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Notation

Number of occurrences, not-aligned and aligned,

|w |u = |{i : w [i . . . i + |u| − 1] = u}|,
||w ||u = |{i : w [i . . . i + |u| − 1] = u and i ≡ 1 mod |u|}|.

For example, |aaaaa|aa = 4 and ||aaaaa||aa = 2.

Notice that the definition of aligned occurrences has the condition
i ≡ 1 mod |u| instead of i ≡ 0 mod |u|, because the positions are
numbered starting at 1.

When a word u is just a symbol, |w |u and ||w ||u coincide.

1 / 33



Counting aligned occurrences

Aligned occurrences of a word of length r over alphabet A coincide with
occurrences of the corresponding symbol over alphabet Ar .

Consider alphabet A, a length r and alphabet B with |A|r symbols.
The set of words of length r over alphabet A and the set B are
isomorphic:

π : Ar → B

induced by the lexicographic order in the respective sets.

Thus, for any w ∈ A∗ such that |w | is a multiple of r ,

|π(w)| = |w |/r .

Then,
∀ u ∈ Ar (||w ||u = |π(w)|π(u)).
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Representation of real numbers

A base is an integer greater than or equal to 2. For a positive real
number x , the expansion of x in base b is a sequence a1a2a3 . . . of
integers from {0, 1, . . . , b − 1} such that

x = bxc+
∑
k≥1

akb−k = bxc+ 0.a1a2a3 . . .

To have a unique representation of all rational numbers we require that
expansions do not end with a tail of b − 1.

We will abuse notation and whenever the base b is understood we will
denote the first n digits in the expansion of x with x [1 . . . n].
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Definition of normality

Definition 1 (Strong aligned normality, Borel 1909)

A real number x is simply normal to base b if, in the expansion of x in

base b, each digit d occurs with limiting frequency equal to 1/b,

lim
n→∞

|x [1 . . . n]|d
n

=
1

b

A real number x is normal to base b if each of the reals x , bx , b2x , . . .
are simply normal to bases b1, b2, b3, . . ..

A real x is absolutely normal if x is normal to every integer base greater
than or equal to 2.
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Equivalences between combinatorial definitions of normality

A real number x is simply normal to base b if, in the expansion of x in

base b, each digit d occurs with limiting frequency equal to 1/b.

Borel’s original definition of normality turned out to be redundant.

Definition (Strong aligned normality, Borel 1909)

A real number x is normal to base b if each of the reals x , bx , b2x , . . .
are simply normal to bases b1, b2, b3, . . .

Definition (Aligned normality, Pillai 1940)

A real number x is normal to base b if x is simply normal to
bases b1, b2, b3, . . ..

Definition (Non-aligned normality, Borel first: Niven and Zuckerman 1951)

A real number x is normal to base b if for every block u,

lim
n→∞

|x [1 . . . n]|u
n

=
1

b|u|
.
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A central limit theorem: there are a few bad words

Let A be an alphabet of b symbols, let k be a positive integer and let ε
be a real number between 0 and 1.

We define the set of words of length k such that a given word w has a
number of occurrences that differs from the expected in plus or minus εk,

Bad(A, k ,w , ε) =

{
v ∈ Ak :

∣∣∣∣|v |w − k

b|w |

∣∣∣∣ > εk

}
.

Example: For A = {0, 1} , k = 4, ε = 1/4, w = 11,
we have k

b|w|
= 4

22 = 1, εk = 1.
Bad(A, k ,w , ε) = {1111} the set of words with 3 occurences of w :

For A = {0, 1} , k = 4, ε = 1/4,w = 1, we have k
b|w|

= 4
21 = 2, εk = 1,

Bad(A, k ,w , ε) = the set of words with 4, 0 occurences of w :

{1111, 0000}
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There are a few bad words

Lemma 1 (Adapted from Hardy and Wright’s book, Theorem 148)

Let b be an integer such that b ≥ 2 and let k be a positive integer.
If 6/k ≤ ε ≤ 1/b then for every symbol d in A,

|Bad(A, k , d , ε)| < 4e−bε
2k/6bk .

This lemma is known in many different variants, such as Bernstein’s
inequality where the is no constraint on ε.
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Proof of Lemma 1

Observe that for any symbol d in A, the number of words of lengh k
having exactly n occurrences of a given digit d is :(

k

n

)
(b − 1)k−n

Then,

|Bad(A, k , d , ε)| =
∑

n≤k/b−εk

(
k

n

)
(b − 1)k−n +

∑
n≥k/b+εk

(
k

n

)
(b − 1)k−n

Fix b and k and write N(n) for
(
k
n

)
(b − 1)k−n.

For all n < k/b, N(n) < N(n + 1) and these quotients increase
as n increases,

N(n)

N(n + 1)
=

(n + 1)(b − 1)

k − n

Similarly, for all n > k/b, N(n) < N(n − 1) and these quotients increase
as n decreases,

N(n)

N(n − 1)
=

k − n + 1

n(b − 1)
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We will“shift” m positions each of the sums for |Bad(A, k, d , ε)|.
We bound the first sum as follows. Let

m = bεk/2c and p = bk/b − εkc

For any n we can write

N(n) =
N(n)

N(n + 1)
· N(n + 1)

N(n + 2)
· . . . · N(n + m − 1)

N(n + m)
· N(n + m)

For each n such that n ≤ p + m − 1 we have that n + m < k/b, so,

N(n)

N(n + 1)
≤ N(p + m − 1)

N(p + m)
=

(p + m)(b − 1)

k − p −m + 1

<
(k/b − εk/2)(b − 1)

k − k/b + εk/2
= 1− εb/2

1− 1/b + ε/2

< 1− εb/2 (using the hypothesis ε ≤ 1/b).

< e−bε/2.

Then,

N(n) <
(
e−bε/2

)m
N(n + m)

≤ e−bε(εk/2−1)/2 N(n + m)

≤ 2e−bε2k/4 N(n + m), (the hypothesis ε ≤ 1/b implies ebε/2 < 2)
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We obtain,∑
n≤p

N(n) < 2e−bε
2k/2

∑
n≤p

N(n + m) ≤ e−bε
2k/42 bk .
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We now bound the second sum. Let

m = bεk/2c and q = dk/b + εke.

For any n we can write

N(n) =
N(n)

N(n − 1)
· N(n − 1)

N(n − 2)
· . . . · N(n −m + 1)

N(n −m)
· N(n −m).

For each n such that n ≥ q −m + 1 we have n −m > k/b, so,

N(n)

N(n − 1)
≤ N(q −m + 1)

N(q −m)
=

k − q + m

(q −m + 1)(b − 1)

=
k − dk/b + εke+ bεk/2c

(dk/b + εke − bεk/2c+ 1)(b − 1)

≤ k − k/b − εk/2

(k/b + εk/2 + 1)(b − 1)

<
1− 1/b − ε/2

(1/b + ε/2)(b − 1)

≤ 1− bε/3, using ε ≤ 1/b.

11 / 33



We conclude,

N(n)

N(n − 1)
≤ 1− bε/3 ≤ e−bε/3.

Then,

N(n) <
(

e−bε/3
)m

N(n −m)

≤ e−bεbεk/2c/3N(n −m)

≤ e−bε(εk/2−1)/3N(n −m)

≤ 2 e−bε
2k/6N(n −m), (the hypothesis ε ≤ 1/b implies ebε/3 < 2)

Thus, ∑
n≥q

N(n) < 4 bke−bε
2k/6.

This completes the proof.�
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There are a few bad words

Lemma 2

Let A be an alphabet of b symbols. Let k, ` be positive integers and ε a
real such that 6/bk/`c ≤ ε ≤ 1/b`. Then,∣∣∣∣∣∣

⋃
w∈A`

Bad(A, k ,w , ε`)

∣∣∣∣∣∣ < 4` b2` e−b
`ε2k/(6`)bk .

13 / 33



Proof of Lemma 2

Split the set {0, 1, 2, . . . , k − 1} into the congruence classes modulo `.
Each of these classes contains either bk/`c or dk/`e elements.
Let M0 denote the class of all indices which leave remainder zero when
being reduced modulo `. Let n0 = |M0|.
For each x in Ak consider the word in (A`)n0

x [i1 . . . (i1 + `− 1)]x [i2 . . . (i2 + `− 1)] . . . x [in0 . . . (in0 + `− 1)]

for i1, . . . in0 ∈ M0.
By Lemma 1, ∣∣Bad(A`, n0,w , ε)

∣∣ < 4 (b`)n0 e−b
`ε2n0/6.

Clearly, similar estimates hold for the indices in the other residue classes.
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Let n1, . . . , n`−1 denote the cardinalities of these other residue classes.
By assumption n0 + · · ·+ n`−1 = k. Then,

|Bad(A, k,w , ε`)| ≤
`−1∑
j=0

∣∣∣Bad(A`, nj ,w , ε)
∣∣∣

≤
`−1∑
j=0

4(b`)nj e−b`ε2nj/6

≤
`−1∑
j=0

4(b`)k/`+1e−b`ε2k/(6`) = 4 ` bk+` e−b`ε2k/(6`).

The last inequality holds because

(b`)dk/`ee−b`ε2dk/`e/6 < (b`)k/`+1e−b`ε2k/(6`)

and ε ≤ 1/b` ensures

(b`)bk/`ce−b`ε2bk/`c/6 ≤ bke−b`ε2k/(6`).
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Now, summing up over all w ∈ A` we obtain∣∣∣∣∣∣
⋃

w∈A`

Bad(A, k ,w , ε`)

∣∣∣∣∣∣ < 4` bk+2`e−b
`ε2k/(6`).

�
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Theorem 3

Almost all sequences are normal.
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Proof of Theorem 3

Fix alphabet A. By definition, a sequence x is normal if for every word w
and for every ε there is k̃ such that for every k ≥ k̃ ,
x [1 . . . k] 6∈ Bad(A, k ,w , ε).

Thus, if x is not normal there is ε0 and there is a word w such that for
every k̃ there is k ≥ k̃ such that x [1 . . . k] ∈ Bad(A, k,w , ε0).

We will show that these Bad sets have very few words. By the following
properties of the Bad sets

I If δ > ε then Bad(A, k ,w , δ) ⊆ Bad(A, k ,w , ε).

I If z is prefix of w then Bad(A, k ,w , ε) ⊆ Bad(A, k , z , ε).

we can take decreasing values of ε and shorter witnesses z and show that
Bad sets are small enough.
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Consider ε a decreasing function of k going to zero; such as, ε = 1/ 4
√

k.
Consider ` an increasing function of k , unbounded; such as, ` = blog kc.
Since∣∣∣∣∣∣

⋃
w∈A≤blog kc

Bad(A, k ,w , (log k)/
4
√

k)

∣∣∣∣∣∣ <bk

blog kc∑
`=1

4`b2` e
−b`

(
1
4√
k

)2
k

6`

<bke−
√
k , for k large enough

Then, there is k0 such that

∑
k≥k0

∣∣∣∣∣∣b−k
⋃

w∈A≤blog kc

Bad(A, k ,w , (log k)/
4
√

k)

∣∣∣∣∣∣
is as small as we want.
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The proportion of sequences that have an initial segment in some of the
Bad sets shrinkes as much as we want when k0 increases.
This means that almost all sequences haver their initial segments outside
of the Bad sets. This proves the theorem. �
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A little trick

Lemma 4

Let (x1,n)n≥0, (x2,n)n≥0, . . . , (xk,n)n≥0 be sequences of real numbers such

that
∑k

i=1 xi,n = 1 and let c1, c2, . . . , ck be real numbers such that∑k
i=1 ci = 1. Then,

1. If for each i , lim infn→∞ xi,n ≥ ci then for each i , limn→∞ xi,n = ci .

2. If for each i , lim supn→∞ xi,n ≤ ci then for each i , limn→∞ xi,n = ci .

We will aply this for k = b`, xn,i =
|x[1..n]|wi

b` for i = 1, 2, . . . b`.

Notar que
∑b`

i=1
|x[1..n]|wi

b` = 1

21 / 33



Proof of Lemma 4

For any i in {1, . . . , k},

lim sup
n→∞

xi,n = lim sup
n→∞

(1−
∑
j 6=i

xj,n)

= 1 + lim sup
n→∞

(−
∑
j 6=i

xj,n)

= 1− lim inf
n→∞

(
∑
j 6=i

xj,n)

≤ 1−
∑
j 6=i

lim inf
n→∞

xj,n

≤ 1−
∑
j 6=i

cj = ci .

Since
lim sup
n→∞

xi,n ≤ ci ≤ lim inf
n→∞

xi,n, and lim inf ≤ lim sup

necessarily,

lim inf
n→∞

xi,n = lim sup
n→∞

= ci and lim
n→∞

xi,n = ci . �
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Theorem 5 (Piatetski-Shapiro 1957)

Let x be a real and let b be an integer greater than or equal to 2.
Let A = {0, . . . , b − 1}. The following conditions are equivalent,

1. The real x is normal to base b.

2. There is a constant C such that for infinitely many lengths ` and for
every w in A`

lim sup
n→∞

|x [1 . . . n]|w
n

< C · b−`.

3. There is a constant C such that for infinitely many lengths ` and for
every w in A`

lim sup
n→∞

||x [1 . . . n`]||w
n

< C · b−`.
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Proof of Theorem 5

We prove 2⇒ 1.
Suppose C such that for infinitely many lengths ` and for every w ∈ A`,

lim sup
n→∞

|x [1 . . . n]|w
n

< C · b−`.

Let ` be one of those infinitely many lengths. Fix ε ≤ 1/b`. Fix w ∈ A`.
Let k be large enough so that |Bad(A, k ,w , ε)| < bkε.
Observe that for every w ∈ A∗, for every n and k ,

|x [1 . . . nk]|w ≥
1

k − `+ 1

∑
v∈Ak

|x [1 . . . nk]|v |v |w .
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lim inf
n→∞

|x [1 . . . nk]|w
nk

≥ lim inf
n→∞

1

k − ` + 1

∑
v∈Ak

|x [1 . . . nk]|v
nk

|v |w

≥ lim inf
n→∞

1

k

∑
v∈Ak

|x [1 . . . nk]|v
nk

|v |w

≥ lim inf
n→∞

∑
v∈Ak

|x [1 . . . nk|v
nk

|v |w
k

≥ lim inf
n→∞

∑
v∈Ak\Bad(A,k,w,ε)

|x [1 . . . nk|v
nk

|v |w
k

≥ (1− ε)b−` lim inf
n→∞

∑
v∈Ak\Bad(A,k,w,ε)

|x [1 . . . nk|v
nk

= (1− ε)b−` lim inf
n→∞

1−
∑

v∈Bad(A,k,w,ε)

|x [1 . . . nk|v
nk


≥ (1− ε)b−`

1−
∑

v∈Bad(A,k,w,ε)

lim sup
n→∞

|x [1 . . . nk]|v
nk


≥ (1− ε)b−`

1−
∑

v∈Bad(A,k,w,ε)

C · b−k


≥ (1− ε)b−`(1− Cε).25 / 33



The previous inequality hods for every positive ε ≤ 1/b`, hence,

lim inf
n→∞

|x [1 . . . nk |w
nk

≥ b−`.

Finally, this last inequality is true for every w ∈ A`, so by Lemma 4

lim
n→∞

|x [1 . . . n|w
n

= b−`.

�
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Theorem 6

The three definitions of normality are equivalent.
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Proof of Theorem 6

1. We show that Strong aligned normality implies Non-aligned normality.

Idea : for any w ∈ A`,

|x [1 . . . n]|w =
`−1∑
i=0

||(bix)[1 . . . n − i ]||w

By Strong aligned normality, for i = 1, 2, . . ., for every w , writing ` = |w |,

lim
n→∞

||(bix)[1 . . . `n]||w
n

= b−` equivalently lim
n→∞

||(bix)[1 . . . n]||w
n/`

= b−`

equivalently lim
n→∞

||(bix)[1 . . . n]||w
n

= b−`/`

Then,

lim
n→∞

|x [1 . . . n]|w
n

=
`−1∑
i=0

lim
n→∞

||(bix)[1 . . . n − i ]||w
n

=
`−1∑
i=0

b−`

`
= b−`.
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2. We prove that Non-aligned normality implies Aligned normality.

We first define, for any w ∈ A`, r = 0, .., `− 1,

||x ||w ,r =
∣∣∣{i : x [i ..i + |w | − 1]i mod |w | = r}

∣∣∣
||x ||w ,∗ = max{||x ||w ,r : r = 1, .., `}

Idea: for any large enough K

||x [1 . . .N]||w ≤
1

K − |w |+ 1

N−K+1∑
t=1

||x [t . . . t + K )||w ,∗

≤ 1

K − |w |+ 1

∑
v∈AK

|x [1..N]|v ||v ||w ,∗

B̃ad(A, k ,w , ε) =
{

v ∈ Ak : |||v ||w ,∗ − b−`k/`| > εk/`
}

With an argument similar to the proof of Lemma 2 we obtain that for
each ε there is k0 such that for every k ≥ k0,

|B̃ad(A, k ,w , ε)| < εbk

Assume the previous proof ( non -aligned implies aligned).

Assume for all w ∈ A`, limn→∞
|x[1...n]|w

n = b−`.
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Fix ` and w ∈ A`. Fix ε. Let k be large enough so that
B̃ad = B̃ad(A, k`,w , ε) has cardinality less than εbk .

lim sup
n→∞

||x [1 . . . n`]||w
n

≤ lim sup
n→∞

1

n

1

k`− `+ 1

n`−k`∑
t=1

||x [t . . . t + k`)||w ,∗

= lim sup
n→∞

1

n

1

k`− `+ 1

∑
v∈Ak`

|x [1 . . . n`]|v ||v ||w ,∗

≤
∑
v∈Ak`

(
lim sup
n→∞

|x [1 . . . n`]|v
n`

)
||v ||w ,∗
k − 1

=
∑
v∈Ak`

b−k`
||v ||w ,∗
k − 1

=
∑

v∈Ak`\B̃ad

b−k`
||v ||w ,∗
k − 1

+
∑

v∈B̃ad

b−k`
||v ||w ,∗
k − 1

≤bk`b−k`
k`b−` + εk`

`(k − 1)
+ εbk`b−k`

k`

`(k − 1)
.

=b−`(1 + εb`)
k

k − 1
+ ε

k

k − 1
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We obtained

lim sup
n→∞

||x [1 . . . n`]||w
n

≤ b−`(1 + εb`)
k

k − 1
+ ε

k

k − 1
.

This inequality holds for every ε and every k large enough, we have

lim sup
n→∞

||x [1 . . . n`]||w
n

≤ b−`.

Since this holds for every w ∈ A`, by Lemma 4,

lim
n→∞

||x [1 . . . n`]||w
n

= b−`.
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3. We prove that Aligned normality implies Strong aligned normality.
It is sufficient to prove that if x has aligned normality then bx also has
aligned normality. Define

U(k ,w , i) = {u ∈ Ak : u[i . . . i + |w | − 1] = w}.

Fix a positive integer `. For any w ∈ A` and for any positive integer r ,

lim inf
n→∞

||(bx)[1 . . . nr`]||w
nr

≥ lim inf
n→∞

1

r

r−2∑
k=0

∑
u∈U(r`,w ,2+`k)

||x [1 . . . nr`]||u
n

=
1

r

r−2∑
k=0

∑
u∈U(`r ,w ,2+`k)

b−r`

=
r − 1

r
b−`.

For every r the following equality holds:

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

= lim inf
n→∞

||(bx)[1 . . . nr`]||w
nr

.
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Then, using the inequality obtained above we have,

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

≥ r − 1

r
b−`.

Since this last inequality holds for evey r , we obtain,

lim inf
n→∞

||(bx)[1 . . . n`]||w
n

≥ b−`.

Finally, this last inequality is true for every w ∈ A`, hence by Lemma 4,

lim
n→∞

||(bx)[1 . . . n`]||w
n

= b−`.
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