Departamento de Computación, Facultad de Ciencias Exactas y Naturales, UBA

Azar y Autómatas

Clase 6: Autómatas finitos y secuencias normales

Normality as incompressibility by finite automata

The definition of normality can be expressed as a notion of incompressibility by finite automata with output also known as transducers .

We focus on transducers that operate in real-time, that is, they process exactly one input alphabet symbol per transition. We consider non-deterministic transducers.

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,
- A and B are the input and output alphabets, respectively.

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,
- A and B are the input and output alphabets, respectively.
- $\delta \subset Q \times A \times B^{*} \times Q$ is a transition relation.

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,
- A and B are the input and output alphabets, respectively.
- $\delta \subset Q \times A \times B^{*} \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q\rangle$ which is written

$$
p \xrightarrow{\text { a|v }} q
$$

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,
- A and B are the input and output alphabets, respectively.
- $\delta \subset Q \times A \times B^{*} \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q\rangle$ which is written

$$
p \xrightarrow{\text { a|v }} q
$$

- $I \subseteq Q$ and $F \subseteq Q$ are the sets of initial and final states, respectively.

Non-deterministic real-time finite automata with output

A non-deterministic transducer is a tuple $\mathcal{T}=\langle Q, A, B, \delta, I, F\rangle$, where

- Q is a finite set of states,
- A and B are the input and output alphabets, respectively.
- $\delta \subset Q \times A \times B^{*} \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q\rangle$ which is written

$$
p \xrightarrow{\text { a|v }} q
$$

- $I \subseteq Q$ and $F \subseteq Q$ are the sets of initial and final states, respectively.

Finite automata with output

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

The transducer transforms rows of 1 s into a single 1 .

Finite automata with output

A run is a sequence of consecutive transitions,

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n} \mid v_{n}} q_{n} \cdots
$$

A finite run is written

$$
q_{0} \xrightarrow{a_{1} \cdots a_{n} \mid v_{1} \cdots v_{n}} q_{n}
$$

Finite automata with output

A run is a sequence of consecutive transitions,

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n} \mid v_{n}} q_{n} \cdots
$$

A finite run is written

$$
q_{0} \xrightarrow{a_{1} \cdots a_{n} \mid v_{1} \cdots v_{n}} q_{n}
$$

An infinite run is written

$$
q_{0} \xrightarrow{a_{1} a_{2} a_{3} \cdots \mid v_{1} v_{2} v_{3} \cdots} \infty
$$

Finite automata with output

A run is a sequence of consecutive transitions,

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n} \mid v_{n}} q_{n} \cdots
$$

A finite run is written

$$
q_{0} \xrightarrow{a_{1} \cdots a_{n} \mid v_{1} \cdots v_{n}} q_{n}
$$

An infinite run is written

$$
q_{0} \xrightarrow{a_{1} a_{2} a_{3} \cdots \mid v_{1} v_{2} v_{3} \cdots} \infty
$$

An infinite run is accepting if q_{0} is in I and for infinitely many $n s q_{n}$ in F. This is the classical Büchi acceptance condition.

Finite automata with output

A run is a sequence of consecutive transitions,

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \cdots q_{n-1} \xrightarrow{a_{n} \mid v_{n}} q_{n} \cdots
$$

A finite run is written

$$
q_{0} \xrightarrow{a_{1} \cdots a_{n} \mid v_{1} \cdots v_{n}} q_{n}
$$

An infinite run is written

$$
q_{0} \xrightarrow{a_{1} a_{2} a_{3} \cdots \mid v_{1} v_{2} v_{3} \cdots} \infty
$$

An infinite run is accepting if q_{0} is in I and for infinitely many $n s q_{n}$ in F. This is the classical Büchi acceptance condition.

For two infinite words $x \in A^{\omega}$ and $y \in B^{\omega}$, we write $\mathcal{T}(x, y)$ whenever there is an accepting run $q_{0} \xrightarrow{x \mid y} \infty$ in \mathcal{T}.
\mathcal{T} is bounded-to-one if the function $y \mapsto|\{x: \mathcal{T}(x, y)\}|$ is bounded.

Compressibility by finite automata

An infinite word $x=a_{1} a_{2} a_{3} \cdots$ is compressible if there is a bounded-to-one non-deterministic transducer with an accepting run $q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \xrightarrow{a_{3} \mid v_{3}} q_{3} \cdots$ satisfying

$$
\liminf _{n \rightarrow \infty} \frac{\left|v_{1} v_{2} \cdots v_{n}\right|}{n} \frac{\log |B|}{\log |A|}<1 .
$$

Example of a compressible sequence

The sequence $x=01010101010101 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $0101 \rightarrow 0$ and for every v such that $|v|=4$ and $v \neq 0101 v \rightarrow 1 v$. Then,

Example of a compressible sequence

The sequence $x=01010101010101 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $0101 \rightarrow 0$ and for every v such that $|v|=4$ and $v \neq 0101 v \rightarrow 1 v$. Then,

$$
\liminf _{n \rightarrow \infty} \frac{\left|0^{n}\right|}{\left|(0101)^{n}\right|}=\liminf _{n \rightarrow \infty} \frac{n}{4 n}=1 / 4<1
$$

Example of a compressible sequence

The sequence $x=010010001000010000010000001 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that $|v|=3$ and $v \neq 000 v \rightarrow 1 v$. Then,

$$
\liminf _{n \rightarrow \infty} \frac{|1010|+\left(\sum_{j=2}^{n} 4+(j-2) / 3+1\right)}{\sum_{j=1}^{n} j+1}
$$

Example of a compressible sequence

The sequence $x=010010001000010000010000001 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that $|v|=3$ and $v \neq 000 v \rightarrow 1 v$. Then,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} & \frac{|1010|+\left(\sum_{j=2}^{n} 4+(j-2) / 3+1\right)}{\sum_{j=1}^{n} j+1} \\
< & \liminf _{n \rightarrow \infty} \frac{4+\sum_{j=2}^{n} 4+\sum_{j=2}^{n}(j+1) / 3}{\sum_{j=1}^{n}(j+1)}
\end{aligned}
$$

Example of a compressible sequence

The sequence $x=010010001000010000010000001 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that $|v|=3$ and $v \neq 000 v \rightarrow 1 v$. Then,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} & \quad \frac{|1010|+\left(\sum_{j=2}^{n} 4+(j-2) / 3+1\right)}{\sum_{j=1}^{n} j+1} \\
& <\liminf _{n \rightarrow \infty} \frac{4+\sum_{j=2}^{n} 4+\sum_{j=2}^{n}(j+1) / 3}{\sum_{j=1}^{n}(j+1)} \\
& <\liminf _{n \rightarrow \infty} \frac{4+4 n}{n(n+1) / 2}+1 / 3
\end{aligned}
$$

Example of a compressible sequence

The sequence $x=010010001000010000010000001 \ldots$ is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that $|v|=3$ and $v \neq 000 v \rightarrow 1 v$. Then,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} & \quad \frac{|1010|+\left(\sum_{j==2}^{n} 4+(j-2) / 3+1\right)}{\sum_{j=1}^{n} j+1} \\
& <\liminf _{n \rightarrow \infty} \frac{4+\sum_{j=2}^{n} 4+\sum_{j=2}^{n}(j+1) / 3}{\sum_{j=1}^{n}(j+1)} \\
& <\liminf _{n \rightarrow \infty} \frac{4+4 n}{n(n+1) / 2}+1 / 3 \\
& =1 / 3 \\
& <1 .
\end{aligned}
$$

Normality as incompressibility by finite automata

Theorem 1

An infinite word is normal if and only if it is not compressible by any bounded-to-one non-deterministic transducer.

Normal implies not compressible

Lemma 2

Let ℓ be a positive integer and let $u_{1}, u_{2}, u_{3}, \ldots$ be words of length ℓ over the alphabet A such that $x=u_{1} u_{2} u_{3} \cdots$ is simply normal to length ℓ. Consider a bounded-to-one transducer and let an accepting run with input x

$$
q_{0} \xrightarrow{u_{1} \mid v_{1}} q_{1} \xrightarrow{u_{2} \mid v_{2}} q_{2} \xrightarrow{u_{3} \mid v_{3}} q_{3} \cdots
$$

Assume there is a real $\varepsilon>0$ and a set $U \subseteq A^{\ell}$ of at least $(1-\varepsilon)|A|^{\ell}$ words such that $u_{i} \in U$ implies $\left|v_{i}\right| \geq \ell(1-\varepsilon)$. Then,

$$
\liminf _{n \rightarrow \infty} \frac{\left|v_{1} v_{2} \cdots v_{n}\right|}{n \ell} \geq(1-\varepsilon)^{3}
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ.

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\left|v_{1} v_{2} \cdots v_{n}\right|=\sum_{i=1}^{n}\left|v_{i}\right|
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\begin{aligned}
\left|v_{1} v_{2} \cdots v_{n}\right| & =\sum_{i=1}^{n}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U}\left|v_{i}\right|
\end{aligned}
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\begin{aligned}
\left|v_{1} v_{2} \cdots v_{n}\right| & =\sum_{i=1}^{n}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U} \ell(1-\varepsilon)
\end{aligned}
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\begin{aligned}
\left|v_{1} v_{2} \cdots v_{n}\right| & =\sum_{i=1}^{n}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U} \ell(1-\varepsilon) \\
& \geq n|A|^{-\ell}(1-\varepsilon) \sum_{u \in U} \ell(1-\varepsilon)
\end{aligned}
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\begin{aligned}
\left|v_{1} v_{2} \cdots v_{n}\right| & =\sum_{i=1}^{n}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U} \ell(1-\varepsilon) \\
& \geq n|A|^{-\ell}(1-\varepsilon) \sum_{u \in U} \ell(1-\varepsilon) \\
& \geq n|A|^{-\ell}(1-\varepsilon)(1-\varepsilon)|A|^{\ell} \ell(1-\varepsilon)
\end{aligned}
$$

Proof of Lemma 2

By hypothesis $x=u_{1} u_{2} \ldots$, where each $\left|u_{i}\right|=\ell$, is simply normal to length ℓ. Let n_{0} be such that for every $u \in A^{\ell}$ and for every $n \geq n_{0}$,

$$
\left|\left\{i: 1 \leq i \leq n, u_{i}=u\right\}\right| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon) .
$$

Then, for every $n \geq n_{0}$,

$$
\begin{aligned}
\left|v_{1} v_{2} \cdots v_{n}\right| & =\sum_{i=1}^{n}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U}\left|v_{i}\right| \\
& \geq \sum_{1 \leq i \leq n, u_{i} \in U} \ell(1-\varepsilon) \\
& \geq n|A|^{-\ell}(1-\varepsilon) \sum_{u \in U} \ell(1-\varepsilon) \\
& \geq n|A|^{-\ell}(1-\varepsilon)(1-\varepsilon)|A|^{\ell} \ell(1-\varepsilon) \\
& \geq(1-\varepsilon)^{3} n \ell . \quad \square
\end{aligned}
$$

Normal implies not compressible

Lemma 3
If x is normal then x can not be compressed by any bounded-to-one real-time transducer.

Proof of Lemma 3

Fix a normal infinite word $x=a_{1} a_{2} a_{3} \cdots$, a real $\varepsilon>0$, a bounded-to-one non-deterministic $\mathcal{T}=\left\langle Q, A, B, \delta, q_{0}, F\right\rangle$ and an accepting run

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \xrightarrow{a_{3} \mid v_{3}} q_{3} \cdots
$$

where $a \in A$ and $v \in B^{*}$.

Proof of Lemma 3

Fix a normal infinite word $x=a_{1} a_{2} a_{3} \cdots$, a real $\varepsilon>0$, a bounded-to-one non-deterministic $\mathcal{T}=\left\langle Q, A, B, \delta, q_{0}, F\right\rangle$ and an accepting run

$$
q_{0} \xrightarrow{a_{1} \mid v_{1}} q_{1} \xrightarrow{a_{2} \mid v_{2}} q_{2} \xrightarrow{a_{3} \mid v_{3}} q_{3} \cdots
$$

where $a \in A$ and $v \in B^{*}$.
It suffices to show that there is ℓ and U such that Lemma 2 applies to this arbitrary choice of ε, \mathcal{T} and accepting run.

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Let t be such that T is t-to-one. Observe that $\left|U^{\prime}(\ell, p, q, v)\right| \leq t$.

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Let t be such that T is t-to-one. Observe that $\left|U^{\prime}(\ell, p, q, v)\right| \leq t$.
For each $u \in A^{*}$ let h_{u} be its minimum output length

$$
h_{u}=\min \left\{|v|: \exists i, j, 0 \leq i \leq j, q_{i} \xrightarrow{u \mid v} q_{j}\right\}
$$

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Let t be such that T is t-to-one. Observe that $\left|U^{\prime}(\ell, p, q, v)\right| \leq t$.
For each $u \in A^{*}$ let h_{u} be its minimum output length

$$
h_{u}=\min \left\{|v|: \exists i, j, 0 \leq i \leq j, q_{i} \xrightarrow{u \mid v} q_{j}\right\}
$$

Let U_{ℓ} be the set of words of length ℓ that yield large output

$$
U_{\ell}=\left\{u \in A^{\ell}: h_{u} \geq(1-\varepsilon) \ell\right\}
$$

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Let t be such that T is t-to-one. Observe that $\left|U^{\prime}(\ell, p, q, v)\right| \leq t$.
For each $u \in A^{*}$ let h_{u} be its minimum output length

$$
h_{u}=\min \left\{|v|: \exists i, j, 0 \leq i \leq j, q_{i} \xrightarrow{u \mid v} q_{j}\right\}
$$

Let U_{ℓ} be the set of words of length ℓ that yield large output

$$
U_{\ell}=\left\{u \in A^{\ell}: h_{u} \geq(1-\varepsilon) \ell\right\}
$$

Then,

$$
\left|U_{\ell}\right| \geq|A|^{\ell}-|Q|^{2} t|B|^{(1-\varepsilon) \ell+1} .
$$

Proof of Lemma 3

For each length ℓ, pair of states p, q in the run and each word v define

$$
U^{\prime}(\ell, p, q, v)=\left\{u \in A^{\ell}: p \xrightarrow{u \mid v} q\right\} .
$$

Thus, for each $u \in U^{\prime}(\ell, p, q, v)$ we can write

$$
q_{0} \xrightarrow{x \mid y} \infty=q_{0} \xrightarrow{u_{0} \mid v_{0}} p \xrightarrow{u \mid v} q \xrightarrow{x_{0} \mid y_{0}} \infty
$$

Let t be such that T is t-to-one. Observe that $\left|U^{\prime}(\ell, p, q, v)\right| \leq t$.
For each $u \in A^{*}$ let h_{u} be its minimum output length

$$
h_{u}=\min \left\{|v|: \exists i, j, 0 \leq i \leq j, q_{i} \xrightarrow{u \mid v} q_{j}\right\}
$$

Let U_{ℓ} be the set of words of length ℓ that yield large output

$$
U_{\ell}=\left\{u \in A^{\ell}: h_{u} \geq(1-\varepsilon) \ell\right\}
$$

Then,

$$
\left|U_{\ell}\right| \geq|A|^{\ell}-|Q|^{2} t|B|^{(1-\varepsilon) \ell+1} .
$$

Then, there is ℓ large enough such that $\left|U_{\ell}\right|>|A|^{\ell}(1-\varepsilon)$ and apply Lemma 2 with $U=U_{\ell}$ to the considered run.

Non-compressible implies normal

We show non-normal implies compressible.
Lemma 4
Every non-normal infinite word is compressible by some deterministic one-to-one transducer.

Non-compressible implies normal

We show non-normal implies compressible.
Lemma 4
Every non-normal infinite word is compressible by some deterministic one-to-one transducer.

This is stronger than we need (non-deterministic, bounded-to-one)

Proof of Lemma 4

Assume $x \in A^{\omega}$ is not normal.

Proof of Lemma 4

Assume $x \in A^{\omega}$ is not normal. Then, there is u_{0} of length k such that

$$
\lim _{n \rightarrow \infty} \frac{\|x[1 \ldots n]\|_{u_{0}}}{n / k} \neq \frac{1}{|A|^{k}}
$$

Proof of Lemma 4

Assume $x \in A^{\omega}$ is not normal. Then, there is u_{0} of length k such that

$$
\lim _{n \rightarrow \infty} \frac{\|x[1 \ldots n]\|_{u_{0}}}{n / k} \neq \frac{1}{|A|^{k}}
$$

There exists then an increasing sequence $\left(n_{i}\right)_{i \geq 0}$ of integers such that for each word u of length k

$$
f_{u}=\lim _{i \rightarrow \infty} \frac{\left\|x\left[1 \ldots n_{i}\right]\right\|_{u}}{n_{i} / k}
$$

and

Proof of Lemma 4

Assume $x \in A^{\omega}$ is not normal. Then, there is u_{0} of length k such that

$$
\lim _{n \rightarrow \infty} \frac{\|x[1 \ldots n]\|_{u_{0}}}{n / k} \neq \frac{1}{|A|^{k}}
$$

There exists then an increasing sequence $\left(n_{i}\right)_{i \geq 0}$ of integers such that for each word u of length k

$$
f_{u}=\lim _{i \rightarrow \infty} \frac{\left\|x\left[1 \ldots n_{i}\right]\right\|_{u}}{n_{i} / k}
$$

and

$$
f_{u_{0}} \neq \frac{1}{|A|^{k}} .
$$

Note that $\sum_{u \in A^{k}} f_{u}=1$.

Proof of Lemma 4

Let m be an integer to be fixed later.

Proof of Lemma 4

Let m be an integer to be fixed later. For each word $w \in A^{k m}$ consider

$$
w=u_{1} \cdots u_{m} \text { with }\left|u_{i}\right|=k \text { for each } 1 \leq i \leq m
$$

Proof of Lemma 4

Let m be an integer to be fixed later. For each word $w \in A^{k m}$ consider

$$
w=u_{1} \cdots u_{m} \text { with }\left|u_{i}\right|=k \text { for each } 1 \leq i \leq m
$$

and let

$$
f_{w}=\prod_{i=1}^{m} f_{u_{i}}
$$

Notice that $\sum_{w \in A^{k m}} f_{w}=1$.

Proof of Lemma 4

Let m be an integer to be fixed later. For each word $w \in A^{k m}$ consider

$$
w=u_{1} \cdots u_{m} \text { with }\left|u_{i}\right|=k \text { for each } 1 \leq i \leq m
$$

and let

$$
f_{w}=\prod_{i=1}^{m} f_{u_{i}}
$$

Notice that $\sum_{w \in A^{k m}} f_{w}=1$.
Now put $A^{k m}$ in a one to one correspondence with a prefix free set in B^{*} : for each $w \in A^{k m}$ let $v_{w} \in B^{*}$ such that

$$
\left|v_{w}\right| \leq\left\lceil\frac{-\log f_{w}}{\log |B|}\right\rceil
$$

Proof of Lemma 4

We construct a deterministic transducer $\mathcal{T}_{m}=\left\langle Q_{m}, A, B, \delta_{m}, I, F_{m}\right\rangle$,

$$
\begin{aligned}
Q_{m} & =A^{<k m} \\
I & =\{\lambda\} \\
F_{m} & =Q_{m} \\
\delta_{m} & =\{w \xrightarrow{a \mid \lambda} w a:|w a|<k m\} \cup\left\{w \xrightarrow{a \mid v_{w a}} \lambda:|w a|=k m\right\} .
\end{aligned}
$$

The transducer \mathcal{T}_{m} always comes back to its initial state λ after reading km symbols.

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.
Factorize $z \in A^{*}$ as $z=w_{1} \cdots w_{n} w^{\prime}$ where $\left|w_{i}\right|=k m$ for each $1 \leq i \leq n$ and $\left|w^{\prime}\right|<k m$. Note that $n=\lfloor|z| /(k m)\rfloor$.

$$
\left|\mathcal{T}_{m}(z)\right|=\sum_{i=1}^{n}\left|v_{w_{i}}\right|
$$

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.
Factorize $z \in A^{*}$ as $z=w_{1} \cdots w_{n} w^{\prime}$ where $\left|w_{i}\right|=k m$ for each $1 \leq i \leq n$ and $\left|w^{\prime}\right|<k m$. Note that $n=\lfloor|z| /(k m)\rfloor$.

$$
\begin{aligned}
\left|\mathcal{T}_{m}(z)\right| & =\sum_{i=1}^{n}\left|v_{w_{i}}\right| \\
& \leq \sum_{i=1}^{n}\left\lceil-\log f_{w_{i}} / \log |B|\right\rceil
\end{aligned}
$$

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.
Factorize $z \in A^{*}$ as $z=w_{1} \cdots w_{n} w^{\prime}$ where $\left|w_{i}\right|=k m$ for each $1 \leq i \leq n$ and $\left|w^{\prime}\right|<k m$. Note that $n=\lfloor|z| /(k m)\rfloor$.

$$
\begin{aligned}
\left|\mathcal{T}_{m}(z)\right| & =\sum_{i=1}^{n}\left|v_{w_{i}}\right| \\
& \leq \sum_{i=1}^{n}\left\lceil-\log f_{w_{i}} / \log |B|\right\rceil \\
& \leq \frac{|z|}{k m}+\sum_{i=1}^{n}-\log f_{w_{i}} / \log |B|
\end{aligned}
$$

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.
Factorize $z \in A^{*}$ as $z=w_{1} \cdots w_{n} w^{\prime}$ where $\left|w_{i}\right|=k m$ for each $1 \leq i \leq n$ and $\left|w^{\prime}\right|<k m$. Note that $n=\lfloor|z| /(k m)\rfloor$.

$$
\begin{aligned}
\left|\mathcal{T}_{m}(z)\right| & =\sum_{i=1}^{n}\left|v_{w_{i}}\right| \\
& \leq \sum_{i=1}^{n}\left\lceil-\log f_{w_{i}} / \log |B|\right\rceil \\
& \leq \frac{|z|}{k m}+\sum_{i=1}^{n}-\log f_{w_{i}} / \log |B| \\
& \leq \frac{|z|}{k m}+\sum_{w \in A^{k m}}\|z\|_{w}\left(-\log f_{w}\right) / \log |B|
\end{aligned}
$$

Let $\mathcal{T}_{m}(z)$ be the output of \mathcal{T}_{m} on some finite input word z.
Factorize $z \in A^{*}$ as $z=w_{1} \cdots w_{n} w^{\prime}$ where $\left|w_{i}\right|=k m$ for each $1 \leq i \leq n$ and $\left|w^{\prime}\right|<k m$. Note that $n=\lfloor|z| /(k m)\rfloor$.

$$
\begin{aligned}
\left|\mathcal{T}_{m}(z)\right| & =\sum_{i=1}^{n}\left|v_{w_{i}}\right| \\
& \leq \sum_{i=1}^{n}\left\lceil-\log f_{w_{i}} / \log |B|\right\rceil \\
& \leq \frac{|z|}{k m}+\sum_{i=1}^{n}-\log f_{w_{i}} / \log |B| \\
& \leq \frac{|z|}{k m}+\sum_{w \in A^{k m}}\|z\|_{w}\left(-\log f_{w}\right) / \log |B| \\
& \leq \frac{|z|}{k m}+\sum_{u \in A^{k}}\|z\|_{u}\left(-\log f_{u}\right) / \log |B| .
\end{aligned}
$$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives
$\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|}$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} & \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|} \\
& \leq \lim _{i \rightarrow \infty} \frac{n_{i}}{n_{i} k m} \frac{\log |B|}{\log |A|}+\sum_{u \in A^{k}} \frac{\|z\|_{u}}{k n_{i} / k} \frac{-\log f_{u}}{\log |B|} \frac{\log |B|}{\log |A|}
\end{aligned}
$$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} & \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|} \\
& \leq \lim _{i \rightarrow \infty} \frac{n_{i}}{n_{i} k m} \frac{\log |B|}{\log |A|}+\sum_{u \in A^{k}} \frac{\|z\|_{u}}{k n_{i} / k} \frac{-\log f_{u}}{\log |B|} \frac{\log |B|}{\log |A|} \\
& \leq \frac{1}{k m} \frac{\log |B|}{\log |A|}+\frac{1}{k \log |A|} \sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right)
\end{aligned}
$$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} & \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|} \\
& \leq \lim _{i \rightarrow \infty} \frac{n_{i}}{n_{i} k m} \frac{\log |B|}{\log |A|}+\sum_{u \in A^{k}} \frac{\|z\|_{u}}{k n_{i} / k} \frac{-\log f_{u}}{\log |B|} \frac{\log |B|}{\log |A|} \\
& \leq \frac{1}{k m} \frac{\log |B|}{\log |A|}+\frac{1}{k \log |A|} \sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right) \\
& <\frac{1}{k m} \frac{\log |B|}{\log |A|}+1 .
\end{aligned}
$$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} & \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|} \\
& \leq \lim _{i \rightarrow \infty} \frac{n_{i}}{n_{i} k m} \frac{\log |B|}{\log |A|}+\sum_{u \in A^{k}} \frac{\|z\|_{u}}{k n_{i} / k} \frac{-\log f_{u}}{\log |B|} \frac{\log |B|}{\log |A|} \\
& \leq \frac{1}{k m} \frac{\log |B|}{\log |A|}+\frac{1}{k \log |A|} \sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right) \\
& <\frac{1}{k m} \frac{\log |B|}{\log |A|}+1 .
\end{aligned}
$$

Since at least one number f_{u} is not equal to $1 /|A|^{k}$,

$$
\sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right)<k \log |A| .
$$

Proof of Lemma 4

Applying this computation to the prefix $z=x[1 . . n]$ of x gives

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{m}(x[1 . . n])\right|}{n} \frac{\log |B|}{\log |A|} & \leq \lim _{i \rightarrow \infty} \frac{\left|\mathcal{T}_{m}\left(x\left[1 . . n_{i}\right]\right)\right|}{n_{i}} \frac{\log |B|}{\log |A|} \\
& \leq \lim _{i \rightarrow \infty} \frac{n_{i}}{n_{i} k m} \frac{\log |B|}{\log |A|}+\sum_{u \in A^{k}} \frac{\|z\|_{u}}{k n_{i} / k} \frac{-\log f_{u}}{\log |B|} \frac{\log |B|}{\log |A|} \\
& \leq \frac{1}{k m} \frac{\log |B|}{\log |A|}+\frac{1}{k \log |A|} \sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right) \\
& <\frac{1}{k m} \frac{\log |B|}{\log |A|}+1 .
\end{aligned}
$$

Since at least one number f_{u} is not equal to $1 /|A|^{k}$,

$$
\sum_{u \in A^{k}} f_{u}\left(-\log f_{u}\right)<k \log |A| .
$$

Then, for m chosen large enough, we obtain that \mathcal{T}_{m} compresses x.

Normality and finite automata

Theorem 5
normality
iff
no finite-state martingale success
(Schnorr and Stimm 1971)

Normality and finite automata

Theorem 5
normality
no finite-state martingale success
iff
no finite-state martingale success (Schnorr and Stimm 1971)
incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)

Normality and finite automata

Theorem 5

normality
no finite-state martingale success
normality
no finite-state martingale success (Schnorr and Stimm 1971)
incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
incompressibility (direct proof) (Becher and Heiber 2013)

Normality and finite automata

Theorem 5

normality
no finite-state martingale success
normality
no finite-state martingale success (Schnorr and Stimm 1971)
incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
incompressibility (direct proof) (Becher and Heiber 2013)
incompressibility by non-deterministic incompressibility by one counter (Becher, Carton and Heiber 2015)

Normality and finite automata

Theorem 5

normality
no finite-state martingale success
normality
no finite-state martingale success (Schnorr and Stimm 1971)
incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
incompressibility (direct proof) (Becher and Heiber 2013)
incompressibility by non-deterministic incompressibility by one counter (Becher, Carton and Heiber 2015)
incompressibility two-way transducers
(Carton and Heiber 2015)

