [148,

Section 4.4] for two different proofs of this result). Rumor has it that he found this

bound while he was detained by the German occupation forces in France during

World War II.

Proposition 5.3.8 (Weil Bound) If p is a prime number and f ∈ Fp[x] is a

polynomial with deg(f) ≥ 1, then∣∣∣∑
c∈Fp

χp(f(c))
∣∣∣ ≤ (deg(f)− 1)p1/2.

There is also an analog of Proposition 5.3.8 for arbitrary finite fields (see the

two references above), but we do not require this general Weil bound. The following

bound on exponential sums and the subsequent discrepancy bound were derived from

the Weil bound by Niederreiter and Shparlinski [141], and a slight improvement was

given later in [145].

Lemma 5.3.9 Let p ≥ 3 be a prime number and let f ∈ Fp[x] with 2 ≤ d :=

deg(f) < p. Let (zn)∞n=0 be a purely periodic sequence of elements of Fp generated

by the recursion (5.14). Then for every h ∈ F∗p and every integer N with 1 ≤ N ≤
per(zn), the bound

∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣ ≤ C1(log d)1/2N1/2p1/2(log p)−1/2

holds with an absolute constant C1 > 0.

Proof. We use a method called “shift and average”. We fix h ∈ F∗p and put χ(c) =

χp(hc) for c ∈ Fp. For every integer m ≥ 0,

N−1∑
n=0

χ(zn) =
N−1∑
n=0

χ(zn+m) + θm

with |θm| ≤ 2m since the two sums differ in at most 2m terms of absolute value 1.

Now we choose an integer M ≥ 1 and we sum over m = 0, 1, . . . ,M − 1 to obtain

M
∣∣∣N−1∑
n=0

χ(zn)
∣∣∣ ≤ W +

∣∣∣M−1∑
m=0

θm

∣∣∣ < W +M2 (5.17)
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with

W =
∣∣∣M−1∑
m=0

N−1∑
n=0

χ(zn+m)
∣∣∣ ≤ N−1∑

n=0

∣∣∣M−1∑
m=0

χ(zn+m)
∣∣∣.

By the Cauchy-Schwarz inequality we get

W 2 ≤ N
N−1∑
n=0

∣∣∣M−1∑
m=0

χ(zn+m)
∣∣∣2.

Next we introduce the polynomials f0, f1, . . . in Fp[x] by f0(x) = x and fm(x) =

f(fm−1(x)) for m ≥ 1. Then zn+m = fm(zn) for all n ≥ 0 and m ≥ 0, and so we can

write

W 2 ≤ N
N−1∑
n=0

∣∣∣M−1∑
m=0

χ(fm(zn))
∣∣∣2.

Since the sequence (zn)∞n=0 is purely periodic andN ≤ per(zn), the elements z0, z1, . . . , zN−1
of Fp are distinct, and therefore

W 2 ≤ N
∑
c∈Fp

∣∣∣M−1∑
m=0

χ(fm(c))
∣∣∣2.

By expanding the square of the absolute value via |u|2 = uu for all u ∈ C, we obtain

W 2 ≤ N
∑
c∈Fp

M−1∑
m,r=0

χ(fm(c)− fr(c)) ≤ N
M−1∑
m,r=0

∣∣∣∑
c∈Fp

χ((fm − fr)(c))
∣∣∣.

For the ordered pairs (m, r) with m = r, the inner sum has the value p and there

are M such ordered pairs. For the ordered pairs (m, r) with m 6= r (there are

less than M2 of these ordered pairs), we apply Proposition 5.3.8 and we note that

2 ≤ deg(fm − fr) ≤ dM−1 since deg(f) = d ≥ 2. Therefore

W 2 < MNp+ dM−1M2Np1/2.

Now we choose

M =

⌈
2 log p

5 log d

⌉
.

Since M − 1 < (2 log p)/(5 log d), we deduce that

W 2 <
(2 log p

5 log d
+ 1
)
Np+

(2 log p

5 log d
+ 1
)2
Np9/10

<
7 log p

5 log d
Np+

49(log p)2

25(log d)2
Np9/10.

Now log p < p1/10 for sufficiently large p, and so there exists an absolute constant

C2 > 0 such that

W 2 ≤ C2Np(log p)/(log d).
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Together with the consequence

∣∣∣N−1∑
n=0

χ(zn)
∣∣∣ < WM−1 +M

of (5.17), this leads to the final bound. 2

Theorem 5.3.10 Let p ≥ 3 be a prime number and let f ∈ Fp[x] with 2 ≤ d :=

deg(f) < p. Let S = (xn)∞n=0 be a purely periodic sequence of nonlinear pseudo-

random numbers obtained by (5.14) and (5.15). Then for 1 ≤ N ≤ per(xn), the

discrepancy bound

DN(S) ≤ C(log d)1/2N−1/2p1/2(log p)−1/2 log log p

holds with an absolute constant C > 0.

Proof. By the Erdős-Turán inequality (see Theorem 4.1.13),

DN(S) ≤ 6

H + 1
+

4

πN

H∑
h=1

1

h

∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣

for every integer H ≥ 1. If also H ≤ p − 1, then we can apply Lemma 5.3.9 to

obtain

DN(S) ≤ 6

H + 1
+ C3(log d)1/2N−1/2p1/2(log p)−1/2

H∑
h=1

1

h

≤ 6

H + 1
+ C3(log d)1/2N−1/2p1/2(log p)−1/2(1 + logH)

with an absolute constant C3 > 0. Now we choose

H =
⌈
N1/2p−1/2(log p)1/2

⌉
.

Then 1 ≤ H ≤ p− 1 and the desired bound on DN(S) follows immediately. 2

Remark 5.3.11 You may wonder why we used the Erdős-Turán inequality in the

proof of Theorem 5.3.10 and not Proposition 4.3.1 as in some other proofs of dis-

crepancy bounds (see for instance the proof of Theorem 5.2.5). Actually, if we apply

Proposition 4.3.1 with s = 1 and M = p, then we obtain

DN(S) ≤ 1

p
+

1

N

∑
h∈C∗(p)

1

r(h, p)

∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣.
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Together with Lemma 5.3.9 and (5.8), this yields

DN(S) ≤ 1

p
+ C1(log d)1/2N−1/2p1/2(log p)−1/2

(
log p+

1

3

)
.

Since N ≤ per(zn) ≤ p, this discrepancy bound is at least of the order of magnitude

(log p)1/2. But then this discrepancy bound is useless since DN(S) ≤ 1 is always a

trivial discrepancy bound. Therefore we need the more powerful Erdős-Turán in-

equality in the proof of Theorem 5.3.10 in order to arrive at a nontrivial discrepancy

bound. If d is small and N is of the order of magnitude p, then we have a scenario

in which the bound on DN(S) in Theorem 5.3.10 is nontrivial.

Now we revert to the situation where per(zn) attains the maximum value for

fixed p, namely per(zn) = p. Then the map n ∈ Fp 7→ zn ∈ Fp is well defined and,

by Proposition 5.3.2, it can be represented by a uniquely determined polynomial

g ∈ Fp[x] with deg(g) < p. In other words, we can write

zn = g(n) ∈ Fp for n = 0, 1, . . . , (5.18)

where n is also viewed as an element of Fp. We can say a bit more since g, considered

as a self-map of Fp, must be injective if per(zn) = p, and so g has to be a permutation

polynomial of Fp.
This leads to the idea of the explicit nonlinear (congruential) method for pseudo-

random number generation. Let p be a large prime number and choose a permutation

polynomial g of Fp with 3 ≤ deg(g) ≤ p − 2. We generate the sequence (zn)∞n=0 of

elements of Fp by (5.18) and we note that per(zn) = p. Then we identify Fp with

Zp and we derive explicit nonlinear (congruential) pseudorandom numbers x0, x1, . . .

by (5.15).

If S = (xn)∞n=0 is a sequence of explicit nonlinear pseudorandom numbers, then

it follows from per(xn) = per(zn) = p that the first p terms x0, x1, . . . , xp−1 of S run

exactly through the rational numbers 0, 1/p, . . . , (p− 1)/p in some order. Therefore

as in an earlier case we get Dp(S) = D∗p(S) = 1/p for the discrepancy and the star

discrepancy. For parts of the period, we apply a method that is similar to that for

linear congruential pseudorandom numbers (see Lemma 5.2.6 and Theorem 5.2.7).

Lemma 5.3.12 If p is a prime number and g is a polynomial over Fp with deg(g) ≥
2, then ∣∣∣N−1∑

n=0

χp(g(n))
∣∣∣ < (deg(g)− 1)p1/2

(
log p+

4

3

)
for all integers N with 1 ≤ N < p. If g is a permutation polynomial of Fp with

deg(g) ≥ 2, then this bound can be slightly improved to∣∣∣N−1∑
n=0

χp(g(n))
∣∣∣ < (deg(g)− 1)p1/2

(
log p+

1

3

)
for 1 ≤ N < p.
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Proof. We can assume that p ≥ 3. We start from an obvious analog of the iden-

tity (5.9), namely

N−1∑
n=0

χp(g(n)) =

p−1∑
n=0

χp(g(n))
N−1∑
r=0

1

p

p−1∑
c=0

χp(c(n− r)).

We rewrite this identity in the form

N−1∑
n=0

χp(g(n)) =
1

p

p−1∑
c=0

(N−1∑
r=0

χp(−cr)
)( p−1∑

n=0

χp(g(n) + cn)
)
.

By taking absolute values, we get

∣∣∣N−1∑
n=0

χp(g(n))
∣∣∣ ≤ 1

p

p−1∑
c=0

∣∣∣N−1∑
r=0

χp(cr)
∣∣∣∣∣∣ p−1∑
n=0

χp(g(n) + cn)
∣∣∣.

For all c ∈ Fp, the polynomial f(x) = g(x)+cx ∈ Fp[x] satisfies deg(f) = deg(g) ≥ 2,

and so we can apply Proposition 5.3.8 to the last exponential sum to obtain

∣∣∣N−1∑
n=0

χp(g(n))
∣∣∣ ≤ (deg(g)− 1)p−1/2

p−1∑
c=0

∣∣∣N−1∑
r=0

χp(cr)
∣∣∣.

Finally, by proceeding as in the proof of Lemma 5.2.6, we get

p−1∑
c=0

∣∣∣N−1∑
r=0

χp(cr)
∣∣∣ = N +

p−1∑
c=1

∣∣∣N−1∑
r=0

χp(cr)
∣∣∣ < p

(
log p+

4

3

)
,

and so we arrive at the first bound in the lemma.

In order to obtain the second bound in the lemma, we simply note that for c = 0

the identity
p−1∑
n=0

χp(g(n) + cn) =

p−1∑
n=0

χp(g(n)) =

p−1∑
n=0

χp(n) = 0

holds whenever g is a permutation polynomial of Fp. 2

Theorem 5.3.13 Let p ≥ 5 be a prime number and let g ∈ Fp[x] be a permutation

polynomial of Fp with 3 ≤ deg(g) ≤ p − 2. Let S = (xn)∞n=0 be the sequence of

explicit nonlinear pseudorandom numbers obtained by (5.18) and (5.15). Then the

discrepancy bound

DN(S) < (deg(g)− 1)N−1p1/2
(

log p+
1

3

)2
+

1

p

is valid for all integers N with 1 ≤ N < p.
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Proof. From Proposition 4.3.1 with s = 1 and M = p we get

DN(S) ≤ 1

p
+

1

N

∑
h∈C∗(p)

1

r(h, p)

∣∣∣N−1∑
n=0

χp(hg(n))
∣∣∣.

Now we apply Lemma 5.3.12 to obtain

DN(S) <
1

p
+ (deg(g)− 1)N−1p1/2

(
log p+

1

3

) ∑
h∈C∗(p)

1

r(h, p)
.

We conclude the proof by invoking the inequality (5.8). 2

We deduce from Theorem 5.3.13 that if the degree of the polynomial g is small

compared to p and if N is of the order of magnitude p, then the upper bound on

DN(S), and therefore on D∗N(S), is of the order of magnitude N−1/2(logN)2. This

is in reasonably good accordance with the law of the iterated logarithm for the

star discrepancy (see Subsection 5.1.2). Results analogous to Theorem 5.3.13 can

be established also for the serial test for explicit nonlinear pseudorandom numbers

(see [132] and Exercises 5.13 and 5.14).

5.3.2 Inversive methods

The discrepancy bound for nonlinear pseudorandom numbers shown in Theorem

5.3.10 is nontrivial, but nevertheless very weak. The poor quality of this result

stems from the nature of the recursion (5.14) and from the fact that if we iterate

a polynomial f over Fp with deg(f) ≥ 2, then the degrees of the iterates grow

exponentially. We can remedy this situation if we can find interesting functions on

Fp that do not exhibit this phenomenon of the explosion of degrees under iteration.

Such a family of functions is given by linear fractional transformations on Fp which

are rational functions of the form r(x) = (a1 + b1x)/(a2 + b2x) with a1, a2, b1, b2 ∈ Fp
and a1b2 − a2b1 6= 0. An easy computation shows that the composition of two

linear fractional transformations on Fp is again a linear fractional transformation

on Fp. We are thus led to consider the recursion (5.14) with the polynomial f(x)

replaced by the rational function r(x). In order to avoid a linear recursion, we

assume that b2 6= 0. Then with a linear substitution, we can simplify the form of

r(x) to r(x) = (a+ bx)/x = ax−1 + b with a 6= 0.

Now we come to the formal definition of this method which, since it utilizes

multiplicative inverses in Fp, is called the inversive (congruential) method. We stay

away from trivial cases by taking a prime number p ≥ 5, but in practice p will of

course be a large prime number such as p = 231− 1. We choose a, b ∈ Fp with a 6= 0

and consider the recursion zn+1 = r(zn) for n = 0, 1, . . . with r(x) = ax−1 + b. There

is a slight technical problem here since r(0) is not defined. But we may introduce
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a sort of pseudo-inverse of 0 ∈ Fp by brute force: it is reasonable to define the

pseudo-inverse of 0 to be 0 since this is the only element of Fp that does not show

up as a multiplicative inverse of an element of F∗p. Concretely, for every c ∈ Fp we

introduce the notation

c =

{
c−1 ∈ Fp if c 6= 0,

0 ∈ Fp if c = 0.

Finally, we now generate a sequence (zn)∞n=0 of elements of Fp by choosing an initial

value z0 ∈ Fp and proceeding by the recursion

zn+1 = azn + b for n = 0, 1, . . . . (5.19)

Then we identify Fp with Zp and we obtain inversive (congruential) pseudorandom

numbers by the normalization

xn =
zn
p
∈ [0, 1) for n = 0, 1, . . . . (5.20)

These pseudorandom numbers were proposed by Eichenauer and Lehn [43], even

before the general nonlinear method was defined. Since zn is uniquely determined

by zn+1 in (5.19) in view of a 6= 0, the sequence (zn)∞n=0 is purely periodic, and

so is the sequence (xn)∞n=0. As in the general nonlinear method, it is evident that

per(xn) = per(zn) ≤ p.

Remark 5.3.14 If you prefer, you can write c = cp−2 for all c ∈ Fp. This is trivial

for c = 0, whereas for c 6= 0 we observe that Proposition 1.4.13 yields 1 = cp−1 =

c(cp−2), and so c = c−1 = cp−2. However, in the proofs it will be more useful to

think of c as being basically the multiplicative inverse of c.

There are choices of the parameters a and b in (5.19) that yield small period

lengths. A really bad choice is b = 0, for then it is readily seen that zn+2 = zn for

n = 0, 1, . . ., and so per(xn) = per(zn) ≤ 2. On the other hand, we can always select

a and b in such a way that we get the theoretically largest possible least period length

per(xn) = per(zn) = p for fixed p, as we shall see below. The property per(zn) = p

is connected with the roots α and β of the polynomial f(x) = x2 − bx− a ∈ Fp[x].

Since deg(f) = 2, the roots α and β lie in the extension field Fp2 of Fp. Furthermore,

x2 − bx− a = (x− α)(x− β) implies that αβ = −a 6= 0, and so αβ−1 ∈ F∗p2 .

Lemma 5.3.15 Let α, β ∈ Fp2 be the roots of f(x) = x2 − bx − a ∈ Fp[x] and

assume that α 6= β. Let k be the order of αβ−1 in the multiplicative group F∗p2.

Then the sequence (zn)∞n=0 generated by (5.19) with the initial value z0 = b satisfies

per(zn) = k − 1.
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Proof. By the definition of k we can say that αn 6= βn for 1 ≤ n ≤ k − 1 and

αk = βk. We claim that

zn =
αn+2 − βn+2

αn+1 − βn+1
for n = 0, 1, . . . , k − 2. (5.21)

For n = 0 we get (α2 − β2)/(α − β) = α + β = b = z0, and so (5.21) holds.

Suppose that (5.21) is shown for some n with 0 ≤ n ≤ k − 3. Then zn 6= 0 and the

recursion (5.19) yields

zn+1 = az−1n + b = a
αn+1 − βn+1

αn+2 − βn+2
+ b

=
−αβ(αn+1 − βn+1) + (α + β)(αn+2 − βn+2)

αn+2 − βn+2
=
αn+3 − βn+3

αn+2 − βn+2
.

Hence the proof of (5.21) by induction is complete. Now (5.21) implies that zn 6= 0

for 0 ≤ n ≤ k − 3 and zk−2 = 0. Then as a consequence of (5.19) we get zn 6= b for

1 ≤ n ≤ k − 2 and zk−1 = b. Therefore per(zn) = k − 1 since the sequence (zn)∞n=0

is purely periodic. 2

Lemma 5.3.15 is the crucial step in the proof of the following theorem that

provides an attractive criterion for the property per(xn) = per(zn) = p.

Theorem 5.3.16 Let p ≥ 5 be a prime number and let a, b ∈ Fp with a 6= 0. Let

α, β ∈ Fp2 be the roots of f(x) = x2 − bx − a ∈ Fp[x]. Then a sequence (zn)∞n=0

generated by (5.19) satisfies per(zn) = p if and only if the order of αβ−1 in the

multiplicative group F∗p2 is equal to p+ 1.

Proof. Let us first analyze the degenerate case where α = β. Then a = −α2 and

b = 2α. If we had per(zn) = p, then zm = α for some m ≥ 0. But then (5.19) yields

zm+1 = az−1m + b = −α2α−1 + 2α = α = zm, a contradiction. Hence in this case we

have per(zn) < p and also the order of αβ−1 = 1 in F∗p2 is 1 and not p+ 1.

Thus, it remains to treat the case where α 6= β. If per(zn) = p, then zh = b for

some h ≥ 0. Now we consider the shifted sequence (yn)∞n=0 defined by yn = zn+h
for all n ≥ 0. Then (yn)∞n=0 satisfies the recursion (5.19) as well as y0 = b and

per(yn) = p. Hence it follows from Lemma 5.3.15 that the order k of αβ−1 in F∗p2
satisfies k − 1 = per(yn) = p, and so k = p+ 1. Conversely, suppose that the order

of αβ−1 in F∗p2 is p + 1. Let (wn)∞n=0 be the sequence generated by (5.19) with the

initial value w0 = b. Then per(wn) = p by Lemma 5.3.15. Therefore wj = z0 for

some j ≥ 0, hence the sequence (zn)∞n=0 is a shifted version of (wn)∞n=0, and so also

per(zn) = p. 2
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Example 5.3.17 Let f(x) = x2−bx−a ∈ Fp[x] be a primitive quadratic polynomial

over Fp. Then the roots of f are β ∈ F∗p2 and α = βp (see Proposition 1.4.47) and β

is a primitive element of Fp2 . Now αβ−1 = βp−1 has order p+ 1 in the multiplicative

group F∗p2 since β has order p2−1 in F∗p2 . Thus, if a, b ∈ Fp are chosen in such a way

that x2 − bx − a is a primitive quadratic polynomial over Fp, then Theorem 5.3.16

shows that every sequence (zn)∞n=0 generated by (5.19) with these values of a and b

satisfies per(zn) = p. Note that a primitive quadratic polynomial over Fp exists for

every prime number p (see Proposition 1.4.43).

As we found out in Subsection 5.2.2, the points of the point set P∗(g(a), p) ob-

tained from linear congruential pseudorandom numbers “fall mainly in the planes”,

and this can have devastating effects on Monte Carlo computations with these points

(see Examples 5.2.12 and 5.3.1). It is a splendid feature of inversive pseudorandom

numbers that the corresponding points derived from them exhibit the contrary be-

havior and “avoid the planes”, in the fitting words of the paper [44]. The setting

for this result is the vector space Fsp of dimension s ≥ 2. Just as in the Euclidean

space Rs, we can talk about hyperplanes in Fsp; namely, a hyperplane in Fsp is a set

of the form H = {v ∈ Fsp : h ·v = c} with a fixed nonzero vector h ∈ Fsp and a fixed

c ∈ Fp.

Theorem 5.3.18 Let p ≥ 5 be a prime number and let s ≥ 2 be an integer. Let

(zn)∞n=0 be a sequence generated by (5.19) with per(zn) = p. Then every hyperplane

in Fsp contains at most s of the points

zn = (zn, zn+1, . . . , zn+s−1) ∈ Fsp

with n = 0, 1, . . . , p− 1 and zn · · · zn+s−2 6= 0.

Proof. Let (yn)∞n=0 be the sequence generated by (5.19) with the initial value y0 = 0.

Then (yn)∞n=0 is a shifted version of (zn)∞n=0, and so per(yn) = p. We put dj =

−ayj ∈ Fp for j ≥ 0. It follows from {y0, y1, . . . , yp−1} = Fp that d0, d1, . . . , dp−1 are

distinct. Define ψ(n) = an + b ∈ Fp for n ∈ Fp and let ψj be the jth iterate of the

map ψ, with ψ0 being the identity map on Fp. By a straightforward induction on j

it is proved that

ψj(n) = yj
n− dj
n− dj−1

for 1 ≤ j ≤ p− 1 (5.22)

and whenever n 6= di for 0 ≤ i ≤ j − 1. Since the theorem is trivial for s ≥ p, we

can assume that s < p. From per(zn) = p we infer that

{zn : 0 ≤ n ≤ p− 1} = {
(
ψ0(n), ψ1(n), . . . , ψs−1(n)

)
: 0 ≤ n ≤ p− 1}. (5.23)

It follows from (5.22) that the condition zn · · · zn+s−2 6= 0 amounts to the condition

n 6= di for 0 ≤ i ≤ s− 2 in the second set in (5.23).
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Now let a hyperplane H in Fsp be given. Concretely, let H = {v ∈ Fsp : h ·v = c}
with a fixed nonzero h = (h1, . . . , hs) ∈ Fsp and a fixed c ∈ Fp. Then (5.22) shows

that if n 6= di for 0 ≤ i ≤ s− 2, then (ψ0(n), ψ1(n), . . . , ψs−1(n)) ∈ H if and only if

h1n+
s∑
j=2

hjyj−1
n− dj−1
n− dj−2

= c.

Clearing denominators, we see that this is equivalent to g(n) = 0, where the poly-

nomial g ∈ Fp[x] is given by

g(x) = (h1x− c)
s∏
j=2

(x− dj−2) +
s∑
j=2

hjyj−1(x− dj−1)
s∏
i=2
i 6=j

(x− di−2).

Since deg(g) ≤ s, the final result follows from Theorem 1.4.27 if we can verify that

g is not the zero polynomial. If g were the zero polynomial, then by considering the

coefficient of xs we would get h1 = 0. Furthermore, for 2 ≤ k ≤ s we would obtain

0 = g(dk−2) = hkyk−1(dk−2 − dk−1)
s∏
i=2
i 6=k

(dk−2 − di−2).

We know that all factors on the right-hand side except possibly hk are nonzero, and

so we would get hk = 0. This is a contradiction to (h1, . . . , hs) 6= 0. 2

Remark 5.3.19 As in the Euclidean space Rs, for any s given points in Fsp there is

a hyperplane passing through these points. Therefore Theorem 5.3.18 is optimal, in

the sense that for sufficiently large p there do exist hyperplanes in Fsp that contain

exactly s of the points zn considered in this theorem. Since {z0, z1, . . . , zp−1} = Fp
and per(zn) = p, the condition zn · · · zn+s−2 6= 0 eliminates exactly s−1 of the points

zn in the range 0 ≤ n ≤ p− 1.

Remark 5.3.20 Let us check what happens in Theorem 5.3.18 if we replace the

sequence (zn)∞n=0 there by a sequence obtained from the linear congruential method

with the prime modulus p. Then (5.4) shows that zn = anz0 in Fp for n = 0, 1, . . .,

where a ∈ F∗p and z0 ∈ F∗p. Consequently, for every s ≥ 2 we get

zn = (zn, zn+1, . . . , zn+s−1) =
(
anz0, a

n+1z0, . . . , a
n+s−1z0

)
∈ Fsp

for n = 0, 1, . . . . It follows that all points zn lie in the hyperplane H = {v ∈ Fsp :

h · v = 0} in Fsp with h = (a,−1, 0, . . . , 0) ∈ Fsp. The lesson is that in terms of

structural properties, inversive pseudorandom numbers are vastly superior to linear

congruential pseudorandom numbers.
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Now we turn to the uniformity test for inversive pseudorandom numbers. Let

S = (xn)∞n=0 be a sequence of inversive pseudorandom numbers given by (5.19)

and (5.20), and we again focus on the case where per(xn) = per(zn) = p. Then as

for the general nonlinear method in Subsection 5.3.1, we get Dp(S) = D∗p(S) = 1/p

for the discrepancy and the star discrepancy. For parts of the period, we could try to

utilize the discrepancy bound for the general nonlinear method in Theorem 5.3.10.

Note that the inversive method is the nonlinear method with the special polynomial

f(x) = axp−2 + b ∈ Fp[x] (see Remark 5.3.14). But then d = p − 2 in the notation

of Theorem 5.3.10, and so log d has the order of magnitude log p. It follows that the

discrepancy bound in Theorem 5.3.10 is at least of the order of magnitude log log p,

and so it is useless.

In fact, it was an open problem for many years to prove a nontrivial bound on

the discrepancy DN(S) for 1 ≤ N < p. This was finally achieved by Niederreiter and

Shparlinski in the paper [142]. As a technical tool, we need a bound for a classical

family of exponential sums called Kloosterman sums. We state this bound in the

following proposition and we refer to [102, Section 5.5] for a proof.

Proposition 5.3.21 Let p be a prime number and suppose that a1, a2 ∈ Fp are not

both 0. Then ∣∣∣∑
c∈F∗p

χp(a1c
−1 + a2c)

∣∣∣ ≤ 2p1/2.

Lemma 5.3.22 Let p ≥ 5 be a prime number, let (zn)∞n=0 be a sequence of elements

of Fp generated by the recursion (5.19) with per(zn) = p, and let h ∈ F∗p. Then

∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣ < 3N1/2p1/4 + (3p/2)1/2 (5.24)

for all integers N with 1 ≤ N < p.

Proof. We again use the method “shift and average” that we already employed in

the proof of Lemma 5.3.9. Since the right-hand side of (5.24) is greater than 5 for all

N ≥ 1 and p ≥ 5, we can assume that p ≥ 7. We fix h ∈ F∗p and put χ(c) = χp(hc)

for all c ∈ Fp. By repeating the argument in the beginning of the proof of Lemma

5.3.9, we get ∣∣∣N−1∑
n=0

χ(zn)
∣∣∣ < WM−1 +M (5.25)

and

W 2 ≤ N
N−1∑
n=0

∣∣∣M−1∑
m=0

χ(zn+m)
∣∣∣2,

where M is an arbitrary positive integer. Let ψ : Fp → Fp be defined by ψ(c) = ac+b

for all c ∈ Fp. Then (5.19) implies that zn+m = ψm(zn) for all n ≥ 0 and m ≥ 0,
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where ψm is the mth iterate of ψ (compare with the proof of Theorem 5.3.18). Hence

we obtain

W 2 ≤ N
N−1∑
n=0

∣∣∣M−1∑
m=0

χ(ψm(zn))
∣∣∣2.

Since N < p = per(zn), the elements z0, z1, . . . , zN−1 of Fp are distinct, and so

W 2 ≤ N
∑
c∈Fp

∣∣∣M−1∑
m=0

χ(ψm(c))
∣∣∣2.

By expanding the square of the absolute value, we get

W 2 ≤ N
∑
c∈Fp

M−1∑
m,r=0

χ(ψm(c)− χr(c))

≤ N
M−1∑
m,r=0

∣∣∣∑
c∈Fp

χ(ψm(c)− ψr(c))
∣∣∣

= MNp+ 2N
M−1∑
m,r=0
m>r

∣∣∣∑
c∈Fp

χ(ψm(c)− ψr(c))
∣∣∣.

The last exponential sum can be written in the form∑
c∈Fp

χ(ψm(c)− ψr(c)) =
∑
c∈Fp

χ(ψm−r(ψr(c))− ψr(c)).

Since ψr is a permutation of Fp, we can take ψr(c) as a new summation variable

over Fp, and this yields∑
c∈Fp

χ(ψm(c)− ψr(c)) =
∑
c∈Fp

χ(ψm−r(c)− c).

It is therefore reasonable to combine the contributions of all ordered pairs (m, r)

with fixed difference m − r = k ≥ 1. There are M − k such ordered pairs in the

given range for m and r, and so we arrive at the inequality

W 2 ≤MNp+ 2N
M−1∑
k=1

(M − k)
∣∣∣∑
c∈Fp

χ(ψk(c)− c)
∣∣∣. (5.26)

Now we study the last exponential sum for a fixed k with 1 ≤ k ≤ M − 1 and we

assume that M ≤ p. We can then apply the formula (5.22) to ψk(c) as long as

c /∈ Ek := {d0, d1, . . . , dk−1}. Since Ek has k elements, we obtain∣∣∣∑
c∈Fp

χ(ψk(c)− c)
∣∣∣ ≤ ∣∣∣ ∑

c∈Fp\Ek

χ
(
yk

c− dk
c− dk−1

− c
)∣∣∣+ k

≤
∣∣∣ ∑
c∈Fp\{dk−1}

χ
(
yk

c− dk
c− dk−1

− c
)∣∣∣+ 2k − 1.
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In the last exponential sum we introduce w = c−dk−1 as a new summation variable.

This yields∣∣∣ ∑
c∈Fp\{dk−1}

χ
(
yk

c− dk
c− dk−1

− c
)∣∣∣ =

∣∣∣ ∑
w∈F∗p

χ
(
yk
w + dk−1 − dk

w
− w − dk−1

)∣∣∣
=
∣∣∣ ∑
w∈F∗p

χ(yk(dk−1 − dk)w−1 − w)
∣∣∣.

The last exponential sum is a Kloosterman sum, and so we can apply Proposition

5.3.21 to obtain ∣∣∣∑
c∈Fp

χ(ψk(c)− c)
∣∣∣ ≤ 2p1/2 + 2k − 1.

By plugging this bound into (5.26), we get

W 2 ≤MNp+ 2N
M−1∑
k=1

(M − k)(2p1/2 + 2k − 1).

A straightforward computation shows that

M−1∑
k=1

(M − k)(2k − 1) = M(M − 1)
(M

3
− 1

6

)
<

1

3
M3.

Thus, we arrive at the bound

W 2 < MNp+ 2M2Np1/2 +
2

3
M3N.

Now we put M = b(3p/2)1/2c which is a permitted value since obviously 1 ≤M ≤ p.

With this choice for M we get W 2 < (3+
√

6)Np3/2. Recalling that p ≥ 7, we deduce

that

W

M
<

(3 +
√

6)1/2N1/2p3/4

(3p/2)1/2 − 1
=

(3 +
√

6)1/2N1/2p1/4√
3/2− p−1/2

≤ (3 +
√

6)1/2√
3/2−

√
1/7

N1/2p1/4.

After having some fun with computing square roots, we get WM−1 < 3N1/2p1/4,

and in view of (5.25) we arrive at the bound in (5.24). 2

Theorem 5.3.23 Let p ≥ 5 be a prime number and let S = (xn)∞n=0 be a sequence

of inversive pseudorandom numbers obtained by (5.19) and (5.20) with per(xn) = p.

Then the discrepancy bound

DN(S) <
(
3N−1/2p1/4 + (3p/2)1/2N−1

) (
log p+

1

3

)
+

1

p

holds for all integers N with 1 ≤ N < p.
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Proof. This bound is derived from Lemma 5.3.22 in the same way as Theorem 5.3.13

was derived from Lemma 5.3.12. 2

The discrepancy bound in Theorem 5.3.23 is nontrivial as soon as N is somewhat

larger than p1/2, say at least of the order of magnitude p(1/2)+ε with an ε > 0

independent of p. If N has the order of magnitude p, then DN(S) = O
(
p−1/4 log p

)
with an absolute implied constant. It is an open problem whether this can be

improved to DN(S) = O
(
p−1/2(log p)c

)
for some absolute constant c ≥ 0. Results

on the serial test for inversive pseudorandom numbers are summarized in the survey

article of Niederreiter and Shparlinski [143].

For the general nonlinear method, we discussed an explicit counterpart to the

recursive procedure for generating pseudorandom numbers (see Subsection 5.3.1).

There is also an explicit version of the inversive method which was proposed by

Eichenauer-Herrmann [45]. By the way, Eichenauer and Eichenauer-Herrmann is

the same person, before and after marriage. Let p ≥ 5 be a prime number. We

recall the notation c ∈ Fp for c ∈ Fp which stands for c = 0 if c = 0 and c = c−1 if

c ∈ F∗p. Now we choose a, b ∈ Fp with a 6= 0 and we generate the sequence (zn)∞n=0

by the explicit formula

zn = an+ b ∈ Fp for n = 0, 1, . . . . (5.27)

Then we identify Fp with Zp and we obtain explicit inversive (congruential) pseu-

dorandom numbers by putting

xn =
zn
p
∈ [0, 1) for n = 0, 1, . . . . (5.28)

It is obvious that per(xn) = per(zn) = p.

The analysis of explicit inversive pseudorandom numbers is much easier than

that of the inversive pseudorandom numbers generated by (5.19) and (5.20). If

S = (xn)∞n=0 is a sequence of explicit inversive pseudorandom numbers, thenDp(S) =

D∗p(S) = 1/p as in earlier cases. For parts of the period, we proceed by a method

that we have already utilized before.

Lemma 5.3.24 Let p ≥ 5 be a prime number, let (zn)∞n=0 be a sequence of elements

of Fp defined by (5.27) with a, b ∈ Fp and a 6= 0, and let h ∈ F∗p. Then∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣ < (2p1/2 + 1

) (
log p+

1

3

)
for 1 ≤ N < p.

Proof. As in the proof of Lemma 5.3.12 we can write

N−1∑
n=0

χp(hzn) =

p−1∑
n=0

χp(hzn)
N−1∑
r=0

1

p

p−1∑
d=0

χp(d(n− r))

=
1

p

p−1∑
d=0

(N−1∑
r=0

χp(−dr)
)( p−1∑

n=0

χp(hzn + dn)
)
.
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Therefore ∣∣∣ p−1∑
n=0

χp(hzn)
∣∣∣ ≤ 1

p

p−1∑
d=0

∣∣∣N−1∑
r=0

χp(dr)
∣∣∣∣∣∣ ∑
n∈Fp

χp(h an+ b+ dn)
∣∣∣.

We can take the outer sum from d = 1 to d = p− 1 since the contribution for d = 0

is equal to 0. With the substitution c = an+ b ∈ Fp in the last exponential sum, we

obtain ∣∣∣ ∑
n∈Fp

χp(h an+ b+ dn)
∣∣∣ =

∣∣∣∑
c∈Fp

χp(hc+ da−1(c− b))
∣∣∣

=
∣∣∣∑
c∈Fp

χp(hc+ da−1c)
∣∣∣.

Now an application of Proposition 5.3.21 yields∣∣∣∑
c∈Fp

χp(hc+ da−1c)
∣∣∣ ≤ 1 +

∣∣∣∑
c∈F∗p

χp(hc
−1 + da−1c)

∣∣∣ ≤ 1 + 2p1/2.

Therefore ∣∣∣N−1∑
n=0

χp(hzn)
∣∣∣ ≤ 2p1/2 + 1

p

p−1∑
d=1

∣∣∣N−1∑
r=0

χp(dr)
∣∣∣.

As in the proof of Lemma 5.2.6 we get

p−1∑
d=1

∣∣∣N−1∑
r=0

χp(dr)
∣∣∣ < p

(
log p+

1

3

)
,

and this concludes the argument. 2

Theorem 5.3.25 Let p ≥ 5 be a prime number and let S = (xn)∞n=0 be a sequence of

explicit inversive pseudorandom numbers obtained by (5.27) and (5.28) with a, b ∈ Fp
and a 6= 0. Then the discrepancy bound

DN(S) < N−1
(
2p1/2 + 1

) (
log p+

1

3

)2
+

1

p

holds for all integers N with 1 ≤ N < p.

Proof. This bound is derived from Lemma 5.3.24 in the same way as Theorem 5.3.13

was derived from Lemma 5.3.12. 2

Further results on explicit inversive pseudorandom numbers, including results on

the serial test, can be found in the survey article [136]. More recent survey papers

containing a lot of relevant information on nonlinear pseudorandom numbers are

those of Topuzoǧlu and Winterhof [195] and Winterhof [202].
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5.4 Pseudorandom bits

So far we have concentrated on random and pseudorandom numbers for Monte Carlo

methods and simulation methods. But we should not lose sight of the fact that there

are other types of random objects that are consumed on a grand scale, namely ran-

dom bits. Let us recall, for instance, that encryption by means of stream ciphers is

based on the use of sequences of random bits as keystreams (see Section 2.7). We may

be tempted to produce the required random bits by coin flips (for example, “head”

for 0 and “tail” for 1), but then we run into the same kinds of practical problems

as those for physically generated random numbers that we discussed in Subsection

5.1.1. Therefore it is advisable to switch right away to computer-generated random

bits called pseudorandom bits.

In the utilization of sequences of pseudorandom bits as keystreams, just as in

many other applications of pseudorandom bits, we want to avoid any bias between 0

and 1. Thus, the probability of picking 0 should be 1
2

and the probability of picking

1 should be 1
2
. Furthermore, the choices of bits should be independent in the sense

that the current choice of a bit is not influenced by previous choices of bits; think

again of fair coin tosses as an illustration. Probability theorists call this a stochastic

model for Bernoulli trials, but we will not use this fancy terminology.

Being typical mathematicians, we succumb to the impulse to generalize and we

move from the set of bits to an arbitrary finite set S with b ≥ 2 elements. The

generalized stochastic model stipulates now that we pick each element of S with

probability 1
b

and that the choices of elements of S should be independent. We

stick to this fair and democratic stochastic model throughout this section. You may

think of this model as the discrete analog of the model for uniform pseudorandom

numbers employed previously in this chapter. The finite sets S of number-theoretic

interest are the least residue system modulo b given by Zb = {0, 1, . . . , b − 1} and

the finite field Fq with q elements in the case where b is a prime power q. The most

important special case b = 2 corresponding to the set of bits is represented by both

Z2 and F2.

There is a profusion of plausible properties that we may request for a sequence

of pseudorandom elements of S on the basis of the stochastic model above. Many

of these properties can be unified into a framework that was popularized by the

seminal book of Knuth [81, Section 3.5]. For a sequence A = (an)∞n=1 of elements

of S, for integers k ≥ 1 and N ≥ 1, and for a k-tuple s = (s0, s1, . . . , sk−1) ∈ Sk of

elements of S, let A(s, N ;A) denote the number of integers n with 1 ≤ n ≤ N such

that the k-tuple (an, an+1, . . . , an+k−1) of consecutive terms of A is equal to s. You

can picture A(s, N ;A) as follows: slide a window of length k over the sequence A,

starting with the window showing (a1, a2, . . . , ak), and count the number of times

you see the k-tuple s in the window among the first N windows.
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Definition 5.4.1 Let S be a finite set with b ≥ 2 elements and let k be a positive

integer. Then a sequence A of elements of S is k-distributed in S if

lim
N→∞

A(s, N ;A)

N
=

1

bk
for all s ∈ Sk.

A sequence of elements of S is ∞-distributed (or completely uniformly distributed)

in S if it is k-distributed in S for all integers k ≥ 1.

Remark 5.4.2 There is an appealing relationship between Definition 5.4.1 and a

concept for real numbers, namely that of normality. For an integer b ≥ 2 and a real

number α, let

{α} =
∞∑
n=1

anb
−n

be the unique b-adic expansion of the fractional part {α} of α, where an ∈ Zb for

all n ≥ 1 and an < b − 1 for infinitely many n. Then we can associate with the

real number α a unique sequence A = (an)∞n=1 of elements of Zb, the sequence A
of b-adic digits of {α}. In the language of Definition 5.4.1, the number α is called

normal to the base b if the sequence A is∞-distributed in Zb. The theory of normal

numbers is a classical and well-studied branch of number theory; see for instance

the books [91, Section 1.8] and [151, Chapter 8]. There is an elegant criterion

for normality in terms of uniform distribution modulo 1 (see Definition 4.1.8 for

the latter notion), according to which the real number α is normal to the base b

if and only if the sequence (bnα)∞n=1 is uniformly distributed modulo 1 (see [91,

Chapter 1, Theorem 8.1] and [151, Theorem 8.15]). Another noteworthy result says

that “almost all” real numbers are normal to the base b (and in fact simultaneously

normal to all bases b ≥ 2), in the sense that if we pick a real number randomly

from the interval [0, 1) equipped with the Lebesgue measure, then with probability

1 this number is normal to the base b (and in fact simultaneously normal to all

bases b ≥ 2); see [91, Chapter 1, Corollaries 8.1 and 8.2] and [151, Theorem 8.11]

for different proofs of this result. Thus, in a certain sense, “almost all” sequences of

elements of Zb are ∞-distributed in Zb.

Example 5.4.3 According to the last part of Remark 5.4.2, there must be a huge

variety of sequences of elements of Zb that are ∞-distributed in Zb. Nevertheless,

it is a nontrivial task to construct such a sequence explicitly. Historically the first

construction of an ∞-distributed sequence in Zb was given by Champernowne [21].

In fact, he constructed a normal number to the base 10, but according to Remark

5.4.2 this is the same as constructing an ∞-distributed sequence in Z10. The se-

quence C is obtained by concatenating the digit expansions in base 10 of all positive

integers in their natural increasing order. For instance, if you have reached the in-

teger 143, then this yields the three terms 1, 4, 3 of the sequence C. The beginning
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of the sequence C looks like

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, . . . .

It is an elementary, but rather boring exercise to show that C is ∞-distributed in

Z10. If you are eager to see the proof, then you are referred to [151, Section 8.4].

More general constructions of this type can be found in [41, Subsection 1.4.4]. It

is not known whether interesting numbers such as
√

2, Euler’s number e, or π are

normal to any base, and such questions belong to the collection of famous open

problems in number theory.

We now present the preliminaries of a construction of ∞-distributed sequences

in an arbitrary finite field Fq. This construction is of interest since it is based on an

important family of periodic sequences with remarkable properties. For an integer

d ≥ 1, we consider the extension field Fqd of Fq. Let βd be a primitive element of

Fqd and let αd ∈ F∗
qd

. We note that the trace map Trd : Fqd → Fq is a surjective

linear transformation between the vector spaces Fqd and Fq over Fq (this follows

from Theorem 1.4.50). We introduce the sequence Bd = (an)∞n=1 of elements of Fq
by

an = Trd(αdβ
n
d ) for n = 1, 2, . . . . (5.29)

Since βq
d−1
d = 1, it is clear that Bd is a purely periodic sequence with period length

qd − 1. The following proposition enunciates impressive equidistribution properties

of the sequence Bd in its full period.

Proposition 5.4.4 If k and d are integers with 1 ≤ k ≤ d and s ∈ Fkq , then

A(s, qd − 1;Bd) =

{
qd−k − 1 if s = 0,

qd−k if s 6= 0.

Proof. We first prove the result for k = d. We introduce the linear transformation

L : Fqd → Fdq defined by

L(γ) =
(
Trd(αdγ),Trd(αdβdγ), . . . ,Trd(αdβ

d−1
d γ)

)
∈ Fdq for γ ∈ Fqd

and we claim that L is injective. Thus, let γ ∈ Fqd be such that L(γ) = 0 ∈ Fdq .
Then Trd(αdβ

j
dγ) = 0 for 0 ≤ j ≤ d − 1. Since 1, βd, β

2
d , . . . , β

d−1
d form a basis of

Fqd over Fq (see Remark 3.2.7), it follows that Trd(αdγδ) = 0 for all δ ∈ Fqd . This

is possible only if αdγ = 0 because Trd is surjective. Now αd 6= 0, and so γ = 0,

showing that the linear transformation L is indeed injective. Since Fqd and Fdq have

the same number of elements, L is even bijective. Note that

(an, an+1, . . . , an+d−1) = L(βnd ) for all n ≥ 1
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by (5.29). Thus A(s, qd− 1;Bd) = 0 for s = 0 ∈ Fdq . If s ∈ Fdq with s 6= 0, then there

exists a unique γ ∈ F∗
qd

with L(γ) = s, and so a unique n with 1 ≤ n ≤ qd − 1 such

that L(βnd ) = s. This proves that A(s, qd − 1;Bd) = 1.

Now we examine the case where 1 ≤ k < d. If π(v) ∈ Fkq denotes the projection

of v ∈ Fdq onto its first k coordinates, then for every s ∈ Fkq we get the formula

A(s, qd − 1;Bd) =
∑
v∈Fdq
π(v)=s

A(v, qd − 1;Bd).

The proof is completed by using the result that we have already shown for the case

k = d. 2

We need also a result on the counting function A(s, N ;Bd) for parts of the period,

that is, for 1 ≤ N < qd− 1. We can take recourse to earlier methods in this chapter

in order to obtain such a result.

Proposition 5.4.5 If k and d are integers with 1 ≤ k ≤ d and s ∈ Fkq , then

|A(s, N ;Bd)−Nq−k| < qd/2(log qd + 1) for 1 ≤ N < qd − 1.

Proof. This case can arise only if qd ≥ 3, and so we assume this inequality. We

fix an integer N with 1 ≤ N < qd − 1, a nontrivial additive character χ of Fq, and

s = (s0, s1, . . . , sk−1) ∈ Fkq . We put

an = (an, an+1, . . . , an+k−1) ∈ Fkq for n = 1, 2, . . . ,

where a1, a2, . . . are the terms of the sequence Bd. Then, using the dot product on

Fkq , we can write

A(s, N ;Bd) =
N∑
n=1

k−1∏
j=0

(1

q

∑
c∈Fq

χ(c(an+j − sj))
)

= q−k
N∑
n=1

∑
c∈Fkq

χ(c · an − c · s)

= q−k
∑
c∈Fkq

χ(−c · s)
N∑
n=1

χ(c · an).

By splitting off the contribution from c = 0 ∈ Fkq and using the triangle inequality,

we obtain

|A(s, N ;Bd)−Nq−k| ≤ q−k
∑

c∈Fkq\{0}

∣∣∣ N∑
n=1

χ(c · an)
∣∣∣. (5.30)
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For c = (c0, c1, . . . , ck−1) ∈ Fkq with c 6= 0 ∈ Fkq , we use (5.29) to get for all n ≥ 1,

c · an = c0an + c1an+1 + · · ·+ ck−1an+k−1

= Trd(αd(c0 + c1βd + · · ·+ ck−1β
k−1
d )βnd ) = Trd(γβ

n
d )

with some γ ∈ Fqd . It is important to observe that γ 6= 0 since k − 1 < d. Now

σ(δ) = χ(Trd(δ)) for all δ ∈ Fqd defines a nontrivial additive character σ of Fqd , and

so we can write
N∑
n=1

χ(c · an) =
N∑
n=1

σ(γβnd ). (5.31)

The character sum on the right-hand side of (5.31) is treated by the method in the

proof of Lemma 5.2.6. For T = qd− 1 we put χT (z) = e2πiz/T for all z ∈ Z as in the

proof of that lemma. Then we arrive at the bound∣∣∣ N∑
n=1

σ(γβnd )
∣∣∣ ≤ 1

T

T−1∑
h=0

∣∣∣N−1∑
r=0

χT (hr)
∣∣∣∣∣∣ T−1∑
n=0

σ(γβnd )χT (hn)
∣∣∣.

We consider the contribution from h = 0, use (1.9), and obtain

T−1∑
n=0

σ(γβnd ) =
∑
δ∈F∗

qd

σ(δ) =
∑
δ∈F

qd

σ(δ)− 1 = −1. (5.32)

Noting also that N < T , we get∣∣∣ N∑
n=1

σ(γβnd )
∣∣∣ < 1 +

1

T

T−1∑
h=1

∣∣∣N−1∑
r=0

χT (hr)
∣∣∣∣∣∣ T−1∑
n=0

σ(γβnd )χT (hn)
∣∣∣. (5.33)

For the last sum, we proceed as in the proof of Lemma 5.2.4, with Fp replaced by

Fqd and χp replaced by σ. This yields∣∣∣ T−1∑
n=0

σ(γβnd )χT (hn)
∣∣∣ ≤ qd/2 for 1 ≤ h ≤ T − 1.

By using this inequality in (5.33), we obtain∣∣∣ N∑
n=1

σ(γβnd )
∣∣∣ < 1 +

qd/2

T

T−1∑
h=1

∣∣∣N−1∑
r=0

χT (hr)
∣∣∣.

The sum over h was bounded in the proof of Lemma 5.2.6, and thus we get∣∣∣ N∑
n=1

σ(γβnd )
∣∣∣ < 1 + qd/2

(
log T +

1

3

)
< qd/2(log qd + 1).

Now we combine this inequality with (5.30) and (5.31) and we arrive at the desired

result. 2
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Remark 5.4.6 The terms an in (5.29) of the sequence Bd can be computed effi-

ciently. Let f ∈ Fq[x] be the minimal polynomial of βd over Fq, which is thus a

primitive polynomial over Fq of degree d. We write f(x) = xd −
∑d−1

j=0 ejx
j with

ej ∈ Fq for 0 ≤ j ≤ d− 1. Then

an+d −
d−1∑
j=0

ejan+j = Trd

(
αdβ

n
d

(
βdd −

d−1∑
j=0

ejβ
j
d

))
= Trd(αdβ

n
d f(βd)) = Trd(0) = 0

for all n ≥ 1, and so the an satisfy the linear recurrence relation over Fq (of order d)

an+d =
d−1∑
j=0

ejan+j for n = 1, 2, . . . .

Once the initial values a1, . . . , ad have been computed, the remaining terms of the

sequence Bd can be quickly generated by this linear recurrence relation. Proposition

5.4.4 shows that the d-tuples (an, an+1, . . . , an+d−1), n = 1, . . . , qd − 1, run exactly

through all nonzero d-tuples in Fdq . This implies that qd−1 is the least period length

of Bd. Any linear recurrence relation over Fq of order d generates a periodic sequence

with least period length at most qd−1, and for this reason the sequence Bd is called

a maximal period sequence over Fq.

Now we are ready to describe the construction of ∞-distributed sequences in an

arbitrary finite field Fq, following the paper [138]. For each positive integer d, let

Bd be the maximal period sequence over Fq constructed above and let Td be the

block (or the initial segment) consisting of the first qd − 1 terms of Bd, that is, Td
is the first full period of Bd. By concatenating T1, T2, . . ., we get the sequence B of

elements of Fq.

Theorem 5.4.7 The sequence B obtained by concatenating the blocks T1, T2, . . . is

∞-distributed in Fq.

Proof. We put Mh =
∑h

d=1(q
d − 1) for integers h ≥ 1, so that Mh is the total

number of terms after the concatenation of T1, . . . , Th. We select an integer k ≥ 1

and we want to prove that B is k-distributed in Fq. Choose s ∈ Fkq and an integer

N > Mk. Then there exists a unique integer r ≥ k + 1 with Mr−1 < N ≤ Mr. The

first N terms of B consist therefore of T1, . . . , Tr−1 and the first N −Mr−1 terms of

Tr. Hence

A(s, N ;B) =
r−1∑
d=1

A(s, qd − 1;Bd) + A(s, N −Mr−1;Br) +O(kr).

The correction term O(kr), where here and in the rest of the proof all implied

constants are absolute, reflects the possible errors in the counts at the interfaces
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between Td and Td+1 for d = 1, . . . , r. For d ≥ k we can apply Proposition 5.4.4,

which we write in the form

A(s, qd − 1;Bd) = (qd − 1)q−k +O(1).

For 1 ≤ d < k it is trivial that

A(s, qd − 1;Bd) = (qd − 1)q−k +O(qd).

Therefore

A(s, N ;B) = Mr−1q
−k + A(s, N −Mr−1;Br) +O(kr + qk).

Next an application of Proposition 5.4.5 yields

A(s, N −Mr−1;Br) = (N −Mr−1)q
−k +O(qr/2 log qr).

It follows that

A(s, N ;B) = Nq−k +O(kr + qk + rqr/2 log q).

Now N ≥Mr−1 + 1 ≥ qr−1, and so

A(s, N ;B)

N
= q−k +O(krq1−r + qk+1−r + rq1−r/2 log q).

If we now let N →∞, then r →∞, and we infer that B is indeed k-distributed in

Fq. Since k ∈ N is arbitrary, it follows that B is ∞-distributed in Fq. 2

For a purely periodic sequence A = (an)∞n=1 of elements of Fq with least period

length T , it is customary to consider the correlation coefficient

Ch(A) =
T∑
n=1

χ(an − an+h),

where χ is a fixed nontrivial additive character of Fq and h is a positive integer.

Correlation coefficients are special instances of autocorrelation functions which will

be introduced in Definition 6.4.15. For a good sequence A of pseudorandom ele-

ments of Fq, the absolute value of the correlation coefficient Ch(A) should be small

compared to T for many values of h. The maximal period sequences Bd constructed

above are particularly well behaved in this respect.

Theorem 5.4.8 For a maximal period sequence Bd over Fq with least period length

T = qd − 1, its correlation coefficients are given by

Ch(Bd) =

{
T if h ≡ 0 (mod T ),

−1 otherwise.
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Proof. The case h ≡ 0 (mod T ) is trivial since Bd has period length T . If h 6≡
0 (mod T ), then (5.29) yields

Ch(Bd) =
T∑
n=1

χ(Trd
(
αdβ

n
d )− Trd(αdβ

n+h
d )

)
=

T∑
n=1

χ
(
Trd(αd(1− βhd )βnd )

)
.

Now βhd 6= 1, and so γ := αd(1 − βhd ) ∈ F∗
qd

. With σ as in the proof of Proposition

5.4.5, we obtain

Ch(Bd) =
T∑
n=1

σ(γβnd ) = −1

by (5.32). 2

Maximal period sequences over the binary field F2 are the building blocks for

keystreams that are used in practice in stream ciphers. Since maximal period se-

quences can be generated by linear recurrence relations (see Remark 5.4.6), their

structure is too simple for keystreams, and so some features of nonlinearity have to

be introduced. A common procedure is to combine several maximal period sequences

over F2 by a nonlinear combining function. So if m ≥ 2 maximal period sequences

over F2 are combined, the combining function is a nonlinear function g : Fm2 → F2.

For n = 1, 2, . . ., the nth term of the keystream is g(a
(1)
n , . . . , a

(m)
n ), where a

(j)
n is the

nth term of the jth maximal period sequence for 1 ≤ j ≤ m. A discussion of the

choice of combining functions can be found in [116, Section 6.3].

Keystreams for stream ciphers should have good statistical properties, for in-

stance in the sense of being k-distributed in F2 for large values of k. But they should

also have properties that can be roughly described by saying that the keystream is

patternless and unpredictable, so that attackers cannot figure out the algorithm (or

crucial parameters in the algorithm) by which the keystream is generated. These

types of properties are analyzed by complexity theory, which is a big and funda-

mental branch of theoretical computer science. In this area, various complexity

measures have been devised in order to assess how close to random a sequence of

bits is. The general idea is to measure the level of complexity of the simplest algo-

rithm (or equivalently of the simplest machine) that can generate the given sequence

of bits. The concrete complexity measure depends on which family of algorithms

(or machines) one allows in the competition. The most ambitious approach consid-

ers all machines that are relevant for computer science, namely all (self-delimiting)

Turing machines, and this leads to the concept of the (self-delimiting) Kolmogorov

complexity of a sequence of bits. Intuitively, you may think of the Kolmogorov

complexity of a sequence of bits as the length of the shortest computer program for

generating the sequence or an initial segment thereof. A rich and beautiful theory

of the Kolmogorov complexity and of its relationship with randomness properties of

sequences of bits was developed by computer scientists (see [101] for a survey). The
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only hitch in this theory is that it can be proved that the Kolmogorov complexity

is in general not efficiently computable, and this is of course a severe blow to the

practical utility of this complexity measure.

At the other end of the hierarchy of complexity measures is one where the only

algorithms we allow are linear recurrence relations. This leads to the concept of

the linear complexity of a periodic sequence of bits, which is simply the least order

of a linear recurrence relation that generates the sequence (compare also with Sec-

tion 2.7). The linear complexity of an initial segment of an arbitrary sequence of

bits is defined analogously. The linear complexity has the great advantage over the

Kolmogorov complexity that it can be computed by a polynomial-time algorithm,

which happens to be the Berlekamp-Massey algorithm originally designed for coding

theory (see Section 3.6). Surveys of the linear complexity and of related complexity

measures can be found in the articles [114] and [201]. The monograph [32] is devoted

to the complexity analysis of sequences generated by number-theoretic methods.

5.5 A glimpse of advanced topics

One of the disadvantages of sequences of linear congruential pseudorandom num-

bers is that their least period length cannot exceed the modulus. We can over-

come this drawback by replacing the first-order linear recurrence relation (5.2) by

a linear recurrence relation of higher order r ≥ 2, thus arriving at the multiple-

recursive method. We choose a large prime number p as the modulus and coeffi-

cients c0, c1, . . . , cr−1 ∈ Zp = {0, 1, . . . , p− 1}. Then we generate a sequence (zn)∞n=0

of elements of Zp by the linear recurrence relation

zn+r ≡
r−1∑
j=0

cjzn+j (mod p) for n = 0, 1, . . . . (5.34)

It is assumed that not all initial values z0, z1, . . . , zr−1 are 0. In analogy with (5.3), a

sequence (xn)∞n=0 of multiple-recursive pseudorandom numbers is obtained by xn =

zn/p ∈ [0, 1) for n = 0, 1, . . . . In order to maximize the least period length of this

sequence, we consider the so-called characteristic polynomial f(x) = xr−
∑r−1

j=0 cjx
j

of the linear recurrence relation as a polynomial over the finite field Fp and we

suppose that f is a primitive polynomial over Fp. Then per(xn) = per(zn) = pr − 1

and the sequence (zn)∞n=0 is a maximal period sequence over Fp in the sense of

Remark 5.4.6. Therefore the excellent equidistribution properties of maximal period

sequences established in Propositions 5.4.4 and 5.4.5 apply to the sequence (zn)∞n=0

for dimensions k ≤ r.

Because of the linearity of the recurrence relation generating the sequence (zn)∞n=0,

multiple-recursive pseudorandom numbers still show a lattice structure or grid struc-

ture, just like linear congruential pseudorandom numbers (compare with Subsection
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5.2.2). There are tools such as the so-called spectral test that allow us to dis-

criminate between good and bad parameters for multiple-recursive pseudorandom

numbers, and the spectral test can also be applied to pick out good multipliers in

the linear congruential method. An excellent account of the spectral test and of

related structural and statistical tests is given in the survey article [95].

What you gain on the roundabouts, you lose on the swings, and here for multiple-

recursive pseudorandom numbers we win handsomely with the least period length,

but we pay a price in terms of poor discretization and discrepancy. For per(xn) =

pr− 1 as above, we would expect a discretization roughly of size p−r, but the xn are

rational numbers with denominator p and therefore yield a discretization of size p−1.

Consequently, the star discrepancy of any initial segment of the sequence (xn)∞n=0

is at least p−1, which in most cases is too big to be anywhere near the law of the

iterated logarithm for the star discrepancy.

A smart way to go is to combine large least period length with fine discretization,

and this is carried out in the digital multistep method. Here we choose p = 2 and

a large order r of the linear recurrence relation (5.34). We use (5.34) to generate a

maximal period sequence (zn)∞n=0 over F2 with per(zn) = 2r − 1. Note that it is no

problem to achieve huge least period lengths like 21000−1 or 25000−1 since r can be

chosen independently of the available processor and only the extremely fast binary

arithmetic is needed for generating the zn. In contrast, the choice of practical moduli

and therefore of least period lengths in the linear congruential method is limited by

the word size of the processor (compare with the discussion in Subsection 5.2.1).

But how do we produce pseudorandom numbers in [0, 1) from the sequence (zn)∞n=0

of bits? Well, we choose an integer k with 2 ≤ k ≤ r and gcd(k, 2r − 1) = 1 and we

put

xn =
k∑
i=1

zkn+i−12
−i ∈ [0, 1) for n = 0, 1, . . . . (5.35)

In words, the numbers xn are obtained by splitting up the sequence (zn)∞n=0 into

contiguous blocks of length k and then interpreting each block as the dyadic ex-

pansion of a number in [0, 1). The numbers xn defined by (5.35) are called digital

multistep pseudorandom numbers. The condition gcd(k, 2r − 1) = 1 guarantees that

per(xn) = 2r − 1. The discretization is 2−k and we can choose very large values for

k. Almost perfect equidistribution holds for dimensions s ≤ r/k (see [134, Theo-

rem 9.2]).

There is an astonishing connection between digital multistep pseudorandom

numbers and the theory of digital nets presented in Subsection 4.4.2. For a di-

mension s > r/k, we introduce the points

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . ,

where the sequence (xn)∞n=0 is given by (5.35). Then it can be verified that the 2r

points 0,x0,x1, . . . ,x2r−2 form a digital (t, r, s)-net over F2 with a quality parameter
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t that depends in a known way on r, k, and the characteristic polynomial f of

the linear recurrence relation generating the sequence (zn)∞n=0 (see [130] and [134,

Theorem 9.5]). There are results guaranteeing that, by an appropriate choice of the

characteristic polynomial f , the quality parameter t of the digital net and the star

discrepancy of the points x0,x1, . . . ,x2r−2 can be made small (see [134, Theorems 9.7

and 9.8]).

The basic idea of the digital multistep method, namely to create (pseudo)randomness

by combining finite-field arithmetic and real arithmetic via (5.34) and (5.35), is ex-

ploited also in the digital inversive method due to Eichenauer-Herrmann and Nieder-

reiter [46]. We select an integer k ≥ 1 which serves as the precision (like k = 32 or

k = 64) and we consider the finite field Fq with q = 2k elements. For all γ ∈ Fq, we

use the notation γ = γ−1 ∈ Fq if γ 6= 0 and γ = 0 ∈ Fq if γ = 0. Now we proceed in

analogy with (5.19), but we work in the finite field Fq rather than in Fp. Concretely,

we choose parameters α, β ∈ F∗q and an initial value γ0 ∈ Fq, and then we generate

the sequence (γn)∞n=0 of elements of Fq by the recursion

γn+1 = αγn + β for n = 0, 1, . . . .

Next, for n = 0, 1, . . ., let (y
(1)
n , . . . , y

(k)
n ) ∈ Fk2 be the coordinate vector of γn relative

to a fixed ordered basis of Fq over F2. Finally, we identify F2 with Z2 = {0, 1} and

we introduce a sequence (xn)∞n=0 of digital inversive pseudorandom numbers by

xn =
k∑
i=1

y(i)n 2−i ∈ [0, 1) for n = 0, 1, . . . .

Under similar conditions as in Theorem 5.3.16, we get per(xn) = q = 2k. Digital

inversive pseudorandom numbers possess agreeable properties with regard to the

uniformity test and the serial test (see [46] and [143]). Furthermore, these pseu-

dorandom numbers allow an efficient implementation. For general finite fields Fq
(including finite prime fields Fp), the computation of the multiplicative inverse in Fq
requires O(log q) multiplications in Fq; simply note that γ−1 = γq−2 for all γ ∈ F∗q
and apply the square-and-multiply algorithm in Algorithm 2.3.9. But in the special

case q = 2k, a clever algorithm due to Itoh and Tsujii [72] permits the computa-

tion of the multiplicative inverse in Fq with O(log log q) multiplications in Fq, and

this is of course an enormous speedup. For values of q of practical interest such as

q = 232, the Itoh-Tsujii algorithm computes the multiplicative inverse in Fq basically

in constant time.

Parallelized Monte Carlo methods and simulation methods employ sequences of

pseudorandom vectors. The analog of the linear congruential method in this context

is the matrix method. For a given dimension k ≥ 2, we choose a large prime number

p and a nonsingular k × k matrix A over the finite field Fp. Then we generate a

sequence z0, z1, . . . of row vectors in Fkp by starting from an initial vector z0 6= 0 ∈ Fkp
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and using the recursion

zn+1 = znA for n = 0, 1, . . . .

Now we identify Fp with Zp = {0, 1, . . . , p − 1} and we derive the sequence of

pseudorandom vectors

xn =
1

p
zn ∈ [0, 1)k for n = 0, 1, . . . .

It is obvious that the sequence (xn)∞n=0 is purely periodic with per(xn) ≤ pk−1. We

get per(xn) = pk − 1 if and only if the characteristic polynomial of the matrix A is

primitive over Fp (see [134, Theorem 10.2]).

From a sequence z0, z1, . . . of pseudorandom vectors in Fkp we can also obtain a

sequence of pseudorandom numbers in [0, 1). To this end, we choose p = 2 and let

the integer k be a precision, say k = 32 or k = 64. We write

zn = (z(1)n , . . . , z(k)n ) ∈ Fk2 for n = 0, 1, . . .

and then we produce the pseudorandom numbers

xn =
k∑
i=1

z(i)n 2−i ∈ [0, 1) for n = 0, 1, . . . .

If we use a sophisticated method for pseudorandom vector generation such as the so-

called multiple-recursive matrix method (the vector analog of the multiple-recursive

method), then we obtain a sequence (xn)∞n=0 of pseudorandom numbers with many

desirable properties (see [137]). A special instance of this approach yields the fa-

mous Mersenne twister invented by Matsumoto and Nishimura [111]. The Mersenne

twister is a marvel of design: it produces periodic sequences of pseudorandom num-

bers with the least period length being the huge Mersenne prime 219937 − 1 and

with almost perfect equidistribution properties all the way up to the dimension 623.

The sequences of pseudorandom numbers generated by the Mersenne twister pass

numerous statistical tests for randomness and they are now widely used in practice.

You can find some information on Mersenne primes in Subsection 6.6.3.

Exercises

5.1 For an integer m ≥ 3, generate a sequence z0, z1, . . . of elements of Zm by

zn+2 ≡ zn+1 + zn (mod m) for n = 0, 1, . . . with arbitrary initial values z0 and

z1. Derive a sequence (xn)∞n=0 of pseudorandom numbers by putting xn = zn/m

for all n ≥ 0. Show that the sequence (xn)∞n=0 badly fails the three-dimensional

permutation test, in the sense that the ordering xn < xn+2 < xn+1 never occurs

in this sequence.
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5.2 For an integer m ≥ 2, let (an)∞n=0 and (bn)∞n=0 be purely periodic sequences

of elements of Zm such that per(an) and per(bn) are coprime. Prove that the

sequence (zn)∞n=0 of elements of Zm defined by zn ≡ an + bn (mod m) for all

n ≥ 0 satisfies per(zn) = per(an) per(bn).

5.3 Let m =
∏k

j=1 p
ej
j be the canonical factorization of the integer m ≥ 2 and let

a, z0 ∈ Z with gcd(a,m) = gcd(z0,m) = 1. Prove that the least period length

of (anz0)
∞
n=0 considered as a sequence modulo m is lcm(T1, . . . , Tk), where Tj

for 1 ≤ j ≤ k is the least period length of (anz0)
∞
n=0 considered as a sequence

modulo p
ej
j .

5.4 For every integer m ≥ 2 and every map ψ : Zm → Zm, prove that any sequence

z0, z1, . . . of elements of Zm generated by zn+1 = ψ(zn) for n = 0, 1, . . . with an

arbitrary initial value z0 is ultimately periodic. Provide a reasonable sufficient

condition for the sequence to be purely periodic.

5.5 Consider the inhomogeneous case of the linear congruential method in Remark

5.2.3 for m = pk with a prime number p and an integer k ≥ 1. Assume also

that a 6≡ 1 (mod p) and that (a − 1)z0 + c 6= 0. Let r be the largest integer

such that pr divides (a− 1)z0 + c and suppose that k ≥ r. Prove that per(zn)

is equal to the multiplicative order of a modulo pk−r.

5.6 Consider the linear congruential method in Remark 5.2.3 for m = pk with a

prime number p and an integer k ≥ 2, where we allow also the case c = 0.

Let T , respectively T1, be the least period length of the sequence (zn)∞n=0

considered as a sequence modulo m, respectively modulo pk−1, and suppose

that T = pT1. Prove that

T−1∑
n=0

χm(bzn) = 0 for all integers b 6≡ 0 (mod p).

5.7 Let χ be a nontrivial additive character of the finite field Fq. Let G(ψ, χ) be

the Gauss sum defined in Exercise 1.34 and put G(ψ0, χ) = −1 for the trivial

multiplicative character ψ0 of Fq. Prove that

χ(c) =
1

q − 1

∑
ψ

G(ψ, χ)ψ(c) for all c ∈ F∗q,

where the sum is extended over all multiplicative characters ψ of Fq and where

the bar denotes complex conjugation.

5.8 Prove the following version of Lemma 5.2.4 for an arbitrary finite field Fq. Let

χ be a nontrivial additive character of Fq, let a, b ∈ F∗q, and let T be the order
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of a in the multiplicative group F∗q. Then∣∣∣ T−1∑
n=0

χ(ban)
∣∣∣ ≤ q1/2 − T (q1/2 + 1)−1.

(Hint: use the preceding exercise and Exercise 1.34.)

5.9 Let p be an odd prime number, let a ∈ Z with gcd(a, p) = 1, and assume that

the multiplicative order T of a modulo p satisfies T ≥ N := (p− 1)/2. Prove

that there exists an integer b with gcd(b, p) = 1 such that∣∣∣N−1∑
n=0

χp(ba
n)
∣∣∣ ≥ 1

2
(p+ 1)1/2.

This shows that Lemma 5.2.6 is in general best possible up to the logarithmic

factor. (Hint: consider
∑p−1

b=1

∣∣∑N−1
n=0 χp(ba

n)
∣∣2.)

5.10 Let p, a, T , and N be as in the preceding exercise. Prove that there exists an

integer b with gcd(b, p) = 1 such that the star discrepancy D∗N of the point set

consisting of the fractional parts {anb/p} with n = 0, 1, . . . , N − 1 satisfies

D∗N ≥
(p+ 1)1/2

8N
.

This shows that Theorem 5.2.7 is in general best possible up to the logarithmic

factors.

5.11 Let m = 2k with an integer k ≥ 1 and generate a sequence z0, z1, . . . of elements

of Zm by zn+2 ≡ zn+1 + zn (mod m) for n = 0, 1, . . . with initial values z0 and

z1 that are not both even. Prove that per(zn) = 3 · 2k−1.

5.12 Let p be a prime number, let s ∈ N with s < p, and let g(x) ∈ Fp[x] with

s ≤ deg(g(x)) < p. Prove that for every nonzero vector (h0, h1, . . . , hs−1) ∈ Fsp,
the polynomial

∑s−1
j=0 hjg(x+ j) ∈ Fp[x] has positive degree.

5.13 Let p ≥ 5 be a prime number and let (xn)∞n=0 be a sequence of explicit nonlinear

pseudorandom numbers generated by (5.15) and (5.18) with 3 ≤ deg(g) ≤
p− 2. For a dimension s ≤ deg(g), let P(s)

p be the point set consisting of the

points

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . , p− 1.

Prove that the discrepancy Dp(P(s)
p ) of P(s)

p satisfies

Dp(P(s)
p ) = O

(
p−1/2(log p)s

)
with an implied constant depending only on deg(g). (Hint: use Proposition

4.3.1 and Exercise 5.12.)
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5.14 Let the sequence (xn)∞n=0 be as in the preceding exercise. For a dimension

s ≤ deg(g)− 1 and for an integer N with 1 ≤ N < p, let P(s)
N be the point set

consisting of the points

xn = (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for n = 0, 1, . . . , N − 1.

Prove that the discrepancy DN(P(s)
N ) of P(s)

N satisfies

DN(P(s)
N ) = O

(
N−1p1/2(log p)s+1

)
with an implied constant depending only on deg(g).

5.15 Let p be a prime number and let g(x) ∈ Fp[x] with 0 ≤ deg(g(x)) = d < p.

Prove that there exists an element c ∈ Fp such that

d∑
j=0

(−1)d−j
(
d

j

)
g(x+ j) = c.

(Hint: proceed by induction on d.)

5.16 Show that the results in Exercises 5.13 and 5.14 do not hold for the dimension

t = deg(g) + 1 since there exists a constant Ct > 0 depending only on t such

that, with the obvious meaning of P(t)
N , we get

DN(P(t)
N ) ≥ Ct for 1 ≤ N ≤ p.

(Hint: use Exercise 5.15 as well as Theorem 4.1.41 with a suitable function f .)

5.17 Let p be a prime number and put

K(a) =
∑
c∈F∗p

χp(ac
−1 + c) for all a ∈ F∗p.

(a) Prove that K(a) is a real number for all a ∈ F∗p.
(b) Prove that ∑

a∈F∗p

K(a)2 = p2 − p− 1.

(c) Deduce from part (b) that the bound in Proposition 5.3.21 is in general

best possible up to an absolute constant.

5.18 Let p ≥ 5 be a prime number and let (xn)∞n=0 be a sequence of explicit inversive

pseudorandom numbers generated by (5.27) and (5.28). Let P(2) be the point

set consisting of the points

xn = (xn, xn+1) ∈ [0, 1)2 for n = 0, 1, . . . , p− 1.

Prove that the discrepancyDp(P(2)) of P(2) satisfiesDp(P(2)) = O
(
p−1/2(log p)2

)
with an absolute implied constant. (Hint: use Proposition 5.3.21.)
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5.19 Let m = 2k with an integer k ≥ 2 and generate a sequence (zn)∞n=0 of elements

of Zm by the linear congruential method (5.2).

(a) Show that it is not a good idea to generate a sequence (bn)∞n=0 of pseudo-

random bits by letting bn be the least significant bit of zn for all n ≥ 0.

(b) What can be said if we replace bn by cn, where cn is the coefficient of 2k−1

in the binary representation of zn?

5.20 Prove that if a real number α is normal to the base b for some integer b ≥ 2,

then mα is normal to the base b for every nonzero integer m. (Hint: use the

theory of uniformly distributed sequences in Section 4.1.)

5.21 Prove that if a real number α is normal to the base bk for some integers b ≥ 2

and k ≥ 2, then α is normal to the base b.

5.22 Let f(x) ∈ Fq[x] be a monic irreducible polynomial over the finite field Fq of

degree d with f(x) 6= x. Prove that f(x) is a primitive polynomial over Fq if

and only if qd − 1 is the least positive integer k such that f(x) divides xk − 1

in Fq[x].

5.23 Let m(x) = x4 + x3 + 1 ∈ F2[x].

(a) Verify that m(x) is a primitive polynomial over F2.

(b) Compute the terms of a corresponding maximal period sequence B4 over

F2 explicitly.

(c) Verify by a direct computation that Ch(B4) = −1 for h = 1, 2, 3, 4.

5.24 Let Bd be a maximal period sequence over the finite field Fq with least period

length qd − 1. List the terms in the first period of Bd in reverse order and

continue periodically. Prove that the resulting sequence is again a maximal

period sequence over Fq with least period length qd − 1.

5.25 For every maximal period sequence (an)∞n=0 over the finite field Fq with least

period length qd − 1 and for every r ∈ N with gcd(r, qd − 1) = 1, prove that

(arn)∞n=0 is again a maximal period sequence over Fq with least period length

qd − 1.

5.26 Let (an)∞n=0 be a maximal period sequence over the finite field Fq with least

period length qd − 1. Prove that for every c ∈ F∗q, the sequence (an + c)∞n=0

has again least period length qd − 1, but it is not a maximal period sequence

over Fq.



Chapter 6

Further Applications

The set Z, says a proverb in Finnish,

is infinite and cannot diminish.

Every integer is applicable,

no matter how weird or despicable,

so this book’s story will never finish.

6.1 Check-digit systems

6.1.1 Definition and examples

Check-digit systems and error-correcting codes (see Chapter 3 for the latter) are

birds of a feather, but it must be conceded that error-correcting codes are the more

colorful birds. Just like error-correcting codes, check-digit systems help to eliminate

errors in data, but their aims are more modest than those of error-correcting codes.

In a check-digit system we extend an identification number, as for example a bank

account number, by a control symbol primarily to detect any single error. A check-

digit system can be formally defined over any finite abelian group.

Definition 6.1.1 A check-digit system over a finite abelian group G (with the addi-

tive notation) consists of n ≥ 2 permutations f1, . . . , fn of G and an element c ∈ G.

A word a1 · · · an−1 ∈ Gn−1 of length n − 1 is extended to a word of length n by

appending to it a check digit an such that

f1(a1) + · · ·+ fn(an) = c. (6.1)

In practice very often the finite abelian group G = Zm consisting of the least

residue system modulo m with addition modulo m is used (compare with Example

1.3.6).

Example 6.1.2 The Universal Product Code (UPC ) is a barcode widely used in

the United States, Canada, and many other countries for tracking trade items in

359
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stores. Its most common form UPC-12 consists of 12 decimal digits forming the word

a1 · · · a12 ∈ Z12
10 , where a12 is a check digit chosen such that the control equation (6.1)

is given by

3(a1 + a3 + a5 + a7 + a9 + a11) + a2 + a4 + a6 + a8 + a10 + a12 ≡ 0 (mod 10).

Thus, for the UPC-12 only two types of permutations fi, i = 1, . . . , 12, of G = Z10

are employed in Definition 6.1.1, namely a ∈ Z10 7→ 3a ∈ Z10 and the identity map

a ∈ Z10 7→ a ∈ Z10. Similarly, a European Article Number (EAN ) or International

Article Number a1 · · · a13 ∈ Z13
10 consists of one more decimal digit and has to satisfy

the control equation

3(a2 + a4 + a6 + a8 + a10 + a12) + a1 + a3 + a5 + a7 + a9 + a11 + a13 ≡ 0 (mod 10).

For instance, a package of frozen peas of a well-known Austrian brand bears the

EAN

9008695928723

and it is a nice little exercise in arithmetic modulo 10 to verify the control equation.

Example 6.1.3 The International Standard Book Number (ISBN ) identifies books,

as the name suggests. The version ISBN-10 was used until 2007. It starts with one

or more leading digits for the language area. For books published in most English-

speaking countries, the first digit is either 0 or 1, whereas for German-speaking

countries the first digit is 3. The country prefix is followed by digits for publisher

and book title and a check digit. An ISBN-10 is given by Definition 6.1.1 with

G = Z11, fi(a) = ia for a ∈ Z11 and i = 1, . . . , 10, and furthermore c = 0, where

the symbol X is used for 10. Since 2007, ISBNs contain 13 decimal digits with an

additional prefix 978 or 979. An ISBN-13 a1 · · · a13 ∈ Z13
10 has to satisfy

a1 + a3 + a5 + a7 + a9 + a11 + a13 + 3(a2 + a4 + a6 + a8 + a10 + a12) ≡ 0 (mod 10).

An ISBN-10 can be easily converted to an ISBN-13 by adding the prefix 978 or 979

and calculating the new check digit. For example, the ISBN-10 of the book [53] is

1-4020-5333-9 which is converted to the ISBN-13 978-1-4020-5333-7.

Example 6.1.4 The International Bank Account Number (IBAN ) is used in the

European Union and in many countries outside the EU for the purpose of standard-

izing payments. An IBAN typically comprises 20 to 34 alphanumeric characters. It

starts with two letters representing the country code, such as AT for Austria, FI for

Finland, and DE for Germany. The country code is followed by two decimal check

digits and then by alphanumeric characters specifying the bank and the account

number. Checking the validity of an IBAN is more cumbersome than for a UPC, an

EAN, or an ISBN. First of all, the first four alphanumeric characters of the IBAN
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(that is, the country code and the check digits) are moved to the end of the string.

Then all letters in the IBAN are converted to integers according to the scheme

A ↔ 10,B ↔ 11, . . . ,Z ↔ 35. The resulting string of decimal digits is interpreted

as the decimal representation of a positive integer N . Finally, it is checked whether

this integer N is congruent to 1 modulo 97. This falls into the pattern of the control

equation (6.1) with G = Z97 and c = 1. The permutations fi of Z97 in (6.1) are

given by the multiplication modulo 97 of an element of Z97 by a suitable power of

10 (in the present case, the fi are applied only to the elements 0, 1, . . . , 9 of Z97).

We had planned to offer the IBANs of our secret Swiss bank accounts for practicing

the validation of IBANs, but we decided against it at the very last minute. So we

are afraid you have to use your own IBAN for this exercise.

6.1.2 Neighbor transpositions and orthomorphisms

The most common errors that should be eliminated by a check-digit system are single

errors (a 7→ b with b 6= a), and they are always detected since the fi in Definition

6.1.1 are permutations. Another type of common errors, occurring particularly in

long words such as IBANs, is formed by neighbor transpositions (ab 7→ ba with

b 6= a). However, many check-digit systems do not detect this kind of error. For

example, the UPC-12 does not detect the neighbor transposition aiai+1 7→ ai+1ai if

ai ≡ ai+1 (mod 5) for some i = 1, . . . , 11.

By the control equation (6.1), the neighbor transposition aiai+1 7→ ai+1ai (with

i = 1, . . . , n− 1) is detected if and only if

fi(ai) + fi+1(ai+1) 6= fi(ai+1) + fi+1(ai). (6.2)

Put a = fi(ai), b = fi(ai+1), and Fi = fi+1 ◦ f−1i . Then (6.2) is equivalent to

Fi(a)− a 6= Fi(b)− b for a, b ∈ G, a 6= b.

Therefore Fi must be a permutation of G with the additional property in the fol-

lowing definition.

Definition 6.1.5 A permutation f of the finite abelian group G is an orthomor-

phism of G if f − idG is also a permutation of G, where idG denotes the identity

map on G.

Example 6.1.6 The map f : a ∈ Zm 7→ ca ∈ Zm with a fixed c ∈ Zm is an ortho-

morphism of Zm if and only if gcd(c,m) = gcd(c−1,m) = 1. Such an orthomorphism

is called a linear orthomorphism of Zm.

Example 6.1.7 For the ISBN-10 we get Fi(a) = fi+1(f
−1
i (a)) = (i + 1)i−1a for

i = 1, . . . , 9 and all a ∈ Z11. Therefore all Fi are linear orthomorphisms of Z11 and

all neighbor transpositions are detected.
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Theorem 6.1.8 There exists a check-digit system over the finite abelian group G

that detects all neighbor transpositions if and only if there exists an orthomorphism

of G.

Proof. As we have seen, each permutation Fi of G defined above is an orthomorphism

of G if all neighbor transpositions are detected. Conversely, let f be an arbitrary

orthomorphism of G and define f0 = idG and fi+1 = f ◦ fi for i = 0, 1, . . . , n − 1.

Then we get fi+1 ◦ f−1i = f and (6.2) is satisfied since f is an orthomorphism of G.

Hence all neighbor transpositions are detected. 2

In many practical applications of check-digit systems, the finite abelian group G

is chosen to be Zp with a prime number p (see the ISBN-10 in Example 6.1.3 and the

IBAN in Example 6.1.4). As we know, we can view Zp as the finite prime field Fp (see

Theorem 1.4.5 and Remark 1.4.6). Now by Proposition 5.3.2, any self-map of Fp can

be represented by a polynomial over Fp of degree less than p, and if the considered

self-map of Fp is a permutation of Fp, then the representing polynomial over Fp is a

permutation polynomial of Fp (see Definition 5.3.4). Hence if G is the additive group

Fp, then the maps fi in Definition 6.1.1 can be taken to be permutation polynomials

of Fp. In the examples ISBN-10 and IBAN, these permutation polynomials of Fp
are linear polynomials over Fp. Linear orthomorphisms f of Zp = Fp (see Example

6.1.6) are given by f(x) = cx ∈ Fp[x] with c ∈ Fp \ {0, 1}.
Next we study the slightly more complicated class of quadratic orthomorphisms

of Fp in (6.3) below, which are connected with quadratic residues and nonresidues

(see Definition 1.2.21).

Proposition 6.1.9 Let p be an odd prime number and let

fa,b(x) =
a− b

2
x(p+1)/2 +

a+ b

2
x ∈ Fp[x] for a, b ∈ Fp, a 6= b. (6.3)

If r ∈ Fp, then

fa,b(r) =


ar if r is a quadratic residue modulo p,

br if r is a quadratic nonresidue modulo p,

0 if r = 0.

Furthermore, fa,b is a permutation polynomial of Fp if and only if ab is a quadratic

residue modulo p and an orthomorphism of Fp if and only if additionally (a−1)(b−1)

is a quadratic residue modulo p.

Proof. The formula for fa,b(r) follows from

fa,b(r) = r
(a− b

2
r(p−1)/2 +

a+ b

2

)
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and Proposition 1.2.23. If ab is a quadratic residue modulo p, then
(
a
p

)
=
(
b
p

)
by Proposition 1.2.24, that is, a and b have the same quadratic-residue behavior

modulo p, and then the same proposition and the formula for fa,b(r) show that fa,b
is a permutation polynomial of Fp. On the other hand, if ab = 0 ∈ Fp, then fa,b
is clearly not a permutation polynomial of Fp, and if ab is a quadratic nonresidue

modulo p, then fa,b(1) = a = b(b−1a) = fa,b(b
−1a) since then also b−1a 6= 1 ∈ Fp is a

quadratic nonresidue modulo p, and so fa,b is not a permutation polynomial of Fp.
Finally, we see from (6.3) that

fa,b(x)− x =
a− b

2
x(p+1)/2 +

(a+ b

2
− 1
)
x = fa−1,b−1(x),

and so fa,b is an orthomorphism of Fp if and only if both ab and (a− 1)(b− 1) are

quadratic residues modulo p. 2

Theorem 6.1.10 Let p be an odd prime number. Then the number of ordered pairs

(a, b) ∈ F2
p with a 6= b such that fa,b is a permutation polynomial of Fp is

(p− 1)(p− 3)

2
.

The number of ordered pairs (a, b) ∈ F2
p with a 6= b such that fa,b is an orthomorphism

of Fp is
(p− 3)(p− 5)

4
.

Proof. We take any of the p−1 possibilities for a ∈ F∗p and choose b ∈ Fp with b 6= a

such that ab is a quadratic residue modulo p (see Proposition 6.1.9). According to

Remark 1.2.26, there are exactly (p− 1)/2− 1 = (p− 3)/2 choices for b.

For counting the orthomorphisms fa,b of Fp, we can assume by Proposition 6.1.9

that a, b ∈ F∗p. The number of orthomorphisms fa,b of Fp with a 6= b equals the num-

ber of orthomorphisms fa,ab of Fp with b 6= 1. Now fa,ab is an orthomorphism of Fp if

and only if a2b and (a−1)(ab−1) = b(a−1)(a−b−1) are both quadratic residues mod-

ulo p, which is true if and only if b and (a−1)(a−b−1)−1 are both quadratic residues

modulo p. The number of quadratic residues b = 2, . . . , p− 1 modulo p is (p− 3)/2.

If a runs through all elements of F∗p \ {1, b−1}, then (a− 1)(a− b−1)−1 runs through

all elements of F∗p \{1, b}. So for any fixed b it runs through (p−1)/2−2 = (p−5)/2

different quadratic residues modulo p, and the result follows. 2

Remark 6.1.11 We deduce from Theorem 6.1.10 that for a large prime number p, a

random choice of (a, b) ∈ F2
p yields a permutation polynomial fa,b of Fp, respectively

an orthomorphism fa,b of Fp, with probability about 1
2
, respectively about 1

4
.
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6.1.3 Permutations for detecting other frequent errors

The detection of several other types of frequent errors is guaranteed only if the

permutations f1, . . . , fn of G in Definition 6.1.1 satisfy additional conditions. Besides

single errors and neighbor transpositions, these types of errors are:

• jump transpositions acb 7→ bca (with b 6= a);

• twin errors aa 7→ bb (with b 6= a);

• jump twin errors aca 7→ bcb (with b 6= a).

We examine the case where fi = f (i) for i = 1, . . . , n is the ith iterate of a fixed

permutation f of G, that is, f0 = idG and fi+1 = f ◦ fi for i = 0, 1, . . . , n − 1.

All single errors are detected since f is a permutation of G, and by the proof of

Theorem 6.1.8 all neighbor transpositions are detected if and only if f − idG is a

permutation of G. It is easy to see that all twin errors, jump transpositions, and

jump twin errors are detected whenever f + idG, f2− idG, and f2 + idG, respectively,

is a permutation of G.

Example 6.1.12 Let p be an odd prime number. Consider the self-map f of Fp
represented by the polynomial f(x) = cx ∈ Fp[x] with c ∈ Fp. Then all three

polynomials f(x) and f(x) ± x are permutation polynomials of Fp if and only if

c /∈ {0, 1,−1}. With the notation above, we get f2(x) = f(f(x)) = c2x, and so

f2(x)− x = (c2 − 1)x is a permutation polynomial of Fp if and only if c /∈ {1,−1}.
Furthermore, f2(x) + x = (c2 + 1)x is a permutation polynomial of Fp if and only

if c2 6= −1. We recall from Example 1.2.25 that −1 is a quadratic residue modulo

p if and only if p ≡ 1 (mod 4). Now we inspect for which values of c ∈ Fp all five

polynomials f(x), f(x) ± x, and f2(x) ± x are permutation polynomials of Fp. If

p ≡ 3 (mod 4), then this happens precisely for all c /∈ {0, 1,−1}, and so there are

exactly p− 3 choices for c. If p ≡ 1 (mod 4), then we have to exclude also the two

roots d ∈ Fp and −d ∈ Fp of x2 + 1 ∈ Fp[x], and so there are exactly p − 5 choices

for c.

Example 6.1.13 We see from Example 6.1.3 that ISBN-10 does not detect errors of

the form a5a6 7→ (a5+b)(a6+b) with b ∈ Z11\{0}, including twin errors, at positions

5 and 6 for instance. After the fixed coordinate permutation ai 7→ a2i (mod 11) for

i = 1, . . . , 10, the modified ISBN-10 can be considered a check-digit system over F11

defined by f(x) = 2x ∈ F11[x] and fi = f (i) for i = 1, . . . , 10. Hence by Example

6.1.12, the modified version of ISBN-10 detects all five types of errors mentioned

above.

We recall from the discussion above that a check-digit system based on the

iterates fi = f (i) of a fixed permutation f of G corrects all twin errors whenever
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f + idG is also a permutation of G. This property is captured by the following

definition.

Definition 6.1.14 A permutation f of the finite abelian group G is a complete

mapping of G if f + idG is also a permutation of G.

Remark 6.1.15 A permutation f of G is a complete mapping of G if and only if

−f is an orthomorphism of G. A check-digit system defined by the permutation f of

G and fi = f (i) for i = 1, . . . , n can detect all single errors, neighbor transpositions,

twin errors, jump transpositions, and jump twin errors whenever f and f2 are both

complete mappings and orthomorphisms of G. According to a definition given in

Evans [48], f is a strong complete mapping of G if f is both a complete mapping

and an orthomorphism of G.

Remark 6.1.16 Complete mappings are also pertinent to the construction of or-

thogonal latin squares. We refer to Remark 4.4.13 for the definition of latin squares

and orthogonal latin squares of order b ≥ 2. Let f be a complete mapping of Zb.

Then we claim that S1 = (aij)1≤i,j≤b with aij ≡ i + j (mod b) and S2 = (cij)1≤i,j≤b
with cij ≡ f(j)− i (mod b) are orthogonal latin squares of order b. It is trivial that

S1 is a latin square, and S2 is a latin square since f is a permutation of Zb. Now

assume that (aij, cij) = (ak`, ck`), or equivalently

i+ j ≡ k + ` (mod b) and f(j)− i ≡ f(`)− k (mod b).

Adding these congruences yields f(j) + j ≡ f(`) + ` (mod b) and thus j = ` since

f is a complete mapping of Zb. Then also i = k and the result follows. Orthogonal

latin squares have many applications, for instance to the design of agricultural ex-

periments (see [94, Section 1.4 and Chapter 16]). The authors once attended a talk

on this topic with the funny title “Applications of finite fields to fields”.

We consider again the polynomials fa,b ∈ Fp[x] defined by (6.3). In Theorem

6.1.20 below we prove an asymptotic formula for the number of (a, b) ∈ F2
p with

a 6= b such that the five polynomials f(x), f(x)± x, and f(f(x))± x with f = fa,b
are all permutation polynomials of Fp and can thus be used to design check-digit

systems that detect all the above five types of frequent errors. Let
(
a
p

)
be the

Legendre symbol introduced in Definition 1.2.22.

Corollary 6.1.17 Let p be an odd prime number, let a, b ∈ Fp with a 6= b, and let

fa,b(x) ∈ Fp[x] be defined by (6.3). Then the three polynomials fa,b(x) and fa,b(x)±x
are all permutation polynomials of Fp if and only if a, b /∈ {−1, 0, 1},(a

p

)
=
( b
p

)
,
(a− 1

p

)
=
(b− 1

p

)
, and

(a+ 1

p

)
=
(b+ 1

p

)
. (6.4)
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Proof. This follows immediately from Proposition 6.1.9. 2

Lemma 6.1.18 Let p be an odd prime number, let a, b ∈ Fp with a 6= b, and let

fa,b(x) ∈ Fp[x] be defined by (6.3). If
(
a
p

)
=
(
b
p

)
6= 0, then for r ∈ F∗p,

fa,b(fa,b(r)) =


a2r if

(
a
p

)
=
(
r
p

)
= 1,

b2r if
(
a
p

)
= −

(
r
p

)
= 1,

abr if
(
a
p

)
= −1.

Proof. We distinguish four cases, according to the four possible combinations of

values of
(
a
p

)
and

(
r
p

)
. If

(
a
p

)
=
(
r
p

)
= 1, then by Proposition 6.1.9 we get

fa,b(r) = ar. Furthermore
(
ar
p

)
= 1, and so another application of Proposition

6.1.9 yields fa,b(fa,b(r)) = fa,b(ar) = a2r. The other three cases are treated in an

analogous way. 2

Lemma 6.1.19 Let p be an odd prime number, let a, b ∈ F∗p with

a 6= b and a2, b2 /∈ {−1, 1}, (6.5)

and let fa,b(x) ∈ Fp[x] be defined by (6.3). If the three polynomials fa,b(x) and

fa,b(x)±x are permutation polynomials of Fp, then the two polynomials fa,b(fa,b(x))±
x are permutation polynomials of Fp if and only if(

a2 + 1

p

)
=

(
b2 + 1

p

)
and

(
a

p

)
= 1 (6.6)

or (
a

p

)
= −1. (6.7)

Proof. If
(
a
p

)
= 1, then Lemma 6.1.18 shows that for r ∈ Fp,

fa,b(fa,b(r)) =

{
a2r if

(
r
p

)
= 1,

b2r otherwise.

Hence fa,b(fa,b(x))± x are both permutation polynomials of Fp if and only if(
a2 − 1

p

)
=

(
b2 − 1

p

)
and

(
a2 + 1

p

)
=

(
b2 + 1

p

)
.

The first condition is already covered by (6.4). If
(
a
p

)
= −1, then the result follows

immediately from Lemma 6.1.18. 2
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Theorem 6.1.20 Let p be an odd prime number and let fa,b(x) ∈ Fp[x] be defined

by (6.3). Let N be the number of ordered pairs (a, b) ∈ F2
p with a 6= b such that

the five polynomials fa,b(x), fa,b(x) ± x, and fa,b(fa,b(x)) ± x are all permutation

polynomials of Fp. Then

N =
3p2

32
+O(p),

where the implied constant is absolute.

Proof. Let N1 and N2 be the numbers of ordered pairs (a, b) with a, b ∈ F∗p satisfying

(6.4), (6.5), and (6.6),

(6.4), (6.5), and (6.7),

respectively. Then N = N1 +N2.

For typographic convenience we now write η(a) =
(
a
p

)
for a ∈ Fp, that is, η is

the quadratic character of Fp (see Remark 1.4.53) with the additional stipulation

η(0) = 0. Then for a, b ∈ F∗p satisfying (6.5) we obtain

∆1(a, b) :=
1

32
(1 + η(a))(1 + η(b))(1 + η((a− 1)(b− 1)))

(1 + η((a+ 1)(b+ 1)))(1 + η((a2 + 1)(b2 + 1)))

=

{
1 if (a, b) satisfies (6.4) and (6.6),

0 otherwise,

and so

N1 =
∑
a,b∈Fp

∆1(a, b) +O(p),

since the number of ordered pairs (a, b) ∈ F2
p that do not satisfy (6.5) or with ab = 0

is O(p). Hence we get

N1 =
1

32

1∑
j1,j2,j3,j4,j5=0

Sj1,j2,j3,j4,j5 +O(p),

where

Sj1,j2,j3,j4,j5 :=
∑
a∈Fp

η(aj1(a− 1)j3(a+ 1)j4(a2 + 1)j5)

∑
b∈Fp

η(bj2(b− 1)j3(b+ 1)j4(b2 + 1)j5)

with the convention 00 = 1 ∈ Fp. We note that S0,0,0,0,0 = p2, and furthermore

S1,0,0,0,0 = p
∑
a∈Fp

η(a) = 0 and S0,1,0,0,0 = p
∑
b∈Fp

η(b) = 0
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by Example 1.3.35.

In Proposition 5.3.8 we formulated the Weil bound for additive characters of

Fp. There is also a Weil bound for multiplicative characters of Fp (see [102, Theo-

rem 5.41]), and we use the following special case thereof: if f(x) ∈ Fp[x] is a monic

polynomial of positive degree which is not a square of another polynomial, then∣∣∣∑
c∈Fp

η(f(c))
∣∣∣ ≤ (deg(f)− 1)p1/2. (6.8)

In the remaining O(1) cases, both monic polynomials

xj1(x− 1)j3(x+ 1)j4(x2 + 1)j5 and xj2(x− 1)j3(x+ 1)j4(x2 + 1)j5

are not squares and we can apply the Weil bound to the sums over a and b to get

Sj1,j2,j3,j4,j5 = O(p).

Collecting everything we obtain

N1 =
p2

32
+O(p)

with an absolute implied constant.

Next we observe that

N2 =
∑
a,b∈Fp

∆2(a, b) +O(p),

where

∆2(a, b) =
1

16
(1− η(a))(1− η(b))(1 + η((a− 1)(b− 1)))(1 + η((a+ 1)(b+ 1))).

It follows that

N2 =
1

16

1∑
j1,j2,j3,j4=0

Sj1,j2,j3,j4 +O(p),

where

Sj1,j2,j3,j4 := (−1)j1+j2
∑
a∈Fp

η(aj1(a− 1)j3(a+ 1)j4)
∑
b∈Fp

η(bj2(b− 1)j3(b+ 1)j4).

We note that S0,0,0,0 = p2 and S1,0,0,0 = S0,1,0,0 = 0. In the remaining cases, we can

apply the Weil bound (6.8) and we get

N2 =
p2

16
+O(p)

with an absolute implied constant, which finishes the proof. 2

Remark 6.1.21 If p is large, then Theorem 6.1.20 shows that the probability that

fa,b(x), fa,b(x) ± x, and fa,b(fa,b(x)) ± x are all permutation polynomials of Fp for

randomly chosen a, b ∈ Fp with a 6= b is close to 3
32

.



6.2. COVERING SETS AND PACKING SETS 369

6.2 Covering sets and packing sets

6.2.1 Covering sets and rewriting schemes

A flash memory is an electronic storage medium that can be erased and rewritten.

Erasures can be performed only on a blockwise basis, and this limitation of flash

memories leads to interesting number-theoretic problems.

We consider a set of n flash memory cells, each capable of storing an element of

the finite prime field Fp, and a set S = {s1, . . . , sn} ⊆ Fp of size n. We identify S
with the vector s = (s1, . . . , sn) ∈ Fnp . We store a value v ∈ Fp in the n memory

cells by first choosing a vector x = (x1, . . . , xn) ∈ Fnp for which the dot product

x · s = x1s1 + · · · + xnsn satisfies x · s = v and then storing xi in the ith cell for

1 ≤ i ≤ n. For rewriting v by some v′ ∈ Fp, we have to choose x′ = (x′1, . . . , x
′
n) ∈ Fnp

with x′ · s = v′ and x′i ∈ {xi−µ, xi−µ+ 1, . . . , xi +λ} due to the limitation of flash

memory mentioned above, where λ and µ are prescribed small nonnegative integers.

For the sake of efficiency, we want to leave as many cells as possible unchanged, and

in the extreme case we allow only a single cell to change. These considerations lead

to the following concept.

Definition 6.2.1 Let p be a prime number. For a given set M = {−µ,−µ +

1, . . . , λ} \ {0} with λ, µ ∈ Zp = Fp not both 0, a nonempty subset S of Zp = Fp is

called a (λ, µ; p)-covering set if

MS := {ms ∈ Fp : m ∈M, s ∈ S} = Fp.

If S is a (λ, µ; p)-covering set, then with the notation above we can write v′−v =

msi for some m ∈M and si ∈ S, and so it suffices to change xi to xi +m to derive

x′ from x. Again for the sake of efficiency, we are interested in (λ, µ; p)-covering sets

of smallest possible size. The lower bound

|S| ≥
⌈

p

λ+ µ

⌉
(6.9)

holds for every (λ, µ; p)-covering set S, since obviously p = |MS| ≤ (λ+ µ)|S|. For

very small values of λ and µ, it is easy to find covering sets with equality in (6.9).

Example 6.2.2 The case λ+µ = 1 is trivial since then S = Zp is a (λ, µ; p)-covering

set meeting the bound (6.9). Let p be a prime number with p ≡ ±3 (mod 8). Then

2 is a quadratic nonresidue modulo p according to [152, Theorem 3.3]. It is easily

checked that the set of quadratic residues modulo p in Zp together with 0 ∈ Zp
forms a (2, 0; p)-covering set of minimal size (p + 1)/2. If p ≡ 3 (mod 4), then −1

is a quadratic nonresidue modulo p by Example 1.2.25. Then the set of quadratic

residues modulo p in Zp together with 0 ∈ Zp yields a (1, 1; p)-covering set of minimal

size (p+ 1)/2.
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Although the approach in Example 6.2.2 can be extended to higher-order residues

such as cubic residues modulo p (compare with Exercise 1.28), it provides small

covering sets only for very small values of λ and µ. However, there is a general

construction due to Chen, Shparlinski, and Winterhof [22] which is best possible up

to a multiplicative constant.

Theorem 6.2.3 For all prime numbers p ≥ 3 and all λ, µ ∈ Zp with max(λ, µ) ≥ 2,

there is a (λ, µ; p)-covering set S with

|S| = 2 d(p− 1)/max(λ, µ)e+ 1.

Proof. Note that whenever S is a (λ, µ; p)-covering set, then so is−S = {−s : s ∈ S}.
Hence we may restrict ourselves to the case λ ≥ µ and we note that {1, . . . , λ} ⊆ M.

Put H = d(p− 1)/λe and

S = {±j−1 ∈ Fp : 1 ≤ j ≤ H} ∪ {0}.

Note that ±j−1 = ±k−1 for 1 ≤ j, k ≤ H precisely if k = ±j in Fp. Since H ≤
(p− 1)/2, this can hold only if the plus sign applies and k = j. Therefore

|S| = 2H + 1 = 2 d(p− 1)/λe+ 1.

Let a ∈ Fp be arbitrary. We want to show that a = ms in Fp for some m ∈ {1, . . . , λ}
and s ∈ S. For a = 0 we take m = 1 and s = 0. If a 6= 0, then we consider a as

an integer in {1, . . . , p− 1}. We form the H + 1 distinct least residues modulo p of

the integers ca with c = 0, 1, . . . , H. We partition the interval [0, p− 1] into the H

disjoint intervals[
0,
p− 1

H

]
,
(p− 1

H
,
2(p− 1)

H

]
, . . . ,

((H − 1)(p− 1)

H
, p− 1

]
.

By the pigeon-hole principle, one of these intervals must contain at least two of the

considered least residues modulo p. Hence there exist c1, c2 ∈ {0, 1, . . . , H} with

c1 6= c2 such that the least residue r1 of c1a modulo p and the least residue r2 of c2a

modulo p satisfy

1 ≤ r1 − r2 ≤
p− 1

H
≤ λ.

Now

r1 − r2 ≡ c1a− c2a ≡ (c1 − c2)a (mod p),

and so

a = (r1 − r2)(c1 − c2)−1 ∈ Fp. (6.10)

Since r1 − r2 ∈ {1, . . . , λ} and (c1 − c2)−1 ∈ S, we are done. 2
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Remark 6.2.4 In the symmetric case λ = µ of Theorem 6.2.3, we can improve the

result to |S| = d(p− 1)/λe + 1. We proceed as in the proof of Theorem 6.2.3, but

we put

S = {j−1 ∈ Fp : 1 ≤ j ≤ H} ∪ {0}.

After the application of the pigeon-hole principle we can choose c1 > c2 and we

write 1 ≤ |r1 − r2| ≤ λ. Then again (6.10) holds, now with r1 − r2 ∈ M =

{−λ,−λ+ 1, . . . , λ} \ {0} and (c1 − c2)−1 ∈ S.

6.2.2 Packing sets and limited-magnitude error correction

Here is a related concept which is of relevance for communication channels in which

only errors of limited magnitude occur.

Definition 6.2.5 Let p be a prime number. For a given set M = {−µ,−µ +

1, . . . , λ} \ {0} with λ, µ ∈ Zp = Fp not both 0, a nonempty subset S of Zp = Fp is

a (λ, µ; p)-packing set if

|MS| = |M||S|.

Remark 6.2.6 In a (λ, µ; p)-limited-magnitude error channel, an element a ∈ Fp
may be changed into any element a+e ∈ Fp with e ∈M = {−µ,−µ+1, . . . , λ}\{0}.
For a set S = {s1, . . . , sn} ⊆ Fp with n ≥ 2, we define the linear code

C = {(c1, . . . , cn) ∈ Fnp : c1s1 + · · ·+ cnsn = 0}.

If a single error e ∈ M occurs at position j, that is, we receive (v1, . . . , vn) =

(c1, . . . , cj + e, . . . , cn), then we get the syndrome (see Definition 3.2.49)

n∑
i=1

visi = esj.

Hence the set of possible syndromes isMS. If S is a (λ, µ; p)-packing set, then the

syndromes are distinct and C can correct any single limited-magnitude error e ∈M
since the syndrome uniquely determines e and j.

Since any nonempty subset of a (λ, µ; p)-packing set is again a (λ, µ; p)-packing

set, we are mainly interested in large packing sets. For every (λ, µ; p)-packing set

S, the inequality p ≥ |MS| = (λ+ µ)|S| holds, and thus

|S| ≤
⌊

p

λ+ µ

⌋
.

Example 6.2.7 In analogy with Example 6.2.2, we get the following packing sets.

If p is a prime number with p ≡ ±3 (mod 8), then the set of quadratic residues

modulo p in Zp is a (2, 0; p)-packing set of maximal size (p− 1)/2. If p ≡ 3 (mod 4),

then the set of quadratic residues modulo p in Zp is a (1, 1; p)-packing set of maximal

size (p− 1)/2.
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Again this approach works only for very small values of λ and µ. A general, but

not optimal construction is given in the next result.

Proposition 6.2.8 Let p be a prime number and let λ, µ ∈ Zp = Fp with 1 ≤
λ+ µ < p. Then

S =

{
1 + j(λ+ µ+ 1) ∈ Zp = Fp : j = 0, 1, . . . ,

⌊
p− λ− µ− 1

(λ+ µ)(λ+ µ+ 1)

⌋}
is a (λ, µ; p)-packing set.

Proof. LetM be as in Definition 6.2.5 and assume that m1s1 = m2s2 in Fp, that is,

m1s1 ≡ m2s2 (mod p), for some m1,m2 ∈ M and s1, s2 ∈ S. Since s < p/(λ + µ)

for all s ∈ S, we get −µ p
λ+µ

< ms < λ p
λ+µ

for all m ∈ M and s ∈ S, and so

m1s1 = m2s2 ∈ Z. Therefore

m1 ≡ m1s1 ≡ m2s2 ≡ m2 (mod λ+ µ+ 1),

which implies m1 = m2 and thus s1 = s2. Hence S is a (λ, µ; p)-packing set. 2

6.3 Waring’s problem for finite fields

6.3.1 Waring’s problem

In 1770 Edward Waring conjectured the following in his Meditationes Algebraicae:

each positive integer is the sum of at most nine cubes, 19 fourth powers, and so on.

It was earlier conjectured by Bachet in the 17th century that each positive integer

is the sum of at most four squares. This led to the following definition.

Definition 6.3.1 For every integer k ≥ 2, let g(k) be the smallest number s of

summands such that for each integer n ≥ 1 there exist integers h1, . . . , hs ≥ 0 with

hk1 + · · ·+ hks = n.

The problem of determining g(k) is called Waring’s problem (for integers). Ac-

tually, it is not evident that g(k) is always finite, but this was proved by the math-

ematical all-rounder David Hilbert (1862–1943) who is famous in particular for the

list of 23 problems that he presented at the International Congress of Mathemati-

cians in Paris in 1900. This result of Hilbert that g(k) < ∞ for all k ≥ 2 was

classified as one of the three pearls of number theory by Khinchin [77]. We easily

get a lower bound on g(k).



6.3. WARING’S PROBLEM FOR FINITE FIELDS 373

Proposition 6.3.2 The bound

g(k) ≥ 2k +
⌊
(3/2)k

⌋
− 2 (6.11)

holds for all integers k ≥ 2.

Proof. The integer

n = (
⌊
(3/2)k

⌋
− 1)2k + (2k − 1)1k

is smaller than 3k and therefore has to be represented as a sum of summands 1k and

2k only. The 2k − 1 summands 1k cannot be substituted by a summand 2k, and so

the representation is minimal and takes 2k +
⌊
(3/2)k

⌋
− 2 summands. 2

It is conjectured that we always have equality in (6.11). This was proved for

all sufficiently large k by Mahler [109] and it was verified for a large finite range

of values of k in [90]. In particular, it is known that g(2) = 4 (a celebrated result

of Lagrange, the four-square theorem), g(3) = 9, and g(4) = 19, as predicted by

Bachet and Waring. A detailed discussion of Waring’s problem for integers can be

found in the survey article [197].

Analogs of Waring’s problem can be stated for any ring. In particular, Waring’s

problem for finite fields studied below has several applications.

Definition 6.3.3 For a positive integer k and a prime power q, the Waring number

g(k, q) over the finite field Fq is the smallest number s of summands such that every

element b ∈ Fq is a sum of s kth powers in Fq, that is, there exist a1, . . . , as ∈ Fq
with

ak1 + · · ·+ aks = b.

If there is an element b ∈ Fq that cannot be represented as a sum of kth powers in

Fq, then we put g(k, q) =∞.

Lemma 6.3.4 Let k ∈ N, let q be a prime power, and put d = gcd(k, q − 1). Then

g(k, q) = g(d, q).

Proof. It suffices to show that {ak : a ∈ F∗q} = {cd : c ∈ F∗q}. First we can write

ak = (ak/d)d for a ∈ F∗q, and so the first set is contained in the second set. Now

by Proposition 1.1.5, there exist integers u and v with d = ku+ (q − 1)v, and thus

cd = (cu)k(cq−1)v = (cu)k for c ∈ F∗q by Proposition 1.4.13, which completes the

proof. 2

In view of Lemma 6.3.4, we can now restrict the discussion to the case where k

divides q− 1. The following example shows in particular that we can have g(k, q) =

∞, as opposed to Waring’s problem for integers where g(k) <∞ for all k ≥ 2 thanks

to Hilbert.
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Example 6.3.5 Let us start with the trivial positive divisors k of q− 1. For k = 1

it is obvious that g(1, q) = 1. Now let k = q − 1. If q is a prime number p, then

g(p− 1, p) = p− 1

since {ap−1 : a ∈ Fp} = {0, 1} and b = 1 + · · ·+ 1︸ ︷︷ ︸
b summands

for 1 ≤ b ≤ p− 1. If q = pr with

an integer r ≥ 2, then {aq−1 : a ∈ Fq} = {0, 1} ⊆ Fp, and so the elements of Fq \ Fp
cannot be represented as sums of (q− 1)st powers of elements of Fq. This means by

Definition 6.3.3 that g(q − 1, q) =∞. Now we consider k = (q − 1)/2, where q is a

power of an odd prime. If q is a prime number p ≥ 3, then

g
(p− 1

2
, p
)

=
p− 1

2

since {a(p−1)/2 : a ∈ Fp} = {−1, 0, 1} and b = 1 + · · ·+ 1︸ ︷︷ ︸
b summands

= −1− · · · − 1︸ ︷︷ ︸
p−b summands

in Fp

for 1 ≤ b ≤ p − 1. If q = pr with an integer r ≥ 2, then {a(q−1)/2 : a ∈ Fq} =

{−1, 0, 1} ⊆ Fp, and so g((q − 1)/2, q) =∞.

The following theorem characterizes the cases where g(k, q) <∞. Actually, it is

more transparent to formulate the characterization for the opposite case g(k, q) =∞.

Theorem 6.3.6 Let q = pr with a prime number p and an integer r ≥ 1 and let

k be a positive divisor of q − 1. Then g(k, q) = ∞ if and only if (q − 1)/(pd − 1)

divides k for some proper divisor d of r.

Proof. It is obvious that the subset

Bk := {ak1 + · · ·+ aks : a1, . . . , as ∈ Fq, s = 1, 2, . . .}

of Fq is closed under addition and multiplication. For every fixed b ∈ Bk with b 6= 0,

the elements bc with c ∈ Bk run again through Bk, and since 1 ∈ Bk, it follows that

b−1 ∈ Bk. Therefore Bk is a subfield of Fq. Hence g(k, q) = ∞ if and only if Bk

is a proper subfield of Fq. This holds if and only if the multiplicative group Gk of

nonzero kth powers in Fq is a subgroup of F∗
pd

for some proper divisor d of r. Now

Gk is cyclic of order (q − 1)/k (note that Gk = {gkj : j = 0, 1, . . . , (q − 1)/k − 1}
with a primitive element g of Fq) and is a subgroup of F∗

pd
if and only if (q − 1)/k

divides pd − 1, or equivalently if and only if (q − 1)/(pd − 1) divides k. 2

6.3.2 Addition theorems

Additive number theory studies subsets of Z (or more generally of abelian groups)

and their behavior under addition (or under the binary operation on the abelian

group). The principal objects of additive number theory are sumsets

A+B := {a+ b : a ∈ A, b ∈ B},
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where A and B are nonempty subsets of a given abelian group with the additive

notation.

Example 6.3.7 If A and B are nonempty finite sets of real numbers, then we claim

that

|A+B| ≥ |A|+ |B| − 1.

If we write A = {a1, a2, . . . , as} with a1 < a2 < . . . < as and B = {b1, b2, . . . , bt}
with b1 < b2 < . . . < bt, then

a1 + b1 < a1 + b2 < . . . < a1 + bt < a2 + bt < . . . < as + bt,

and so at least s+t−1 elements of A+B are different. Thus, the claim is established.

This lower bound on |A+B| is in general best possible: just take A = {0, 1, . . . , s−1}
and B = {0, 1, . . . , t− 1} for any s, t ∈ N.

The analogous result for subsets of a finite field Fp of prime order p is the Cauchy-

Davenport theorem which can be used to prove a general bound on the Waring

number g(k, p).

Theorem 6.3.8 (Cauchy-Davenport Theorem) Let p be a prime number and

let A and B be nonempty subsets of Fp. Then

|A+B| ≥ min(|A|+ |B| − 1, p).

Proof. We present the proof of Alon, Nathanson, and Ruzsa [4]. First we deal

with the case where |A| + |B| ≥ p + 1. Then for every c ∈ Fp there is an element

a ∈ A ∩ (c−B), and thus A+B = Fp.
Now we may assume that |A| + |B| ≤ p. We consider the space F of all maps

f : A×B → Fp which is a vector space over Fp of dimension |A||B|. Each such map

can be identified with a polynomial

f(x, y) =

|A|−1∑
i=0

|B|−1∑
j=0

aijx
iyj

in the variables x and y with coefficients aij ∈ Fp, and

B = {xiyj : 0 ≤ i ≤ |A| − 1, 0 ≤ j ≤ |B| − 1}

is a basis of F (here you may want to refer to [4, Lemma 2.2]). Put S = B \
{x|A|−1y|B|−1} and note that x|A|−1y|B|−1 is not a linear combination over Fp of

elements of S. However, all monomials xiyj (as maps from A × B to Fp) with

0 ≤ i < |A| − 1 and j ≥ |B|, or i ≥ |A| and 0 ≤ j < |B| − 1, are linear combinations

over Fp of elements of S since xk, k ≥ |A|, is a linear combination over Fp of {xi :

0 ≤ i < |A|} and yk, k ≥ |B|, is a linear combination over Fp of {yj : 0 ≤ j < |B|}.
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Now suppose that |A + B| ≤ |A| + |B| − 2. Then there is a set C ⊂ Fp of

cardinality |C| = |A|+ |B| − 2 with A+B ⊆ C. We consider the function

f(x, y) =
∏
c∈C

(x+ y − c) =

(
|A|+ |B| − 2

|A| − 1

)
x|A|−1y|B|−1 + · · · ,

which vanishes on A×B. However,(
|A|+ |B| − 2

|A| − 1

)
=

(|A|+ |B| − 2)!

(|A| − 1)!(|B| − 1)!

is not divisible by p (since the factors of the numerator are smaller than p) and we

get a contradiction. 2

Remark 6.3.9 Here is an elementary alternative proof of the Cauchy-Davenport

theorem. Let |A| = s, say A = {a1, . . . , as}, and |B| = t, say B = {b1, . . . , bt}.
We proceed by induction on t. The case t = 1 is trivial, and so we take t ≥ 2. If

we put C = A + B, then the case |C| = p is trivial, so we can assume |C| < p.

For n = 0, 1, . . . , p− 1, the elements a1 + b1 + n(bt − b1) run through Fp (note that

bt 6= b1), and for n = 0 and n = 1 we get elements in C. Since |C| < p, there exists

a least n0 ∈ N with a1 + b1 + n0(bt − b1) /∈ C. Then a1 + b1 + (n0 − 1)(bt − b1) ∈ C.

With d := a1 + b1 + n0(bt − b1) + b1 we obtain d − b1 /∈ C and d − bt ∈ C. We

arrange the elements b1, . . . , bt such that d− bi /∈ C for 1 ≤ i ≤ r and d− bj ∈ C for

r < j ≤ t. Clearly 1 ≤ r ≤ t− 1. Now we consider the sumset

C ′ := {ah + bi : 1 ≤ h ≤ s, 1 ≤ i ≤ r} ⊆ C.

Then d − bj ∈ C for r < j ≤ t, but d − bj /∈ C ′ for r < j ≤ t, for if we had

d − bj = ah + bi for some 1 ≤ h ≤ s and 1 ≤ i ≤ r, then we get the contradiction

d− bi = ah+ bj ∈ C. Therefore |C ′| ≤ |C|− (t− r). The induction hypothesis yields

|C ′| ≥ s+ r − 1, and so |C| ≥ |C ′|+ t− r ≥ s+ t− 1 as desired.

Basically the same example as in Example 6.3.7 shows that the Cauchy-Davenport

theorem is in general best possible. Now we extend the Cauchy-Davenport theorem

in some fashion to arbitrary finite fields. First we have to characterize the binomial

coefficients that are divisible by a prime number p via the following congruence of

Lucas. We use the standard convention
(
m
n

)
= 0 for integers m,n ≥ 0 with m < n.

Lemma 6.3.10 (Lucas Congruence) If m and n are nonnegative integers and p

is a prime number, then (
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p),
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where

m = mkp
k +mk−1p

k−1 + · · ·+m1p+m0, 0 ≤ m0, . . . ,mk < p,

and

n = nkp
k + nk−1p

k−1 + · · ·+ n1p+ n0, 0 ≤ n0, . . . , nk < p,

are the digit expansions in base p of m and n, respectively.

Proof. A computation in the polynomial ring Fp[x] shows that

m∑
n=0

(
m

n

)
xn = (1 + x)m =

k∏
i=0

(
(1 + x)p

i
)mi

=
k∏
i=0

(
1 + xp

i
)mi

=
k∏
i=0

( mi∑
ni=0

(
mi

ni

)
xnip

i
)

=
k∏
i=0

( p−1∑
ni=0

(
mi

ni

)
xnip

i
)

=
m∑
n=0

( k∏
i=0

(
mi

ni

))
xn,

and the result follows by comparing the coefficients of xn for n = 0, 1, . . . ,m. 2

Remark 6.3.11 We see from Lemma 6.3.10 that
(
m
n

)
≡ 0 (mod p) if and only if

ni > mi for some i = 0, 1, . . . , k.

Corollary 6.3.12 Let q be a power of the prime number p and let A and B be

nonempty subsets of the finite field Fq. Then

|A+B| ≥ min(|A|+ |B| − q/p, q).

Proof. The case q = p is the Cauchy-Davenport theorem, and so we can take q > p.

If |A|+ |B| ≥ q + 1, then for every c ∈ Fq there is an element a ∈ A ∩ (c−B), and

thus A+B = Fq.
Now we consider the case where |A|+|B| ≤ q. We can also assume that |A| > q/p

and |B| > q/p. Let 0 ≤ s < q/p be defined by |A| − 1 ≡ s (mod q/p). For any

subset A′ of A of size |A| − s, the Lucas congruence yields
(|A′|+|B|−2
|A′|−1

)
6≡ 0 (mod p).

As in the proof of Theorem 6.3.8 we get

|A′ +B| ≥ min(|A′|+ |B| − 1, q)

and the result follows. 2

Now we prove a general bound on g(k, q) which is tight for the examples in

Example 6.3.5, but rather weak for most k.
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Theorem 6.3.13 Let q be a prime power and let k be a positive divisor of q− 1. If

g(k, q) <∞, then g(k, q) ≤ k.

Proof. In the proof of Theorem 6.3.6 we noted that there are exactly (q − 1)/k

different nonzero kth powers in Fq. Now we write

As = {ak1 + · · ·+ aks : a1, . . . , as ∈ Fq}

for all s ∈ N. Then either As = Fq or there is an element b ∈ As+1 \ As. In the

latter case we infer that cb ∈ As+1 \ As for all c ∈ A1 \ {0}, and thus

|As+1| ≥ |As|+ |A1| − 1 = |As|+
q − 1

k
. (6.12)

We observe that if q is a prime number, then (6.12) follows directly from the Cauchy-

Davenport theorem. By induction we get |As| ≥ min(s q−1
k

+ 1, q) for all s ∈ N, and

thus Ak = Fq. 2

Further variants and extensions of the Cauchy-Davenport theorem can be found

in the book of Nathanson [121] which is also a rich source of information on additive

number theory in general.

6.3.3 Sum-product theorems

Sum-product theorems have become a powerful tool for dealing with Waring’s prob-

lem for finite fields. Roughly speaking, a sum-product theorem for nonempty subsets

A of a finite field Fq says that either the productset A · A = {ab ∈ Fq : a, b ∈ A} or

the sumset A+A = {a+b ∈ Fq : a, b ∈ A} is essentially larger than A, provided that

there is room to grow, that is, |A| is of smaller order of magnitude than q. We will

prove such a sum-product theorem due to Garaev and explain how to derive bounds

on g(k, q) from it. Moreover, we will use a sum-product theorem of Glibichuk and

Rudnev, where we do not include the proof, to deduce an even stronger result. First

we establish the following extension of a result of Garaev [52, Theorem 1].

Theorem 6.3.14 If A, B, and C are nonempty subsets of the finite field Fq with

0 6∈ B, then

|A ·B||A+ C| ≥ 3−
√

5

2
min

(
q|A|, |A|

2|B||C|
q

)
.

Proof. Let N be the number of solutions of the equation

sb−1 + c = t, b ∈ B, c ∈ C, s ∈ A ·B, t ∈ A+ C.

Each ordered triple (a, b, c) ∈ A× B × C produces a solution of this equation with

s = ab, t = a + c, and different ordered triples give rise to different solutions.

Therefore

N ≥ |A||B||C|. (6.13)
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If χ is a nontrivial additive character of Fq, then by the orthogonality relation (1.9)

we obtain

N =
1

q

∑
r∈Fq

∑
b∈B, c∈C, s∈A·B, t∈A+C

χ(r(sb−1 + c− t)).

Separating the contribution of r = 0, we get

N ≤ |B||C||A ·B||A+ C|
q

+
1

q

∑
r∈F∗q

∣∣∣ ∑
b∈B, s∈A·B

χ(rsb−1)
∣∣∣∣∣∣∑
c∈C

χ(rc)
∣∣∣∣∣∣ ∑
t∈A+C

χ(rt)
∣∣∣.

Next we claim that ∣∣∣ ∑
d∈D, e∈E

χ(de)
∣∣∣ ≤√q|D||E|

for all nonempty subsets D and E of Fq. Indeed, the Cauchy-Schwarz inequality

and the orthogonality relation (1.9) imply that∣∣∣ ∑
d∈D, e∈E

χ(de)
∣∣∣2 ≤ (∑

d∈D

1 ·
∣∣∣∑
e∈E

χ(de)
∣∣∣)2 ≤ |D|∑

d∈D

∣∣∣∑
e∈E

χ(de)
∣∣∣2

≤ |D|
∑
r∈Fq

∣∣∣∑
e∈E

χ(re)
∣∣∣2 = |D|

∑
e1,e2∈E

∑
r∈Fq

χ(r(e1 − e2)) = q|D||E|,

and the claimed inequality follows.

We obtain

N ≤ |B||C||A ·B||A+ C|
q

+

√
q|B||A ·B|

q

(∑
r∈Fq

∣∣∣∑
c∈C

χ(rc)
∣∣∣2)1/2(∑

r∈Fq

∣∣∣ ∑
t∈A+C

χ(rt)
∣∣∣2)1/2.

Again by (1.9), we get∑
r∈Fq

∣∣∣∑
c∈C

χ(rc)
∣∣∣2 = q|C| and

∑
r∈Fq

∣∣∣ ∑
t∈A+C

χ(rt)
∣∣∣2 = q|A+ C|,

which together with (6.13) yields the bound

|A||B||C| ≤ |B||C||A ·B||A+ C|
q

+
√
q|B||C||A ·B||A+ C|.

Simple algebraic manipulations lead to the inequality

|A ·B||A+ C| ≥

(√
q3

4|B||C|
+ q|A| −

√
q3

4|B||C|

)2

. (6.14)

If we put u = q2/(4|A||B||C|), then we can write (6.14) as

|A ·B||A+ C| ≥ q|A|(
√
u+ 1−

√
u)2 =

q|A|
(
√
u+ 1 +

√
u)2

.
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If u ≤ 1
4
, then

√
u+ 1 +

√
u ≤ (

√
5 + 1)/2, and so

|A ·B||A+ C| ≥ 4q|A|
(
√

5 + 1)2
=

3−
√

5

2
q|A|.

If u > 1
4
, then

√
1 + u−1 + 1 <

√
5 + 1, and so

√
u+ 1 +

√
u < (

√
5 + 1)

√
u. It

follows that

|A ·B||A+ C| > q|A|
(
√

5 + 1)2u
=

3−
√

5

2
· |A|

2|B||C|
q

.

Therefore the desired lower bound holds in all cases. 2

Example 6.3.15 Let k be a positive divisor of q− 1, let A = C = {ak : a ∈ Fq} be

the set of kth powers in Fq, and let B = A\{0}. Then |A| = q−1
k

+ 1 and A ·B = A,

and thus

|A+ A| ≥ 3−
√

5

2
min

(
q,
|A|2|B|

q

)
≥ 3−

√
5

2
min

(
q,

(q − 1)2

k3

)
by Theorem 6.3.14. On the other hand, (6.12) yields |A+A| ≥ min

(
2 q−1

k
+ 1, q

)
=

2(q−1)
k

+ 1 for k ≥ 2, which is a smaller bound if 8 ≤ k ≤ 1
3
(q − 1)1/2.

Example 6.3.16 Let q = p be a prime number and let H be an integer with

1 ≤ H ≤ (p + 1)/2. Then for A = B = C = {1, . . . , H} ⊆ Fp we get |A + A| =

2H − 1 < 2|A|, and thus

|A · A| > 3−
√

5

4
min

(
p,
H3

p

)
by Theorem 6.3.14.

Corollary 6.3.17 For a positive integer s, put sA = {a1 + · · ·+as : a1, . . . , as ∈ A}
and As = {a1 · · · as : a1, . . . , as ∈ A} for every nonempty set A ⊆ F∗q. Then

|As| · |sA| ≥ min
(3−

√
5

2
q|A|,

(3−
√

5

2

)s |A|2s
qs−1

)
.

Proof. The result follows inductively from Theorem 6.3.14 with B = As−1 and

C = (s− 1)A. 2

Example 6.3.18 For a positive divisor k of q − 1, let A = {ak : a ∈ F∗q} be the set

of kth powers in F∗q. Corollary 6.3.17 implies that

|sA| ≥ min
(3−

√
5

2
q,
(3−

√
5

2

)s (q − 1)2s−1

k2s−1qs−1

)
for all s ∈ N.
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In particular, we have |sA| ≥ 3−
√
5

2
q if k ≤ csq

(s−1)/(2s−1) with an explicit constant

cs > 0 depending only on s. Now applying Corollary 6.3.12 twice, we obtain

|3sA| ≥ min
((3(3−

√
5)

2
− 2

p

)
q, q
)

= q if k ≤ csq
(s−1)/(2s−1),

provided that q is a power of a prime number p ≥ 17. This yields g(k, q) ≤ 3s under

the stated conditions on k and q.

Now we present a very strong result which is based on an elegant sum-product

theorem of Glibichuk and Rudnev [56].

Theorem 6.3.19 If k is a positive divisor of q−1 with k ≤
√
q/2, then g(k, q) ≤ 8.

Proof. By [56, Theorem 6], if A,B ⊆ Fq with |A||B| ≥ 2q, then

8AB = {a1b1 + · · ·+ a8b8 : a1, . . . , a8 ∈ A, b1, . . . , b8 ∈ B} = Fq.

The result follows by applying this to A = B = {ak : a ∈ Fq}. 2

Remark 6.3.20 For positive divisors k of q − 1 with k ≤ q3/7, we can improve on

Theorem 6.3.19 by using a well-known result on the number of solutions of diagonal

equations obtained via bounds on Jacobi sums (see Exercises 1.36 and 1.37 for the

simplest Jacobi sums). For s ∈ N and b ∈ F∗q, let Ns(b) denote the number of

solutions (c1, . . . , cs) ∈ Fsq of

ck1 + · · ·+ cks = b.

Then [102, Theorem 6.37] yields

|Ns(b)− qs−1| < ksq(s−1)/2,

and thus

Ns(b) > qs−1 − ksq(s−1)/2 ≥ 0 for k ≤ q1/2−1/(2s).

Therefore

g(k, q) ≤ s if k ≤ q1/2−1/(2s).

This is a trivial result for s = 1 and an improvement on Theorem 6.3.19 for 2 ≤ s ≤ 7

and the corresponding range for k.

Remark 6.3.21 A Waring graph is a directed graph whose vertex set is Fq and

where there is an edge leading from vertex a ∈ Fq to vertex b ∈ Fq precisely if the

difference b− a is a kth power in Fq, with k being a fixed positive divisor of q − 1.

If the Waring number g(k, q) is finite, then g(k, q) can be considered the diameter

of the Waring graph, that is, the least positive integer r such that any two distinct

vertices can be joined by a path consisting of at most r edges. If for suitable k the

Waring number g(k, q) is small, then the Waring graph has relatively few edges, but

a small diameter. Such graphs are important for computer networks.

There is a profusion of further results on the Waring number g(k, q), and we

refer to the survey article [20] for more details.
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6.3.4 Covering codes

We like codes so much that we return to them again and again. Now we are cov-

ering an aspect that we have not yet covered at all, namely covering codes, which

surprisingly are connected with Waring numbers (see Theorem 6.3.29 below). Chap-

ter 3 was devoted to coding theory, and we adhere to the terminology and notation

established there.

A covering code is a code, that is, a nonempty subset of a Hamming space (Fnq , d),

with the property that every element of the Hamming space is within a fixed (in the

interesting cases small) Hamming distance of some codeword. The standard mono-

graph on covering codes is [26]. Covering codes have many applications including

football pool problems and speech coding. Whereas the minimum distance d(C) is

the most important quality measure for an error-correcting code C, the main quality

measure for a covering code is the covering radius.

Definition 6.3.22 The covering radius ρ(C) of a code C ⊆ Fnq is

ρ(C) = max
v∈Fnq

min
c∈C

d(v, c).

Remark 6.3.23 The football pool problem is based on football betting (or in some

countries called soccer betting) where the aim is to correctly predict at least r (with

1 ≤ r ≤ n) results of n football matches, that is, home win, draw, or away win,

with K bets. Thus, we need a ternary code C of length n and size K with covering

radius ρ(C) ≤ n − r in order to guarantee that at least one of K bets predicts at

least r results correctly.

Remark 6.3.24 In speech coding, S points have to be placed “uniformly” on the

surface of a sphere in the n-dimensional Euclidean space. For S ≤ 2n, an approxi-

mate solution can be obtained by taking the words of a binary code of size S and

length n with small covering radius.

There is a nice relationship between the covering radius ρ(C) and the minimum

distance d(C) of a code C, and as a bonus we get another characterization of perfect

codes (see Definition 3.4.8 for the concept of a perfect code).

Proposition 6.3.25 A code C is perfect if and only if d(C) = 2ρ(C)+1. In general,

the bound d(C) ≤ 2ρ(C) + 1 holds whenever |C| ≥ 2.

Proof. Put d = d(C). Then C is perfect if and only if⋃
c∈C

B(c, b(d− 1)/2c) = Fnq ,
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that is, for every v ∈ Fnq there is exactly one c ∈ C with v in the ball B(c, b(d−1)/2c)
(compare with the proof of Theorem 3.4.6). This is possible only if d is odd. The

maximum distance of v ∈ Fnq to C is (d− 1)/2, and thus ρ(C) = (d− 1)/2.

If the code C with |C| ≥ 2 is not perfect, then we get the proper inclusion⋃
c∈C

B(c, b(d− 1)/2c) ⊂ Fnq .

Thus, there exists a word u ∈ Fnq that is not contained in any of the balls B(c, b(d−
1)/2c) with c ∈ C. In other words, d(u, c) ≥ b(d − 1)/2c + 1 for all c ∈ C, and so

ρ(C) ≥ b(d− 1)/2c+ 1 > (d− 1)/2. 2

Example 6.3.26 Let

C = {(0, . . . , 0), (1, . . . , 1)} ⊆ Fn2

be the binary repetition code of length n ≥ 2. Then ρ(C) = bn/2c and d(C) = n.

Example 6.3.27 Let us consider the ternary Golay code G11 introduced in Def-

inition 3.5.26. By Theorem 3.5.28, G11 is a perfect linear [11, 6, 5] code over F3.

Therefore ρ(G11) = 2 by Proposition 6.3.25. Because of its small covering radius,

G11 is great for football betting (see Remark 6.3.23). In many football pools, the

results of 12 football matches have to be predicted every week and there are pay-

outs if at least 10 matches are predicted correctly. Now suppose that among the 12

matches there is one “bank”, that is, a match for which you “know” the outcome in

your guts. For instance, in the current German Bundesliga a home match by Bay-

ern Munich is a “bank” on Bayern. Then there are only 11 matches left on which

you have to bet, and getting at least nine out of these right will earn a payout.

Thus, you have the situation in Remark 6.3.23 with the parameters n = 11 and

r = 9. If you are an astute football pool enthusiast, then you place 36 = 729 bets

corresponding to the codewords of G11 and you will thus hit the jackpot since the

condition ρ(G11) ≤ n − r = 2 is satisfied. This lucrative piece of advice by itself is

already worth the price of this book. The only hitch is that you should have enough

spare money for 729 bets. It is a truly astounding historical fact that in the con-

text of football betting, the sophisticated code G11 was already discovered in 1947

(that is, before Golay’s paper [57]) by the Finnish football pool specialist Juhani

Virtakallio who published the construction in a Finnish football pool magazine (see

[26, Section 15.3] for more details).

For the proof of the following theorem, it is useful to have an alternative descrip-

tion of the covering radius of a linear code at hand.
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Lemma 6.3.28 Let C be a nontrivial linear [n, k] code over Fq and let H be a

parity-check matrix of C. Then the covering radius ρ(C) is the least positive integer

r such that every vector in Fn−kq is a linear combination over Fq of at most r column

vectors of H.

Proof. Every u ∈ Fn−kq can be written as u = vH> for some v ∈ Fnq . Let b ∈ C be

a codeword with

d(v,b) = min
c∈C

d(v, c) = r ≤ ρ(C)

and let vi1 , . . . , vir denote the coordinates of v that differ from the corresponding

coordinates of b. Since bH> = 0 by Theorem 3.2.37, we get

u = vH> = (v − b)H> = (vi1 − bi1)si1 + · · ·+ (vir − bir)sir ,

where si denotes the ith column vector of H and bi the ith coordinate of b. Hence

each u ∈ Fn−kq is a linear combination over Fq of at most ρ(C) column vectors of H.

Conversely, suppose that every vector in Fn−kq is a linear combination over Fq of

at most r column vectors of H. Let v ∈ Fnq be arbitrary and put u = vH> ∈ Fn−kq .

Then by assumption u = xH> for some x ∈ Fnq with Hamming weight w(x) ≤ r. It

follows that (v − x)H> = 0, and so v − x = b for some b ∈ C by Theorem 3.2.37.

Therefore

min
c∈C

d(v, c) = min
c∈C

w(v − c) ≤ w(v − b) = w(x) ≤ r,

and so ρ(C) ≤ r. 2

Theorem 6.3.29 Let q be a prime power, let n ≥ 2 be an integer with gcd(n, q) = 1,

let h be the multiplicative order of q modulo n, and let α ∈ Fqh be a primitive nth

root of unity. Let m(x) ∈ Fq[x] be the minimal polynomial of α over Fq. Then the

cyclic code C ⊆ Fnq with generator polynomial m(x) satisfies

ρ(C) ≤ g((qh − 1)/n, qh),

with equality for q = 2.

Proof. We refer to Subsection 3.3.5 for the general construction of cyclic codes from

roots. For v = (v0, v1, . . . , vn−1) ∈ Fnq , Theorem 3.3.30 shows that v ∈ C if and only

if
∑n−1

j=0 vjα
j = 0. This means that the matrix

H = (1 α α2 . . . αn−1)

can be viewed as a parity-check matrix of C when each αj, j = 0, 1, . . . , n − 1, is

replaced by its coordinate vector (written as a column vector) relative to a fixed

ordered basis of Fqh over Fq. Furthermore, we note that the cyclic subgroup of F∗
qh

generated by α agrees with the cyclic subgroup of F∗
qh

consisting of the nonzero kth

powers with k = (qh− 1)/n. The rest follows from Lemma 6.3.28 and the definition

of the Waring number g(k, q) in Definition 6.3.3. 2
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6.4 Hadamard matrices and applications

6.4.1 Basic constructions

Hadamard matrices are fascinating combinatorial objects allowing several appli-

cations including error-correcting codes, mobile communication, radar/sonar, and

cryptography.

Definition 6.4.1 A Hadamard matrix H of order n ≥ 1 is an n× n matrix over R
with entries 1 or −1 such that HH> = nEn, where En is the n× n identity matrix

over R.

Example 6.4.2 Examples of Hadamard matrices of the three least possible orders

are (1),
(

1 1

1 −1

)
, and 

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 .

Remark 6.4.3 If you are familiar with determinants, then you understand that

(det(H))2 = det(H) det(H>) = det(HH>) = det(nEn) = nn

for every Hadamard matrix H of order n, and so det(H) = ±nn/2. This is remarkable

in the light of a classical inequality of Jacques Hadamard (1865–1963) which says

that | det(M)| ≤ nn/2 for every n× n matrix M over R with all entries of absolute

value at most 1. Therefore Hadamard matrices are optimal in this family of matrices

M in the sense that they meet this bound. By the way, Hadamard is famous in

number theory since he is one of the two mathematicians (the other one is de la

Vallée-Poussin) who first proved the prime number theorem, according to which

the number π(u) of prime numbers not exceeding u ∈ R is asymptotically equal to

u/ log u as u→∞.

Lemma 6.4.4 If H is a Hadamard matrix of order n ≥ 3, then n is divisible by 4.

Proof. This is basically a one-liner. Let H = (hij)1≤i,j≤n with n ≥ 3. From

HH> = nEn we obtain
n∑
j=1

(h1j + h2j)(h1j + h3j) =
n∑
j=1

h21j = n.

Every term in the first sum is either 0 or 4, hence the result follows. 2

The Hadamard matrix conjecture claims that for every n ∈ N divisible by 4 there

is a Hadamard matrix of order n. Currently, the smallest open cases are n = 668

and n = 716.
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Lemma 6.4.5 If H is a Hadamard matrix of order n, then(
H H

H −H

)
is a Hadamard matrix of order 2n.

Proof. The matrix computation(
H H

H −H

)(
H H

H −H

)>
=

(
HH> +HH> HH> −HH>
HH> −HH> HH> +HH>

)
=

(
2nEn 0

0 2nEn

)
= 2nE2n

shows the result. 2

The matrices obtained by the iterative construction S0 = (1) and

St =

(
St−1 St−1
St−1 −St−1

)
for t = 1, 2, . . .

are called Sylvester matrices . They are all Hadamard matrices by Lemma 6.4.5.

Sylvester matrices solve the existence problem for Hadamard matrices for all orders

n = 2t, t = 0, 1, . . . . Here is a nice explicit formula for Sylvester matrices. Write

any two integers 0 ≤ i, j ≤ 2t − 1 in their unique binary representation

i = i0 + 2i1 + 4i2 + · · ·+ 2t−1it−1, i0, i1, i2, . . . , it−1 ∈ {0, 1},

j = j0 + 2j1 + 4j2 + · · ·+ 2t−1jt−1, j0, j1, j2, . . . , jt−1 ∈ {0, 1},
and then put

< i, j >:= i0j0 + i1j1 + · · ·+ it−1jt−1.

Theorem 6.4.6 Sylvester matrices have the explicit form

St =
(
(−1)<i,j>

)
0≤i,j<2t

for all t ≥ 0.

Proof. Proceed by induction on t. 2

Although Hadamard matrices are real matrices, there is a legendary construc-

tion of Hadamard matrices due to Paley [157] which intriguingly enough uses finite

fields. Raymond Paley (1907–1933) died in a skiing accident in Banff the same year

his paper on orthogonal matrices was published. Standing at his grave near the

Banff International Research Station BIRS, the second author wondered whether

this should deter him from publishing a big result and then dying or from learning

Alpine skiing despite living in Austria for already 15 years.

The basic tool of Payley’s construction is the quadratic character η of a finite field

of odd order q (see Remark 1.4.53). We use the convention η(b) = 0 for b = 0 ∈ Fq.
The following simple character sum identity plays a crucial role.



6.4. HADAMARD MATRICES AND APPLICATIONS 387

Lemma 6.4.7 Let q be a power of an odd prime and let η be the quadratic character

of Fq. Then ∑
c∈Fq

η(c)η(c+ a) = −1 for all a ∈ F∗q.

Proof. Simple manipulations show that∑
c∈Fq

η(c)η(c+ a) =
∑

c∈F∗q\{−a}

η(c−1(c+ a)) =
∑

c∈F∗q\{−a}

η(1 + ac−1)

=
∑

c∈F∗q\{1}

η(c) = −η(1) = −1

for all a ∈ F∗q. We used the orthogonality relation (1.9) in the penultimate step. 2

Theorem 6.4.8 Let q be a power of an odd prime. If q ≡ 3 (mod 4), then we can

construct a Hadamard matrix of order q+1. If q ≡ 1 (mod 4), then we can construct

a Hadamard matrix of order 2(q + 1).

Proof. Let η be the quadratic character of Fq. We set up the q × q matrix P =

(pa,b)a,b∈Fq with pa,b := η(b − a). For q ≡ 3 (mod 4) we get a Hadamard matrix H

of order q + 1 by substituting the entries 0 in the main diagonal of P by −1 and

appending a row and a column consisting of all 1 entries. The fact that H is indeed

a Hadamard matrix is shown by a straightforward computation using (1.9), Lemma

6.4.7, and η(−1) = −1 for q ≡ 3 (mod 4).

For q ≡ 1 (mod 4) we put

J =

(
0 1 . . . 1

(1 . . . 1)> P

)
and

H =

(
J + Eq+1 J − Eq+1

J − Eq+1 −J − Eq+1

)
.

A somewhat more involved computation shows that H is a Hadamard matrix of

order 2(q + 1). 2

The Hadamard matrices in the proof of Theorem 6.4.8 are called Paley matrices .

Here are examples for the two smallest possible values of q.

Example 6.4.9 Let q = 3. Then η(1) = 1 and η(2) = −1, hence

P =

 0 1 −1

−1 0 1

1 −1 0

 , H =


−1 1 −1 1

−1 −1 1 1

1 −1 −1 1

1 1 1 1

 ,

and H is a Hadamard matrix of order 4.
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Example 6.4.10 Now let q = 5. Then η(1) = η(4) = 1 and η(2) = η(3) = −1.

Therefore

P =


0 1 −1 −1 1

1 0 1 −1 −1

−1 1 0 1 −1

−1 −1 1 0 1

1 −1 −1 1 0

 , J =



0 1 1 1 1 1

1 0 1 −1 −1 1

1 1 0 1 −1 −1

1 −1 1 0 1 −1

1 −1 −1 1 0 1

1 1 −1 −1 1 0


.

A Hadamard matrix of order 12 is obtained from J as in the proof of Theorem 6.4.8.

More on Hadamard matrices can be found in the book of Horadam [69], but not

all the information there is up-to-date because of the steady progress in this area.

A status report up to the year 2010 was given by the same author in [70].

6.4.2 Hadamard codes

Hadamard matrices have applications to various aspects of information theory and

digital communication. We start with an application to coding theory. Recall that

the entries of Hadamard matrices have only two possible values 1 or −1, and so it is

pretty obvious that Hadamard matrices are relevant only to binary codes. We may

change −1 to 0 to get the standard alphabet F2 of a binary code. If an arbitrary

(that is, not necessarily linear) binary code C has length n, size M , and minimum

distance d, then we express this by saying that C is a binary (n,M, d) code. We

introduce an interesting quantity that was not considered in Chapter 3 on coding

theory.

Definition 6.4.11 For integers n and d with 1 ≤ d ≤ n, let A(n, d) be the largest

possible integer M for which there exists a binary (n,M, d) code. A binary (n,M, d)

code with M = A(n, d) is called optimal .

The determination of A(n, d) is a major problem in coding theory. Unfortunately,

only partial information on A(n, d) is available, mainly in the form of lower and

upper bounds. Hadamard matrices are instrumental in determining certain values

of A(n, d) (see the proof of Theorem 6.4.14). We set off with a simple inequality.

Lemma 6.4.12 If n and d are integers with 1 ≤ d ≤ n− 1, then

A(n, d) ≤ 2A(n− 1, d).

Proof. Let C be an arbitrary binary (n,M, d) code, and for a ∈ {0, 1} let Ma

be the number of codewords in C with last coordinate a. Then by deleting the

last coordinate we get (n − 1,Ma, d) codes Ca for a ∈ {0, 1} (we may assume
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that M0 ≥ 1 and M1 ≥ 1). Obviously max(M0,M1) ≤ A(n − 1, d), and thus

M = M0 +M1 ≤ 2A(n− 1, d). 2

In Theorem 3.4.19 we established the Plotkin bound for linear codes. Here is a

version of the Plotkin bound for arbitrary binary codes.

Theorem 6.4.13 (Plotkin Bound) If n and d are integers with 1 ≤ d ≤ n and

n < 2d, then

A(n, d) ≤
⌊

2d

2d− n

⌋
.

Proof. Let C be an arbitrary binary (n,M, d) code and put

T =
∑

c,c′∈C

d(c, c′).

From the definition of the minimum distance we obtain

T ≥M(M − 1)d. (6.15)

For i = 1, . . . , n and a ∈ {0, 1}, let Ni,a be the number of codewords in C with ith

coordinate equal to a. Writing c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n), we get

T =
n∑
i=1

( ∑
c,c′∈C

d(ci, c
′
i)
)

=
n∑
i=1

∑
a∈{0,1}

Ni,a(M −Ni,a)

= M2n−
n∑
i=1

(N2
i,0 +N2

i,1) ≤M2n− 1

2

n∑
i=1

(Ni,0 +Ni,1)
2 = M2n/2,

where we used the elementary inequality 2(u2 + v2) ≥ (u + v)2 for all u, v ∈ R in

the penultimate step. Together with (6.15) the result follows. 2

Theorem 6.4.14 If d is a positive integer for which there exists a Hadamard matrix

of order 4d, then

A(4d, 2d) = 8d and A(4d− 1, 2d) = 4d.

Proof. Let H be a Hadamard matrix of order 4d. The 4d rows of H are in {−1, 1}4d.
Since HH> = 4dE4d, the standard inner product (on R4d) of any two distinct rows

of H is 0, and so 2d entries of the two rows agree and 2d entries differ. Interpreted

in this way, the Hamming distance of any two distinct rows of H is 2d. The same

holds true for the matrix −H that we obtain by multiplying all entries of H by −1.

Now let C be the binary code of size 8d whose codewords are the rows of

H and −H, with −1 replaced by 0. Then the distinct codewords in C have
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(standard) Hamming distance either 2d or 4d, with 2d actually appearing. Hence

C is a binary (4d, 8d, 2d) code, and so A(4d, 2d) ≥ 8d. Lemma 6.4.12 implies

2A(4d − 1, 2d) ≥ A(4d, 2d) ≥ 8d, and by the Plotkin bound in Theorem 6.4.13 we

get A(4d− 1, 2d) ≤ 4d and thus the result. 2

The optimal code C in the proof of Theorem 6.4.14 is called a Hadamard code.

The binary Reed-Muller code R(1, 5) mentioned in Section 3.6 is a Hadamard code

defined with a Hadamard matrix of order 32 and it is an optimal binary (32, 64, 16)

code..

We sketch an application of Hadamard matrices to wireless communication.

CDMA (code division multiple access) is a technology that allows several trans-

mitters to send information simultaneously over the same channel. It is one of

the most widely used standards in mobile phone networks and in the GPS (Global

Positioning System). Suppose we have M participants P1, . . . , PM in the network.

Just to explain the principle in simple terms, let us say that each participant Pi is

assigned a periodic signature sequence with full period

xi(1), . . . , xi(n) for i = 1, . . . ,M.

The signal for the symbol a of participant Pi is the sequence with full period

axi(1), . . . , axi(n).

The signals of different participants have to be distinguishable as much as possible.

The distinct rows of a Hadamard matrix H of order n ≥ 2 differ in exactly n/2

entries, by the argument in the proof of Theorem 6.4.14, and so the rows of H

(periodically continued) are suitable signatures for at most M = n participants. For

example, the industry standard QUALCOMM uses a Hadamard matrix of order 64.

6.4.3 Signal correlation

For radar or sonar, a signal is used to determine distances by comparing the original

signal s(0), s(1), . . . , s(N − 1) with its time-delayed (or shifted) signal s(t), s(t +

1), . . . , s(N−1+t). Formally, we can think of these signals as periodically continued

sequences (s(n))∞n=0 and (s(n+ t))∞n=0 with period length N . It is convenient to say

that a sequence is N -periodic if it is periodic with period length (not necessarily the

least period length) equal to N . The following concept is important in the context

of signal processing.

Definition 6.4.15 The autocorrelation function of an N -periodic sequence σ =

(s(n))∞n=0 of complex numbers is defined by

Aσ(t) =
N−1∑
n=0

s(n)s(n+ t) for t = 0, 1, . . . , N − 1,
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where the bar denotes complex conjugation.

In many practical applications the signal is a binary sequence, and in this case

links with number theory arise. We assume without loss of generality that the

terms of the binary sequence are 1 or −1. The aim is to construct N -periodic

binary sequences σ for which |Aσ(t)| is small for 1 ≤ t ≤ N − 1. Note that we

always have Aσ(0) = N .

Proposition 6.4.16 If σ is an N-periodic binary sequence with terms ±1, then

Aσ(t) ≡ N (mod 4) for t = 0, 1, . . . , N − 1.

Proof. Let t be fixed. For j, k = ±1, let Dj,k be the number of integers n with

0 ≤ n ≤ N − 1 and (s(n), s(n+ t)) = (j, k). Then

Aσ(t) = D1,1 +D−1,−1 −D1,−1 −D−1,1.

By counting the number of 0 ≤ n ≤ N − 1 with s(n) = 1 in two ways, we obtain

D1,−1 +D1,1 = D−1,1 +D1,1,

and this implies D1,−1 = D−1,1. Moreover,

N = D1,1 +D−1,−1 +D1,−1 +D−1,1 = D1,1 +D−1,−1 + 2D1,−1.

Hence

Aσ(t) = D1,1 +D−1,−1 − 2D1,−1 = N − 4D1,−1

and the result follows. 2

Example 6.4.17 The 4-periodic sequence σ obtained by the periodic continuation

of the signal 1, 1, 1,−1 has autocorrelation function Aσ(0) = 4 and Aσ(t) = 0 for

t = 1, 2, 3.

Remark 6.4.18 If we write the N shifts of an N -periodic binary sequence σ with

Aσ(t) = 0 for t = 1, . . . , N−1 as rows of a matrix, then we get a circulant Hadamard

matrix . However, the circulant Hadamard matrix conjecture claims that no circulant

Hadamard matrix of order N > 4 exists. This conjecture has been verified for a

large finite range of values of N (see [99]).

A remarkable number-theoretic sequence with small autocorrelation function is

the Legendre sequence λ = (`(n))∞n=0 for the odd prime modulus p which is given by

`(n) = 1 if n ≡ 0 (mod p) and `(n) =
(
n
p

)
= η(n) for n 6≡ 0 (mod p), where

(
n
p

)
is

the Legendre symbol (see Definition 1.2.22) and η is the quadratic character of Fp.
It is obvious that λ is a p-periodic binary sequence.
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Theorem 6.4.19 The autocorrelation function Aλ(t), 1 ≤ t ≤ p−1, of the Legendre

sequence λ for the odd prime modulus p is given by

Aλ(t) =

{
2η(t)− 1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Proof. For t = 1, . . . , p− 1, we obtain

Aλ(t) = η(t) + η(−t) +
∑
n∈Fp

η(n)η(n+ t) = η(t) + η(−t)− 1

by Lemma 6.4.7, and it remains to observe that η(−1) = (−1)(p−1)/2 by Example

1.2.25. 2

Remark 6.4.20 For an integer d ≥ 2, let Bd = (an)∞n=1 be the maximal period

sequence over F2 introduced in (5.29) and Remark 5.4.6. Note that Bd is periodic

with least period length 2d−1. We can easily turn Bd into a (2d−1)-periodic binary

sequence σd = (s(n))∞n=0 with terms ±1 by putting

s(n) = (−1)an+1 for n = 0, 1, . . . .

There is only one nontrivial additive character χ of F2 and it is given by χ(c) = (−1)c

for c ∈ F2 = {0, 1}. The autocorrelation function Aσd(t) of σd can be computed for

t = 1, . . . , 2d − 2 by

Aσd(t) =
2d−2∑
n=0

s(n)s(n+ t) =
2d−2∑
n=0

(−1)an+1−an+t+1 =
2d−1∑
n=1

χ(an − an+t) = −1,

where we used Theorem 5.4.8 in the last step. The binary sequences σd derived from

maximal period sequences over F2 have thus an extremely small autocorrelation

function. In fact, since Aσ(t) ≡ 2d − 1 ≡ −1 (mod 4) for every (2d − 1)-periodic

binary sequence σ by Proposition 6.4.16, the values of Aσd(t) for 1 ≤ t ≤ 2d − 2 are

as close to 0 as possible. This optimality property explains why the binary sequences

σd are highly popular in signal processing.

6.4.4 Hadamard transform and bent functions

Now we turn to connections between Hadamard matrices and cryptography, and in

particular block ciphers (see Section 2.2). We start with some basic concepts.

Definition 6.4.21 A Boolean function f (of n variables) is a map f : Fn2 → F2.

The associated binary function F with values ±1 ∈ Z is defined by

F (u) = (−1)f(u) for all u ∈ Fn2 .
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The Boolean functions that are given by the dot products

lv(u) = u · v = u1v1 + · · ·+ unvn ∈ F2

with variable u = (u1, . . . , un) ∈ Fn2 and fixed v = (v1, . . . , vn) ∈ Fn2 are called

linear , and they are affine if a constant c ∈ F2 is added to lv(u). Boolean functions

suitable for cryptography should not be “close” to any affine Boolean function, in a

sense that can be made precise (see [160, Section 3.6]).

Definition 6.4.22 The Hadamard transform of the binary function F on Fn2 (or of

the corresponding Boolean function f of n variables) is the integer-valued function

F̂ on Fn2 given by

F̂ (u) =
∑
v∈Fn2

(−1)u·vF (v) for all u ∈ Fn2 .

Note the close connection between the coefficients (−1)u·v in the Hadamard

transform and the entries of the Sylvester matrix Sn in Theorem 6.4.6. The hat

symbol was already used in Section 4.3 for Fourier coefficients of periodic func-

tions on Rs. In the present subsection it will be employed only for the Hadamard

transform, and so there should not be any danger of confusion.

Remark 6.4.23 We observe that F̂ (u) can be written also as

F̂ (u) =
∑
v∈Fn2

(−1)u·v+f(v),

and so F̂ (u) is the difference of the numbers of v ∈ Fn2 for which u · v and f(v)

are equal or different, respectively. The Hadamard transform provides one way of

measuring how well f can be approximated by linear or affine Boolean functions.

For Boolean functions suitable for cryptography, the number

max
u∈Fn2

|F̂ (u)|

has to be small (see again [160, Section 3.6]).

Proposition 6.4.24 (Parseval Identity) Every binary function F on Fn2 satisfies∑
u∈Fn2

F̂ (u)2 = 22n.

Proof. An easy computation yields∑
u∈Fn2

F̂ (u)2 =
∑
u∈Fn2

( ∑
v∈Fn2

(−1)u·vF (v)
)2

=
∑
u∈Fn2

∑
v,w∈Fn2

(−1)u·v+u·wF (v)F (w)

=
∑

v,w∈Fn2

F (v)F (w)
∑
u∈Fn2

(−1)u·(v−w).
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For v = w the inner sum is equal to 2n. For v 6= w there exists a vector x ∈
Fn2 with x · (v − w) = 1. Then χ(u) = (−1)u·(v−w) for all u ∈ Fn2 defines a

nontrivial character of the finite abelian group Fn2 under vector addition, and so the

orthogonality relation (1.9) implies that the inner sum vanishes. Therefore∑
v,w∈Fn2

F (v)F (w)
∑
u∈Fn2

(−1)u·(v−w) =
∑
v∈Fn2

F (v)22n = 22n,

and the result follows. 2

Corollary 6.4.25 Every binary function F on Fn2 satisfies

max
u∈Fn2

|F̂ (u)| ≥ 2n/2.

Proof. This is an immediate consequence of Proposition 6.4.24. 2

Corollary 6.4.25 imposes a restriction on how small we can make the quantity

maxu∈Fn2 |F̂ (u)| in Remark 6.4.23. If you are ambitious, then you will strive to

achieve equality in the lower bound in Corollary 6.4.25. This inflicts a serious

limitation, because then the Parseval identity shows that we must have F̂ (u)2 = 2n

for all u ∈ Fn2 . These functions F are singled out by the following terminology.

Definition 6.4.26 The binary function F on Fn2 (or the corresponding Boolean

function f of n variables) is called bent if

|F̂ (u)| = 2n/2 for all u ∈ Fn2 .

Since the Hadamard transform is integer-valued, it is obvious that bent functions

can exist only if the number n of variables is even. Here is an appealing link between

bent functions and Hadamard matrices.

Theorem 6.4.27 Let f be a Boolean function of n variables and let F be the asso-

ciated binary function. Then the following three assertions are equivalent:

(i) f is bent;

(ii) (2−n/2F̂ (u + v))u,v∈Fn2 is a Hadamard matrix of order 2n;

(iii) (F (u + v))u,v∈Fn2 is a Hadamard matrix of order 2n.

Proof. Note that f ist bent if and only if 2−n/2F̂ (u) = ±1 for all u ∈ Fn2 . For every

nonzero vector v ∈ Fn2 and every binary function F on Fn2 , we get∑
u∈Fn2

F̂ (u)F̂ (u + v) = 2n
∑
w∈Fn2

(−1)v·wF (w)2 = 0
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by similar arguments as in the proof of Proposition 6.4.24. Therefore (i) and (ii) are

equivalent.

Now assume that (iii) is true, that is,∑
u∈Fn2

F (u)F (u + v) = 0

for all nonzero vectors v ∈ Fn2 . Then with x = v + w we get

F̂ (u)2 =
∑

v,w∈Fn2

(−1)u·(v+w)F (v)F (w) =
∑
x∈Fn2

(−1)u·x
∑
w∈Fn2

F (w)F (w + x) = 2n

and f is bent. Conversely, assume that f is bent, and thus (ii) holds. Then also the

Boolean function g defined by (−1)g(u) = 2−n/2F̂ (u) for all u ∈ Fn2 is bent. Denote

by Ĝ the Hadamard transform of g. Then F (u) = 2−n/2Ĝ(u) for all u ∈ Fn2 , and so

(iii) follows from (ii). 2

Example 6.4.28 Let n = 2m with m ∈ N and consider the Boolean function

f(u1, . . . , u2m) = u1u2 + u3u4 + · · ·+ u2m−1u2m.

The value F̂ (u) of the Hadamard transform of f at u = (u1, . . . , u2m) ∈ F2m
2 is given

by

F̂ (u) =
∑

v∈F2m
2

(−1)u·v(−1)f(v) =
m∏
j=1

( ∑
v,w∈F2

(−1)u2j−1v+u2jw+vw
)
.

By distinguishing the cases u2j−1 = u2j = 0, u2j−1 = u2j = 1, and u2j−1 6= u2j, we

see that the last double sum has the value ±2. Therefore F̂ (u) = ±2m, and so f is

bent. An entire cottage industry is devoted to the construction of bent functions;

we refer to [78] for a recent survey.

There are several cryptographic quality measures for Boolean functions including

the algebraic degree and the nonlinearity. Very often it is rather easy to find Boolean

functions that are optimal with respect to one of these measures, as for example bent

functions. However, the best Boolean functions with respect to one measure can be

weak with respect to other measures. Hence Boolean functions that guarantee good

behavior with respect to all or at least many such measures are in high demand. In

this sense, finding a good cryptographic Boolean function is somehow like finding a

spouse where also a trade-off between different desirable features is needed. (The

wives of the authors are exceptions since they both have all desirable features.) We

will explain this more carefully—for Boolean functions and not for spouses where we

recommend, say, the books of the world-famous relationship counselor John Gray.
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Each Boolean function f of n variables can be uniquely represented by a poly-

nomial

P (x1, . . . , xn) =
1∑

i1,...,in=0

ai1,...,inx
i1
1 · · ·xinn ∈ F2[x1, . . . , xn], (6.16)

that is,

f(c1, . . . , cn) = P (c1, . . . , cn) for all (c1, . . . , cn) ∈ Fn2
with the convention 00 = 1 ∈ F2. This representation is called the algebraic normal

form (ANF ) of f . The algebraic degree of a Boolean function f with ANF (6.16) is

defined by

deg(f) = max {i1 + · · ·+ in : ai1,...,in = 1},

where deg(f) = 0 if all ai1,...,in = 0.

Boolean functions of small algebraic degree are predictable and the coefficients

of their ANF can be determined from a small system of linear equations. More

precisely, a Boolean function f of n variables and of algebraic degree d has at most

1 +
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
d

)
nonzero coefficients and, for example, the values of f at all

(c1, . . . , cn) ∈ Fn2 with at most d coordinates ci = 1 define such a system of linear

equations. Hence a large algebraic degree is desirable for a cryptographic Boolean

function. Moreover, for n ≥ 2 the number of Boolean functions of n variables and of

algebraic degree at most n− 2 is 2
∑n−2
i=0 (ni) = 22n−n−1, which is negligible compared

to the total number 22n of all Boolean functions of n variables if n is large. In this

sense, almost all Boolean functions of n variables are of algebraic degree n− 1 or n.

The nonlinearity NL(f) of a Boolean function f of n variables is defined by

NL(f) = 2n−1 − 1

2
max
u∈Fn2

|F̂ (u)|.

It is a measure for how different f is from all affine Boolean functions (compare

with Remark 6.4.23), and thus a Boolean function of small nonlinearity is again

predictable. We infer from Corollary 6.4.25 that

NL(f) ≤ 2n−1 − 2n/2−1

for all Boolean functions f of n variables, and this upper bound is attained exactly

for bent functions. However, the algebraic degree of a bent function is at most n/2

for n ≥ 4.

Now we present a number-theoretic construction of a Boolean function of n

variables with algebraic degree at least n−1 for which we can still prove an interesting

lower bound on its nonlinearity.

Let p be an odd prime number and put n = blog2 pc. We introduce the Boolean

function g of n variables given by

g(c1, . . . , cn) =

{
0 if c is a quadratic residue modulo p,

1 otherwise,
(6.17)
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where c = c1 + 2c2 + · · · + 2n−1cn with c1, . . . , cn ∈ {0, 1}. We note that 2 is a

quadratic residue modulo p if and only if p ≡ ±1 (mod 8) (see [152, Theorem 3.3]).

Theorem 6.4.29 Let p be a prime number with p ≡ ±3 (mod 8) and let g be the

Boolean function defined by (6.17). Then deg(g) ≥ n− 1.

Proof. The case n = 1 is trivial, and so we can assume that n ≥ 2. Put

h(c1, . . . , cn−1) := g(0, c1, . . . , cn−1) + g(c1, . . . , cn−1, 0)

for all (c1, . . . , cn−1) ∈ Fn−12 . If c is a quadratic residue modulo p, then 2c is a

quadratic nonresidue modulo p and vice versa since by assumption 2 is a quadratic

nonresidue modulo p. Hence one of the two summands in the definition of h is 1

and the other one is 0. Therefore

h(c1, . . . , cn−1) =

{
1 if (c1, . . . , cn−1) 6= (0, . . . , 0),

0 if (c1, . . . , cn−1) = (0, . . . , 0),

which can be written in the form

h(c1, . . . , cn−1) =
n−1∏
i=1

(1 + ci) + 1.

It follows that deg(g) ≥ deg(h) = n− 1. 2

Theorem 6.4.30 Let p be an odd prime number and let g be the Boolean function

defined by (6.17). Then

NL(g) > 2n−1 − (n+ 2)1/227n/8 − 1

2
.

Proof. The bound is trivial for n = 1 and n = 2, and so we can assume that n ≥ 3.

Let η be the quadratic character of Fp (see Remark 1.4.53). Since

η(v) = (−1)g(v1,...,vn) for 1 ≤ v ≤ 2n − 1,

the Hadamard transform Ĝ of g can be written in the form

Ĝ(u) =
∑
v∈Fn2

(−1)u·v+g(v) =
2n−1∑
v=0

η(v)(−1)u·v + (−1)g(0),

where u ∈ Fn2 and v = (v1, . . . , vn) ∈ Fn2 if v = v1 + 2v2 + · · ·+ 2n−1vn. We introduce

the sum

S(u) =
2n−1∑
v=0

η(v)(−1)u·v
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and note that |Ĝ(u)| ≤ |S(u)|+ 1. We put

k =

⌈
3

4
(n+ 1)

⌉
≤ n, N = 2k, M = 2n−k.

With w = (u1, . . . , uk) and x = (uk+1, . . . , un), that is, u = (w,x) ∈ Fk2 × Fn−k2 , we

can write

S(u) =
N−1∑
a=0

M−1∑
b=0

η(a+Nb)(−1)a·w+b·x,

where a ∈ Fk2 corresponds to the integer a and b ∈ Fn−k2 corresponds to the integer

b in the way we have seen before. Then

|S(u)| ≤
N−1∑
a=0

∣∣∣M−1∑
b=0

η(a+Nb)(−1)b·x
∣∣∣.

An application of the Cauchy-Schwarz inequality yields

|S(u)|2 ≤
(N−1∑
a=0

1 ·
∣∣∣M−1∑
b=0

η(a+Nb)(−1)b·x
∣∣∣)2

≤ N
N−1∑
a=0

∣∣∣M−1∑
b=0

η(a+Nb)(−1)b·x
∣∣∣2

≤ N
M−1∑
b1,b2=0

∣∣∣N−1∑
a=0

η((a+Nb1)(a+Nb2))
∣∣∣.

For the M ordered pairs (b1, b2) with b1 = b2, the absolute value of the inner sum

is trivially bounded by N . For the remaining M(M − 1) ordered pairs (b1, b2) with

b1 6= b2, the inner sum is of the form of the character sum in (6.8), but for parts of

the period. By a standard bound (see [182, Lemma 3.4]), the absolute value of the

inner sum is at most 2p1/2 log p. Collecting everything gives

|S(u)|2 ≤ N(MN + 2M2p1/2 log p) ≤ 2k(2n + 22n−2k+12(n+1)/2(n+ 1))

≤ 2n+k(n+ 2) < 4 · 27n/4(n+ 2).

The proof is completed by recalling that |Ĝ(u)| ≤ |S(u)|+ 1 for all u ∈ Fn2 . 2

There are several other cryptographic measures for Boolean functions including

the nonlinearity of higher order, the m-resiliency, and the algebraic thickness. For

more details on Boolean functions and their cryptographic measures, we refer to the

monograph [33] and the survey article [18].
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6.5 Number theory and quantum computation

6.5.1 The hidden subgroup problem

A quantum computer performs operations on data based on quantum-mechanical

phenomena. Although small-scale experiments for quantum computation have al-

ready been carried out, such as factoring the number 15, large-scale quantum com-

puters are currently out of reach. However, several efficient algorithms for large-scale

quantum computers have already been developed, including the Shor algorithm for

factoring integers. In this subsection, we take a quantum algorithm for solving the

hidden subgroup problem as a black-box, that is, the specifics of the quantum algo-

rithm are not our concern, and we explain how it can be used to resolve the factoring

problem and the discrete logarithm problem. A detailed introduction to quantum

computation and quantum information theory is out of the scope of this book and

we refer instead to the monograph [150].

The hidden subgroup problem can be phrased as follows: let f be a function

from an abelian group G to a finite set X such that f is constant on the cosets of

a subgroup K of G and has distinct values on different cosets; then find K from

evaluations of f . We think of f as hiding the subgroup K. Although there is no

classical algorithm known for solving this problem efficiently, a quantum computer

could crack the hidden subgroup problem. We emphasize again that we use such an

algorithm only as a black-box and we refer to [150, Section 5.4] for the details.

The quantum computation part of the celebrated algorithm of Shor [180] for

factoring integers solves the following period-finding problem efficiently on a quantum

computer: let f be any periodic function from Z into a finite set X without repetition

in a period; then find r ∈ N with f(m + r) = f(m) for all m ∈ Z. Here the hidden

subgroup of Z is K = {nr : n ∈ Z}. If X is a finite abelian group with the

multiplicative notation, a ∈ X an element of order r, and f(m) = am, then we get

an order-finding problem.

Both the factoring problem and the discrete logarithm problem can be reduced

to an instance of the hidden subgroup problem. We discuss the factoring problem

first and we consider only the situation that arises when one attempts to break the

RSA public-key cryptosystem (see Subsection 2.3.2).

Algorithm 6.5.1 (Shor Algorithm) Let n = pq be the product of two different

odd prime numbers p and q. Find p and q.

Step 1: choose a random integer a with 1 ≤ a < n, where we may assume that

gcd(a, n) = 1 since otherwise gcd(a, n) is either p or q.

Step 2: use the (quantum) order-finding algorithm to compute the multiplicative

order r of a modulo n.

Step 3: if r is even and ar/2 6≡ −1 (mod n), then gcd(ar/2−1, n) and gcd(ar/2+1, n)

are the prime factors of n; otherwise return to Step 1.
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The confirmation of the efficiency of this probabilistic algorithm is based on

the following theorem. We recall from Example 1.3.7 that Rm denotes the finite

abelian group formed by the integers a with 0 ≤ a < m and gcd(a,m) = 1 under

multiplication modulo m, where m is any positive integer.

Theorem 6.5.2 Let n = pq be the product of two different odd prime numbers

p = 2s1d1 + 1 and q = 2s2d2 + 1 with integers 1 ≤ s1 ≤ s2 and odd integers d1 and

d2. Suppose that a ∈ Rn is chosen uniformly at random. Then the probability that

the multiplicative order r of a modulo n is even and ar/2 6≡ −1 (mod n) is

1− 4s1 + 2

3 · 2s1+s2
≥ 1

2
.

Proof. First we note that for every positive divisor t of p − 1, the congruence

at ≡ 1 (mod p) has exactly t solutions a ∈ Rp, namely a ≡ gj(p−1)/t (mod p),

j = 0, 1, . . . , t − 1, if g is a primitive root modulo p. Moreover, if t is a positive

divisor of (p − 1)/2, then at ≡ −1 (mod p) has exactly t solutions a ∈ Rp, namely

a ≡ gj(p−1)/t+(p−1)/2t (mod p), j = 0, 1, . . . , t− 1.

We show that the probability that either r is odd or r is even and ar/2 ≡
−1 (mod n) is

1

2s1+s2
+

4s1 − 1

3 · 2s1+s2
=

4s1 + 2

3 · 2s1+s2
≤ 1

3
+

2

3 · 4s1
≤ 1

2
.

Let r1 and r2 be the multiplicative orders of a modulo p and modulo q, respectively.

First we prove that the probability that r is odd is 2−s1−s2 . The elements of odd

order in Rp are exactly the d1 elements a ∈ Rp with ad1 ≡ 1 (mod p), and so the

probability that r1 is odd is d1/(p− 1) = 2−s1 . Similarly, the probability that r2 is

odd is d2/(q− 1) = 2−s2 . Now r is the least common multiple of r1 and r2. Hence r

is odd if and only if both r1 and r2 are odd, which occurs with probability 2−s1−s2 .

Now we show that the probability that r is even and ar/2 ≡ −1 (mod n) is

4s1 − 1

3 · 2s1+s2
.

If r = 2sd is even with an integer s ≥ 1 and an odd integer d, and if ar/2 ≡
−1 (mod n), then ar/2 ≡ −1 (mod p). Hence r1 does not divide r/2, but r1 divides

r and 2s is the largest power of 2 dividing r1. Note that 1 ≤ s ≤ s1 since r1
divides p− 1. The elements a ∈ Rp of such an order are characterized by a2

s−1d1 ≡
−1 (mod p). Their number is 2s−1d1 and their probability is 2s−s1−1. Similarly, 2s is

also the largest power of 2 dividing r2 and the elements a ∈ Rq of such an order are

characterized by a2
s−1d2 ≡ −1 (mod q). Their number is 2s−1d2 and their probability

is 2s−s2−1. So the probability that a ∈ Rn has an order of the form r = 2sd is

4s−1

2s1+s2
, s = 1, . . . , s1,
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which sums up to
4s1 − 1

3 · 2s1+s2
,

and so we are done. 2

Remark 6.5.3 You have certainly figured out the conclusion in Step 3 of Algorithm

6.5.1, but since this point is important, we flog a dead horse and write down the

argument. If r is even, then since ar ≡ 1 (mod n), we know that ar − 1 = (ar/2 −
1)(ar/2+1) is divisible by n. If ar/2 6≡ −1 (mod n), then since also ar/2 6≡ 1 (mod n),

one of the prime factors of n must divide ar/2 − 1 and the other one ar/2 + 1.

Example 6.5.4 For n = 21 there are three elements a ∈ R21 of odd order r and

three elements a ∈ R21 with even order r and ar/2 ≡ −1 (mod 21). Since |R21| =

φ(21) = 12, the probability to get a random element a ∈ R21 with even order r and

ar/2 6≡ −1 (mod 21) is exactly 1
2
. The boldface numbers in the following table are

warning signs that highlight cases where one of the conditions in Step 3 of Algorithm

6.5.1 is not satisfied.

a 1 2 4 5 8 10 11 13 16 17 19 20

r 1 6 3 6 2 6 6 2 3 6 6 2

ar/2 (mod 21) − 8 − −1 8 −8 8 −8 − −1 −8 −1

gcd(ar/2 + 1, 21) − 3 − 21 3 7 3 7 − 21 7 21

gcd(ar/2 − 1, 21) − 7 − 1 7 3 7 3 − 1 3 1

Another instance of the hidden subgroup problem solves the discrete logarithm

problem. The basic idea of this algorithm also goes back to the paper [180].

Algorithm 6.5.5 Let q be a prime power, let a ∈ F∗q be an element of order r, and

suppose we know that a given b ∈ F∗q satisfies b = as with s ∈ Z and 0 ≤ s < r.

Find s.

Step 1: take f : Z2
r → Fq with f(h1, h2) = bh1ah2 for all (h1, h2) ∈ Z2

r and find the

(hidden) subgroup

K = {(k,−ks) : k ∈ Zr}

of Z2
r using the (quantum) algorithm for solving the hidden subgroup problem.

Step 2: choose an arbitrary element (k1, k2) ∈ K with gcd(k1, r) = 1 and determine

s from the congruence k1s ≡ −k2 (mod r).

Remark 6.5.6 Since f(h1 +k, h2−ks) = bh1+kah2−ks = bh1bkah2b−k = f(h1, h2) for

all k ∈ Zr, the function f is constant on each coset (h1, h2) +K of K. It remains to

show that two ordered pairs (h1, h2), (j1, j2) ∈ Z2
r with f(h1, h2) = f(j1, j2) belong

to the same coset of K. From bh1ah2 = bj1aj2 we get, with b = as and since r is the

order of a, that

h1s+ h2 ≡ j1s+ j2 (mod r).
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Hence in the group Z2
r this yields the identity

(h1 − j1, h2 − j2) = (h1 − j1,−(h1 − j1)s) ∈ K,

and thus (h1, h2) +K = (j1, j2) +K.

Example 6.5.7 Take q = 7, a = 3, b = 4, and so r = 6. Then f : Z2
6 →

F7 is given by f(h1, h2) ≡ 4h13h2 (mod 7) for all (h1, h2) ∈ Z2
6 . Here K =

{(0, 0), (1, 2), (2, 4), (3, 0), (4, 2), (5, 4)} consists of the elements (c, d) ∈ Z2
6 with

f(h1 + c, h2 + d) ≡ 4h1+c3h2+d ≡ 4h13h2 ≡ f(h1, h2) (mod 7),

that is, 4c3d ≡ 1 (mod 7). Choose any (k1, k2) ∈ K with gcd(k1, 6) = 1, say

(k1, k2) = (5, 4), and determine s from the congruence 5s ≡ −4 (mod 6). This

yields s = 4. You can check that as ≡ 34 ≡ 4 ≡ b (mod 7).

The upshot of Algorithms 6.5.1 and 6.5.5 is of course that as soon as large-

scale quantum computers are available, then cryptographic schemes based on the

presumed difficulty of factoring integers or on the presumed difficulty of solving the

discrete logarithm problem will be seriously compromised. But cryptographers are

visionary people and they have thought for many years about alternative schemes

that may stand tall against the onslaught of quantum computers. An entire branch

of cryptography called post-quantum cryptography is devoted to the design of such

alternative schemes (see the book [11]). Examples of cryptographic schemes that

will, as far as one can tell at present, survive quantum computers are lattice-based

cryptosystems and code-based cryptosystems; the latter were briefly discussed in

Section 3.6.

6.5.2 Mutually unbiased bases

Mutually unbiased bases were introduced in the literature on quantum mechanics

by Schwinger [178]. They are important not only for quantum physics, but also for

applications to quantum information theory. Mutually unbiased bases are collec-

tions of orthonormal bases of a complex vector space with a characteristic property

described in Definition 6.5.8 below.

The setting is the n-dimensional complex vector space Cn with n ≥ 2. This

vector space is endowed with the Hermitian inner product

〈y|z〉 =
n∑
j=1

yjzj

for all y = (y1, . . . , yn) ∈ Cn and z = (z1, . . . , zn) ∈ Cn, where the bar denotes com-

plex conjugation. By the way, this is the definition of the Hermitian inner product
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that is used in the theory of mutually unbiased bases and stems from quantum me-

chanics. The standard definition in the mathematical literature takes the complex

conjugate thereof. A basis B = {w1, . . . ,wn} of Cn is an orthonormal basis of Cn if

for 1 ≤ j, k ≤ n,

〈wj|wk〉 =

{
1 if j = k,

0 if j 6= k.

For instance, the standard basis S = {s1, . . . , sn} of Cn is an orthonormal basis,

where sj, j = 1, . . . , n, has jth coordinate equal to 1 and all other coordinates equal

to 0.

Definition 6.5.8 Two orthonormal bases B and B′ of Cn are mutually unbiased if

|〈w|w′〉| = 1√
n

for all w ∈ B and w′ ∈ B′.

For an integer m ≥ 1, a collection B0, B1, . . . , Bm of m+ 1 orthonormal bases of Cn

is mutually unbiased if Bh and Bi are mutually unbiased for 0 ≤ h < i ≤ m.

It is known that any collection of mutually unbiased bases of Cn can contain at

most n+1 orthonormal bases of Cn. Maximal collections of n+1 mutually unbiased

bases of Cn are of considerable interest.

Example 6.5.9 For n = 2, the orthonormal bases B0, B1, B2 of C2 given by

B0 = {(1, 0), (0, 1)},

B1 =

{
1√
2

(1, 1),
1√
2

(1,−1)

}
,

B2 =

{
1√
2

(1, i),
1√
2

(1,−i)

}
form a maximal collection of three mutually unbiased bases of C2. Here i =

√
−1 is

as usual the imaginary unit.

Believe it or not, maximal collections of mutually unbiased bases can be con-

structed with the help of finite fields, although the fields C and Fq are of a quite

different nature. This is another demonstration of the unity of mathematics.

Theorem 6.5.10 Let n = q be a power of an odd prime and let χ be a nontrivial

additive character of Fq. For every h ∈ Fq, define Bh = {wh,k}k∈Fq by

wh,k =
1
√
q

(
χ(ha2 + ka)

)
a∈Fq
∈ Cq for all k ∈ Fq.

Then the standard basis S of Cq and the Bh for h ∈ Fq form a maximal collection

of q + 1 mutually unbiased bases of Cq.
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Proof. We already know that the standard basis S of Cq is an orthonormal basis

of Cq. Next we show that Bh is an orthonormal basis of Cq for every h ∈ Fq. This

follows from

〈wh,j|wh,k〉 =
1

q

∑
a∈Fq

χ(ha2 + ja)χ(ha2 + ka) =
1

q

∑
a∈Fq

χ((k − j)a)

for all j, k ∈ Fq and the orthogonality relation (1.9). It is trivial that S and each Bh

with h ∈ Fq are mutually unbiased. Finally, we consider Bh and Bi with h, i ∈ Fq
and h 6= i. Then

|〈wh,j|wi,k〉| =
1

q

∣∣∣∑
a∈Fq

χ((i− h)a2 + (k − j)a)
∣∣∣ =

1

q

∣∣∣∑
b∈Fq

χ((i− h)b2)
∣∣∣

for all j, k ∈ Fq. In the last step we used the usual trick of completing the square

(which works since q is odd) and a suitable change of the summation variable. For

the absolute value of the last sum we get with c = i− h ∈ F∗q,∣∣∣∑
b∈Fq

χ(cb2)
∣∣∣2 =

∑
a,b∈Fq

χ(c(a2 − b2)) =
∑
b∈Fq

∑
a∈Fq

χ(c((a+ b)2 − b2))

=
∑
b∈Fq

∑
a∈Fq

χ(c(a2 + 2ab)) =
∑
a∈Fq

χ(ca2)
∑
b∈Fq

χ(2cab) = q,

and the result follows. Note that in the last step we again used (1.9) and the fact

that q is odd. 2

Further constructions of maximal collections of mutually unbiased bases using

finite fields can be found in [80]. There is also a construction in [80] for dimensions

n that are powers of 2 based on so-called Galois rings, which are algebraic structures

that are somewhat more general than finite fields. Thus, maximal collections of n+1

mutually unbiased bases of Cn are known for all prime powers n. It is conjectured

that there are dimensions n for which collections of n + 1 mutually unbiased bases

of Cn do not exist. There is particularly strong evidence for this in the case n = 6

(see again [80]).

6.6 Primality tests

6.6.1 Fermat test and Carmichael numbers

Large prime numbers are needed in several applications including cryptography (see

Chapter 2) and pseudorandom number generation (see Chapter 5). This raises the

issue of how to decide whether a given large integer is a prime number or a composite

number, and this is what primality tests are all about. Because of their importance



6.6. PRIMALITY TESTS 405

for areas such as cryptography, there is an extensive literature on primality tests.

Exemplary treatments of the subject are given in the standard monographs of Bach

and Shallit [6], Crandall and Pomerance [30], and Riesel [169]. Just to satisfy

your curiosity, we briefly discuss some classical primality tests and we mention an

important more recent achievement in Remark 6.6.12.

There is a basic dichotomy between probabilistic primality tests (also called

pseudoprime tests) and deterministic primality tests. In a probabilistic primality

test, as in any probabilistic algorithm, we are allowed to make random choices

in various steps of the algorithm. A typical probabilistic algorithm (though for

factoring and not for primality testing) is Algorithm 6.5.1. Probabilistic primality

tests tend to be faster, but there is no absolute guarantee of success. Indeed, there

can be composite numbers that pass the primality test even after many random

choices in the algorithm.

A simple deterministic primality test is based on the observation that is as old

as the hills, namely that a composite number n has a divisor d with 2 ≤ d ≤ n1/2.

Thus, we test whether any of the integers 2, 3, . . . , bn1/2c divides the given integer

n ≥ 4, and if this is not the case, then we know for sure that n is a prime number.

However, this primality test is futile for integers n of cryptographic relevance, that

is, for n of the order of magnitude 10150 or even larger. We need vastly more efficient

algorithms for such n.

When designing a primality test, whether deterministic or probabilistic, it is a

good idea to look for a condition that a prime number must necessarily satisfy. If

this condition fails to hold for an integer n ≥ 2, then we can infer that n is composite.

A simple and elegant necessary condition for primality is given by Fermat’s little

theorem (see Corollary 1.2.16), and this is the basis for the following primality

test. Recall that Fermat’s little theorem says that if n is a prime number, then

an−1 ≡ 1 (mod n) for all a ∈ Z with gcd(a, n) = 1. Thus, if an arbitrary integer

n ≥ 2 is given and we can find an integer a with an−1 6≡ 1 (mod n) and gcd(a, n) = 1,

then n must be composite. The Fermat test proceeds by randomly picking integers

a with gcd(a, n) = 1, where we can assume also that 1 ≤ a ≤ n − 1, and checking

whether an−1 ≡ 1 (mod n) or not. If n is very large, then the power an−1 can be

computed by the efficient square-and-multiply algorithm (see Algorithm 2.3.9). We

may of course be tempted to conclude that if an−1 ≡ 1 (mod n) for all a ∈ Z with

gcd(a, n) = 1, then n is a prime number. But we are in for a bad surprise!

Example 6.6.1 Let n = 561 = 3 · 11 · 17. Now we take an arbitrary a ∈ Z with

gcd(a, 561) = 1. Then gcd(a, 3) = gcd(a, 11) = gcd(a, 17) = 1, and so Fermat’s little

theorem yields a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), and a16 ≡ 1 (mod 17). By raising

these congruences to suitable powers, we obtain a560 ≡ 1 (mod 3), a560 ≡ 1 (mod 11),

and a560 ≡ 1 (mod 17), and so a560 ≡ 1 (mod 561) for all a ∈ Z with gcd(a, 561) = 1.

This means that no matter which integer a with gcd(a, n) = 1 we try, the condition
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an−1 ≡ 1 (mod n) is satisfied for n = 561, but nevertheless 561 is a composite

number. Thus, the Fermat test fails for this n. We give a special name to these bad

guys n.

Definition 6.6.2 A composite number n satisfying an−1 ≡ 1 (mod n) for all a ∈ Z
with gcd(a, n) = 1 is called a Carmichael number .

Therefore 561 is a Carmichael number and it is in fact the smallest Carmichael

number. Here are some properties of Carmichael numbers.

Proposition 6.6.3 Every Carmichael number is squarefree, that is, it is not divis-

ible by the square of a prime number.

Proof. Assume that n is a Carmichael number with p2 dividing n for some prime

number p. The multiplicative group Rp2 is cyclic by [152, Theorem 2.41], and so

there exists an element g ∈ Rp2 of order |Rp2| = φ(p2) = p(p − 1). By the Chinese

remainder theorem (see Theorem 1.2.9), we can choose a ∈ Z with a ≡ g (mod p2)

and gcd(a, n) = 1. Then 1 ≡ an−1 ≡ gn−1 (mod p2), and so p(p − 1) divides n − 1

by Lemma 1.3.10. In particular, p divides n− 1, a contradiction. 2

Theorem 6.6.4 Let n be a squarefree composite number. Then n is a Carmichael

number if and only if p− 1 divides n− 1 for every prime factor p of n.

Proof. If p − 1 divides n − 1 for every prime factor p of n, then n is a Carmichael

number by the same argument as in Example 6.6.1. Conversely, suppose that n is a

Carmichael number and let p be a prime factor of n. For a primitive root g modulo

p, we choose a ∈ Z with a ≡ g (mod p) and a ≡ 1 (mod n/p) by the Chinese

remainder theorem. Then gcd(a, n) = 1, hence gn−1 ≡ an−1 ≡ 1 (mod p), and so

p− 1 divides n− 1 by Lemma 1.3.10. 2

By using Theorem 6.6.4, you can check again that 561 = 3·11·17 is a Carmichael

number. In the same way, you can verify that 1729 = 7 · 13 · 19 is a Carmichael

number. Fans of mathematical anecdotes know 1729 as Hardy’s cab number. Here

is the story. The famous number theorist Hardy, the first author of the book [62]

and the author of A Mathematician’s Apology (see the preface of the present book),

took a cab to visit his hospitalized friend Ramanujan, another famous number the-

orist. Being an avid collector of numbers, Hardy noted the cab number and told

Ramanujan by way of conversation that he had come in a cab with the dull number

1729. Ramanujan, an advocate of equal opportunity for all numbers, protested and

pointed out that 1729 is interesting because it is the smallest positive integer that

can be expressed in two different ways as the sum of two cubes of positive integers,
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namely 1729 = 123 + 13 = 103 + 93. But Ramanujan failed to mention that 1729 is

interesting as well because it is the third Carmichael number (in the natural order).

His excuse is that he was sick. By the way, the second Carmichael number (in the

natural order) is 1105 = 5 · 13 · 17.

You have noticed that each of the three concrete Carmichael numbers we have

mentioned has three distinct prime factors. There is a general result behind this

observation.

Proposition 6.6.5 Every Carmichael number has at least three distinct prime fac-

tors.

Proof. Each Carmichael number n is squarefree by Proposition 6.6.3. Assume that

n = pq with two primes p < q. Then q ≡ 1 (mod q − 1), hence n − 1 ≡ p − 1 6≡
0 (mod q−1), and so q−1 does not divide n−1. This is a contradiction to Theorem

6.6.4. 2

One could have the vague hope that the existence of Carmichael numbers is a

phenomenon for small integers and that sufficiently large composite numbers are

not Carmichael numbers. But it was shown in the deep paper of Alford, Granville,

and Pomerance [2] that there are infinitely many Carmichael numbers. Thus, we

have to live with Carmichael numbers when performing the Fermat test. If we know

that a given composite number is not a Carmichael number, then the analysis of the

Fermat test is easy.

Proposition 6.6.6 If the composite number n is not a Carmichael number, then

there are at most φ(n)/2 different integers a with 1 ≤ a ≤ n− 1, gcd(a, n) = 1, and

an−1 ≡ 1 (mod n).

Proof. The set

Tn = {a ∈ Rn : an−1 ≡ 1 (mod n)} ⊆ Rn = {a ∈ Zn : gcd(a, n) = 1}

is a subgroup of the multiplicative group Rn. Since n is not a Carmichael number,

Tn is a proper subgroup of Rn, and the result follows from Lagrange’s theorem (see

Theorem 1.3.21). 2

Remark 6.6.7 If the composite number n is not a Carmichael number, then for a

random choice of a ∈ Z with gcd(a, n) = 1, the probability that an−1 6≡ 1 (mod n) is

at least 1
2

according to Proposition 6.6.6. Thus, after a few random choices of a it is

detected with high probability that n is composite. For a very large n which is not

a Carmichael number, we can use only a small fraction of the candidates a ∈ Rn in

practice, and even if for all these a we have an−1 ≡ 1 (mod n), there is no guarantee

that n is a prime number, but there is a high probability for it. In this case, the

experts speak of a “probable prime”.
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6.6.2 Solovay-Strassen test

Since the Fermat test fails for the infinitely many Carmichael numbers, we need a

more sophisticated primality test. The test suggested by Solovay and Strassen [191]

is based on the theory of quadratic residues. Since every even integer greater than

3 is composite, we can assume that the number n to be tested for primality is odd.

The necessary condition for primality that we use now is obtained from Propo-

sition 1.2.23: if n is an odd prime number, then a(n−1)/2 ≡
(
a
n

)
(mod n) for all

a ∈ Z with gcd(a, n) = 1. The Solovay-Strassen test for an odd integer n ≥ 3 is

performed by randomly picking integers a with gcd(a, n) = 1 and 1 ≤ a ≤ n − 1

and by checking whether a(n−1)/2 ≡
(
a
n

)
(mod n) or not. If you are an attentive

reader, then you notice that we have not yet defined the symbol
(
a
n

)
for composite

numbers n. However, it is a simple step from the Legendre symbol
(
a
p

)
to the Jacobi

symbol
(
a
n

)
for odd composite numbers n ≥ 3. We take the canonical factorization

n =
∏k

j=1 p
ej
j of n and then the Jacobi symbol is given by

(a
n

)
=

k∏
j=1

( a
pj

)ej
for all a ∈ Z.

The actual computation of the Jacobi symbol
(
a
n

)
does not use this definition, be-

cause we would run around in a circle if for a primality test for n we required the

canonical factorization of n. In fact, for large n the Jacobi symbol
(
a
n

)
is efficiently

computed by means of the law of quadratic reciprocity without recourse to the

canonical factorization of n (see [30, Subsection 2.3.1] and [152, Section 3.3]). The

power a(n−1)/2 in the Solovay-Strassen test is computed by the square-and-multiply

algorithm (see Algorithm 2.3.9).

The big advantage of the Solovay-Strassen test over the Fermat test is that there

is no analog of Carmichael numbers for the Solovay-Strassen test. In other words,

there is a criterion for primality based on the Solovay-Strassen test, and this criterion

can in fact be proved quite easily.

Theorem 6.6.8 The odd integer n ≥ 3 is a prime number if and only if a(n−1)/2 ≡(
a
n

)
(mod n) for all a ∈ Z with gcd(a, n) = 1.

Proof. The necessity of the condition follows from Proposition 1.2.23. Conversely,

let n be composite with a(n−1)/2 ≡
(
a
n

)
(mod n) for all a ∈ Z with gcd(a, n) = 1.

Then an−1 ≡ 1 (mod n) for all such a, and so n is a Carmichael number. Therefore

n is squarefree by Proposition 6.6.3. Hence we can write n = pr with an odd

prime number p, an odd integer r ≥ 3, and gcd(p, r) = 1. Let h be a quadratic

nonresidue modulo p and choose a ∈ Z by the Chinese remainder theorem such that

a ≡ h (mod p) and a ≡ 1 (mod r). Then by assumption,

a(n−1)/2 ≡
(a
n

)
≡
(a
p

)(a
r

)
≡
(h
p

)(1

r

)
≡ −1 (mod n),
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and so a(n−1)/2 ≡ −1 (mod r). This is a contradiction to a ≡ 1 (mod r). 2

Thus, if n is an odd composite number, then the Solovay-Strassen test will ul-

timately detect this fact. The probabilistic analysis of the Solovay-Strassen test

proceeds as in Remark 6.6.7 for the Fermat test, on the basis of the following result.

In view of Theorem 6.6.8, the condition that n is not a Carmichael number can be

dropped in the present case.

Proposition 6.6.9 If n is an odd composite number, then there are at most φ(n)/2

different integers a with 1 ≤ a ≤ n− 1, gcd(a, n) = 1, and a(n−1)/2 ≡
(
a
n

)
(mod n).

Proof. Use Theorem 6.6.8 and the argument in the proof of Proposition 6.6.6, with

Tn replaced by Vn = {a ∈ Rn : a(n−1)/2 ≡
(
a
n

)
(mod n)}. 2

Remark 6.6.10 There is a fascinating connection between the extended Riemann

hypothesis (ERH) and the Solovay-Strassen test. By assuming the validity of the

ERH, the Solovay-Strassen test can be turned into a deterministic primality test

which runs in polynomial time, that is, the number of bit operations required to

test an odd integer n ≥ 3 for primality is at most of the order of magnitude (log n)c

for some known constant c > 0. The crucial number-theoretic result here is the

following one: under the ERH, for any odd composite number n there is a positive

integer a ≤ 2(log n)2 for which either gcd(a, n) 6= 1 or a(n−1)/2 6≡
(
a
n

)
(mod n). We

refer to [6, Section 9.5] and [117] for the details.

A test due to Miller [117] and Rabin [163] refines the Solovay-Strassen test. It

is based on the following necessary condition for primality.

Proposition 6.6.11 Let p be an odd prime number and write p− 1 = 2sr with an

integer s ≥ 1 and an odd integer r. Then for every a ∈ Z with gcd(a, p) = 1, either

ar ≡ 1 (mod p) or a2
jr ≡ −1 (mod p) for some j ∈ Z with 0 ≤ j ≤ s− 1.

Proof. Fermat’s little theorem yields ap−1 ≡ a2
sr ≡ 1 (mod p). If a2

jr ≡ 1 (mod p)

for some j ∈ Z with 1 ≤ j ≤ s, then a2
j−1r ≡ ±1 (mod p). Hence either

a2
jr ≡ −1 (mod p) for some 0 ≤ j ≤ s− 1 or a2

jr ≡ 1 (mod p) for all 0 ≤ j ≤ s. 2

Actually, the necessary condition in Proposition 6.6.11 is also sufficient for an odd

integer n ≥ 3 to be a prime number (see [6, Lemma 9.4.4]). In other words, we have a

criterion for primality analogous to Theorem 6.6.8. The Miller-Rabin test for an odd

integer n ≥ 3 proceeds by first writing n−1 = 2sr with an integer s ≥ 1 and an odd

integer r, then picking a random integer a with 1 ≤ a ≤ n − 1 and gcd(a, n) = 1,

and then successively computing a0 ≡ ar (mod n), a1 ≡ a20 (mod n), . . . , ak ≡
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a2k−1 (mod n) until k = s or ak ≡ 1 (mod n). For the probabilistic analysis of

the Miller-Rabin test, we need an analog of Proposition 6.6.9. This result for the

Miller-Rabin test is actually stronger than for the Solovay-Strassen test, in the sense

that the upper bound φ(n)/2 in Proposition 6.6.9 can, in a first step, be changed

to the upper bound (n − 1)/4 for the number of a ∈ Z with 1 ≤ a ≤ n − 1,

gcd(a, n) = 1, and either ar ≡ 1 (mod n) or a2
jr ≡ −1 (mod n) for some j ∈ Z

with 0 ≤ j ≤ s− 1. Unfortunately, the proof of this result is quite involved, and so

we refer again to [6, Lemma 9.4.4] for the details. For n > 9 the bound (n − 1)/4

can be improved to φ(n)/4 (see [30, Theorem 3.4.4]). These results mean that, in

general, the Miller-Rabin test has a higher chance of detecting composite numbers

than the Solovay-Strassen test.

Remark 6.6.12 The AKS test named after Agrawal, Kayal, and Saxena [1] is an

important breakthrough. It is a deterministic polynomial-time primality test in

the sense of Remark 6.6.10, but no unproved hypothesis like the ERH is needed

for the complexity analysis of the AKS test. The AKS test is therefore the first

unconditional deterministic polynomial-time primality test in history. The starting

point of the AKS test is the simple observation that for every prime number p the

identity (x+1)p = xp+1 holds in the polynomial ring Fp[x]. For every integer n ≥ 2,

we now view Zn as a finite ring with addition and multiplication modulo n, and we

can then form the polynomial ring Zn[x] in the same way as we construct Fp[x]. The

next step is then to prove that n is a prime number if and only if (x+ 1)n = xn + 1

in Zn[x]. Checking this condition for large n is too costly, and so a shortcut has

to be found. The crucial idea is that if (x + 1)n = xn + 1 holds in Zn[x], then

also (x + 1)n ≡ xn + 1 (mod f(x)) for every polynomial f(x) ∈ Zn[x] of positive

degree, where congruences in Zn[x] have the obvious meaning. For f(x) we take

f(x) = (x + a)h − 1 with a ∈ Zn and h ∈ N suitably restricted so that we still

get a correct primality test, but on the other hand a polynomial-time algorithm.

In particular, the number of choices for a and h has to be at most of the order of

magnitude (log n)c for some constant c > 0. Mastering this balancing act is the

beauty of the paper [1]. A detailed presentation of the AKS test starting from first

principles is given in the recent book of Rempe-Gillen and Waldecker [167].

6.6.3 Primality tests for special numbers

The primality tests we have discussed so far can take any (odd) integer n ≥ 2 as the

input. It should not come as a surprise that if n has a very special form, then effective

primality tests geared to the special nature of n can be designed. Specifically, we

study the case where n±1 is a power of 2. We start with n = 2s−1 for some integer

s ≥ 2.
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Definition 6.6.13 A number of the form 2s − 1 with an integer s ≥ 2 is called a

Mersenne number . If 2s − 1 is a prime number, then it is called a Mersenne prime.

Example 6.6.14 The Mersenne numbers 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31,

and 27 − 1 = 127 are Mersenne primes. On the other hand, the Mersenne numbers

24 − 1 = 15, 26 − 1 = 63, and 211 − 1 = 2047 = 23 · 89 are not Mersenne primes.

Mersenne primes are of great practical value in pseudorandom number generation:

the Mersenne prime 231− 1 is a popular modulus in the linear congruential method

(see Subsection 5.2.1) and the Mersenne prime 219937− 1 plays an important role in

the Mersenne twister (see Section 5.5).

You notice in Example 6.6.14 that in the cases where 2s−1 is a Mersenne prime,

the exponent s is always a prime number. Actually, it is a trivial general fact that

2s − 1 is a Mersenne prime only if s is a prime number (the converse does not hold:

consider 211 − 1 in Example 6.6.14). Just note that if s has the nontrivial divisor

d ≥ 2, then 2s− 1 has the nontrivial divisor 2d− 1. Therefore we consider now only

Mersenne numbers of the form 2s − 1 with a prime number s. Then the following

astonishing criterion for primality can be established, where we omit the trivial case

s = 2.

Theorem 6.6.15 Let n = 2s − 1 with a prime number s ≥ 3. Then n is a prime

number if and only if the sequence u0, u1, . . . of elements of Zn defined recursively

by

u0 = 4, uk+1 ≡ u2k − 2 (mod n) for k = 0, 1, . . . ,

satisfies us−2 = 0.

Proof. Let q be a prime factor of n and consider the polynomial

f(x) = x2 − 2(s+1)/2x− 1 ∈ Fq[x]

with roots α, β ∈ Fq2 . Then

α + β = 2(s+1)/2 and αβ = −1.

We view the uk as elements of Fq and we show by induction that

uk = α2k+1

+ β2k+1

for all k ≥ 0. (6.18)

This holds for k = 0 since 2s ≡ 1 (mod q) and

α2 + β2 = (α + β)2 − 2αβ = 2s+1 + 2 = 4 = u0.

If (6.18) holds for some k ≥ 0, then

uk+1 = u2k − 2 = (α2k+1

+ β2k+1

)2 − 2 = α2k+2

+ β2k+2

+ 2(αβ)2
k+1 − 2

= α2k+2

+ β2k+2

+ 2(−1)2
k+1 − 2 = α2k+2

+ β2k+2

,
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and the induction is complete.

If n is a prime number, then q = n. We have
(
2
n

)
= 1 since

(
2(s+1)/2

)2 ≡
2s+1 ≡ 2 (mod n). From n ≡ (−1)s − 1 ≡ 1 (mod 3) and n ≡ 3 (mod 4) we get

n ≡ 7 (mod 12). Now 3 is a quadratic residue modulo a prime number p ≥ 5 if

and only if p ≡ ±1 (mod 12), as shown in [152, p. 139]. Hence
(
3
n

)
= −1, and

then Proposition 1.2.24 yields
(
6
n

)
=
(
2
n

)(
3
n

)
= −1. The discriminant ∆(f) of the

quadratic polynomial f ∈ Fn[x] is given by ∆(f) = 2s+1 + 4 = 6 ∈ Fn, which is

a quadratic nonresidue modulo n. Therefore the usual formula for the roots of a

quadratic polynomial shows that α, β /∈ Fn, and so f is irreducible over Fn. Hence

α = βn and β = αn by Proposition 1.4.47, and thus

αn+1 = βn+1 = αβ = −1.

Now (6.18) yields

−2 = αn+1 + βn+1 = α2s + β2s = us−1 = u2s−2 − 2

in Fn, and so us−2 = 0.

Conversely, assume that us−2 = 0 with a composite n and let q be any prime fac-

tor of n with q2 ≤ n. Then α2s−1
+β2s−1

= 0 ∈ Fq by (6.18), and so α2s +(αβ)2
s−1

=

0 ∈ Fq. Thus α2s = −1 ∈ Fq and α2s+1
= 1 ∈ Fq. It follows that ord(α) = 2s+1 in

the multiplicative group F∗q2 , and so 2s+1 divides q2 − 1 by Proposition 1.3.11. But

this is impossible since q2 − 1 < n < 2s+1. 2

The primality test for Mersenne numbers based on Theorem 6.6.15 is called the

Lucas-Lehmer test . Since s = log2(n + 1), it is a deterministic polynomial-time

algorithm.

Example 6.6.16 Just for illustration, consider the toy example n = 2s − 1 with

s = 7. The numbers uk, k = 0, 1, . . . , 5, from Theorem 6.6.15 are computed in the

following table.

k 0 1 2 3 4 5

uk 4 14 67 42 111 0

Since u5 = 0, we infer from Theorem 6.6.15 that n is a prime number. This can also

be verified directly since n = 27 − 1 = 127.

For several centuries there is a competition about explicitly finding larger and

larger prime numbers. For a long time now, the new world records are Mersenne

primes since for them we have very efficient deterministic primality tests such as

the Lucas-Lehmer test. In the media a new world record is sometimes reported as

“such and such is the largest prime number”, which is of course nonsense since there
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are infinitely many prime numbers. The gripping story of the quest for large prime

numbers is told at length in [6, Section 1.2].

Now we consider numbers of the form 2s + 1 with an integer s ≥ 1. If d is a

divisor of s and s/d ≥ 3 is odd, then 2d+1 is a nontrivial divisor of 2s+1. Therefore

2s + 1 is a prime number only if s is a power of 2.

Definition 6.6.17 A number Nk of the form Nk = 22k + 1 with an integer k ≥ 0 is

called a Fermat number , and it is called a Fermat prime if it is a prime number.

Example 6.6.18 The first five Fermat numbers N0 = 21 + 1 = 3, N1 = 22 + 1 = 5,

N2 = 24 + 1 = 17, N3 = 28 + 1 = 257, and N4 = 216 + 1 = 65537 are Fermat primes,

which led Fermat to conjecture that all Fermat numbers are prime numbers. It

caused quite a stir in the 18th century when Euler discovered the nontrivial prime

factor 641 of the Fermat number N5 = 232+1, thus demolishing Fermat’s conjecture.

Some people believe that there are no Fermat primes beyond 216 + 1, and indeed

none have been found so far. The following is an easy criterion for Fermat primes.

Theorem 6.6.19 The Fermat number Nk = 22k + 1 with k ≥ 1 is a prime number

if and only if

3(Nk−1)/2 ≡ −1 (mod Nk). (6.19)

Proof. We note that Nk ≡ (−1)2
k

+ 1 ≡ 2 (mod 3) and Nk ≡ 1 (mod 4) for

k ≥ 1, and so Nk ≡ 5 (mod 12). If Nk is a prime number, then the criterion for

the quadratic-residue behavior of 3 mentioned in the proof of Theorem 6.6.15 shows

that 3 is a quadratic nonresidue modulo Nk. Hence (6.19) follows from Proposition

1.2.23.

Conversely, if (6.19) holds for some k ≥ 1, then 3Nk−1 ≡ 1 (mod Nk). Since

Nk − 1 is a power of 2, we infer that 3 has order Nk − 1 in the multiplicative group

RNk of order |RNk | = φ(Nk) ≤ Nk − 1. Hence φ(Nk) = Nk − 1, which implies that

Nk is a prime number. 2

Remark 6.6.20 It is a curious fact that Euclid’s theorem on the infinitude of prime

numbers (see Theorem 1.1.12) can be proved by means of Fermat numbers. From

Nk+1 = (Nk − 1)2 + 1 = Nk(Nk − 2) + 2 for all k ≥ 0, we derive by induction

that Nk+1 = N0 · · ·Nk + 2 for all k ≥ 0. We claim that gcd(Nk, Nm) = 1 whenever

0 ≤ k < m. For if d is a positive common divisor of Nk and Nm, then d divides

both N0 · · ·Nm−1 and Nm, and so d divides Nm −N0 · · ·Nm−1 = 2. But all Fermat

numbers are odd, and so d = 1. Thus, if for each k = 0, 1, . . . we choose a prime

factor pk of Nk, then we get an infinite sequence p0, p1, . . . of distinct prime numbers.
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6.7 Two more applications

6.7.1 Benford’s law

We could go on and on with applications of number theory, such is the richness of

the subject, but who would read a textbook with over 1000 pages? So it is time to

reach an end, but nevertheless we cannot refrain from picking two more raisins (we

hope tasty ones) from the cake. We start with a discussion of digit distributions,

and in the next subsection we present an application of number theory to raster

graphics.

Is it one of your favorite recreational activities to read long lists of bookkeeping

data? If so, then you may have noticed the rather skew distribution of the leading

digits in these data. Some attentive fellows observed this as an empirical fact, and

the physicist Frank Benford is credited for this discovery since he carried out a wide-

ranging study of data in the 1930s. This phenomenon, which is known as Benford’s

law or the first-digit law, occurs not only in accounting data, but also in large

collections of physical and mathematical constants, of stock prices, of geographic

data like lengths of rivers, and so on.

After rounding off and suitably scaling the data, we can assume that we are

talking about the leading digits in a sequence of positive integers. In the binary case,

we have the extreme situation where the leading digit in the binary representation of

a positive integer is always 1. In the decimal case considered by Benford, he noticed

that the asymptotic proportion of 1 as a leading digit is equal to log10 2 (around

30.1%), the asymptotic proportion of 2 as a leading digit is equal to log10
3
2

(around

17.6%), and so on until the asymptotic proportion of 9 as a leading digit which is

log10
10
9

(around 4.6%). For every integer b ≥ 2 and every positive integer k, we

denote by `b(k) the leading digit in the digit expansion of k in base b. For instance,

`10(37) = 3 and `10(143) = 1.

Definition 6.7.1 For an integer b ≥ 2, a sequence (kn)∞n=1 of positive integers

satisfies Benford’s law (or the first-digit law) in the base b if

lim
N→∞

#{1 ≤ n ≤ N : `b(kn) = d}
N

= logb

(
1 +

1

d

)
for d = 1, . . . , b− 1,

where logb denotes the logarithm to the base b.

There is an important sufficient condition for Benford’s law which connects this

law with the theory of uniformly distributed sequences in Subsection 4.1.1.

Theorem 6.7.2 Let b ≥ 2 be an integer and let (kn)∞n=1 be a sequence of positive

integers. If the sequence (logb kn)∞n=1 is uniformly distributed modulo 1, then the

sequence (kn)∞n=1 satisfies Benford’s law in the base b.
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Proof. We fix the base b ≥ 2. Then for k ∈ N and d ∈ {1, . . . , b − 1}, we have

`b(k) = d if and only if dbm ≤ k < (d + 1)bm for some integer m ≥ 0. By taking

logarithms, we obtain the equivalent condition m+logb d ≤ logb k < m+logb(d+1).

This is the same as saying that the fractional part {logb k} satisfies

{logb k} ∈ [logb d, logb(d+ 1)).

Therefore

#{1 ≤ n ≤ N : `b(kn) = d} = #{1 ≤ n ≤ N : {logb kn} ∈ [logb d, logb(d+ 1))}

for all integers N ≥ 1 and all d ∈ {1, . . . , b−1}. The desired result follows now from

Definition 4.1.8 and Theorem 4.1.6. 2

Example 6.7.3 For every integer a ≥ 2 which is not a power of 10, the sequence

(an)∞n=1 of powers of a satisfies Benford’s law in the base 10. This is a simple conse-

quence of Theorem 6.7.2. Note that log10 a
n = n log10 a for all n ≥ 1. The number

log10 a is irrational, for if we had log10 a = r/s with r, s ∈ N, then as = 10r, which

is impossible under the given condition on a. Therefore the sequence (log10 a
n)∞n=1

is uniformly distributed modulo 1 by Theorem 4.1.10. Analogous examples can be

constructed with 10 replaced by an arbitrary base b ≥ 2.

Example 6.7.4 It takes a bit more work to prove that the sequence (Fn)∞n=1 of

Fibonacci numbers, which is defined recursively by F1 = F2 = 1 and Fn+2 = Fn+1 +

Fn for n = 1, 2, . . ., satisfies Benford’s law in every base b ≥ 2. First we show by

straightforward induction that

Fn =
1√
5

(αn − βn) for n = 1, 2, . . . , (6.20)

where α = (1 +
√

5)/2 and β = (1−
√

5)/2. Now we put xn = n logb α for all n ≥ 1.

If we assume for the moment that logb α is irrational, then the sequence (xn)∞n=1

is uniformly distributed modulo 1 by Theorem 4.1.10. Furthermore, (6.20) implies

that

lim
n→∞

(logb Fn − xn) = lim
n→∞

logb
1− (β/α)n√

5
= − logb

√
5.

Then an easy application of Theorem 4.1.9 shows that the sequence (logb Fn)∞n=1 is

uniformly distributed modulo 1, and so (Fn)∞n=1 satisfies Benford’s law by Theorem

6.7.2. It remains to prove that logb α is irrational. If we had logb α = r/s with

r, s ∈ N, then (1 +
√

5)s = 2sbr. Now by induction (1 +
√

5)s = as + cs
√

5 with

as, cs ∈ N, hence cs
√

5 = 2sbr − as, an obvious contradiction to the fact that
√

5

is irrational. More general linear recurring sequences satisfying Benford’s law are

constructed in the paper [120]. It is shown in [92] that the sequence (n!)∞n=1 of

factorials satisfies Benford’s law in the base 10, and the proof is again founded on

Theorem 6.7.2.
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Example 6.7.5 Here is an interesting negative example. Let (n)∞n=1 be the sequence

of positive integers in their natural order and consider the standard decimal case

b = 10. Among the first 20 terms of this sequence, 11 have leading digit 1, among

the first 200 terms of this sequence, 111 have leading digit 1, and in general among

the first 2 ·10r terms of this sequence with r ∈ N, there are
∑r

i=0 10i = (10r+1−1)/9

numbers with leading digit 1. Therefore

lim
r→∞

#{1 ≤ n ≤ 2 · 10r : `10(n) = 1}
2 · 10r

= lim
r→∞

10r+1 − 1

18 · 10r
=

5

9
.

But 5
9

= 0.555 . . . > log10 2 = 0.301 . . ., and so the sequence (n)∞n=1 does not satisfy

Benford’s law in the base 10.

The recent book of Kossovsky [88] is a treasure trove for the history and the

applications of Benford’s law. As an example of an application, we mention that

Benford’s law can be utilized in fraud detection since deceitfully concocted data

may deviate from Benford’s law. Cheaters tend to use the uniform distribution of

leading digits rather than the distribution in Definition 6.7.1.

6.7.2 An application to raster graphics

Let us come back to the Fibonacci numbers in Example 6.7.4. An intriguing ap-

plication of Fibonacci numbers was discovered by Chor, Leiserson, and Rivest [23]

(see also [24]). By the way, Rivest is also the R in the RSA public-key cryptosystem

(see Subsection 2.3.2). The approach and the proof of the main result in [23] can

be considerably simplified, as we show in the following.

The problem addressed in [23] is highly relevant for the efficient operation of

computer screens, TV screens, and videos. Let us talk simply about screens to

avoid cumbersome language. The pixels of a screen are controlled by random-access

memory cells, but in a high-resolution screen there are of course many more pixels

than memory cells. This raises the question of how to assign pixels to memory cells

so that large areas of the screen can be updated simultaneously. It is convenient

to label the rows and columns of pixels on the screen by nonnegative integers.

If there are M memory cells, then we label the memory cells by the elements of

ZM = {0, 1, . . . ,M − 1}, the least residue system modulo M .

Figure 6.1 shows the standard assignment of pixels to memory cells. In row 0

the first M pixels are assigned to the memory cells 0, 1, . . . ,M−1 in that order, and

this assignment is repeated periodically with period length M . The same pattern

is used in all the other rows. The standard assignment is very efficient for rowwise

updating since any M consecutive pixels in any row are assigned to different memory

cells and can therefore be updated simultaneously. On the other hand, columnwise

updating is a stumbling block since all pixels in a given column are assigned to the
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0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .

0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .

0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .
...

...
...

...
...

...
...

...
...

...

0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .

Figure 6.1: The standard assignment of pixels to memory cells

same memory cell, and so these pixels can be updated only one after the other and

parallelization is not possible.

There should be a better organization of raster graphics than the standard as-

signment, and this is what the work of Chor, Leiserson, and Rivest [23] is all about.

The aim is to find an assignment of pixels to memory cells such that the pixels in

all rectangles of limited area can be updated simultaneously, that is, the labels of

the assigned memory cells in any such rectangle are different. When we speak of a

rectangle, we mean a rectangle with horizontal and vertical sides (that is, no tilted

rectangles are considered) and with positive integers as side lengths (on the scale of

the pixels), and the area of such a rectangle is defined to be the number of pixels in

the rectangle.

We describe the construction in [23] in an explicit and simplified form. For a

fixed integer n ≥ 2, let M = F2n+1 be the Fibonacci number with index 2n+ 1. For

all r, s = 0, 1, . . ., the pixel in row r and column s is assigned to the memory cell

with the label a(r, s) ∈ ZM that is uniquely determined by the congruence

a(r, s) ≡ F2nr + s (mod M), (6.21)

where F2n is the Fibonacci number with index 2n. We may call this the Fibonacci

assignment . Row 0 of the Fibonacci assignment is identical with row 0 of the

standard assignment for the same number M of memory cells. The other rows of

the Fibonacci assignment are cyclic shifts of row 0, with the shift parameter in row

r given by the least residue of F2nr modulo M . Figure 6.2 shows the Fibonacci

assignment for n = 3, that is, with M = F7 = 13. It follows from Theorem 6.7.6

below that in this case, the memory-cell labels in every rectangle of area at most 11

are different. A few rectangles of this type are highlighted in the figure.

Theorem 6.7.6 For an integer n ≥ 2, put M = F2n+1 and N = FnFn+1 + Fn+2.

Then the Fibonacci assignment with M memory cells has the property that in every

rectangle of area at most N the memory-cell labels are different.

Proof. The proof uses the theory of continued fractions (see Subsection 4.2.1) and
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0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 . . .

8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 . . .

3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 . . .

11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 . . .

6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 . . .

1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 . . .

9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 . . .

4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 . . .

12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 . . .

7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 . . .

2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 . . .

10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 . . .

8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Figure 6.2: The Fibonacci assignment for M = F7 = 13

identities for Fibonacci numbers. First we show that N ≤M . Indeed,

N = FnFn+1 + Fn+1 + Fn ≤ FnFn+1 + Fn+1Fn−1 + F 2
n

= Fn+1(Fn + Fn−1) + F 2
n = F 2

n+1 + F 2
n = M,

where the last identity is obtained from (6.20). Now we take an arbitrary R × S
rectangle of area RS ≤ N and we assume that two memory-cell labels in this

rectangle are equal. This means that a(r1, s1) = a(r2, s2) for some l ≤ r1, r2 ≤
l+R− 1 and m ≤ s1, s2 ≤ m+ S − 1 and with some integers l,m ≥ 0. We have to

show that r1 = r2 and s1 = s2. Note that (6.21) yields F2n(r1−r2) ≡ s2−s1 (modM).

If r1 = r2, then s1 ≡ s2 (mod M) and |s1−s2| ≤ S−1 < N ≤M . Therefore s1 = s2
and we are done.

Thus, we can assume by way of contradiction that r1 > r2. Putting h = r1 − r2
and j = s2 − s1, we obtain

F2nh ≡ j (mod M) (6.22)

with 1 ≤ h ≤ R − 1 and |j| ≤ S − 1. In particular 1 ≤ h < N ≤ M = F2n+1, and

so there exists an integer i with 2 ≤ i ≤ 2n such that Fi ≤ h < Fi+1. Now we use

the fact noted in Example 4.3.15 that the rational number F2n/F2n+1 has the finite

continued fraction expansion

F2n

F2n+1

= [0; 1, 1, . . . , 1︸ ︷︷ ︸
2n

],

and if we terminate this expansion after the kth entry 1 with k ≤ 2n, then we get

the continued fraction expansion of Fk/Fk+1. Therefore [152, Theorem 7.13] shows
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that for every t ∈ Z the inequality∣∣∣ F2n

F2n+1

h− t
∣∣∣ ≥ ∣∣∣ F2n

F2n+1

Fi − Fi−1
∣∣∣

is valid. According to (6.22), we can choose t ∈ Z such that j = F2nh−F2n+1t, and

so

|j| ≥ |F2nFi − F2n+1Fi−1| = F2n+1−i,

where the last identity is again obtained from (6.20); see also Exercise 6.40. It

follows that

N ≥ RS ≥ (h+ 1)(|j|+ 1) ≥ (Fi + 1)(F2n+1−i + 1) := G(i, n).

Note that G(i, n) makes sense also for i = 1. If we can show that

min
1≤i≤2n

G(i, n) = G(n, n), (6.23)

then we arrive at the desired contradiction sinceG(n, n) = (Fn+1)(Fn+1+1) = N+1.

In view of G(i, n) = G(2n + 1 − i, n) for 1 ≤ i ≤ 2n, we can guarantee (6.23)

by proving that G(i, n) ≥ G(i + 1, n) for 1 ≤ i ≤ n − 1. Using another Fibonacci

identity obtained from (6.20) (see again Exercise 6.40), we get

G(i, n)−G(i+ 1, n) = (−1)i+1F2n−2i + F2n−i−1 − Fi−1,

with the understanding that F0 = 0. If i is odd, then G(i, n) ≥ G(i + 1, n) follows

from F2n−i−1 ≥ Fi−1. If i is even, then

G(i, n)−G(i+ 1, n) = F2n−i−2 + F2n−i−3 − F2n−2i − Fi−1,

and also F2n−i−2 ≥ F2n−2i and F2n−i−3 ≥ Fi−1 since 2 ≤ i ≤ n− 1. Therefore (6.23)

is shown. 2

It is clear from the proof above that with minor modifications we can deal also

with the case where M = F2n with n ≥ 2. Here is a small table of the corresponding

pairs of numbers M and N obtained from Theorem 6.7.6 with M ≤ 1000.

M 5 13 34 89 233 610

N 5 11 23 53 125 307

As we said at the beginning of this section, there are many more applications of

number theory, but most of them are easy and require only elementary number the-

ory. Just to whet your appetite, we mention applications to visibility problems [3],

[183], [184], to fast convolution algorithms [31], [153], to binary search trees [37],

to cable splicing [155, Section 12.8], to music theory [166], and to card tricks [118,

p. 632], [175]. The conference volumes [16] and [122] contain attractive selections

of applications of number theory that are out of the common. You may want to

explore some of these applications at your leisure.
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Exercises

6.1 Consider the check-digit system over Z9 defined by the control equation

12∑
i=1

ai ≡ 8 (mod 9).

The serial numbers of Euro banknotes, with a proper interpretation of letters,

are based on this check-digit system.

(a) Verify that 402387040034 satisfies the control equation.

(b) Show that this check-digit system detects neither neighbor transpositions

nor jump transpositions.

(c) Show that this check-digit system detects both twin errors and jump twin

errors.

6.2 (a) Show that the self-map of F7 defined by the polynomial f(x) = x4 +3x ∈
F7[x] is a complete mapping of F7.

(b) Show that the self-map of F11 defined by the polynomial f(x) = 2x6+7x ∈
F11[x] is a complete mapping of F11.

6.3 Prove that if f is a complete mapping of the finite abelian group G, then the

inverse map f−1 is also a complete mapping of G.

6.4 Let q ≥ 5 be a power of an odd prime. Prove that if the self-map of Fq defined

by the polynomial f ∈ Fq[x] with deg(f) < q is a complete mapping of Fq,
then necessarily deg(f) ≤ q − 3. (Hint: see [140].)

6.5 Show that for every odd prime number p, the set {0, 1, . . . , (p − 1)/2} is a

(1, 1; p)-covering set of minimal size.

6.6 Show that for every odd prime number p, the set {1, 2, . . . , (p − 1)/2} is a

(1, 1; p)-packing set of maximal size.

6.7 Let p be an odd prime number. For a positive divisor k of p−1
2

and s ∈ N,

consider the set

Ak,s = {ak1 + a−k1 + · · ·+ aks + a−ks ∈ Fp : a1, . . . , as ∈ F∗p}.

(a) Show that |Ak,1| = p−1
2k

+ 1.

(b) Show that Ak,2k = Fp.

(c) Verify that (ak + a−k)(bk + b−k) = (ab)k + (ab)−k + (ab−1)k + (ab−1)−k for

all a, b ∈ F∗p.
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(d) Show that Ak,16 = Fp if p ≥ 8k2.

6.8 Let C be a nontrivial linear code. Prove that the covering radius ρ(C) is equal

to the maximum Hamming weight of all coset leaders.

6.9 Suppose that the code C1 is a proper subset of the code C2. Prove that

ρ(C1) ≥ d(C2).

6.10 (a) Construct a Hadamard matrix of order 8 in two different ways.

(b) Construct a Hadamard matrix of order 12 by a method that is different

from the one in Example 6.4.10.

6.11 If H = (hij)1≤i,j≤m is an m×m matrix and K an n× n matrix over R, then

the Kronecker product H ⊗K is the (mn)× (mn) matrix given by

H ⊗K =


h11K h12K . . . h1mK

h21K h22K . . . h2mK
...

...
...

hm1K hm2K . . . hmmK

 .

Prove that if H and K are Hadamard matrices, then H ⊗K is a Hadamard

matrix. Thus, whenever Hadamard matrices of orders m and n exist, then

there exists a Hadamard matrix of order mn.

6.12 An n×nmatrixM over R with n ≥ 2 for which the entries on the main diagonal

are 0, all other entries are 1 or −1, and which satisfies MM> = (n− 1)En is

called a conference matrix of order n. Prove that the matrix J in the proof of

Theorem 6.4.8 is a conference matrix of order q + 1.

6.13 Prove that if a conference matrix of order n exists, then n must be even.

6.14 Let A(n, d) be as in Definition 6.4.11. Prove that A(n, 1) = 2n and A(n, n) = 2

for all integers n ≥ 1.

6.15 Prove that A(n, d) ≥ 2n/
(∑d−1

i=0

(
n
i

))
for 1 ≤ d ≤ n.

6.16 Prove that A(n, d) ≤ 2n/
(∑b(d−1)/2c

i=0

(
n
i

))
for 1 ≤ d ≤ n.

6.17 Prove that A(n, d) ≤ 2n−d+1 for 1 ≤ d ≤ n.

6.18 Show in detail that the Boolean function g in the proof of Theorem 6.4.27 is

bent.

6.19 Show in detail that in the proof of Theorem 6.4.27 we have indeed F (u) =

2−n/2Ĝ(u) for all u ∈ Fn2 .
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6.20 Show that a Boolean function f of n variables is bent if and only if, for all

nonzero vectors v ∈ Fn2 , the Boolean function fv defined by fv(u) = f(u +

v) + f(u) for all u ∈ Fn2 attains the values 0 and 1 equally often.

6.21 Let f = f(u) be a bent function of m variables and let g = g(v) be a bent

function of n variables. Prove that h(u,v) = f(u) + g(v) is a bent function of

m+ n variables.

6.22 Show that the ANF exists for every Boolean function and is unique.

6.23 Determine the ANF and the algebraic degree of the Boolean function f(x1, x2, x3)

given by the following table.

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

6.24 Determine the nonlinearity of the Boolean functions f1(x1, x2) = x1 + x2 + 1,

f2(x1, x2) = x1x2, and f3(x1, x2, x3, x4) = x1x2 + x3x4.

6.25 Let n ∈ N be even and assume that the Boolean function f of n variables

satisfies NL(f) = 2n−1− 2n/2−1. Show that deg(f) = 2 if n = 2 and deg(f) ≤
n/2 if n ≥ 4.

6.26 Show that 2 is a quadratic residue modulo the odd prime number p if and only

if p ≡ ±1 (mod 8).

6.27 Determine the exact value of the algebraic degree and of the nonlinearity of

the Boolean function g defined by (6.17) for p ∈ {5, 7, 11}.

6.28 Factor the number 91 using the Shor algorithm. (Show first that the multi-

plicative order of 4 modulo 91 is 6 and that 43 6≡ −1 (mod 91).)

6.29 Prove that every Carmichael number is odd.

6.30 Prove Wilson’s theorem that an integer n ≥ 2 is a prime number if and only

if (n− 1)! ≡ −1 (mod n).
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6.31 For all odd integers n ≥ 3 and all a, b ∈ Z, prove that(ab
n

)
=
(a
n

)( b
n

)
.

6.32 For all odd integers m,n ≥ 3 and all a ∈ Z, prove that( a

mn

)
=
( a
m

)(a
n

)
.

6.33 For all odd integers n ≥ 3, prove that(−1

n

)
= (−1)(n−1)/2.

6.34 Show that 211−1 is not a Mersenne prime by verifying that 211 ≡ 1 (mod 23).

6.35 Prove that the Fermat number Nk = 22k + 1 with k ≥ 2 is a prime number if

and only if 5(Nk−1)/2 ≡ −1 (mod Nk). (Hint: use that 5 is a quadratic residue

modulo the odd prime number p if and only if p ≡ ±1 (mod 5), according

to [152, Theorem 3.5].)

6.36 Let p be an odd prime number. Prove that p is a Fermat prime if and only if

every quadratic nonresidue modulo p is a primitive root modulo p.

6.37 Let a ≥ 2 and b ≥ 2 be integers. Prove that logb a is a rational number,

say logb a = r/s with r, s ∈ N and gcd(r, s) = 1, if and only if there exists an

integer c ≥ 2 such that a = cr and b = cs. This criterion yields a generalization

of Example 6.7.3.

6.38 Prove that the sequence (Ln)∞n=1 of integers defined by L1 = L2 = 1 and

Ln+2 = 2Ln+1 +Ln for n = 1, 2, . . . satisfies Benford’s law in every base b ≥ 2.

6.39 Prove the Fibonacci identity F 2
n+1 + F 2

n = F2n+1 for every integer n ≥ 1. This

identity was used in the proof of Theorem 6.7.6.

6.40 Prove the Fibonacci identity FiFj − Fi+1Fj−1 = (−1)j−1Fi−j+1 for all integers

i ≥ j ≥ 1, where we put F0 = 0. Special cases of this identity were used in

the proof of Theorem 6.7.6.



424 CHAPTER 6. FURTHER APPLICATIONS



Bibliography

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Math. (2)

160, 781–793 (2004).

[2] W.R. Alford, A. Granville, and C. Pomerance, There are infinitely many

Carmichael numbers, Annals of Math. (2) 139, 703–722 (1994).

[3] T.T. Allen, Polya’s orchard problem, Amer. Math. Monthly 93, 98–104 (1986).

[4] N. Alon, M.B. Nathanson, and I. Ruzsa, The polynomial method and re-

stricted sums of congruence classes, J. Number Theory 56, 404–417 (1996).

[5] N. Aydin and T. Asamov, Search for good linear codes in the class of quasi-

cyclic and related codes, Selected Topics in Information and Coding Theory

(I. Woungang, S. Misra, and S.C. Misra, eds.), pp. 239–285, World Scientific,

Singapore, 2010.

[6] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algo-

rithms, MIT Press, Cambridge, MA, 1996.

[7] N.S. Bakhvalov, Approximate computation of multiple integrals, Vestnik

Moskov. Univ. Ser. Mat. Mekh. Astr. Fiz. Khim. 1959, no. 4, 3–18 (1959).

(Russian)

[8] M. Baldi, QC-LDPC Code-Based Cryptography, Springer, Berlin, 2014.

[9] J. Beck, Probabilistic Diophantine approximation. I. Kronecker sequences, An-

nals of Math. (2) 140, 449–502 (1994).

[10] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

[11] D.J. Bernstein, J. Buchmann, and E. Dahmen (eds.), Post-Quantum Cryptog-

raphy, Springer, Berlin, 2009.

[12] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography,

Cambridge University Press, Cambridge, 1999.

425



426 BIBLIOGRAPHY

[13] R.C. Bose and D.K. Ray-Chaudhuri, On a class of error correcting binary

group codes, Information and Control 3, 68–79 (1960).

[14] H. Brass and K. Petras, Quadrature Theory: The Theory of Numerical Inte-

gration on a Compact Interval, American Mathematical Society, Providence,

RI, 2011.

[15] J.A. Buchmann, Introduction to Cryptography, Springer, New York, 2001.

[16] S.A. Burr (ed.), The Unreasonable Effectiveness of Number Theory, Proc.

Symposia in Applied Mathematics, Vol. 46, American Mathematical Society,

Providence, RI, 1992.

[17] K.A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics 23, 426–

434 (1952).

[18] C. Carlet, Boolean functions for cryptography and error correcting codes,

Boolean Models and Methods in Mathematics, Computer Science, and En-

gineering (Y. Crama and P.L. Hammer, eds.), pp. 257–397, Cambridge Uni-

versity Press, Cambridge, 2010.

[19] C. Carlet, Vectorial Boolean functions for cryptography, Boolean Models and

Methods in Mathematics, Computer Science, and Engineering (Y. Crama and

P.L. Hammer, eds.), pp. 398–469, Cambridge University Press, Cambridge,

2010.

[20] F. Castro and I. Rubio, Diagonal equations, Handbook of Finite Fields (G.L.

Mullen and D. Panario, eds.), pp. 206–213, CRC Press, Boca Raton, FL, 2013.

[21] D.G. Champernowne, The construction of decimals normal in the scale of ten,

J. London Math. Soc. 8, 254–260 (1933).

[22] Z.X. Chen, I.E. Shparlinski, and A. Winterhof, Covering sets for limited-

magnitude errors, IEEE Trans. Inform. Theory 60, 5315–5321 (2014).

[23] B. Chor, C.E. Leiserson, and R.L. Rivest, An application of number theory to

the organization of raster-graphics memory, Proc. 23rd Symposium on Foun-

dations of Computer Science (Chicago, 1982), pp. 92–99, IEEE Computer

Society, Los Angeles, 1982.

[24] B. Chor, C.E. Leiserson, R.L. Rivest, and J.B. Shearer, An application of num-

ber theory to the organization of raster-graphics memory, J. Assoc. Computing

Machinery 33, 86–104 (1986).

[25] K.L. Chung, An estimate concerning the Kolmogoroff limit distribution,

Trans. Amer. Math. Soc. 67, 36–50 (1949).



BIBLIOGRAPHY 427

[26] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North-

Holland, Amsterdam, 1997.

[27] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Ver-

cauteren (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryptography,

CRC Press, Boca Raton, FL, 2006.

[28] J.G. van der Corput, Verteilungsfunktionen I, II, Nederl. Akad. Wetensch.

Proc. Ser. B 38, 813–821, 1058–1066 (1935). (German)

[29] R.R. Coveyou, Random number generation is too important to be left to

chance, Studies in Applied Mathematics, Vol. 3, pp. 70–111, SIAM, Philadel-

phia, 1969.

[30] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspec-

tive, Springer, New York, 2001.

[31] R. Creutzburg and M. Tasche, Number-theoretic transforms of prescribed

length, Math. Comp. 47, 693–701 (1986).

[32] T.W. Cusick, C. Ding, and A. Renvall, Stream Ciphers and Number Theory,

Elsevier, Amsterdam, 1998.

[33] T.W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applica-

tions, Elsevier and Academic Press, Amsterdam, 2009.

[34] J. Daemen and V. Rijmen, The Design of Rijndael, Springer, Berlin, 2002.

[35] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed.,

Academic Press, New York, 1984.

[36] L. Devroye, Non-Uniform Random Variate Generation, Springer, New York,

1986.

[37] L. Devroye, Binary search trees based on Weyl and Lehmer sequences, Monte

Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter, P. Hellekalek,

G. Larcher, and P. Zinterhof, eds.), Lecture Notes in Statistics, Vol. 127, pp.

40–65, Springer, New York, 1998.

[38] J. Dick and H. Niederreiter, On the exact t-value of Niederreiter and Sobol’

sequences, J. Complexity 24, 572–581 (2008).

[39] J. Dick and F. Pillichshammer, Digital Nets and Sequences: Discrepancy The-

ory and Quasi-Monte Carlo Integration, Cambridge University Press, Cam-

bridge, 2010.



428 BIBLIOGRAPHY

[40] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Trans.

Inform. Theory 22, 644–654 (1976).

[41] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications, Lec-

ture Notes in Mathematics, Vol. 1651, Springer, Berlin, 1997.

[42] R. Eckhardt, Stan Ulam, John von Neumann, and the Monte Carlo method,

From Cardinals to Chaos: Reflections on the Life and Legacy of Stanislaw

Ulam (N.G. Cooper, ed.), pp. 131–137, Cambridge University Press, Cam-

bridge, 1989.

[43] J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number

generator, Statistical Papers 27, 315–326 (1986).

[44] J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers avoid

the planes, Math. Comp. 56, 297–301 (1991).

[45] J. Eichenauer-Herrmann, Statistical independence of a new class of inversive

congruential pseudorandom numbers, Math. Comp. 60, 375–384 (1993).

[46] J. Eichenauer-Herrmann and H. Niederreiter, Digital inversive pseudorandom

numbers, ACM Trans. Modeling and Computer Simulation 4, 339–349 (1994).

[47] A. Enge, Elliptic Curves and Their Applications to Cryptography: An Intro-

duction, Kluwer Academic Publishers, Boston, 1999.

[48] A.B. Evans, The existence of strong complete mappings of finite groups: a

survey, Discrete Math. 313, 1191–1196 (2013).
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gration and Applications, Birkhäuser and Springer International, Heidelberg,

2014.

[99] K.H. Leung and B. Schmidt, New restrictions on possible orders of circulant

Hadamard matrices, Designs Codes Cryptography 64, 143–151 (2012).



432 BIBLIOGRAPHY

[100] S. Levy, Crypto, Viking Penguin, New York, 2001.
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proper, 2

divisor of polynomial, 30

proper, 30

dot product, 108, 202

DSS, 80

dual code, 114

dual group, 23

dual lattice, 239, 293

dual space, 114

duality theory, 256, 258

EAN, 360

elementary interval, 246

elementary row operation, 112

ElGamal cryptosystem, 73

ElGamal signature scheme, 79

elliptic curve, 86

encoder, 98

encoding algorithm, 111

encryption, 52

encryption algorithm, 52

encryption function, 52

encryption key, 52

Enigma cipher, 56

equal-weight rule, 182

equidistant code, 153, 159

equidistribution test, 307
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equivalent code, 112

Erdős-Turán inequality, 190

ERNIE, 305

error pattern, 118

error polynomial, 144

error processor, 100

error word, 118

error-correcting code, 96

error-detecting code, 102

error-trapping decoding algorithm, 146

Euclidean algorithm, 5, 7, 45, 171

Euler’s theorem, 10

Euler’s totient function, 9

Euro banknotes, 420

European Article Number, 360

expansion

continued fraction, 212

formal Laurent series, 267

explicit inversive method, 341

explicit nonlinear method, 331

exponent of group, 19

extension field, 33

simple, 38

extreme discrepancy, 190, 204

factor, 2

nontrivial, 2

factor group, 18

factoring problem, 399

Fermat factorization, 68

Fermat number, 413

Fermat prime, 413

Fermat test, 405

Fermat’s little theorem, 10

Fibonacci assignment, 417

Fibonacci number, 236, 415, 416

field, 25

characteristic of, 27

extension, 33

finite, 26

finite prime, 26

full constant, 173

Galois, 34

global function, 173

order of, 26

residue class, 40

simple extension, 38

figure of merit, 254, 270, 276

finite abelian group, 14

finite field, 26

character of, 43

finite prime field, 26

finite-dimensional vector space, 103

first-digit law, 414

flash memory, 369

football pool problem, 382, 383

formal Laurent series, 267

four-eyes principle, 82

four-square theorem, 373

Fourier coefficient, 227, 228

Fourier series, 227, 228

fractional part, 186, 202

full constant field, 173

fundamental theorem of arithmetic, 4

Galois field, 34

Gauss sum, 46, 355

generate vector space, 103

generating matrices, 253, 284

generating polynomial, 287

generator, 16

generator matrix, 111, 134, 293

standard form of, 112

generator polynomial, 130

generic algorithm, 85

Gilbert-Varshamov bound, 148, 179

asymptotic, 171

global function field, 173

Global Positioning System, 390

Golay code

binary, 162, 171

extended binary, 162
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extended ternary, 164

ternary, 164, 171, 383

good lattice point, 223, 230

modulus of, 223

GPS, 390

greatest common divisor, 2, 30

Griesmer bound, 170

group

abelian, 13

cyclic, 16, 21

dual, 23

exponent of, 19

factor, 18

finite abelian, 14

order of, 14

torus, 238

Hadamard code, 390

Hadamard matrix, 385

circulant, 391

Hadamard matrix conjecture, 385

circulant, 391

Hadamard transform, 393

Halton sequence, 217

Hammersley point set, 221, 245

Hamming bound, 149

Hamming code, 156, 169

binary, 154

extended binary, 155

Hamming distance, 98, 257

Hamming space, 99, 257

Hamming weight, 107

Hardy’s cab number, 406

hash function, 81

Hasse-Weil bound, 86

Hermitian inner product, 402

hidden subgroup problem, 399

hybrid cryptosystem, 63

hyperplane net, 265, 272

IBAN, 360

ideal, 127

principal, 128

zero, 128

identity element, 13

identity matrix, 112

incongruent, 6, 40

index, 72

index-calculus algorithm, 76, 77

inequality

Erdős-Turán, 190

Koksma, 197

Koksma-Hlawka, 209

information rate, 170

insecure channel, 52

integral domain, 30

integration lattice, 239

integration nodes, 182

International Article Number, 360

International Bank Account Number, 360

International Standard Book Number, 360,

361, 364

interval

elementary, 246

invariants, 243

inverse element, 13

inversion method, 304

inversive congruential method, 333

inversive method, 333

irreducible cyclic code, 140

irreducible polynomial, 31

ISBN, 360, 361, 364

Jacobi sum, 47, 381

Jacobi symbol, 408

jump transposition, 364

jump twin error, 364

Kerckhoff principle, 53

kernel of matrix, 115

key

decryption, 52

encryption, 52

private, 62
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public, 62

key space, 53

keystream, 87

Kloosterman sum, 338

Koksma inequality, 197

Koksma-Hlawka inequality, 209

Kolmogorov complexity, 350

Korobov form, 235, 299, 318

Kronecker product, 421

Kronecker sequence, 189, 203, 204, 208,

211, 214–216

Lagrange’s theorem, 18

latin square, 251, 365

lattice, 238

centered regular, 222, 243, 247

dual, 239, 293

integration, 239

lattice point

Korobov form, 235, 318

lattice point set, 238

lattice rule, 238

leading coefficient, 29

least common multiple, 3, 31

least residue, 7, 41

least residue system, 7, 41

Legendre sequence, 391

length of code, 98

limited-magnitude error, 371

limited-magnitude error correction, 371

linear [n, k, d] code, 106

linear [n, k] code, 106

linear Boolean function, 393

linear code, 106

dimension of, 106

linear combination, 103

linear complexity, 88, 351

linear congruential method, 310

inhomogeneous case, 313

modulus, 310

multiplier, 310

linear congruential pseudorandom num-

bers, 310

linear orthomorphism, 361

linear space, 103

linear subspace, 105

linear transformation, 106

linearly dependent vectors, 103

linearly independent vectors, 103

low-discrepancy point set, 208

low-discrepancy sequence, 207

Lucas congruence, 376

Lucas-Lehmer test, 412

MacWilliams identity, 122

matrix, 109

circulant Hadamard, 391

conference, 421

generator, 111, 134, 293

Hadamard, 385

identity, 112

kernel of, 115

null space of, 115

Paley, 387

parity-check, 115, 136

Sylvester, 386, 393

transpose of, 109

matrix method, 353

Mattson-Solomon polynomial, 138

maximal period sequence, 348, 392

maximum distance separable, 151

McEliece cryptosystem, 176

MDS code, 151, 165–167, 264

Mersenne number, 411

Mersenne prime, 312, 354, 411

message, 98

midpoint rule, 182, 196

Cartesian product of, 199

Miller-Rabin test, 409

minimal polynomial, 37

minimum distance, 99, 117, 257

relative, 170
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Mixcolumns, 60

modulus, 310

modulus of congruence, 6

modulus of continuity, 198

monic polynomial, 29

monoalphabetic cipher, 56

Monte Carlo estimate, 200

Monte Carlo method, 200

multiple of integer, 2

multiple root, 33

multiple zero, 33

multiple-recursive method, 351

multiplicative character, 43

multiplicative order, 10

multiplicity of root, 33

multiplier, 310

mutually orthogonal latin squares, 251

mutually unbiased bases, 403

nearest neighbor decoding, 101, 118

neighbor transposition, 361

net

(t,m, s)-, 246

digital, 253

digital (t,m, s)-, 253

hyperplane, 265, 272

propagation rule for, 248

quality parameter of, 248

Vandermonde, 275

neutral element, 13

Niederreiter cryptosystem, 176

Niederreiter sequence, 287, 289

Niederreiter-Xing sequence, 293, 294

noisy channel, 95

nonlinear congruential method, 325

nonlinear method, 325

nonlinearity, 396

nonrepudiation, 51

nontrivial character, 20

nontrivial divisor, 2

nontrivial factor, 2

normal number, 344

normalized valuation, 173

NRT space, 257

NRT weight, 256

null space of matrix, 115

numerical integration, 181

Nyberg-Rueppel signature scheme, 82

one-time pad, 87

one-way function, 63

trapdoor, 64

optimal code, 388

order

multiplicative, 10

of element, 16

of field, 26

of group, 14

order-finding problem, 399

ordered basis, 105

orthogonal latin squares, 251, 365

orthogonal vectors, 109

orthogonality relations, 23

orthomorphism, 361

linear, 361

quadratic, 362

orthonormal basis, 403

packing set, 371

Paley matrix, 387

parity-check matrix, 115, 136

standard form of, 116

parity-check polynomial, 136

Parseval identity, 393

partial quotient, 211

perfect code, 150, 157, 163, 164, 382

period-finding problem, 399

permutation polynomial, 326, 362

permutation test, 307

PGP, 63

place, 173

degree of, 174

rational, 174
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plaintext, 52

plaintext source, 53

Plotkin bound, 152, 389

point set, 189

Hammersley, 221, 245

lattice, 238

low-discrepancy, 208

polynomial lattice, 269

Pollard p− 1 algorithm, 69

Pollard rho algorithm, 71

polyalphabetic cipher, 56

polynomial, 29

canonical factorization of, 32

code, 144

degree of, 29

derivative of, 34

divisor of, 30

error, 144

generating, 287

generator, 130

irreducible, 31

Mattson-Solomon, 138

minimal, 37

monic, 29

parity-check, 136

permutation, 326, 362

primitive, 38

received, 143

reciprocal, 135

reducible, 31

root of, 33

syndrome, 144

zero, 29

zero of, 33

polynomial lattice point set, 269

polynomial ring, 29

post-quantum cryptography, 402

Pretty Good Privacy, 63

primality test, 404

prime, 3

prime number, 3

prime number theorem, 385

primitive element, 36

primitive polynomial, 38

primitive root, 11

principal divisor, 174

principal ideal, 128

private key, 62

private-key encryption, 53

probabilistic algorithm, 302, 400, 405

productset, 378

propagation rule, 248

proper divisor, 2, 30

pseudorandom bits, 88, 343

pseudorandom numbers, 306

digital inversive, 353

digital multistep, 352

explicit inversive, 341

explicit inversive congruential, 341

explicit nonlinear, 331

inversive, 334

inversive congruential, 334

linear congruential, 310

multiple-recursive, 351

nonlinear, 325

nonlinear congruential, 325

public key, 62

public-key cryptosystem, 61

public-key encryption, 53

quadratic character, 44

quadratic nonresidue, 11

quadratic orthomorphism, 362

quadratic residue, 11

quadratic-residue code, 172

quality parameter, 248, 280

quantum computation, 399

quantum computer, 399

quasi-Monte Carlo integration, 196, 208

quasi-Monte Carlo method, 196, 208

quasicyclic code, 170, 176

quasirandom search, 293
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quaternary code, 98

Rabin cryptosystem, 91

radar, 390

radical-inverse function, 217

random number generation, 303

RANF, 323

rank, 243

raster graphics, 416

rational place, 174

received polynomial, 143

reciprocal polynomial, 135

reducible polynomial, 31

Reed-Muller code, 172, 390

Reed-Solomon code, 165

extended, 167

generalized, 166, 264

relative minimum distance, 170

relatively prime, 7, 30

repetition code, 98, 100, 102, 106, 383

residue class, 18, 40

residue class field, 40

residue class ring, 40

residue system

complete, 7, 41

least, 7, 41

Riemann-Roch space, 174

Rijndael, 59

ring, 29

residue class, 40

root of polynomial, 33

multiple, 33

multiplicity of, 33

simple, 33

row space, 258

RSA cryptosystem, 64, 89, 399

RSA signature scheme, 79

secret-key encryption, 53

secret-sharing scheme, 82

self-dual code, 124, 155, 156, 162, 164

self-orthogonal code, 124, 160

sequence

(t, s)-, 280

∞-distributed, 344

k-distributed, 344

completely uniformly distributed, 344

digital, 284

digital (t, s)-, 284

Halton, 217

Kronecker, 189, 203, 204, 208, 211,

214–216

Legendre, 391

low-discrepancy, 207

maximal period, 348, 392

Niederreiter, 287, 289

Niederreiter-Xing, 293, 294

uniformly distributed, 184, 201

uniformly distributed modulo 1, 186

uniformly distributed modulo 1 in Rs,

202

van der Corput, 218, 245, 280, 284

serial correlation coefficient, 307

serial correlation test, 307

serial test, 308

Shamir threshold scheme, 83

Shannon theorem, 87

shift cipher, 55

ShiftRows, 60

Shor algorithm, 399

signature scheme, 78

ElGamal, 79

Nyberg-Rueppel, 82

RSA, 79

signing algorithm, 78

Silver-Pohlig-Hellman algorithm, 75

simple extension field, 38

simple root, 33

simple zero, 33

simplex code, 158, 170

simulation method, 302

Singleton bound, 150, 257

smooth integer, 69
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Solovay-Strassen test, 408

sonar, 390

space

dual, 114

Hamming, 99, 257

linear, 103

NRT, 257

Riemann-Roch, 174

row, 258

vector, 103

speech coding, 382

sphere-covering bound, 147

sphere-packing bound, 150

square-and-multiply algorithm, 66

square-root factoring, 69

standard basis, 106, 403

standard form

of generator matrix, 112

of parity-check matrix, 116

standard inner product, 108, 202

star discrepancy, 190, 194, 204

steganography, 52

stream cipher, 87

strong complete mapping, 365

SubBytes, 60

subfield, 33

subgroup, 17

subspace, 105

linear, 105

zero, 105

substitution cipher, 54

sum-product theorem, 378

sumset, 374

Sylvester matrix, 386, 393

symmetric block cipher, 57

symmetric cryptosystem, 53, 61

syndrome, 119

syndrome decoding algorithm, 120, 157

syndrome polynomial, 144

system

(d,m, s)-, 253

ternary code, 98

ternary Golay code, 164, 171, 383

extended, 164

test

AKS, 410

Fermat, 405

Lucas-Lehmer, 412

Miller-Rabin, 409

primality, 404

Solovay-Strassen, 408

threshold, 82

threshold scheme, 82

Shamir, 83

torus group, 238

totient function, 9

trace, 42

transpose of matrix, 109

trapdoor information, 64

trapdoor one-way function, 64

Triple DES, 58

trivial character, 20

twin error, 364

uniform distribution function, 303

uniform random number, 303

uniformity test, 307

Universal Product Code, 359

UPC, 359

valuation, 173

normalized, 173

van der Corput sequence, 218, 245, 280,

284

Vandermonde net, 275

variation, 196

bounded, 196, 209

Hardy and Krause, 209

Vitali, 209

vector

coordinate, 105

zero, 103

vector space, 103
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basis of, 104

dimension of, 104

finite-dimensional, 103

generate, 103

verification algorithm, 78

Vernam cipher, 87

Vigenère cipher, 56

Waring graph, 381

Waring number, 373, 382

Waring’s problem

for finite fields, 373

for integers, 372

weight

Hamming, 107

NRT, 256

weight enumerator, 122

Weil bound, 328, 368

Weyl criterion, 187, 202

in Rs, 202

Wilson’s theorem, 422

word, 97

zero ideal, 128

zero of polynomial, 33

multiple, 33

simple, 33

zero polynomial, 29

zero subspace, 105

zero vector, 103


