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Azar y Autdmatas

Clase 6: Autématas finitos y secuencias normales



Normality as incompressibility by finite automata

The definition of normality can be expressed as a notion of
incompressibility by finite automata with output also known as

transducers .

We focus on transducers that operate in real-time , that is, they process
exactly one input alphabet symbol per transition. We consider
non-deterministic transducers .
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A non-deterministic transducer is a tuple T = (Q, A, B, 4,1, F), where

» Q is a finite set of states,
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Finite automata with output
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A finite run is written
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Finite automata with output

A run is a sequence of consecutive transitions,

a1lv a|va an| Vi

go——q1——>Qq qn-1—qn...

A finite run is written
ay-ap|vieevy

q0 > dn
An infinite run is written

ajapaz---|vivavs--

qo

An infinite run is accepting if qo is in / and for infinitely many ns g, in F.
This is the classical Biichi acceptance condition.

For two infinite words x € A and y € B¥, we write T (x,y) whenever
there is an accepting run go <% oo in 7.

T is bounded-to-one if the function y — |[{x : T(x,y)}| is bounded.

4/20



Compressibility by finite automata

An infinite word x = ajaas--- is compressible if there is a
bounded-to-one non-deterministic transducer with an accepting run
qgo 214y gy 2lvy g, 3, g, satisfying

.. |viva - v log |B|

liminf .

n—00 n log |A|
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Example of a compressible sequence

The sequence x = 01010101010101. .. is compressible because there is a
one-to-one automaton 7 that maps 0101 — 0 and for every v such that
|[v| =4 and v # 0101 v — 1v. Then,
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Example of a compressible sequence
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because there is a one-to-one automaton 7 that maps 000 — 0 and for
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Normality as incompressibility by finite automata

Theorem 1

An infinite word is normal if and only if it is not compressible by any
bounded-to-one non-deterministic transducer.
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Normal implies not compressible

Lemma 2

Let ¢ be a positive integer and let uy, up, us, ... be words of length { over
the alphabet A such that x = ujupusz - -+ is simply normal to length /.
Consider a bounded-to-one transducer and let an accepting run with
input x

u v uz|va us|vs
qo0 1 a2 qsz- -

Assume there is a real e > 0 and a set U C A’ of at least (1 — ¢)|A|*
words such that u; € U implies |v;| > ¢(1 — ¢). Then,

L vava vy 3
minf A2 " nl 1 )3
I|n inf — (1-¢)
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Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length £.

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i;1gign,u,-:u}\z#u_s).

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

n
iva-val = > |vil
i=1

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

n
iva-val = > |vil

i=1
> vl

1<i<n,u;ieU

vV

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> Z vil
1<i<n,uieU
> Z U1 —¢)

1<i<n,u;€U

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl
1<i<n,uieU

> ) U1-e)
1<i<n,uieU

> nAT(1-e)> U1-¢)

uel

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl
1<i<n,uieU
> ) U1-e)
1<i<n,uieU
> nAT(1-e)> U1-¢)
uel
> n\A|7€(1 —e)(1- 5)\A|€€(1 —€)

10/20



Proof of Lemma 2

By hypothesis x = uyuy . .., where each |u;| = ¢, is simply normal to
length ¢.Let ng be such that for every u € A and for every n > ng,

|{i:1§i§n,u,~:u}\2#(1—5).

Then, for every n > ng,

|V]_V2"‘ Vn‘

n
P
i=1

> > vl

1<i<n,uieU
> ) U1-e)

1<i<n,uieU
> nAT(1-e)> U1-¢)

uel

> nA7N1 —e)(1—e)|Al4(1 —¢)
> (1-¢)’nt. O

10/20



Normal implies not compressible

Lemma 3

If x is normal then x can not be compressed by any bounded-to-one
real-time transducer.
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Proof of Lemma 3

Fix a normal infinite word x = aja»az---, a real ¢ > 0, a bounded-to-one
non-deterministic 7 = (Q, A, B, 0, go, F) and an accepting run

a1lv a|va azlvs
1 q

do

where a € A and v € B*.
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Proof of Lemma 3

Fix a normal infinite word x = aja»az---, a real ¢ > 0, a bounded-to-one
non-deterministic 7 = (Q, A, B, 0, go, F) and an accepting run

a1lv a|va azlvs
1 q

do

where a € A and v € B*.

It suffices to show that there is £ and U such that Lemma 2 applies to
this arbitrary choice of €, 7 and accepting run.
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Proof of Lemma 3
For each length ¢, pair of states p, g in the run and each word v define

U, p,q,v)={uec A p v, q}.
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U, p,q,v)={uec A p LN q}.
Thus, for each u € U'(¢, p, g, v) we can write

x|y up | vo ulv Xo|yo
o —X=q ——p——>q——X

Let t be such that T is t-to-one. Observe that |U'(¢, p,q,v)| < t.

For each u € A* let h, be its minimum output length

hy = min{lv| : 31.7.0 < i < j.qi " q;)
Let Uy be the set of words of length ¢ that yield large output
U ={uec A h,>(1—e)}
Then,
Ul > A" = Qe B

Then, there is ¢ large enough such that |Uy| > |A|(1 — ¢) and apply
Lemma 2 with U = U, to the considered run. O
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Non-compressible implies normal

We show non-normal implies compressible.
Lemma 4

Every non-normal infinite word is compressible by some deterministic
one-to-one transducer.
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Lemma 4

Every non-normal infinite word is compressible by some deterministic
one-to-one transducer.

This is stronger than we need (non-deterministic, bounded-to-one)
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Proof of Lemma 4

Assume x € A¥ is not normal.
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Proof of Lemma 4

Assume x € A% is not normal. Then, there is uy of length k such that

N B )| S 1

Ak T AR

There exists then an increasing sequence (n;);>o of integers such that for
each word u of length k

£ = lim [x[1...n]u
i—00 n;/k
and
1
7‘-Uo 7& W
Note that >, fu = 1.
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Proof of Lemma 4

Let m be an integer to be fixed later.
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Proof of Lemma 4

Let m be an integer to be fixed later. For each word w € A™ consider
W=y Uy with |u;| = k foreach 1 <i<m
and let
m
=11%
i=1

Notice that ), c gum fw = 1.

Now put A™ in a one to one correspondence with a prefix free set in B*:
for each w € Ak™ |et v,, € B* such that

v < —log f,,
T ] log|B] |
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Proof of Lemma 4

We construct a deterministic transducer Ty, = (Qm, A, B, 0m, I, Fm),

Qn = A<km
I = {\}
Fmn = Qm
Om = {Wal—)\>wa:|wa\<km}u{walﬂ>)\:|Wa|:km}.

The transducer 7T, always comes back to its initial state \ after reading
km symbols.
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Let Tm(z) be the output of 7, on some finite input word z.
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Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives
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Proof of Lemma 4
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n—00 n log | A i—o0 n; log |A|

A

A

i log|B s —logf,log|B

iy 7108181 5~ Izlu g log1B)

i—oo nikm log | A vl k n;i/k log|B| log|A|
u
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Proof of Lemma 4
Applying this computation to the prefix z = x[1..n] of x gives
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Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives

| Tm(x[1..n])| log |B|

liminf <
YA n log |A| —
<
<

| Tm(x[1..n])[ log | B

lim
log |A|

i— 00 n;

n; log|B]| —log f, log | B|

|z]u
iN% nikm log |A] ; k ni/k log|B] log |A|
u

1 log|B| 1
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km log |A] " klog |A| ;k (~logf)
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Since at least one number f, is not equal to 1/|A|*,
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Proof of Lemma 4

Applying this computation to the prefix z = x[1..n] of x gives

lim inf [Tm(L-nDl log B . [Tm(x[1..m])] log ||
n—00 n |Og |A| i— 00 n; |og |A|

< BI85~ lel, —loghlog|B
i—oo nikm log | A k ni/k log|B| log|A|
1 log|B 1

< LloelBl, S f(~logh)

kmlog|A| "~ klog]|A| —

1 log|B]|
km log |A|

Since at least one number f, is not equal to 1/|A|*,

> fu(—logf,) < klog|Al.
uc Ak

Then, for m chosen large enough, we obtain that 7, compresses x. []
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Normality and finite automata

Theorem 5

normality iff  no finite-state martingale success
(Schnorr and Stimm 1971)
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no finite-state martingale success
(Schnorr and Stimm 1971)

incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

incompressibility (direct proof)
(Becher and Heiber 2013)

incompressibility by non-deterministic
incompressibility by one counter
(Becher, Carton and Heiber 2015)

incompressibility two-way transducers
(Carton and Heiber 2015)



