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Notation.

An alphabet is a finite set of symbols. We call it A.
Aω is the set of all infinite words.
A∗ is the set of all finite words the set of all finite words.
A≤k is the set of all words of length up to k .
Ak for the set of words of length exactly k .

If w is a word, |w | is its length.

The positions of finite and infinite words are numbered starting at 1.

To denote the symbol at position i of a word w we write w [i ] and to
denote the substring of w from position i to j we write w [i . . . j ].

The empty word is denoted by λ.
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Notation

Number of occurrences, not-aligned and aligned,

|w |u = |{i : w [i . . . i + |u| − 1] = u}|,
||w ||u = |{i : w [i . . . i + |u| − 1] = u and i ≡ 1 mod |u|}|.

For example, |aaaaa|aa = 4 and ||aaaaa||aa = 2.

Notice that the definition of aligned occurrences has the condition
i ≡ 1 mod |u| instead of i ≡ 0 mod |u|, because the positions are
numbered starting at 1.

When a word u is just a symbol, |w |u and ||w ||u coincide.
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Counting aligned occurrences

Aligned occurrences of a word of length r over alphabet A coincide with
occurrences of the corresponding symbol over alphabet Ar .

Consider alphabet A, a length r and alphabet B with |A|r symbols.
The set of words of length r over alphabet A and the set B are
isomorphic:

π : Ar → B

induced by the lexicographic order in the respective sets.

Thus, for any w ∈ A∗ such that |w | is a multiple of r ,

|π(w)| = |w |/r .

Then,
∀ u ∈ Ar (||w ||u = |π(w)|π(u)).

Example. Suppose A = {0, 1}, r = 3.
Consider B such that |A|r = |B|, B = {0, 1, 2, 3, 4, 5, 6, 7}

100 100 111 000

4470
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Representation of real numbers

A base is an integer greater than or equal to 2. For a positive real
number x , the expansion of x in base b is a sequence a1a2a3 . . . of
integers from {0, 1, . . . , b − 1} such that

x = bxc+
∑
k≥1

akb−k = bxc+ 0.a1a2a3 . . .

To have a unique representation of all rational numbers we require that
expansions do not end with a tail of b − 1.

We will abuse notation and whenever the base b is understood we will
denote the first n digits in the expansion of x with x [1 . . . n].
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Normal numbers

Definition (Non-aligned normality, Borel first: Niven and Zuckerman 1951)

A real number x is normal to base b if for every block u,

lim
n→∞

|x [1 . . . n]|u
n

=
1

b|u|
.
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Normality as a seemingly weaker condition

Theorem (Piatetski-Shapiro 1957)

Let x be a real and let b be an integer greater than or equal to 2.
Let A = {0, . . . , b − 1}. The following conditions are equivalent,

1. The real x is normal to base b.

2. There is a constant C such that for infinitely many lengths ` and for
every w in A`

lim sup
n→∞

|x [1 . . . n]|w
n

< C · b−`.

3. There is a constant C such that for infinitely many lengths ` and for
every w in A`

lim sup
n→∞

||x [1 . . . n`]||w
n

< C · b−`.
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Dos Secuencias normales

I Secuencias de Bruijn infinitas

I À la Champernowne

01 00 01 10 11 000 001 010 011 100 101 110 111 0000 . . .
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Secuencias de Bruijn

Definition (de Bruijn 1946; Sainte-Marie 1894)

A de Bruijn necklace of order n over alphabet A is a cyclic sequence of
length |A|n such that every word of length n occurs in it exactly once.

A (non cyclic) de Bruijn word of order n over alphabet A is a word of
length |A|n + n − 1 such that every word of length n occurs in it exactly
once.

Examples of de Bruijn necklaces : 01; Examples of de Bruijn words :

01;
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Secuencias de Bruijn infinitas

Definition

An infinite de Bruijn word w = a1a2 . . . in an alphabet of at least three
symbols is an infinite word such that, for every n, a1 . . . a|A|n+n−1 is a de
Bruijn word of order n.

Example: 012; can be extended to

In case the alphabet has two symbols, an infinite de Bruijn word
w = a1a2 . . . is such that, for every odd n, a1 . . . a|A|n+n−1 is a de Bruijn
word of order n.
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de Bruijn graph

A de Bruijn graph GA(n) is a directed graph whose vertices are the words
of length n over alphabet A and whose edges are the pairs (v ,w) where
v = au and w = ub, for some word u of length n − 1 and possibly two
different symbols a, b.

The graph GA(n) has |A|n vertices and |A|n+1 edges, it is strongly
connected and every vertex has the same in-degree and out-degree.

Each de Bruijn sequence of order n + 1 over an alphabet of |A| symbols
can be constructed as an Eulerian cycle in GA(n).
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Proposition (Becher and Heiber 2011)

Suppose alphabet A has at least three symbols. Every de Bruijn sequence
of order n can be extended to a de Bruijn sequence of order n + 1.
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Demostracion: secuencias de Bruijn extendidas

Fix alphabet A. Suppose E is Eulerian in GA(n). Since GA(n + 1) is the
line graph of GA(n), E is Hamiltonian cycle in GA(n + 1)

We just need to argue that GA(n + 1) \ GA(n) is Eulerian, which means
that it is strongly connected and regular (every vertex has the same in
and out degree).
Clearly, every vertex in GA(n + 1) \ GA(n) has the same in and out
degree.

A directed graph G in which each vertex has its in-degree equal to its
out-degree is strongly connected if and only if its underlying undirected
graph is connected.

It suffices to see that GA(n + 1) \ GA(n) is connected. �
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Computing extended de Bruijn words

There is an obvious algorithm to compute an infinite de Bruijn word
which, for each n ≥ 1, extends a Hamiltonian cycle in a de Bruijn graph
of order n to an Eulerian cycle in the same graph.

This is done in time exponential in n. No efficient algorithm is known to
compute the N-th symbol of an infinite de Bruijn word without
computing the first N symbols.
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Lemma

Fix u ∈ A`. Then u occurs in a de Bruijn word of order n between |A|n−`
and |A|n−` + n − ` times.

Proof.

At each position of a de Bruijn word of length n starts a new word of
length n. There are exactly |A|n−` words of length n whose first `
symbols are u.
Since the de Bruijn word of order n has length |A|n + n − 1, There are
exactly n − ` other positions in a de Bruijn word of order n where a word
of length ` may start.
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Theorem (Ugalde 2000)

Infinite de Bruijn words are normal.

In case the alphabet A has two symbols, consider the instead the words
in the alphabet A′ of four symbols obtained by the morphism mapping
blocks two symbols in A to one symbol in A′ and prove normality for
alphabet A′.
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A sequence is normal if every block of digits occurs with the same
limiting frequency as every other block of the same length.

To prove it, the count at an anbritrary position is bounded by

considering the count at the end of the megablock. �.
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Demostración: normalidad de las Bruijn infinitas

Let x = a1a2 . . . be an infinite de Bruijn word over A.
Then, for each n, a1 . . . a|A|n+n−1 is a de Bruijn word or order n.
Fix a position N and let n be such that

|A|n + n − 1 ≤ N < |A|n+1 + n.

Then,

|a1 . . . aN |u
N

≤
|a1 . . . a|A|n+1+n|u
|A|n + n − 1

≤ |A|
n+1−` + n − `

|A|n + n − 1
< 2 |A|−`+1.

Thus,

lim sup
N→∞

|a1 . . . aN |u
N

< 2|A|−`+1.

By Theorem 1, using C = 2 |A|, x is normal. �
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Our observation

Consider all blocks of length n, concatenated in lexicographical order, view it
circularly. Each block of length n occurs exactly n times at positions with
different modulo n.

For example, for alphabet {0, 1}
n = 2 position

12 34 56 78

00 01 10 11

0 0 0 1 10 11 00 occurs twice, at positions different modulo 2

00 01 10 11

00 01 1 0 1 1 01 occurs twice, at positions different modulo 2

00 01 10 11

0 0 01 10 1 1 10 occurs twice, at positions different modulo 2

00 0 1 1 0 11

00 01 10 11 11 occurs twice, at positions different modulo 2
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Our observation

n = 3

000 001 010 011 100 101 110 111 000 occurs three times,

0 00 0 01 010 011 100 101 110 111 at positions different modulo 3

00 0 00 1 010 011 100 101 110 111

000 001 010 011 100 101 110 111 001 occurs three times

000 001 010 011 1 00 1 01 110 111 at postions different modulo 3

000 001 01 0 01 1 100 101 110 111
...
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However ...

Not every permutation of the blocks of length n has the property:

00 10 11 01

000 101 001 010 011 100 110 111
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Perfect necklaces

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

A necklace over a b-symbol alphabet is (n, k)-perfect if each block of

length n occurs k times, at positions different modulo k, for any
convention of the starting point.

De Bruijn necklaces are exactly the (n, 1)-perfect necklaces.

The (n, k)-perfect necklaces have length kbn.
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Arithmetic progressions yield perfect necklaces

Identify the blocks of length n over a b-symbol alphabet with the set of
non-negative integers modulo bn according to representation in base b.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

Let r coprime with b. The concatenation of blocks corresponding to the
arithmetic sequence 0, r , 2r , ..., (bn − 1)r yields an (n, n)-perfect necklace.

With r = 1 we obtain the lexicographically ordered sequence.
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Arithmetic progressions yield perfect necklaces

Lemma

Let σ : {0, .., b − 1}n → {0, .., b − 1}n be such that for any block v of
length n {σj(v) : j = 0, ..., bn − 1} is the set of all blocks of length n.

The necklace [σ0(v)σ1(v) . . . σbn−1(v)] is (n, n)-perfect if and only if
for every block u of length n, for every ` = 0, . . . , n − 1 there is a
unique block v of length n such that v(n − `− 1 . . . n) = u(1 . . . `) and

(σ(v))(1 . . . n − `) = u(`+ 1 . . . n).

For every length-n block splitted in two parts, there is exactly one
matching (a tail of a block and the head of next block ).
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Demostración del Lema

Assume s is (n, n)-perfect. Take ` such that 0 ≤ ` < n, x ∈ A` and
y ∈ An−`. Consider θ−`s, the −`th shift of s. Since s is ((n, n)-perfect,
xy occurs exactly once in the decomposition of θ−`s in consecutive words
of length n. Thus, there is a unique word w in the decomposition of s in
consecutive words of length n whose last ` symbols are equal to x and
whose first n − ` symbols are equal to y .

Conversely, suppose s is not (n, n)-perfect. Then, there is some `,
0 ≤ ` < n, such that the decomposition of θ−`(s) contains two equal
words of length n. This contradicts that for every x ∈ A` and every
y ∈ An−`, there is a unique w ∈ Ak such that w(n − ` . . . n − 1) = x and
(σ(w))(0 . . . n − `− 1) = y . �
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Astute graphs

Fix A an alphabet with b-symbols.
The astute graph GA(n, k) is directed, with kbn vertices.

The set of vertices is {0, ..b − 1}n × {0, .., .k − 1}.
There is an edge (w ,m)→ (w ′,m′) if w(2..n) = w ′(1..n − 1) and
(m + 1) mod k = m′

GA(2, 2)
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Astute graphs

Observation

Gb,n,k is Eulerian because it is strongly regular and strongly connected.

Observation

Gb,n,1 is the de Bruijn graph of blocks of length n over b-symbols.

G2,2,1
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Eulerian cycles in astute graphs

Each Eulerian cycle in Gb,n−1,k gives one (n, k)-perfect necklace.

Each (n, k)-perfect necklace can come from many Eulerian cycles in Gb,n−1,k

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The number of (n, k)-perfect necklaces over a b-symbol alphabet is

1

k

∑
db,k |j|k

e(j)ϕ(k/j)

where

I db,k =
∏

pαi

i , such that {pi} is the set of primes that divide both
b and k, and αi is the exponent of pi in the factorization of k,

I e(j) = (b!)jb
n−1

b−n is the number of Eulerian cycles in Gb,n−1,j

I ϕ is Euler’s totient function
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Normal sequences as sequences of Eulerian cycles

Theorem

The concatenation of (n, k)-perfect necklaces over a b-symbol alphabet,
for arithmetically increasing (n, k) is normal to the b-symbol alphabet.

Proof.

A number is normal to base b if in its base-b expansion every block of digits

occurs with the same limiting frequency as every other block of the same length.

To prove that the sequence of megablocks is normal the count at an abritrary
position is bounded by considering the count at the end of the megablock.
The proof is a direct application of Piatetski-Shapiro theorem.
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La secuencia de Champernowne es normal

Corollary

The concatenation of lexicografically ordered (n, n)-perfect necklaces for
n = 1, 2, . . . is normal; Champernowne’s sequence is normal.
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Nested perfect necklaces

Definition

An (n, k)-perfect necklace over a b-symbol alphabet is nested
if n = 1 or it is the concatenation of b nested (n − 1, k)- perfect
necklaces.

For example, for alphabet {0, 1}, a nested (2, 2)-perfect necklace

0011︸ ︷︷ ︸
(1,2)-perfect

0110︸ ︷︷ ︸
(1,2)-perfect

The lexicographic order yields a perfect necklace but not nested ,

00 01 02︸ ︷︷ ︸
not (1,2)-perfect

10 11 12︸ ︷︷ ︸
not (1,2)-perfect

20 21 22︸ ︷︷ ︸
not (1,2)-perfect
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Nested perfect necklaces

These following 8 blocks are (1, 4)-perfect necklaces:

00001111 01011010

00111100 01101001

00011110 01001011

00101101 01111000

The concatenation in each row is a (2, 4)-perfect necklace.
The concatenation of the first two rows is a nested (3, 4)-perfect
necklace.
The concatenation of the last two rows is a nested (3, 4)-perfect necklace.
The concatenation of all rows is a nested (4, 4)-perfect necklace.
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Nested perfect necklaces

Supongamos x es nested (2m, 2m) perfect necklace.
2 nested (2m − 1, 2m) perfect necklaces.
4 nested (2m − 2, 2m) perfect necklaces.
...
2i nested (2m − i , 2m) perfect necklaces.
2m−1 nested (21, 2m) perfect necklaces.
2m nested (1, 2m) perfect necklaces.
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Nested perfect necklaces

Lemma

Assume a b-symbol alphabet. For a nested (n, n)-perfect necklace x,

I each block of length n occurs n times in x, at positions with
different congruence modulo n.

I for every i = 1, . . . n, x is the concatenation of bn−i nested
(i , n)-perfect necklaces. So, in every segment of length nbi starting

at a position multiple of nbi , each block of length i occurs 1± 2 ε
times, for ε ∈ {0, 1} at positions in each of the n congruence classes.
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Definition

∆`,N(x) = max
|v |=`

∣∣∣∣ |x [1,N]|v
N

− 1

|A|`

∣∣∣∣ .
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Fix alphabet A.

Lemma

If x is a nested (2m, 2m)-perfect necklace then for every ` such that
1 ≤ ` ≤ m, and for every N such that 1 ≤ N ≤ 2m22m

,

∆`,N(x) = O((2m)2/N)
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Fix alphabet A.

Lemma

Let x be concatenation of nested (2d , 2d)-perfect necklaces for
d = 0, 1, 2, . . .. Then, for every `, there is N` such that for every N ≥ N`,

∆`,N(x) = O
(
(log N)2/N

)
.
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Nested perfect necklaces

Theorem (Levin 1999; Becher and Carton 2019)

The number whose expansion is the concatenation of nested
(2d , 2d)-perfect necklaces for d = 0, 1, 2, ... is normal.
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Nested perfect necklaces

Theorem (Becher and Carton 2019)

The base b-expansion of the number defined by M. Levin 1999 for base b
using the Pascal triangle matrix modulo 2 is the concatenation of nested
(2d , 2d)-perfect necklaces for d = 0, 1, 2, . . ..

39 / 58



Levin’s number

For d = 0, 1, 2, . . . Levin defines the matrix Md in F2d×2d

2

(siguiente diapositiva).

Fix base b. Consider the elements of F2d

b in increasing order

w0,w1, . . . ,wb2d−1

Identify vectors of Fb with blocks of symbols in {0, .., b − 1}. Thus, each
(Mdwi ) is identified with a block of length 2d .
Levin’s number the number in the unit interval whose base b-expansion is

λ = 0.λ0λ1λ2 . . .

where d = 0, 1, 2, . . . define λd as

λd = (Mdw0) . . . (Mdwb2d−1)
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Pascal triangle matrices modulo 2

Define a family of matrices using Pascal triangle modulo 2,

. . . 1 1 1 1 1

. . . 5 4 3 2 1

. . . 15 10 6 3 1

. . . 35 20 10 4 1

. . . 70 35 15 5 1
...

...
...

...
...

−→

. . . 1 1 1 1 1

. . . 1 0 1 0 1

. . . 1 0 0 1 1

. . . 1 0 0 0 1

. . . 0 1 1 1 1
...

...
...

...
...
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Pascal triangle matrices modulo 2

Define a family of matrices using Pascal’s triangle modulo 2,

. . . 1 1 1 1 1

. . . 5 4 3 2 1

. . . 15 10 6 3 1

. . . 35 20 10 4 1

. . . 70 35 15 5 1
...

...
...

...
...

−→

. . . 1 1 1 1 1

. . . 1 0 1 0 1

. . . 1 0 0 1 1

. . . 1 0 0 0 1

. . . 0 1 1 1 1
...

...
...

...
...

For d = 0, Md has dimension 20 × 20

M0 =
(
1
)
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Matrices de Pascal Módulo 2

Define a family of matrices using Pascal’s triangle modulo 2,

. . . 1 1 1 1 1

. . . 5 4 3 2 1

. . . 15 10 6 3 1

. . . 35 20 10 4 1

. . . 70 35 15 5 1
...

...
...

...
...

−→

. . . 1 1 1 1 1

. . . 1 0 1 0 1

. . . 1 0 0 1 1

. . . 1 0 0 0 1

. . . 0 1 1 1 1
...

...
...

...
...

For d = 1, Md has dimension 21 × 21

M1 =

(
1 1
0 1

)
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Matrices de Pascal Módulo 2

Define a family of matrices using Pascal’s triangle modulo 2,

. . . 1 1 1 1 1

. . . 5 4 3 2 1

. . . 15 10 6 3 1

. . . 35 20 10 4 1

. . . 70 35 15 5 1
...

...
...

...
...

−→

. . . 1 1 1 1 1

. . . 1 0 1 0 1

. . . 1 0 0 1 1

. . . 1 0 0 0 1

. . . 0 1 1 1 1
...

...
...

...
...

For d = 1, Md has dimension 21 × 21

M1 =

(
1 1
0 1

)
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Matrices de Pascal Módulo 2

Define a family of matrices using Pascal’s triangle modulo 2,

. . . 1 1 1 1 1

. . . 5 4 3 2 1

. . . 15 10 6 3 1

. . . 35 20 10 4 1

. . . 70 35 15 5 1
...

...
...

...
...

−→

. . . 1 1 1 1 1

. . . 1 0 1 0 1

. . . 1 0 0 1 1

. . . 1 0 0 0 1

. . . 0 1 1 1 1
...

...
...

...
...

For d = 2, Md has dimension 22 × 22

M2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1
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Alternative formulation Pascal triangle matrices modulo 2

M0 = (1), Md+1 =

(
Md Md

0 Md

)

I Md in F2d×2d

2 .

I Md is invertible.

I The first row of Md is the vector of 1s

I The last column of Md is the vector of 1s

46 / 58



Invertible submatrices

Md =




k

Md =


k

Lemma (Levin 1999 from Bicknell and Hoggart 1978)

For d ≥ 0, the following submatrices of Md are invertible

I k rows and the last k columns

I the first k rows and k columns
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Levin’s number

λ = 0. 0 1︸︷︷︸
λ0

00 11 10 01︸ ︷︷ ︸
λ1

0000 1111 1010 0101 1100 0011 0110 1001 1000 0111 0010 1101 0100 1011 1110 0001︸ ︷︷ ︸
λ2

. . .

Observation

Assume b = 2. For every d ≥ 0, λd is the concatenation of all blocks of
length 2d in some order.
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Levin’s number

Observation

Assume b = 2. For every d and for every even n, Mdwn and Mdwn+1 are
complementary blocks.

λ = 0. 0 1
00 11 10 01
0000 1111 1010 0101 1100 0011 0110 1001 1000 0111 0010 1101 0100 1011 1110 0001
. . .
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Theorem

Assume b = 2. For each d = 0, 1, 2, . . . there are 22d+1−1 binary nested
(2d , 2d)-perfect necklaces.
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Normal and self similar

For a given finite or infinite word x = a1a2a3 . . . where each ai is a
symbol in alphabet A, define

even(x) = a2a4a6 · · ·

and
odd(x) = a1a3a5 · · ·

Thus, x = even(x) means that an = a2n for all n.

Theorem (Becher, Carton and Heiber 2017)

There is a normal word x such that x = even(x).

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
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Proof of Theorem

We consider an alphabet of 2 symbols. A finite word w is called `-exact
for an integer ` ≥ 1, if |w | is a multiple of ` and all words of length `
have the same number of aligned occurrences in w .

Example: 000 001 010 011 100 101 110 111 is 3-exact

52 / 58



Lemma

Let w be an `-exact word such that |w | is a multiple of `22`. Then, there
exists a 2`-exact word z of length 2|w | such that even(z) = w.

Proof.

Assume w is `-exact and |w | is a multiple of `22`. Consider a
factorization of w = w1w2 · · ·wr such that for each i , |wi | = `.
Thus, r = |w |/`.
Define z of length 2|w | as z = z1z2 · · · zr such that for each i , |zi | = 2`,
even(zi ) = wi and for all words u and u′ of length `, the set
{i : zi = u′ ∨ u} has cardinality r/22`.
This latter condition is achievable because w is `-exact, so for each
word u of length `, the set {i : even(zi ) = u} has cardinality r/2` which
is a multiple of 2`, the number of possible words u′.
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Corollary

Let w be an `-exact word for some even integer `. Then there exists an
`-exact word z of length 2|w | such that even(z) = w.

Proof.

Since w is `-exact, it is also `/2-exact. Furthermore, if u and v are words
of length `/2 and ` respectively then ||w ||u = 2`/2+1||w ||v . Thus, the
hypothesis of Lemma 2 is fulfilled with `/2.
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Corollary

There exist a sequence (wn)n≥1 of words and a sequence of positive
integers (`n)n≥1 such that |wn| = 2n, even(wn+1) = wn, wn is `n-exact
and (`n)n≥1 is non-decreasing and unbounded. Furthermore, it can be
assumed that w1 = 01.

Proof.

We start with w1 = 01, `1 = 1, w2 = 1001 and `2 = 1. For each n ≥ 2, if
`n22`n divides |wn|, then `n+1 = 2`n and wn+1 is obtained by Lemma 2.
Otherwise, `n+1 = `n and wn+1 is obtained by Corollary 19. Note that
the former case happens infinitely often, so (`n)n≥1 is unbounded. Also
note that each `n is a power of 2.
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Proof of Theorem

Let (wn)n≥1 be a sequence given by Corollary 20. Let x = 11w1w2w3 · · ·
Note that for each k ≥ 1,

x [2k + 1..2k+1] = wk and x [1..2k+1] = 11w1 · · ·wk .

The fact that wn = even(wn+1) implies x [2n] = x [n], for every n ≥ 3.
The cases for n = 1 and n = 2 hold because x [1..4] = 1101.
We prove that x is normal. Consider an arbitrary index n0.
By construction, wn0 is `n0 -exact and for each n ≥ n0, wn is also
`n0 -exact. For every word u of length `n0 and for every n ≥ n0,

||x [1..2n+1]||u ≤ ||x [1..2n0 ]||u + ||wn0 . . .wn||u.
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Then, for every N such that 2n ≤ N < 2n+1 and n ≥ n0,

||x [1..N]||u
N/`n0

≤ ||x [1..2n+1]||u
N/`n0

≤ ||x [1..2n0 ]||u + ||wn0 . . .wn||u
N/`n0

≤ ||x [1..2n0 ]||u
2n/`n0

+
||wn0 . . .wn||u

2n/`n0

=
||x [1..2n0 ]||u

2n/`n0

+
(2n0 + . . .+ 2n)/(`n0 2`n0 )

2n/`n0

<
||x [1..2n0 ]||u

2n/`n0

+
2

2`n0

.

For large values of N and n such that 2n ≤ N < 2n+1, the expression
||x [1..2n0 ]||u/(2n/`n0 ) becomes arbitrarily small. We obtain for every word
u of length `n0 ,

lim sup
N→∞

||x [1..N]||u
N/`n0

≤ 3 2−`n0 .

The choice of `n0 was arbitrary, so the above inequality holds for each `n.
Since (`n)n≥1 is unbounded, the hypothesis of Theorem 1 is fulfilled, with
C = 3, so we conclude that x is normal.

57 / 58



For a positive integer r and a set P = {p1, . . . , pr} of r prime numbers,
let TP be the set of all Toeplitz sequences, that is, the set of all sequences
t1t2t3 · · · in Aω such that for every n ≥ 1 and for every i = 1, . . . , r ,

tn = tnpi .

It is possible to compute a normal word x such that x = even(x) in linear
time.

Problem

Construct a normal infinite word a1a2 . . . such that for every n,
an = a2n = a3n.
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