Departamento de Computación, Facultad de Ciencias Exactas y Naturales, UBA

Azar y Autómatas

Clase 3

Casi todas las secuencias son normales
Equivalencia entre las definiciones de normalidad
Lema de Piatetski-Shapiro

Notation

Number of occurrences, not-aligned and aligned,

$$
\begin{aligned}
|w|_{u} & =|\{i: w[i \ldots i+|u|-1]=u\}|, \\
\|w\|_{u} & =\mid\{i: w[i \ldots i+|u|-1]=u \text { and } i \equiv 1 \bmod |u|\} \mid .
\end{aligned}
$$

For example, \mid aаааа $\left.\right|_{a a}=4$ and $\|$ aаааа $\|_{a a}=2$.
Notice that the definition of aligned occurrences has the condition $i \equiv 1 \bmod |u|$ instead of $i \equiv 0 \bmod |u|$, because the positions are numbered starting at 1.
When a word u is just a symbol, $|w|_{u}$ and $\|w\|_{u}$ coincide.

Counting aligned occurrences

Aligned occurrences of a word of length r over alphabet A coincide with occurrences of the corresponding symbol over alphabet A^{r}.

Consider alphabet A, a length r and alphabet B with $|A|^{r}$ symbols. The set of words of length r over alphabet A and the set B are isomorphic:

$$
\pi: A^{r} \rightarrow B
$$

induced by the lexicographic order in the respective sets.
Thus, for any $w \in A^{*}$ such that $|w|$ is a multiple of r,

$$
|\pi(w)|=|w| / r
$$

Then,

$$
\forall u \in A^{r}\left(\|w\|_{u}=|\pi(w)|_{\pi(u)}\right) .
$$

Representation of real numbers

A base is an integer greater than or equal to 2. For a positive real number x, the expansion of x in base b is a sequence $a_{1} a_{2} a_{3} \ldots$ of integers from $\{0,1, \ldots, b-1\}$ such that

$$
x=\lfloor x\rfloor+\sum_{k \geq 1} a_{k} b^{-k}=\lfloor x\rfloor+0 . a_{1} a_{2} a_{3} \ldots
$$

To have a unique representation of all rational numbers we require that expansions do not end with a tail of $b-1$.

We will abuse notation and whenever the base b is understood we will denote the first n digits in the expansion of x with $x[1 \ldots n]$.

Definition of normality

Definition 1 (Strong aligned normality, Borel 1909)

A real number x is simply normal to base b if, in the expansion of x in base b, each digit d occurs with limiting frequency equal to $1 / b$,

$$
\lim _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{d}}{n}=\frac{1}{b}
$$

A real number x is normal to base b if each of the reals $x, b x, b^{2} x, \ldots$ are simply normal to bases $b^{1}, b^{2}, b^{3}, \ldots$

A real x is absolutely normal if x is normal to every integer base greater than or equal to 2 .

Equivalences between combinatorial definitions of normality

A real number x is simply normal to base b if, in the expansion of x in base b, each digit d occurs with limiting frequency equal to $1 / b$.
Borel's original definition of normality turned out to be redundant.
Definition (Strong aligned normality, Borel 1909)
A real number x is normal to base b if each of the reals $x, b x, b^{2} x, \ldots$ are simply normal to bases $b^{1}, b^{2}, b^{3}, \ldots$

Definition (Aligned normality, Pillai 1940)
A real number x is normal to base b if x is simply normal to bases $b^{1}, b^{2}, b^{3}, \ldots$.

Definition (Non-aligned normality, Borel first: Niven and Zuckerman 1951)
A real number x is normal to base b if for every block u,

$$
\lim _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{u}}{n}=\frac{1}{b^{|u|}}
$$

A central limit theorem: there are a few bad words

Let A be an alphabet of b symbols, let k be a positive integer and let ε be a real number between 0 and 1 .

We define the set of words of length k such that a given word w has a number of occurrences that differs from the expected in plus or minus εk,

$$
\operatorname{Bad}(A, k, w, \varepsilon)=\left\{v \in A^{k}:\left||v|_{w}-\frac{k}{b^{|w|}}\right|>\varepsilon k\right\} .
$$

Example: For $A=\{0,1\}, k=4, \varepsilon=1 / 4, w=11$, we have $\frac{k}{b|w|}=\frac{4}{2^{2}}=1, \epsilon k=1$.
$\operatorname{Bad}(A, k, w, \varepsilon)=\{1111\}$ the set of words with 3 occurences of w :
For $A=\{0,1\}, k=4, \varepsilon=1 / 4, w=1$, we have $\frac{k}{b|w|}=\frac{4}{2^{1}}=2, \epsilon k=1$, $\operatorname{Bad}(A, k, w, \varepsilon)=$ the set of words with 4,0 occurences of w :

$$
\{1111,0000\}
$$

There are a few bad words

Lemma 1 (Adapted from Hardy and Wright's book, Theorem 148)
Let b be an integer such that $b \geq 2$ and let k be a positive integer. If $6 / k \leq \varepsilon \leq 1 / b$ then for every symbol d in A,

$$
|\operatorname{Bad}(A, k, d, \varepsilon)|<4 e^{-b \varepsilon^{2} k / 6} b^{k}
$$

This lemma is known in many different variants, such as Bernstein's inequality where the is no constraint on ε.

Proof of Lemma 1

Observe that for any symbol d in A, the number of words of lengh k having exactly n occurrences of a given digit d is:

$$
\binom{k}{n}(b-1)^{k-n}
$$

Then,

$$
|\operatorname{Bad}(A, k, d, \varepsilon)|=\sum_{n \leq k / b-\varepsilon k}\binom{k}{n}(b-1)^{k-n}+\sum_{n \geq k / b+\varepsilon k}\binom{k}{n}(b-1)^{k-n}
$$

Fix b and k and write $N(n)$ for $\binom{k}{n}(b-1)^{k-n}$.
For all $n<k / b, N(n)<N(n+1)$ and these quotients increase as n increases,

$$
\frac{N(n)}{N(n+1)}=\frac{(n+1)(b-1)}{k-n}
$$

Similarly, for all $n>k / b, N(n)<N(n-1)$ and these quotients increase as n decreases,

$$
\frac{N(n)}{N(n-1)}=\frac{k-n+1}{n(b-1)}
$$

We will"shift" m positions each of the sums for $|\operatorname{Bad}(A, k, d, \varepsilon)|$.
We bound the first sum as follows. Let

$$
m=\lfloor\varepsilon k / 2\rfloor \text { and } p=\lfloor k / b-\varepsilon k\rfloor
$$

For any n we can write

$$
N(n)=\frac{N(n)}{N(n+1)} \cdot \frac{N(n+1)}{N(n+2)} \cdot \ldots \cdot \frac{N(n+m-1)}{N(n+m)} \cdot N(n+m)
$$

For each n such that $n \leq p+m-1$ we have that $n+m<k / b$, so,

$$
\begin{aligned}
\frac{N(n)}{N(n+1)} & \leq \frac{N(p+m-1)}{N(p+m)}=\frac{(p+m)(b-1)}{k-p-m+1} \\
& <\frac{(k / b-\varepsilon k / 2)(b-1)}{k-k / b+\varepsilon k / 2}=1-\frac{\varepsilon b / 2}{1-1 / b+\varepsilon / 2} \\
& <1-\varepsilon b / 2 \quad \text { (using the hypothesis } \varepsilon \leq 1 / b) \\
& <e^{-b \varepsilon / 2}
\end{aligned}
$$

Then,

$$
\begin{aligned}
N(n) & <\left(e^{-b \varepsilon / 2}\right)^{m} N(n+m) \\
& \leq e^{-b \varepsilon(\varepsilon k / 2-1) / 2} N(n+m) \\
& \left.\leq 2 e^{-b \varepsilon^{2} k / 4} N(n+m), \quad \text { (the hypothesis } \varepsilon \leq 1 / b \text { implies } e^{b \varepsilon / 2}<2\right)
\end{aligned}
$$

We obtain,

$$
\sum_{n \leq p} N(n)<2 e^{-b \varepsilon^{2} k / 2} \sum_{n \leq p} N(n+m) \leq e^{-b \varepsilon^{2} k / 4} 2 b^{k}
$$

We now bound the second sum. Let

$$
m=\lfloor\varepsilon k / 2\rfloor \text { and } q=\lceil k / b+\varepsilon k\rceil
$$

For any n we can write

$$
N(n)=\frac{N(n)}{N(n-1)} \cdot \frac{N(n-1)}{N(n-2)} \cdot \ldots \cdot \frac{N(n-m+1)}{N(n-m)} \cdot N(n-m) .
$$

For each n such that $n \geq q-m+1$ we have $n-m>k / b$, so,

$$
\begin{aligned}
\frac{N(n)}{N(n-1)} & \leq \frac{N(q-m+1)}{N(q-m)}=\frac{k-q+m}{(q-m+1)(b-1)} \\
& =\frac{k-\lceil k / b+\varepsilon k\rceil+\lfloor\varepsilon k / 2\rfloor}{(\lceil k / b+\varepsilon k\rceil-\lfloor\varepsilon k / 2\rfloor+1)(b-1)} \\
& \leq \frac{k-k / b-\varepsilon k / 2}{(k / b+\varepsilon k / 2+1)(b-1)} \\
& <\frac{1-1 / b-\varepsilon / 2}{(1 / b+\varepsilon / 2)(b-1)} \\
& \leq 1-b \varepsilon / 3, \quad \text { using } \varepsilon \leq 1 / b .
\end{aligned}
$$

We conclude,

$$
\frac{N(n)}{N(n-1)} \leq 1-b \varepsilon / 3 \leq e^{-b \varepsilon / 3} .
$$

Then,

$$
\begin{aligned}
N(n) & <\left(e^{-b \varepsilon / 3}\right)^{m} N(n-m) \\
& \leq e^{-b \varepsilon\lfloor\varepsilon k / 2\rfloor / 3} N(n-m) \\
& \leq e^{-b \varepsilon(\varepsilon k / 2-1) / 3} N(n-m)
\end{aligned}
$$

$$
\leq 2 e^{-b \varepsilon^{2} k / 6} N(n-m), \quad \text { (the hypothesis } \varepsilon \leq 1 / b \text { implies } e^{b \varepsilon / 3}<2 \text {) }
$$

Thus,

$$
\sum_{n \geq q} N(n)<4 b^{k} e^{-b \varepsilon^{2} k / 6}
$$

This completes the proof. \square

There are a few bad words

Lemma 2

Let A be an alphabet of b symbols. Let k, ℓ be positive integers and ε a real such that $6 /\lfloor k / \ell\rfloor \leq \varepsilon \leq 1 / b^{\ell}$. Then,

$$
\left|\bigcup_{w \in A^{\ell}} \operatorname{Bad}(A, k, w, \varepsilon \ell)\right|<4 \ell b^{2 \ell} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)} b^{k}
$$

Proof of Lemma 2

Split the set $\{0,1,2, \ldots, k-1\}$ into the congruence classes modulo ℓ. Each of these classes contains either $\lfloor k / \ell\rfloor$ or $\lceil k / \ell\rceil$ elements. Let M_{0} denote the class of all indices which leave remainder zero when being reduced modulo ℓ. Let $n_{0}=\left|M_{0}\right|$. For each x in A^{k} consider the word in $\left(A^{\ell}\right)^{n_{0}}$

$$
x\left[i_{1} \ldots\left(i_{1}+\ell-1\right)\right] x\left[i_{2} \ldots\left(i_{2}+\ell-1\right)\right] \ldots x\left[i_{n_{0}} \ldots\left(i_{n_{0}}+\ell-1\right)\right]
$$

for $i_{1}, \ldots i_{n_{0}} \in M_{0}$.
By Lemma 1,

$$
\left|\operatorname{Bad}\left(A^{\ell}, n_{0}, w, \varepsilon\right)\right|<4\left(b^{\ell}\right)^{n_{0}} e^{-b^{\ell} \varepsilon^{2} n_{0} / 6}
$$

Clearly, similar estimates hold for the indices in the other residue classes.

Let $n_{1}, \ldots, n_{\ell-1}$ denote the cardinalities of these other residue classes. By assumption $n_{0}+\cdots+n_{\ell-1}=k$. Then,

$$
\begin{aligned}
|\operatorname{Bad}(A, k, w, \varepsilon \ell)| & \leq \sum_{j=0}^{\ell-1}\left|\operatorname{Bad}\left(A^{\ell}, n_{j}, w, \varepsilon\right)\right| \\
& \leq \sum_{j=0}^{\ell-1} 4\left(b^{\ell}\right)^{n_{j}} e^{-b^{\ell} \varepsilon^{2} n_{j} / 6} \\
& \leq \sum_{j=0}^{\ell-1} 4\left(b^{\ell}\right)^{k / \ell+1} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)}=4 \ell b^{k+\ell} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)}
\end{aligned}
$$

The last inequality holds because

$$
\left(b^{\ell}\right)^{\lceil k / \ell\rceil} e^{-b^{\ell} \varepsilon^{2}\lceil k / \ell\rceil / 6}<\left(b^{\ell}\right)^{k / \ell+1} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)}
$$

and $\varepsilon \leq 1 / b^{\ell}$ ensures

$$
\left(b^{\ell}\right)^{\lfloor k / \ell\rfloor} e^{-b^{\ell} \varepsilon^{2}\lfloor k / \ell\rfloor / 6} \leq b^{k} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)}
$$

Now, summing up over all $w \in A^{\ell}$ we obtain

$$
\left|\bigcup_{w \in A^{\ell}} \operatorname{Bad}(A, k, w, \varepsilon \ell)\right|<4 \ell b^{k+2 \ell} e^{-b^{\ell} \varepsilon^{2} k /(6 \ell)}
$$

Theorem 3
Almost all sequences are normal.

Proof of Theorem 3

Fix alphabet A. By definition, a sequence x is normal if for every word w and for every ε there is \tilde{k} such that for every $k \geq \tilde{k}$, $x[1 \ldots k] \notin \operatorname{Bad}(A, k, w, \varepsilon)$.

Thus, if x is not normal there is ε_{0} and there is a word w such that for every \tilde{k} there is $k \geq \tilde{k}$ such that $x[1 \ldots k] \in \operatorname{Bad}\left(A, k, w, \varepsilon_{0}\right)$.
We will show that these Bad sets have very few words. By the following properties of the Bad sets

- If $\delta>\varepsilon$ then $\operatorname{Bad}(A, k, w, \delta) \subseteq \operatorname{Bad}(A, k, w, \varepsilon)$.
- If z is prefix of w then $\operatorname{Bad}(A, k, w, \varepsilon) \subseteq \operatorname{Bad}(A, k, z, \varepsilon)$.
we can take decreasing values of ε and shorter witnesses z and show that Bad sets are small enough.

Consider ε a decreasing function of k going to zero; such as, $\varepsilon=1 / \sqrt[4]{k}$. Consider ℓ an increasing function of k, unbounded; such as, $\ell=\lfloor\log k\rfloor$. Since

$$
\begin{aligned}
\left|\bigcup_{w \in A \leq\lfloor\log k\rfloor} \operatorname{Bad}(A, k, w,(\log k) / \sqrt[4]{k})\right| & <b^{k} \sum_{\ell=1}^{\lfloor\log k\rfloor} 4 \ell b^{2 \ell} e^{-b^{\ell}\left(\frac{1}{\sqrt[4]{k}}\right)^{2} \frac{k}{6 \ell}} \\
& <b^{k} e^{-\sqrt{k}}, \quad \text { for } k \text { large enough }
\end{aligned}
$$

Then, there is k_{0} such that

$$
\sum_{k \geq k_{0}}\left|b^{-k} \bigcup_{w \in A \leq\lfloor\log k\rfloor} \operatorname{Bad}(A, k, w,(\log k) / \sqrt[4]{k})\right|
$$

is as small as we want.

The proportion of sequences that have an initial segment in some of the Bad sets shrinkes as much as we want when k_{0} increases. This means that almost all sequences haver their initial segments outside of the Bad sets. This proves the theorem. \square

A little trick

Lemma 4

Let $\left(x_{1, n}\right)_{n \geq 0},\left(x_{2, n}\right)_{n \geq 0}, \ldots,\left(x_{k, n}\right)_{n \geq 0}$ be sequences of real numbers such that $\sum_{i=1}^{k} x_{i, n}=1$ and let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers such that $\sum_{i=1}^{k} c_{i}=1$. Then,

1. If for each $i, \liminf _{n \rightarrow \infty} x_{i, n} \geq c_{i}$ then for each $i, \lim _{n \rightarrow \infty} x_{i, n}=c_{i}$.
2. If for each $i, \lim \sup _{n \rightarrow \infty} x_{i, n} \leq c_{i}$ then for each $i, \lim _{n \rightarrow \infty} x_{i, n}=c_{i}$.

We will aply this for $k=b^{\ell}, x_{n, i}=\frac{|x[1 . . n]|_{w_{i}}}{b^{\ell}}$ for $i=1,2, \ldots b^{\ell}$.
Notar que $\sum_{i=1}^{b^{\ell}} \frac{|x[1 . . n]|_{w_{i}}}{b^{\ell}}=1$

Proof of Lemma 4

For any i in $\{1, \ldots, k\}$,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{i, n} & =\limsup _{n \rightarrow \infty}\left(1-\sum_{j \neq i} x_{j, n}\right) \\
& =1+\limsup _{n \rightarrow \infty}\left(-\sum_{j \neq i} x_{j, n}\right) \\
& =1-\liminf _{n \rightarrow \infty}\left(\sum_{j \neq i} x_{j, n}\right) \\
& \leq 1-\sum_{j \neq i} \liminf _{n \rightarrow \infty} x_{j, n} \\
& \leq 1-\sum_{j \neq i} c_{j}=c_{i} .
\end{aligned}
$$

Since
$\limsup _{n \rightarrow \infty} x_{i, n} \leq c_{i} \leq \liminf _{n \rightarrow \infty} x_{i, n}$, and liminf $\leq \limsup$

$$
n \rightarrow \infty
$$

necessarily,

$$
\liminf _{n \rightarrow \infty} x_{i, n}=\limsup _{n \rightarrow \infty}=c_{i 2} \text { and } \lim _{n \rightarrow \infty} x_{i, n}=c_{i} . \square
$$

Theorem 5 (Piatetski-Shapiro 1957)

Let x be a real and let b be an integer greater than or equal to 2 . Let $A=\{0, \ldots, b-1\}$. The following conditions are equivalent,

1. The real x is normal to base b.
2. There is a constant C such that for infinitely many lengths ℓ and for every w in A^{ℓ}

$$
\limsup _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{w}}{n}<C \cdot b^{-\ell}
$$

3. There is a constant C such that for infinitely many lengths ℓ and for every w in A^{ℓ}

$$
\limsup _{n \rightarrow \infty} \frac{\|x[1 \ldots n \ell]\|_{w}}{n}<C \cdot b^{-\ell}
$$

Proof of Theorem 5

We prove $2 \Rightarrow 1$.
Suppose C such that for infinitely many lengths ℓ and for every $w \in A^{\ell}$,

$$
\limsup _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{w}}{n}<C \cdot b^{-\ell}
$$

Let ℓ be one of those infinitely many lengths. Fix $\varepsilon \leq 1 / b^{\ell}$. Fix $w \in A^{\ell}$. Let k be large enough so that $|\operatorname{Bad}(A, k, w, \varepsilon)|<b^{k} \varepsilon$. Observe that for every $w \in A^{*}$, for every n and k,

$$
|x[1 \ldots n k]|_{w} \geq \frac{1}{k-\ell+1} \sum_{v \in A^{k}}|x[1 \ldots n k]|_{v}|v|_{w}
$$

$\liminf _{n \rightarrow \infty} \frac{|x[1 \ldots n k]|_{w}}{n k} \geq \liminf _{n \rightarrow \infty} \frac{1}{k-\ell+1} \sum_{v \in A^{k}} \frac{|x[1 \ldots n k]|_{v}}{n k}|v|_{w}$

$$
\begin{aligned}
& \geq \liminf _{n \rightarrow \infty} \frac{1}{k} \sum_{v \in A^{k}} \frac{|x[1 \ldots n k]|_{v}}{n k}|v|_{w} \\
& \geq \liminf _{n \rightarrow \infty} \sum_{v \in A^{k}} \frac{\mid x\left[\left.1 \ldots n k\right|_{v}\right.}{n k} \frac{|v|_{w}}{k}
\end{aligned}
$$

$$
\geq \liminf _{n \rightarrow \infty} \sum_{v \in A^{k} \backslash \operatorname{Bad}(A, k, w, \varepsilon)} \frac{\mid x\left[\left.1 \ldots n k\right|_{v}\right.}{n k} \frac{|v|_{w}}{k}
$$

$$
\geq(1-\varepsilon) b^{-\ell} \liminf _{n \rightarrow \infty} \sum_{v \in A^{k} \backslash \operatorname{Bad}(A, k, w, \varepsilon)} \frac{\mid x\left[\left.1 \ldots n k\right|_{v}\right.}{n k}
$$

$$
=(1-\varepsilon) b^{-\ell} \liminf _{n \rightarrow \infty}\left(1-\sum_{v \in \operatorname{Bad}(A, k, w, \varepsilon)} \frac{\mid x\left[\left.1 \ldots n k\right|_{v}\right.}{n k}\right)
$$

$$
\geq(1-\varepsilon) b^{-\ell}\left(1-\sum_{v \in \operatorname{Bad}(A, k, w, \varepsilon)} \limsup _{n \rightarrow \infty} \frac{|x[1 \ldots n k]|_{v}}{n k}\right)
$$

$$
\geq(1-\varepsilon) b^{-\ell}\left(1-\sum_{v \in \operatorname{Bad}(A, k, w, \varepsilon)} C \cdot b^{-k}\right)
$$

$$
\geq(1-\varepsilon) b^{-\ell}(5133-C \varepsilon) .
$$

The previous inequality hods for every positive $\varepsilon \leq 1 / b^{\ell}$, hence,

$$
\liminf _{n \rightarrow \infty} \frac{\mid x\left[\left.1 \ldots n k\right|_{w}\right.}{n k} \geq b^{-\ell} .
$$

Finally, this last inequality is true for every $w \in A^{\ell}$, so by Lemma 4

$$
\lim _{n \rightarrow \infty} \frac{\mid x\left[\left.1 \ldots n\right|_{w}\right.}{n}=b^{-\ell}
$$

Theorem 6
The three definitions of normality are equivalent.

Proof of Theorem 6

1. We show that Strong aligned normality implies Non-aligned normality. Idea: for any $w \in A^{\ell}$,

$$
|x[1 \ldots n]|_{w}=\sum_{i=0}^{\ell-1}\left\|\left(b^{i} x\right)[1 \ldots n-i]\right\|_{w}
$$

By Strong aligned normality, for $i=1,2, \ldots$, for every w, writing $\ell=|w|$,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\left\|\left(b^{i} x\right)[1 \ldots \ell n]\right\|_{w}}{n}=b^{-\ell} \text { equivalently } \lim _{n \rightarrow \infty} \frac{\left\|\left(b^{i} x\right)[1 \ldots n]\right\|_{w}}{n / \ell}=b^{-\ell} \\
\text { equivalently } \lim _{n \rightarrow \infty} \frac{\left\|\left(b^{i} x\right)[1 \ldots n]\right\|_{w}}{n}=b^{-\ell} / \ell
\end{gathered}
$$

Then,

$$
\lim _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{w}}{n}=\sum_{i=0}^{\ell-1} \lim _{n \rightarrow \infty} \frac{\left\|\left(b^{i} x\right)[1 \ldots n-i]\right\|_{w}}{n}=\sum_{i=0}^{\ell-1} \frac{b^{-\ell}}{\ell}=b^{-\ell} .
$$

2. We prove that Non-aligned normality implies Aligned normality.

We first define, for any $w \in A^{\ell}, r=0, . ., \ell-1$,

$$
\begin{aligned}
& \|x\|_{w, r}=|\{i: x[i . . i+|w|-1] i \bmod |w|=r\}| \\
& \|x\|_{w, *}=\max \left\{\|x\|_{w, r}: r=1, . ., \ell\right\}
\end{aligned}
$$

Idea: for any large enough K

$$
\begin{aligned}
\|x[1 \ldots N]\|_{w} & \leq \frac{1}{K-|w|+1} \sum_{t=1}^{N-K+1}\|x[t \ldots t+K)\|_{w, *} \\
& \leq \frac{1}{K-|w|+1} \sum_{v \in A^{K}}|x[1 . . N]|_{v}\|v\|_{w, *}
\end{aligned}
$$

$$
\widetilde{\operatorname{Bad}}(A, k, w, \varepsilon)=\left\{v \in A^{k}:\left|\|v\|_{w, *}-b^{-\ell} k / \ell\right|>\varepsilon k / \ell\right\}
$$

With an argument similar to the proof of Lemma 2 we obtain that for each ε there is k_{0} such that for every $k \geq k_{0}$,

$$
|\widetilde{\operatorname{Bad}}(A, k, w, \varepsilon)|<\varepsilon b^{k}
$$

Assume the previous proof (non-aligned implies aligned).
Assume for all $w \in A^{\ell}, \lim _{n \rightarrow \infty} \frac{|x[1 \ldots n]|_{w}}{29^{n} / 33}=b^{-\ell}$.

Fix ℓ and $w \in A^{\ell}$. Fix ε. Let k be large enough so that $\widetilde{B a d}=\widetilde{\operatorname{Bad}}(A, k \ell, w, \varepsilon)$ has cardinality less than εb^{k}.

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{\|x[1 \ldots n \ell]\|_{w}}{n} & \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \frac{1}{k \ell-\ell+1} \sum_{t=1}^{n \ell-k \ell}\|x[t \ldots t+k \ell)\|_{w, *} \\
& =\limsup _{n \rightarrow \infty} \frac{1}{n} \frac{1}{k \ell-\ell+1} \sum_{v \in A^{k \ell}}|x[1 \ldots n \ell]|_{v}\|v\|_{w, *} \\
& \leq \sum_{v \in A^{k \ell}}\left(\limsup _{n \rightarrow \infty} \frac{|x[1 \ldots n \ell]|_{v}}{n \ell}\right) \frac{\|v\|_{w, *}}{k-1} \\
& =\sum_{v \in A^{k \ell}} b^{-k \ell} \frac{\|v\|_{w, *}}{k-1} \\
& =\sum_{v \in A^{k \ell} \backslash \widetilde{B} a d} b^{-k \ell} \frac{\|v\|_{w, *}}{k-1}+\sum_{v \in \widetilde{B} a d} b^{-k \ell} \frac{\|v\|_{w, *}}{k-1} \\
& \leq b^{k \ell} b^{-k \ell} \frac{k \ell b^{-\ell}+\varepsilon k \ell}{\ell(k-1)}+\varepsilon b^{k \ell} b^{-k \ell} \frac{k \ell}{\ell(k-1)} \\
& =b^{-\ell}\left(1+\varepsilon b^{\ell}\right) \frac{k}{k-1}+\varepsilon \frac{k}{k-1}
\end{aligned}
$$

We obtained

$$
\limsup _{n \rightarrow \infty} \frac{\|x[1 \ldots n \ell]\|_{w}}{n} \leq b^{-\ell}\left(1+\varepsilon b^{\ell}\right) \frac{k}{k-1}+\varepsilon \frac{k}{k-1} .
$$

This inequality holds for every ε and every k large enough, we have

$$
\limsup _{n \rightarrow \infty} \frac{\| x\left[1 \ldots n \ell \|_{w}\right.}{n} \leq b^{-\ell} .
$$

Since this holds for every $w \in A^{\ell}$, by Lemma 4,

$$
\lim _{n \rightarrow \infty} \frac{\|x[1 \ldots n \ell]\|_{w}}{n}=b^{-\ell}
$$

3. We prove that Aligned normality implies Strong aligned normality. It is sufficient to prove that if x has aligned normality then $b x$ also has aligned normality. Define

$$
U(k, w, i)=\left\{u \in A^{k}: u[i \ldots i+|w|-1]=w\right\} .
$$

Fix a positive integer ℓ. For any $w \in A^{\ell}$ and for any positive integer r,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\|(b x)[1 \ldots n r \ell]\|_{w}}{n r} & \geq \liminf _{n \rightarrow \infty} \frac{1}{r} \sum_{k=0}^{r-2} \sum_{u \in U(r \ell, w, 2+\ell k)} \frac{\|x[1 \ldots n r \ell]\|_{u}}{n} \\
& =\frac{1}{r} \sum_{k=0}^{r-2} \sum_{u \in U(\ell r, w, 2+\ell k)} b^{-r \ell} \\
& =\frac{r-1}{r} b^{-\ell} .
\end{aligned}
$$

For every r the following equality holds:

$$
\liminf _{n \rightarrow \infty} \frac{\|(b x)[1 \ldots n \ell]\|_{w}}{n}=\liminf _{n \rightarrow \infty} \frac{\|(b x)[1 \ldots n r \ell]\|_{w}}{n r} .
$$

Then, using the inequality obtained above we have,

$$
\liminf _{n \rightarrow \infty} \frac{\|(b x)[1 \ldots n \ell]\|_{w}}{n} \geq \frac{r-1}{r} b^{-\ell} .
$$

Since this last inequality holds for evey r, we obtain,

$$
\liminf _{n \rightarrow \infty} \frac{\|(b x)\left[1 \ldots n \ell \|_{w}\right.}{n} \geq b^{-\ell}
$$

Finally, this last inequality is true for every $w \in A^{\ell}$, hence by Lemma 4 ,

$$
\lim _{n \rightarrow \infty} \frac{\|(b x)[1 \ldots n \ell]\|_{w}}{n}=b^{-\ell}
$$

