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Clase 5: Algoritmo eficiente para computar un número absolutamente
normal



A fast construction of absolutely normal numbers

Theorem 1 (Becher, Heiber and Slaman in 2013)

There is an algorithm that computes an absolutely normal number x in
nearly quadratic time complexity: the first n digits in the expansion of x
in base 2 are obtained by performing O

(
n2 4
√

log n) mathematical
operations.
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Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣
Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0

If w is a block of digits in base b we just write ∆(w) instead of ∆|w |(w).

2 / 14



Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣
Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0

If w is a block of digits in base b we just write ∆(w) instead of ∆|w |(w).

2 / 14



Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣

Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0

If w is a block of digits in base b we just write ∆(w) instead of ∆|w |(w).

2 / 14



Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣
Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0

If w is a block of digits in base b we just write ∆(w) instead of ∆|w |(w).

2 / 14



Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣
Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0

If w is a block of digits in base b we just write ∆(w) instead of ∆|w |(w).

2 / 14



The following two lemmas are not hard to prove.

Lemma 2 (Lemma 3.1 BHS 2013)

Let u and v be blocks and let a positive real ε.

1. If ∆(u) < ε and ∆(v) < ε then ∆(uv) < ε.

2. If ∆(u) < ε, v = a1...a|v | and |v |/|u| < ε then ∆(vu) < 2ε, and for
every ` such that 1 ≤ ` ≤ |v |, ∆(ua1a2...a`) < 2ε.

Lemma 3 (Lemma 3.4 BHS2013)

For any interval I and any base b, there is a b-ary subinterval J such that
µJ ≥ µI/(2b).
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The next two definitions are the core of the construction.

Definition 4

A t-sequence −→σ is a sequence of intervals (σ2, . . . , σt) such that
for each base b = 2, . . . , t, σb is b-ary,
for each base b = 3, . . . , t, σb ⊂ σb−1 and µσb ≥ µσb−1/(2b).

Observe that the definition implies µσt ≥ (µσ2)/(2tt!).

Definition 5

A t-sequence −→τ = (τ2, . . . , τt) refines a t ′-sequence −→σ = (σ2, . . . , σt′) if
t ′ ≤ t and τb ⊂ σb for each b = 2, . . . , t ′. A refinement has discrepancy
less than ε if for each b = 2, ..t ′ there are words u, v such that σb = Iu,
τb = Iuv and ∆(v) < ε.
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We say that an interval is b-ary of order n if it is of the form(
a

bn
,

a + 1

bn

)
for some integer a such that 0 ≤ a < bn. If σb and τb are b-ary intervals,
and τb ⊆ σb we say that the relative order of τb with respect to σb is the
order of τb minus the order of σb.

Lemma 6

Let t be an integer greater than or equal to 2, let t ′ be equal to t or to
t + 1, and let ε be a positive real less than 1/t. Then, any t-sequence
−→σ = (σ2, . . . , σt) admits a refinement −→τ = (τ2, . . . , τt′) with discrepancy
less than ε. The relative order of τ2 can be any integer greater than or
equal to max(6/ε, 24(log2 t)(log(t!))/ε2).
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Proof of Lemma 6

First assume t ′ = t. We must pick a t-sequence (τ2, . . . , τt) that refines
(σ2, . . . , σt) in a zone of low discrepancy. This is possible because the
measure of the zones of large discrepancy decreases at an exponential
rate in the order of the interval. To prove the lemma we need to
determine the relative order N of τ2 such that the measure of the union
of the bad zones inside σ2 for the bases b = 2, . . . t is strictly less than
the measure of the set all the possible t-ary subintervals τt of σ2.
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Let L be the largest binary subinterval in σt .
Partition of L in 2N binary intervals τ2 of equal length.
For each τ2 apply iteratively Lemma 3 to define τ3, . . . , τtn .

Thus, we have defined 2N many tn-sequences (τ2, . . . τt). Let S be the
union of the set of all possible intervals τt over these 2N many
tn-sequences. Hence, by the definition of t-sequence,

µS ≥ µL/(2tt!).

By Lemma 3,
µL ≥ µσt/4.

And by the definition of t-sequence again,

µσt ≥ µσ2/(2tt!).

Combining inequalities we obtain,

µS ≥ µσ2/(2tt! 4 2tt!)

7 / 14



Now consider the bad zones inside σ2. For each b = 2, . . . t, for a length
N and a real value ε consider the the following set of intervals of relative
order dN/ log2 be with respect to σ2,

Bb,dN/ log2 be,ε =
⋃

u∈{0,...,b−1}dN/ log2 be

∆(u)≥ε

Iu.

Thus, the actual measure of the bad zones is

µσ2 µ
( ⋃

b=2,..,t

µBb,dN/ log2 be,ε

)
Then, N must be such that

µσ2 µ
( ⋃

b=2,..,t

Bb,dN/ log2 be,ε

)
< µS .

Using Lemma ?? on the left and the inequality above for µS on the right
it suffices that N be greater than 6/ε and also N be such that

2t2 · e−ε
2(N/3 log2 t) <

1

2tt!

1

4

1

2tt!
.

We can take N greater than or equal to max(6/ε, 24(log2 t)(log(t!))/ε2).
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The case t ′ = t + 1 follows easily by taking first a t-sequence −→τ refining
−→σ with discrepancy less than ε. Definition 5 does not require any
discrepancy considerations for τt+1. Take τt+1 the largest (t + 1)-ary
subinterval of τt . By Lemma 3, µτt+1 ≥ (µτt)/(2(t + 1)). This
completes the proof of the lemma.
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El algoritmo BHS 2013

The algorithm considers three functions of the step number n:

tn is the maximum base to be considered at step n,
εn is the maximum discrepancy tolerated at step n, and
Nn is the number of digits in base 2 added at step n.

The algorithm constructs −→σ 0,
−→σ 1,
−→σ 2, . . . such that −→σ 0 = (0, 1) and for

each n ≥ 1, −→σ n is tn-sequence that refines −→σ n−1 with discrepancy εn
and such that the order of σn,2 is Nn plus the order of σn−1,2.
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Definition 7

Define the following functions of n,

tn = max(2, b 4
√

log nc),
εn = 1/tn,

Nn = blog nc+ nstart ,

where nstart is the minimum integer such that that validates the condition
in Lemma 6. Thus we require that for every positive n,

blog nc+ nstart ≥ 6/εn and

blog nc+ nstart ≥ 24(log2 tn)(log(tn!))/ε2
n.
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Algorithm BHS

Output: y1y2y3 . . . the symbols in the base 2 expansion of an absolutely
normal number.

Initial step, n = 1. −→σ 1 = (σ2), with σ2 = (0, 1).

Recursive step, n > 1. Assume −→σ n−1 = (σ2, . . . , σtn−1 ).
Take −→σ n = (τ2, . . . , τtn) the leftmost tn-sequence that
refines −→σ n−1 with discrepancy less than εn and such that
if σ2 = Iu then τ2 = Iuv with |v | = Nn.
Set yMn+1 . . . yMn+Nn = v , where Mn =

∑n
j=1 Nn.
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Proof of Theorem 1

The existence of the sequence −→σ 1,
−→σ 2, . . . is guaranteed by Lemma 6.

We have to prove that the real number x defined by the intersection of
all the intervals in the sequence is absolutely normal. We pick a base b
and show that x is simply normal to base b. Let ε̃ > 0. Choose n0 so
that tn0 ≥ b and εn0 ≤ ε̃/4. At each step n after n0 the expansion of x in
base b was constructed by appending blocks un such that ∆(un) < εn0 .
Thus, by Lemma 2 (item 1) for any n > n0,

∆(un0 . . . un) < εn0 .

Applying Lemma 2 (item 2a), we obtain n1 such that for any n > n1

∆(u1 . . . un) < 2εn0 .
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Let N
(b)
n be the relative order of τb with respect to σb. By Lemma 3,

Nn

log2 b
≤ N(b)

n ≤ Nn + 1

log2 b
+ 1.

Since Nn = blog nc+ nstart , Nn grows logarithmically and so does N
(b)
n for

each base b. Then, for n sufficiently large,

N(b)
n ≤ Nn + 1

log2 b
+ 1 ≤ 2εn0

n−1∑
j=1

Nj

log2 b
≤ 2εn0

n−1∑
j=1

N
(b)
j .

By Lemma 2 (item 2b) we conclude that for n sufficiently large, if
un = a1 . . . a|un| then for every ` such that 1 ≤ ` ≤ |un|,

∆`(u1 . . . un−1a1 . . . a`) < 4εn0 < ε̃.

So, x is simply normal to base b for every b ≥ 2.
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We now analyze the computational complexity of the algorithm.
Lemma 6 ensures the existence of the wanted t-sequence at each step n.
To effectively find it we proceed as follows. Divide the interval σ2 into

2Nn

equal binary intervals. In the worst case, for each of them, we need to
check if it allocates a tn-sequence (τ2, . . . , τtn) that refines (σ2 . . . , σtn−1 )
with discrepancy less than εn. Since we are just counting the number of
mathematical operations ignoring the precision, at step n the algorithm
performs

O
(
2Nn tn

)
many mathematical operations. Since Nn is logarithmic in n and tn is a
rational power of log(n) we conclude that at step n the algorithm
performs

O(n 4
√

log n)

mathematical operations. Finally, in the first k steps the algorithm will
output at lest k many digits of the binary expansion of the computed
number having performed

O(k2 4
√

log k)

many mathematical operations. This completes the proof of Theorem 1.
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