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Clase 6: Autómatas finitos y secuencias normales



Normality as incompressibility by finite automata

The definition of normality can be expressed as a notion of
incompressibility by finite automata with output also known as

transducers .

We focus on transducers that operate in real-time , that is, they process
exactly one input alphabet symbol per transition. We consider
non-deterministic transducers .
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Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple T = 〈Q,A,B, δ, I ,F 〉, where

I Q is a finite set of states,

I A and B are the input and output alphabets, respectively.

I δ ⊂ Q × A× B∗ × Q is a transition relation. A transition is a tuple
〈p, a, v , q〉 which is written

p
a|v−−→ q

I I ⊆ Q and F ⊆ Q are the sets of initial and final states, respectively.
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Finite automata with output

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0

The transducer transforms rows of 1s into a single 1.
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Finite automata with output

A run is a sequence of consecutive transitions,

q0
a1|v1−−−→ q1

a2|v2−−−→ q2 · · · qn−1
an|vn−−−→ qn . . .

A finite run is written

q0
a1···an|v1···vn−−−−−−−−→ qn

An infinite run is written

q0
a1a2a3···|v1v2v3···−−−−−−−−−−→∞

An infinite run is accepting if q0 is in I and for infinitely many ns qn in F .
This is the classical Büchi acceptance condition.

For two infinite words x ∈ Aω and y ∈ Bω, we write T (x , y) whenever
there is an accepting run q0

x|y−−→∞ in T .

T is bounded-to-one if the function y 7→ |{x : T (x , y)}| is bounded.
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Compressibility by finite automata

An infinite word x = a1a2a3 · · · is compressible if there is a
bounded-to-one non-deterministic transducer with an accepting run
q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · satisfying

lim inf
n→∞

|v1v2 · · · vn|
n

log |B|
log |A|

< 1.
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Example of a compressible sequence

The sequence x = 01010101010101 . . . is compressible because there is a
one-to-one automaton T that maps 0101→ 0 and for every v such that
|v | = 4 and v 6= 0101 v → 1v . Then,

lim inf
n→∞

|0n|
|(0101)n|

= lim inf
n→∞

n

4n
= 1/4 < 1.
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Example of a compressible sequence

The sequence x = 010010001000010000010000001 . . . is compressible
because there is a one-to-one automaton T that maps 000→ 0 and for
every v such that |v | = 3 and v 6= 000 v → 1v . Then,

lim inf
n→∞

|1010|+
(∑n

j=2 4 + (j − 2)/3 + 1
)∑n

j=1 j + 1

< lim inf
n→∞

4 +
∑n

j=2 4 +
∑n

j=2(j + 1)/3∑n
j=1(j + 1)

< lim inf
n→∞

4 + 4n

n(n + 1)/2
+ 1/3

= 1/3

< 1.
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Normality as incompressibility by finite automata

Theorem 1

An infinite word is normal if and only if it is not compressible by any
bounded-to-one non-deterministic transducer.
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Normal implies not compressible

Lemma 2

Let ` be a positive integer and let u1, u2, u3, . . . be words of length ` over
the alphabet A such that x = u1u2u3 · · · is simply normal to length `.
Consider a bounded-to-one transducer and let an accepting run with
input x

q0
u1|v1−−−→ q1

u2|v2−−−→ q2
u3|v3−−−→ q3 · · ·

Assume there is a real ε > 0 and a set U ⊆ A` of at least (1− ε)|A|`
words such that ui ∈ U implies |vi | ≥ `(1− ε). Then,

lim inf
n→∞

|v1v2 · · · vn|
n`

≥ (1− ε)3.
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Proof of Lemma 2

By hypothesis x = u1u2 . . ., where each |ui | = `, is simply normal to
length `.

Let n0 be such that for every u ∈ A` and for every n ≥ n0,

|{i : 1 ≤ i ≤ n, ui = u}| ≥ n

|A|`
(1− ε).

Then, for every n ≥ n0,

|v1v2 · · · vn| =
n∑

i=1

|vi |

≥
∑

1≤i≤n,ui∈U

|vi |

≥
∑

1≤i≤n,ui∈U

`(1− ε)

≥ n|A|−`(1− ε)
∑
u∈U

`(1− ε)

≥ n|A|−`(1− ε)(1− ε)|A|``(1− ε)

≥ (1− ε)3n`. �
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Normal implies not compressible

Lemma 3

If x is normal then x can not be compressed by any bounded-to-one
real-time transducer.
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Proof of Lemma 3

Fix a normal infinite word x = a1a2a3 · · · , a real ε > 0, a bounded-to-one
non-deterministic T = 〈Q,A,B, δ, q0,F 〉 and an accepting run

q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ q3 · · ·

where a ∈ A and v ∈ B∗.

It suffices to show that there is ` and U such that Lemma 2 applies to
this arbitrary choice of ε, T and accepting run.
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Proof of Lemma 3

For each length `, pair of states p, q in the run and each word v define

U ′(`, p, q, v) = {u ∈ A` : p
u|v−−→ q}.

Thus, for each u ∈ U ′(`, p, q, v) we can write

q0
x|y−−→∞ = q0

u0|v0−−−→ p
u|v−−→ q

x0|y0−−−→∞

Let t be such that T is t-to-one. Observe that |U ′(`, p, q, v)| ≤ t.

For each u ∈ A∗ let hu be its minimum output length

hu = min{|v | : ∃i , j , 0 ≤ i ≤ j , qi
u|v−−→ qj}

Let U` be the set of words of length ` that yield large output

U` = {u ∈ A` : hu ≥ (1− ε)`}

Then,
|U`| ≥ |A|` − |Q|2t|B|(1−ε)`+1.

Then, there is ` large enough such that |U`| > |A|`(1− ε) and apply
Lemma 2 with U = U` to the considered run. �
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For each u ∈ A∗ let hu be its minimum output length

hu = min{|v | : ∃i , j , 0 ≤ i ≤ j , qi
u|v−−→ qj}

Let U` be the set of words of length ` that yield large output

U` = {u ∈ A` : hu ≥ (1− ε)`}

Then,
|U`| ≥ |A|` − |Q|2t|B|(1−ε)`+1.

Then, there is ` large enough such that |U`| > |A|`(1− ε) and apply
Lemma 2 with U = U` to the considered run. �
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Non-compressible implies normal

We show non-normal implies compressible.

Lemma 4

Every non-normal infinite word is compressible by some deterministic
one-to-one transducer.

This is stronger than we need (non-deterministic, bounded-to-one)
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Proof of Lemma 4

Assume x ∈ Aω is not normal.

Then, there is u0 of length k such that

lim
n→∞

||x [1 . . . n]||u0

n/k
6= 1

|A|k

There exists then an increasing sequence (ni )i≥0 of integers such that for
each word u of length k

fu = lim
i→∞

||x [1 . . . ni ]||u
ni/k

and

fu0 6=
1

|A|k
.

Note that
∑

u∈Ak fu = 1.
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Proof of Lemma 4

Let m be an integer to be fixed later.

For each word w ∈ Akm consider

w = u1 · · · um with |ui | = k for each 1 ≤ i ≤ m

and let

fw =
m∏
i=1

fui

Notice that
∑

w∈Akm fw = 1.

Now put Akm in a one to one correspondence with a prefix free set in B∗:
for each w ∈ Akm let vw ∈ B∗ such that

|vw | ≤
⌈
− log fw
log |B|

⌉
.
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Proof of Lemma 4

We construct a deterministic transducer Tm = 〈Qm,A,B, δm, I ,Fm〉,

Qm = A<km

I = {λ}
Fm = Qm

δm = {w a|λ−−→ wa : |wa| < km} ∪ {w a|vwa−−−→ λ : |wa| = km}.

The transducer Tm always comes back to its initial state λ after reading
km symbols.
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Let Tm(z) be the output of Tm on some finite input word z .

Factorize z ∈ A∗ as z = w1 · · ·wnw ′ where |wi | = km for each 1 ≤ i ≤ n
and |w ′| < km. Note that n = b|z |/(km)c.

|Tm(z)| =
n∑

i=1

|vwi |

≤
n∑

i=1

d− log fwi/ log |B|e

≤ |z |
km

+
n∑

i=1

− log fwi/ log |B|

≤ |z |
km

+
∑

w∈Akm

||z ||w (− log fw )/log |B|

≤ |z |
km

+
∑
u∈Ak

||z ||u(− log fu)/log |B|.
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Proof of Lemma 4

Applying this computation to the prefix z = x [1..n] of x gives

lim inf
n→∞

|Tm(x [1..n])|
n

log |B|
log |A|

≤ lim
i→∞

|Tm(x [1..ni ])|
ni

log |B|
log |A|

≤ lim
i→∞

ni

nikm

log |B|
log |A|

+
∑
u∈Ak

||z ||u
k ni/k

− log fu
log |B|

log |B|
log |A|

≤ 1

km

log |B|
log |A|

+
1

k log |A|
∑
u∈Ak

fu(− log fu)

<
1

km

log |B|
log |A|

+ 1.

Since at least one number fu is not equal to 1/|A|k ,∑
u∈Ak

fu(− log fu) < k log |A|.

Then, for m chosen large enough, we obtain that Tm compresses x . �
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Normality and finite automata

Theorem 5

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

no finite-state martingale success iff incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

normality iff incompressibility (direct proof)
(Becher and Heiber 2013)

iff incompressibility by non-deterministic
iff incompressibility by one counter

(Becher, Carton and Heiber 2015)

iff incompressibility two-way transducers
(Carton and Heiber 2015)
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