Departamento de Computacién, Facultad de Ciencias Exactas y Naturales, UBA

Azar y Autdmatas

Clase 6: Autématas finitos y secuencias normales

Normality as incompressibility by finite automata

The definition of normality can be expressed as a notion of
incompressibility by finite automata with output also known as

transducers .

We focus on transducers that operate in real-time , that is, they process
exactly one input alphabet symbol per transition. We consider
non-deterministic transducers .

1/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where

» Q is a finite set of states,

2/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where
» Q is a finite set of states,
» A and B are the input and output alphabets, respectively.

2/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where
» Q is a finite set of states,
» A and B are the input and output alphabets, respectively.
> 0 C Q x Ax B* x @ is a transition relation.

2/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where
» Q is a finite set of states,
» A and B are the input and output alphabets, respectively.

> 6 C Q@ xAXx B*x Q is a transition relation. A transition is a tuple
(p, a, v, @) which is written

alv

p—q

2/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where
» Q is a finite set of states,
» A and B are the input and output alphabets, respectively.

> 6 C Q@ xAXx B*x Q is a transition relation. A transition is a tuple
(p, a, v, @) which is written

alv
p—q

» | C Q and F C Q are the sets of initial and final states, respectively.

2/20

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where
» Q is a finite set of states,
» A and B are the input and output alphabets, respectively.

> 6 C Q@ xAXx B*x Q is a transition relation. A transition is a tuple
(p, a, v, @) which is written

alv
p—q

» | C Q and F C Q are the sets of initial and final states, respectively.

2/20

Finite automata with output

3/20

Finite automata with output

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

L [0]0[1]1]1]0]
11
0@ @ik
0[0

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

[o[1T1TofoT1 1 1T0]

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

1/1
oo @D
0[0 [of1fofo[a] T []

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

The transducer transforms rows of 1s into a single 1.

3/20

Finite automata with output

A run is a sequence of consecutive transitions,

a1lv a|va an| Vi

go——q1——>Qq qn-1—qn...

A finite run is written
ay-ap|vieevy

o —————0n

4/20

Finite automata with output

A run is a sequence of consecutive transitions,

a1lv a|va an| Vi

go——q1——>Qq qn-1—qn...

A finite run is written
ai--+ap|vie v
q0 > dn
An infinite run is written

ajapaz---|vivavs--

qo

4/20

Finite automata with output

A run is a sequence of consecutive transitions,

a1lv a|va an| Vi

go——q1——>Qq qn-1—qn...

A finite run is written
ai--+ap|vie v
q0 > dn
An infinite run is written

ajapaz---|vivavs--

qo

An infinite run is accepting if qo is in / and for infinitely many ns g, in F.
This is the classical Biichi acceptance condition.

4/20

Finite automata with output

A run is a sequence of consecutive transitions,

a1lv a|va an| Vi

go——q1——>Qq qn-1—qn...

A finite run is written
ay-ap|vieevy

q0 > dn
An infinite run is written

ajapaz---|vivavs--

qo

An infinite run is accepting if qo is in / and for infinitely many ns g, in F.
This is the classical Biichi acceptance condition.

For two infinite words x € A and y € B¥, we write T (x,y) whenever
there is an accepting run go <% oo in 7.

T is bounded-to-one if the function y — |[{x : T(x,y)}| is bounded.

4/20

Compressibility by finite automata

An infinite word x = ajaas--- is compressible if there is a
bounded-to-one non-deterministic transducer with an accepting run
qgo 214y gy 2lvy g, 3, g, satisfying

.. |viva - v log |B|

liminf .

n—00 n log |A|

5/20

Example of a compressible sequence

The sequence x = 01010101010101. .. is compressible because there is a
one-to-one automaton 7 that maps 0101 — 0 and for every v such that
|[v| =4 and v # 0101 v — 1v. Then,

6/20

Example of a compressible sequence

The sequence x = 01010101010101. .. is compressible because there is a
one-to-one automaton 7 that maps 0101 — 0 and for every v such that
|[v| =4 and v # 0101 v — 1v. Then,

fiminf 12 iminf L = 1/4 < 1.
n— oo ‘(0101)"| n—oco 4n

6/20

Example of a compressible sequence

The sequence x = 010010001000010000010000001 ... is compressible
because there is a one-to-one automaton 7 that maps 000 — 0 and for
every v such that |v|] =3 and v # 000 v — 1v. Then,

i 1010] + (X7 .4+ (—2)/3+1)
n—o0 Z;=1j+1

7/20

Example of a compressible sequence

The sequence x = 010010001000010000010000001 ... is compressible
because there is a one-to-one automaton 7 that maps 000 — 0 and for
every v such that |v|] =3 and v # 000 v — 1v. Then,

o 1010] + (X7 .4+ (—2)/3+1)
limin T
n—00 Zj=1]+1

4+5 " 4457 ,(+1)/3
< liminf 2jm2dt 2l 1)/

n=o0 YU+ 1)

7/20

Example of a compressible sequence

The sequence x = 010010001000010000010000001 ... is compressible
because there is a one-to-one automaton 7 that maps 000 — 0 and for
every v such that |v|] =3 and v # 000 v — 1v. Then,

i 1010] + (X7 .4+ (—2)/3+1)

n—o0 Z_}’:lj+1
4+5 " 4457 ,(+1)/3
< liminf ZJ*QH Z”O)/
n—c0 > +1)
444
< liminf— 22" 173

n—oo n(n+1)/2

7/20

Example of a compressible sequence

The sequence x = 010010001000010000010000001 ... is compressible
because there is a one-to-one automaton 7 that maps 000 — 0 and for
every v such that |v|] =3 and v # 000 v — 1v. Then,

1010] + (X7 .4+ (—2)/3+1)

limin

n— oo Z_}’:lj+1
4+ 50 4+ 0 ,(+1)/3
< liminf ZJ*QH Z”O)/
n—»00 > +1)
. 4+ 4n
liminf ————— +1
< it 1y T3

= 1/3
< 1.

7/20

Normality as incompressibility by finite automata

Theorem 1

An infinite word is normal if and only if it is not compressible by any
bounded-to-one non-deterministic transducer.

8/20

Normal implies not compressible

Lemma 2

Let ¢ be a positive integer and let uy, up, us, ... be words of length { over
the alphabet A such that x = ujupusz - -+ is simply normal to length /.
Consider a bounded-to-one transducer and let an accepting run with
input x

u v uz|va us|vs
qo0 1 a2 qsz- -

Assume there is a real e > 0 and a set U C A’ of at least (1 — ¢)|A|*
words such that u; € U implies |v;| > ¢(1 — ¢). Then,

L vava vy 3
minf A2 " nl 1)3
I|n inf — (1-¢)

9/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length £.

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i;1gign,u,-:u}\z#u_s).

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

n
iva-val = > |vil
i=1

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

n
iva-val = > |vil

i=1
> vl

1<i<n,u;ieU

vV

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> Z vil
1<i<n,uieU
> Z U1 —¢)

1<i<n,u;€U

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl
1<i<n,uieU

>) U1-e)
1<i<n,uieU

> nAT(1-e)> U1-¢)

uel

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl
1<i<n,uieU
>) U1-e)
1<i<n,uieU
> nAT(1-e)> U1-¢)
uel
> n\A|7€(1 —e)(1- 5)\A|€€(1 —€)

10/20

Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl

1<i<n,uieU
>) U1-e)

1<i<n,uieU
> nAT(1-e)> U1-¢)

uel

> nA7N1 —e)(1—e)|Al4(1 —¢)
> (1-¢)’nt. O

10/20

Normal implies not compressible

Lemma 3

If x is normal then x can not be compressed by any bounded-to-one
real-time transducer.

11/20

Proof of Lemma 3

Fix a normal infinite word x = aja»az---, a real ¢ > 0, a bounded-to-one
non-deterministic 7 = (Q, A, B, 0, go, F) and an accepting run

a1lv a|va azlvs
1 q

do

where a € A and v € B*.

12/20

Proof of Lemma 3

Fix a normal infinite word x = aja»az---, a real ¢ > 0, a bounded-to-one
non-deterministic 7 = (Q, A, B, 0, go, F) and an accepting run

a1lv a|va azlvs
1 q

do

where a € A and v € B*.

It suffices to show that there is £ and U such that Lemma 2 applies to
this arbitrary choice of €, 7 and accepting run.

12/20

Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p v, q}.

13/20

Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

Ut p.q,v)={uec A : p =5 g}
Thus, for each u € U'(¢, p, g, v) we can write

x|y uo| vo ulv xo|yo
qo—>oo—q —— p—qg——

13/20

Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

13/20

Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

For each u € A* let h, be its minimum output length

hy = min{|v]: 30,0 < i <j.q 2% g}

13/20

Proof of Lemma 3

For each length ¢, pair of states p, g in the run and each word v define
U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

For each u € A* let h, be its minimum output length

b = min{|v] : 30,j,0 < i < j.qi % g}
Let Uy be the set of words of length ¢ that yield large output
U ={uec A h,>(1—e)}

13/20

Proof of Lemma 3

For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

For each u € A* let h, be its minimum output length
hy = min{|v|: 30,j,0 < i < j.q; 2% q;}
Let Uy be the set of words of length ¢ that yield large output
U ={uec A h,>(1—e)}

Then,
Uel > Al = |QPt| B,

13/20

Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

For each u € A* let h, be its minimum output length

hy = min{lv| : 31.7.0 < i < j.qi " q;)
Let Uy be the set of words of length ¢ that yield large output
U ={uec A h,>(1—e)}
Then,
Ul > A" = Qe B

Then, there is ¢ large enough such that |Uy| > |A|(1 — ¢) and apply
Lemma 2 with U = U, to the considered run. O

13/20

Non-compressible implies normal

We show non-normal implies compressible.
Lemma 4

Every non-normal infinite word is compressible by some deterministic
one-to-one transducer.

14/20

Non-compressible implies normal

We show non-normal implies compressible.
Lemma 4

Every non-normal infinite word is compressible by some deterministic
one-to-one transducer.

This is stronger than we need (non-deterministic, bounded-to-one)

14/20

Proof of Lemma 4

Assume x € A¥ is not normal.

15/20

Proof of Lemma 4

Assume x € A% is not normal. Then, there is uy of length k such that

I B]| S 1
lim p #+ Al

n—o00 n/

15/20

Proof of Lemma 4

Assume x € A% is not normal. Then, there is uy of length k such that

I B]| S 1
lim p #* Al

n—o00 n/

There exists then an increasing sequence (n;);>o of integers such that for
each word u of length k

P)
i—00 n;/k

and

15/20

Proof of Lemma 4

Assume x € A% is not normal. Then, there is uy of length k such that

N B)| S 1

Ak T AR

There exists then an increasing sequence (n;);>o of integers such that for
each word u of length k

£ = lim [x[1...n]u
i—00 n;/k
and
1
7‘-Uo 7& W
Note that >, fu = 1.

15/20

Proof of Lemma 4

Let m be an integer to be fixed later.

16/20

Proof of Lemma 4

Let m be an integer to be fixed later. For each word w € A™ consider

W=y Uy with |u;| = k foreach 1 <i<m

16/20

Proof of Lemma 4

Let m be an integer to be fixed later. For each word w € A™ consider
W=y Uy with |u;| = k foreach 1 <i<m
and let
m
=11%
i=1

Notice that), c gum fw = 1.

16/20

Proof of Lemma 4

Let m be an integer to be fixed later. For each word w € A™ consider
W=y Uy with |u;| = k foreach 1 <i<m
and let
m
=11%
i=1

Notice that), c gum fw = 1.

Now put A™ in a one to one correspondence with a prefix free set in B*:
for each w € Ak™ |et v,, € B* such that

v < —log f,,
T] log|B] |

16 /20

Proof of Lemma 4

We construct a deterministic transducer Ty, = (Qm, A, B, 0m, I, Fm),

Qn = A<km
I = {\}
Fmn = Qm
Om = {Wal—)\>wa:|wa\<km}u{walﬂ>)\:|Wa|:km}.

The transducer 7T, always comes back to its initial state \ after reading
km symbols.

17/20

Let Tm(z) be the output of 7, on some finite input word z.

18/20

Let Tm(z) be the output of 7, on some finite input word z.
Factorize z € A* as z = wy - - - w,w’ where |w;| = km for each 1 </ <n
and |w’'| < km. Note that n = [|z|/(km)].

[Tm(2)] = Z|Vw,-|
i=1

18/20

Let Tm(z) be the output of 7, on some finite input word z.
Factorize z € A* as z = wy - - - w,w’ where |w;| = km for each 1 </ <n
and |w’'| < km. Note that n = [|z|/(km)].

[Tm(2)] = Z|Vw,-|
i=1

IN

> [~ logfy,/log|Bl]
i=1

18/20

Let Tm(z) be the output of 7, on some finite input word z.
Factorize z € A* as z = wy - - - w,w’ where |w;| = km for each 1 </ <n
and |w’'| < km. Note that n = [|z|/(km)].

[Tm(2)] = Z|Vw,-|
i=1

< Y [~logfu/log|Bl]
i=1

< H—|—i—logf /log |B|

T km i

18/20

Let Tm(z) be the output of 7, on some finite input word z.
Factorize z € A* as z = wy - - - w,w’ where |w;| = km for each 1 </ <n
and |w’'| < km. Note that n = [|z|/(km)].

[Tm(2)] = Z|Vw,-|
i=1

< Z(—logfwf/log\BH
|z|
< +Z log £, / log | B
Z
< 2 ST (- tog) log|B

wEAkm

18/20

Let Tm(z) be the output of 7, on some finite input word z.
Factorize z € A* as z = wy - - - w,w’ where |w;| = km for each 1 </ <n
and |w’'| < km. Note that n = [|z|/(km)].

[Tm(2)] = Z|Vw,-|
i=1

< Z(—logfwf/log\BH
|Z|
< +Z log £, / log | B
< |Z| —logf,)/log|B
< et Z |z|w(—log f,)/log |B|
wE Akm
y4
< 2l S zu(- tog) log 5]

u€ Ak

18/20

Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives

19/20

Proof of Lemma 4
Applying this computation to the prefix z = x[1..n] of x gives

iming T 108 |B] _ - [Tn(x{L..n])| log] B]

n—o00 n log|A] = i—=co n; log | A

19/20

Proof of Lemma 4
Applying this computation to the prefix z = x[1..n] of x gives

fiming TmOLLnDllog Bl o [Tm(x[1..mi])] log |B]
n—00 n log | A i—o0 n; log |A|

A

A

i log|B s —logf,log|B

iy 7108181 5~ Izlu g log1B)

i—oo nikm log | A vl k n;i/k log|B| log|A|
u

19/20

Proof of Lemma 4
Applying this computation to the prefix z = x[1..n] of x gives

| Tm(x[1..n])]| log | B| < I | Tm(x[1..n:])| log | B

liminf |
oo n log|A] = i—=co n; log | A
i log|B u —logf,log|B
< ni _log| |+Z |zlu —logf, log|B|
i—oo nikm log | A k n;i/k log|B| log|A|
uc Ak
_ 1 log|B 1

= fu(—log f,
km log |A] " klog |A| ;k (~logf)

19/20

Proof of Lemma 4
Applying this computation to the prefix z = x[1..n] of x gives

liming TmOL-nD[log Bl _ . |Tm(x[1..ni])] log |B|
n—00 n log | A i—o0 n; log |A|

< lim nj |0g|B|+Z |zl —logf, log|B|
imoo nikm log |A| = k ni/k log|B] log|A|
u

1 log|B| 1
fu(—log f,
kmlog|A| klog A ;k (~log fu)

IA

1 log | B|
km log |A| '

19/20

Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives

| Tm(x[1..n])| log |B|

liminf <
YA n log |A| —
<
<

| Tm(x[1..n])[log | B

lim
log |A|

i— 00 n;

n; log|B]| —log f, log | B|

|z]u
iN% nikm log |A] ; k ni/k log|B] log |A|
u

1 log|B| 1

il fo(—log f,
km log |A] " klog |A| ;k (~logf)
1 log|B]|

km log |A|

Since at least one number f, is not equal to 1/|A|*,

PR

ue Ak

—logf,) < klog|A|.

19/20

Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives

lim inf [Tm(L-nDl log B . [Tm(x[1..m])] log ||
n—00 n |Og |A| i— 00 n; |og |A|

< BI85~ lel, —loghlog|B
i—oo nikm log | A k ni/k log|B| log|A|
1 log|B 1

< LloelBl, S f(~logh)

kmlog|A| "~ klog]|A| —

1 log|B]|
km log |A|

Since at least one number f, is not equal to 1/|A|*,

> fu(—logf,) < klog|Al.
uc Ak

Then, for m chosen large enough, we obtain that 7, compresses x. []

19/20

Normality and finite automata

Theorem 5

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

20/20

Normality and finite automata

Theorem 5

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

no finite-state martingale success iff incompressibility

(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

20/20

Normality and finite automata

Theorem 5

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

no finite-state martingale success iff incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)

(Bourke, Hitchcock and Vinodchandran 2005)

normality iff incompressibility (direct proof)
(Becher and Heiber 2013)

20/20

Normality and finite automata

Theorem 5

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

no finite-state martingale success iff incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

normality iff incompressibility (direct proof)
(Becher and Heiber 2013)

iff incompressibility by non-deterministic

iff incompressibility by one counter
(Becher, Carton and Heiber 2015)

20/20

Normality and finite automata

Theorem 5

normality iff

no finite-state martingale success iff

normality iff

iff
iff

iff

20/20

no finite-state martingale success
(Schnorr and Stimm 1971)

incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

incompressibility (direct proof)
(Becher and Heiber 2013)

incompressibility by non-deterministic
incompressibility by one counter
(Becher, Carton and Heiber 2015)

incompressibility two-way transducers
(Carton and Heiber 2015)

