Departamento de Computación, Facultad de Ciencias Exactas y Naturales, UBA

Clase 6: Autómatas finitos y secuencias normales

Normality as incompressibility by finite automata

The definition of normality can be expressed as a notion of incompressibility by finite automata with output also known as transducers.

We focus on transducers that operate in real-time, that is, they process exactly one input alphabet symbol per transition. We consider non-deterministic transducers.

A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where $\triangleright Q$ is a finite set of states,

- A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where
 - ▶ Q is a finite set of states,
 - ▶ A and B are the input and output alphabets, respectively.

- A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where
 - ▶ Q is a finite set of states,
 - ▶ A and B are the input and output alphabets, respectively.
 - ▶ $\delta \subset Q \times A \times B^* \times Q$ is a transition relation.

- A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where
 - Q is a finite set of states,
 - ▶ A and B are the input and output alphabets, respectively.
 - ► $\delta \subset Q \times A \times B^* \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q \rangle$ which is written

$$p \xrightarrow{a|v} q$$

- A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where
 - Q is a finite set of states,
 - A and B are the input and output alphabets, respectively.
 - ► $\delta \subset Q \times A \times B^* \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q \rangle$ which is written

$$p \xrightarrow{a|v} q$$

▶ $I \subseteq Q$ and $F \subseteq Q$ are the sets of initial and final states, respectively.

- A non-deterministic transducer is a tuple $\mathcal{T} = \langle Q, A, B, \delta, I, F \rangle$, where
 - Q is a finite set of states,
 - A and B are the input and output alphabets, respectively.
 - ► $\delta \subset Q \times A \times B^* \times Q$ is a transition relation. A transition is a tuple $\langle p, a, v, q \rangle$ which is written

$$p \xrightarrow{a|v} q$$

▶ $I \subseteq Q$ and $F \subseteq Q$ are the sets of initial and final states, respectively.

A run is a sequence of consecutive transitions,

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \cdots q_{n-1} \xrightarrow{a_n|v_n} q_n \dots$$

A finite run is written

$$q_0 \xrightarrow{a_1 \cdots a_n | v_1 \cdots v_n} q_n$$

A run is a sequence of consecutive transitions,

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \cdots q_{n-1} \xrightarrow{a_n|v_n} q_n \dots$$

A finite run is written

$$q_0 \xrightarrow{a_1 \cdots a_n | v_1 \cdots v_n} q_n$$

An infinite run is written

$$q_0 \xrightarrow{a_1 a_2 a_3 \cdots | v_1 v_2 v_3 \cdots} \infty$$

A run is a sequence of consecutive transitions,

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \cdots q_{n-1} \xrightarrow{a_n|v_n} q_n \dots$$

A finite run is written

$$q_0 \xrightarrow{a_1 \cdots a_n | v_1 \cdots v_n} q_n$$

An infinite run is written

$$q_0 \xrightarrow{a_1 a_2 a_3 \cdots | v_1 v_2 v_3 \cdots} \infty$$

An infinite run is accepting if q_0 is in I and for infinitely many $ns q_n$ in F. This is the classical Büchi acceptance condition.

A run is a sequence of consecutive transitions,

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \cdots q_{n-1} \xrightarrow{a_n|v_n} q_n \dots$$

A finite run is written

$$q_0 \xrightarrow{a_1 \cdots a_n | v_1 \cdots v_n} q_n$$

An infinite run is written

$$q_0 \xrightarrow{a_1 a_2 a_3 \cdots | v_1 v_2 v_3 \cdots} \infty$$

An infinite run is accepting if q_0 is in I and for infinitely many $ns q_n$ in F. This is the classical Büchi acceptance condition.

For two infinite words $x \in A^{\omega}$ and $y \in B^{\omega}$, we write $\mathcal{T}(x, y)$ whenever there is an accepting run $q_0 \xrightarrow{x|y} \infty$ in \mathcal{T} .

 \mathcal{T} is bounded-to-one if the function $y \mapsto |\{x : \mathcal{T}(x, y)\}|$ is bounded.

Compressibility by finite automata

An infinite word $x = a_1 a_2 a_3 \cdots$ is compressible if there is a bounded-to-one non-deterministic transducer with an accepting run $q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \xrightarrow{a_3|v_3} q_3 \cdots$ satisfying

$$\liminf_{n\to\infty}\frac{|v_1v_2\cdots v_n|}{n}\frac{\log|B|}{\log|A|}<1.$$

The sequence x = 01010101010101... is compressible because there is a one-to-one automaton \mathcal{T} that maps $0101 \rightarrow 0$ and for every v such that |v| = 4 and $v \neq 0101 \ v \rightarrow 1v$. Then,

The sequence x = 01010101010101... is compressible because there is a one-to-one automaton \mathcal{T} that maps $0101 \rightarrow 0$ and for every v such that |v| = 4 and $v \neq 0101 \ v \rightarrow 1v$. Then,

$$\liminf_{n \to \infty} \frac{|0^n|}{|(0101)^n|} = \liminf_{n \to \infty} \frac{n}{4n} = 1/4 < 1.$$

The sequence x = 01001000100001000001000001... is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that |v| = 3 and $v \neq 000 v \rightarrow 1v$. Then,

$$\liminf_{n \to \infty} \frac{|1010| + \left(\sum_{j=2}^{n} 4 + (j-2)/3 + 1\right)}{\sum_{j=1}^{n} j + 1}$$

The sequence x = 01001000100001000001000001... is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that |v| = 3 and $v \neq 000 \ v \rightarrow 1v$. Then,

$$\lim_{n \to \infty} \inf_{n \to \infty} \frac{|1010| + \left(\sum_{j=2}^{n} 4 + (j-2)/3 + 1\right)}{\sum_{j=1}^{n} j + 1} \\ < \lim_{n \to \infty} \frac{4 + \sum_{j=2}^{n} 4 + \sum_{j=2}^{n} (j+1)/3}{\sum_{j=1}^{n} (j+1)}$$

The sequence x = 01001000100001000001000001... is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that |v| = 3 and $v \neq 000 \ v \rightarrow 1v$. Then,

$$\lim_{n \to \infty} \inf \frac{|1010| + \left(\sum_{j=2}^{n} 4 + (j-2)/3 + 1\right)}{\sum_{j=1}^{n} j + 1} \\ < \lim_{n \to \infty} \inf \frac{4 + \sum_{j=2}^{n} 4 + \sum_{j=2}^{n} (j+1)/3}{\sum_{j=1}^{n} (j+1)} \\ < \lim_{n \to \infty} \inf \frac{4 + 4n}{n(n+1)/2} + 1/3$$

The sequence x = 01001000100001000001000001... is compressible because there is a one-to-one automaton \mathcal{T} that maps $000 \rightarrow 0$ and for every v such that |v| = 3 and $v \neq 000 \ v \rightarrow 1v$. Then,

$$\lim_{n \to \infty} \lim_{n \to \infty} \frac{|1010| + \left(\sum_{j=2}^{n} 4 + (j-2)/3 + 1\right)}{\sum_{j=1}^{n} j + 1}$$

$$< \lim_{n \to \infty} \inf \frac{4 + \sum_{j=2}^{n} 4 + \sum_{j=2}^{n} (j+1)/3}{\sum_{j=1}^{n} (j+1)}$$

$$< \lim_{n \to \infty} \inf \frac{4 + 4n}{n(n+1)/2} + 1/3$$

$$= 1/3$$

$$< 1.$$

Normality as incompressibility by finite automata

Theorem 1

An infinite word is normal if and only if it is not compressible by any bounded-to-one non-deterministic transducer.

Normal implies not compressible

Lemma 2

Let ℓ be a positive integer and let u_1, u_2, u_3, \ldots be words of length ℓ over the alphabet A such that $x = u_1 u_2 u_3 \cdots$ is simply normal to length ℓ . Consider a bounded-to-one transducer and let an accepting run with input x

$$q_0 \xrightarrow{u_1|v_1} q_1 \xrightarrow{u_2|v_2} q_2 \xrightarrow{u_3|v_3} q_3 \cdots$$

Assume there is a real $\varepsilon > 0$ and a set $U \subseteq A^{\ell}$ of at least $(1 - \varepsilon)|A|^{\ell}$ words such that $u_i \in U$ implies $|v_i| \ge \ell(1 - \varepsilon)$. Then,

$$\liminf_{n\to\infty}\frac{|v_1v_2\cdots v_n|}{n\ell}\geq (1-\varepsilon)^3.$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ .

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \le i \le n, u_i = u\}| \ge \frac{n}{|A|^{\ell}}(1-\varepsilon).$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \leq i \leq n, u_i = u\}| \geq \frac{n}{|A|^{\ell}}(1-\varepsilon).$$

$$|v_1v_2\cdots v_n| = \sum_{i=1}^n |v_i|$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \le i \le n, u_i = u\}| \ge \frac{n}{|A|^{\ell}}(1-\varepsilon).$$

$$|v_1v_2\cdots v_n| = \sum_{i=1}^n |v_i|$$

$$\geq \sum_{1\leq i\leq n, u_i\in U} |v_i|$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \leq i \leq n, u_i = u\}| \geq \frac{n}{|A|^{\ell}} (1-\varepsilon).$$

$$\begin{aligned} |v_1 v_2 \cdots v_n| &= \sum_{i=1}^n |v_i| \\ &\geq \sum_{1 \leq i \leq n, u_i \in U} |v_i| \\ &\geq \sum_{1 \leq i < n, u_i \in U} \ell(1 - \varepsilon) \end{aligned}$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \leq i \leq n, u_i = u\}| \geq \frac{n}{|A|^{\ell}} (1-\varepsilon).$$

$$egin{array}{rcl} |v_1v_2\cdots v_n|&=&\sum_{i=1}^n |v_i|\ &\geq&\sum_{1\leq i\leq n, u_i\in U} |v_i|\ &\geq&\sum_{1\leq i\leq n, u_i\in U} \ell(1-arepsilon)\ &\geq& n|A|^{-\ell}(1-arepsilon)\sum_{u\in U} \ell(1-arepsilon) \end{array}$$
By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \leq i \leq n, u_i = u\}| \geq \frac{n}{|A|^{\ell}} (1-\varepsilon).$$

Then, for every $n \ge n_0$,

$$egin{aligned} |v_1v_2\cdots v_n| &=& \sum_{i=1}^n |v_i| \ &\geq& \sum_{1\leq i\leq n, u_i\in U} |v_i| \ &\geq& \sum_{1\leq i\leq n, u_i\in U} \ell(1-arepsilon) \ &\geq& n|A|^{-\ell}(1-arepsilon) \sum_{u\in U} \ell(1-arepsilon) \ &\geq& n|A|^{-\ell}(1-arepsilon) |A|^\ell \ell(1-arepsilon) \end{aligned}$$

By hypothesis $x = u_1 u_2 \dots$, where each $|u_i| = \ell$, is simply normal to length ℓ . Let n_0 be such that for every $u \in A^{\ell}$ and for every $n \ge n_0$,

$$|\{i: 1 \leq i \leq n, u_i = u\}| \geq \frac{n}{|A|^{\ell}} (1-\varepsilon).$$

Then, for every $n \ge n_0$,

$$egin{aligned} |v_1v_2\cdots v_n| &=& \sum_{i=1}^n |v_i| \ &\geq& \sum_{1\leq i\leq n, u_i\in U} |v_i| \ &\geq& \sum_{1\leq i\leq n, u_i\in U} \ell(1-arepsilon) \ &\geq& n|A|^{-\ell}(1-arepsilon)\sum_{u\in U} \ell(1-arepsilon) \ &\geq& n|A|^{-\ell}(1-arepsilon)|A|^\ell\ell(1-arepsilon) \ &\geq& (1-arepsilon)^3n\ell. \ &\square \end{aligned}$$

Normal implies not compressible

Lemma 3

If x is normal then x can not be compressed by any bounded-to-one real-time transducer.

Fix a normal infinite word $x = a_1 a_2 a_3 \cdots$, a real $\varepsilon > 0$, a bounded-to-one non-deterministic $\mathcal{T} = \langle Q, A, B, \delta, q_0, F \rangle$ and an accepting run

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \xrightarrow{a_3|v_3} q_3 \cdots$$

where $a \in A$ and $v \in B^*$.

Fix a normal infinite word $x = a_1 a_2 a_3 \cdots$, a real $\varepsilon > 0$, a bounded-to-one non-deterministic $\mathcal{T} = \langle Q, A, B, \delta, q_0, F \rangle$ and an accepting run

$$q_0 \xrightarrow{a_1|v_1} q_1 \xrightarrow{a_2|v_2} q_2 \xrightarrow{a_3|v_3} q_3 \cdots$$

where $a \in A$ and $v \in B^*$.

It suffices to show that there is ℓ and U such that Lemma 2 applies to this arbitrary choice of ε , \mathcal{T} and accepting run.

For each length ℓ , pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

For each length ℓ , pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \xrightarrow{x|y} \infty = q_0 \xrightarrow{u_0|v_0} p \xrightarrow{u|v} q \xrightarrow{x_0|y_0} \infty$$

For each length ℓ , pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \xrightarrow{x|y} \infty = q_0 \xrightarrow{u_0|v_0} p \xrightarrow{u|v} q \xrightarrow{x_0|y_0} \infty$$

Let t be such that T is t-to-one. Observe that $|U'(\ell, p, q, v)| \leq t$.

For each length l, pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \stackrel{ imes | y}{ o} \infty = q_0 \stackrel{u_0 | v_0}{ o} p \stackrel{u | v}{ o} q \stackrel{ imes_0 | y_0}{ o} \infty$$

Let t be such that T is t-to-one. Observe that $|U'(\ell, p, q, v)| \le t$. For each $u \in A^*$ let h_u be its minimum output length

$$h_u = \min\{|v|: \exists i, j, 0 \le i \le j, q_i \xrightarrow{u|v} q_j\}$$

For each length l, pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \stackrel{ imes | y}{ o} \infty = q_0 \stackrel{u_0 | v_0}{ o} p \stackrel{u | v}{ o} q \stackrel{ imes_0 | y_0}{ o} \infty$$

Let t be such that T is t-to-one. Observe that $|U'(\ell, p, q, v)| \le t$. For each $u \in A^*$ let h_u be its minimum output length

$$h_u = \min\{|v|: \exists i, j, 0 \le i \le j, q_i \xrightarrow{u|v} q_j\}$$

Let U_ℓ be the set of words of length ℓ that yield large output

$$U_\ell = \{ u \in A^\ell : h_u \ge (1 - \varepsilon)\ell \}$$

For each length l, pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u|v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \stackrel{ imes | y}{ o} \infty = q_0 \stackrel{u_0 | v_0}{ o} p \stackrel{u | v}{ o} q \stackrel{ imes_0 | y_0}{ o} \infty$$

Let t be such that T is t-to-one. Observe that $|U'(\ell, p, q, v)| \le t$. For each $u \in A^*$ let h_u be its minimum output length

$$h_u = \min\{|v|: \exists i, j, 0 \le i \le j, q_i \xrightarrow{u|v} q_j\}$$

Let U_ℓ be the set of words of length ℓ that yield large output

$$U_{\ell} = \{ u \in A^{\ell} : h_u \ge (1 - \varepsilon)\ell \}$$

Then,

$$|U_{\ell}| \ge |A|^{\ell} - |Q|^2 t |B|^{(1-\varepsilon)\ell+1}.$$

For each length l, pair of states p, q in the run and each word v define

$$U'(\ell, p, q, v) = \{ u \in A^{\ell} : p \xrightarrow{u \mid v} q \}.$$

Thus, for each $u \in U'(\ell, p, q, v)$ we can write

$$q_0 \stackrel{ imes | y}{ o} \infty = q_0 \stackrel{u_0 | v_0}{ o} p \stackrel{u | v}{ o} q \stackrel{ imes_0 | y_0}{ o} \infty$$

Let t be such that T is t-to-one. Observe that $|U'(\ell, p, q, v)| \le t$. For each $u \in A^*$ let h_u be its minimum output length

$$h_u = \min\{|v|: \exists i, j, 0 \le i \le j, q_i \xrightarrow{u|v} q_j\}$$

Let U_ℓ be the set of words of length ℓ that yield large output

$$U_{\ell} = \{ u \in A^{\ell} : h_u \ge (1 - \varepsilon)\ell \}$$

Then,

$$|U_\ell| \geq |A|^\ell - |Q|^2 t |B|^{(1-\varepsilon)\ell+1}.$$

Then, there is ℓ large enough such that $|U_{\ell}| > |A|^{\ell}(1-\varepsilon)$ and apply Lemma 2 with $U = U_{\ell}$ to the considered run.

Non-compressible implies normal

We show non-normal implies compressible.

Lemma 4

Every non-normal infinite word is compressible by some deterministic one-to-one transducer.

Non-compressible implies normal

We show non-normal implies compressible.

Lemma 4

Every non-normal infinite word is compressible by some deterministic one-to-one transducer.

This is stronger than we need (non-deterministic, bounded-to-one)

Assume $x \in A^{\omega}$ is not normal.

Assume $x \in A^{\omega}$ is not normal. Then, there is u_0 of length k such that

$$\lim_{n\to\infty}\frac{\|x[1\dots n]\|_{u_0}}{n/k}\neq\frac{1}{|A|^k}$$

Assume $x \in A^{\omega}$ is not normal. Then, there is u_0 of length k such that

$$\lim_{n\to\infty}\frac{\|x[1\dots n]\|_{u_0}}{n/k}\neq\frac{1}{|A|^k}$$

There exists then an increasing sequence $(n_i)_{i\geq 0}$ of integers such that for each word u of length k

$$f_u = \lim_{i \to \infty} \frac{\|x[1 \dots n_i]\|_u}{n_i/k}$$

and

Assume $x \in A^{\omega}$ is not normal. Then, there is u_0 of length k such that

$$\lim_{n\to\infty}\frac{\|x[1\dots n]\|_{u_0}}{n/k}\neq\frac{1}{|A|^k}$$

There exists then an increasing sequence $(n_i)_{i\geq 0}$ of integers such that for each word u of length k

$$f_u = \lim_{i \to \infty} \frac{\|x[1 \dots n_i]\|_u}{n_i/k}$$

and

$$f_{u_0}
eq rac{1}{|A|^k}.$$

Note that $\sum_{u \in A^k} f_u = 1$.

Let m be an integer to be fixed later.

Let *m* be an integer to be fixed later. For each word $w \in A^{km}$ consider

$$w = u_1 \cdots u_m$$
 with $|u_i| = k$ for each $1 \leq i \leq m$

Let *m* be an integer to be fixed later. For each word $w \in A^{km}$ consider

$$w = u_1 \cdots u_m$$
 with $|u_i| = k$ for each $1 \le i \le m$

and let

$$f_w = \prod_{i=1}^m f_{u_i}$$

Notice that $\sum_{w \in A^{km}} f_w = 1$.

Let *m* be an integer to be fixed later. For each word $w \in A^{km}$ consider

$$w = u_1 \cdots u_m$$
 with $|u_i| = k$ for each $1 \le i \le m$

and let

$$f_w = \prod_{i=1}^m f_{u_i}$$

Notice that $\sum_{w \in A^{km}} f_w = 1$. Now put A^{km} in a one to one correspondence with a prefix free set in B^* : for each $w \in A^{km}$ let $v_w \in B^*$ such that

$$|v_w| \leq \left\lceil \frac{-\log f_w}{\log |B|} \right\rceil.$$

We construct a deterministic transducer $\mathcal{T}_m = \langle Q_m, A, B, \delta_m, I, F_m \rangle$,

$$Q_m = A^{< km}$$

$$I = \{\lambda\}$$

$$F_m = Q_m$$

$$\delta_m = \{w \xrightarrow{a|\lambda} wa : |wa| < km\} \cup \{w \xrightarrow{a|v_{wa}} \lambda : |wa| = km\}.$$

The transducer \mathcal{T}_m always comes back to its initial state λ after reading km symbols.

Let $\mathcal{T}_m(z)$ be the output of \mathcal{T}_m on some finite input word z.

$$|\mathcal{T}_m(z)| = \sum_{i=1}^n |v_{w_i}|$$

$$\begin{aligned} |\mathcal{T}_m(z)| &= \sum_{i=1}^n |\mathsf{v}_{w_i}| \\ &\leq \sum_{i=1}^n \lceil -\log f_{w_i}/\log |B| \rceil \end{aligned}$$

$$\begin{aligned} |\mathcal{T}_m(z)| &= \sum_{i=1}^n |v_{w_i}| \\ &\leq \sum_{i=1}^n \lceil -\log f_{w_i}/\log |B| \rceil \\ &\leq \frac{|z|}{km} + \sum_{i=1}^n -\log f_{w_i}/\log |B| \end{aligned}$$

$$\begin{array}{lll} \mathcal{T}_{m}(z)| & = & \sum_{i=1}^{n} |v_{w_{i}}| \\ & \leq & \sum_{i=1}^{n} \lceil -\log f_{w_{i}}/\log |B| \rceil \\ & \leq & \frac{|z|}{km} + \sum_{i=1}^{n} -\log f_{w_{i}}/\log |B| \\ & \leq & \frac{|z|}{km} + \sum_{w \in \mathcal{A}^{km}} \|z\|_{w}(-\log f_{w})/\log |B| \end{array}$$

17

$$\begin{split} \widetilde{f_m}(z)| &= \sum_{i=1}^n |v_{w_i}| \\ &\leq \sum_{i=1}^n \lceil -\log f_{w_i}/\log |B| \rceil \\ &\leq \frac{|z|}{km} + \sum_{i=1}^n -\log f_{w_i}/\log |B| \\ &\leq \frac{|z|}{km} + \sum_{w \in A^{km}} \|z\|_w (-\log f_w)/\log |B| \\ &\leq \frac{|z|}{km} + \sum_{u \in A^k} \|z\|_u (-\log f_u)/\log |B|. \end{split}$$

$$\liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log |B|}{\log |A|} \leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log |B|}{\log |A|}$$

$$\begin{split} \liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log|B|}{\log|A|} &\leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log|B|}{\log|A|} \\ &\leq \lim_{i \to \infty} \frac{n_i}{n_i k m} \frac{\log|B|}{\log|A|} + \sum_{u \in A^k} \frac{\|z\|_u}{k n_i/k} \frac{-\log f_u}{\log|B|} \frac{\log|B|}{\log|A|} \end{split}$$

$$\begin{split} \liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log|B|}{\log|A|} &\leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log|B|}{\log|A|} \\ &\leq \lim_{i \to \infty} \frac{n_i}{n_i k m} \frac{\log|B|}{\log|A|} + \sum_{u \in A^k} \frac{\|z\|_u}{k n_i / k} \frac{-\log f_u}{\log|B|} \frac{\log|B|}{\log|A|} \\ &\leq \frac{1}{k m} \frac{\log|B|}{\log|A|} + \frac{1}{k \log|A|} \sum_{u \in A^k} f_u(-\log f_u) \end{split}$$

$$\begin{split} \liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log|B|}{\log|A|} &\leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log|B|}{\log|A|} \\ &\leq \lim_{i \to \infty} \frac{n_i}{n_i k m} \frac{\log|B|}{\log|A|} + \sum_{u \in A^k} \frac{\|z\|_u}{k n_i / k} \frac{-\log f_u}{\log|B|} \frac{\log|B|}{\log|A|} \\ &\leq \frac{1}{k m} \frac{\log|B|}{\log|A|} + \frac{1}{k \log|A|} \sum_{u \in A^k} f_u(-\log f_u) \\ &< \frac{1}{k m} \frac{\log|B|}{\log|A|} + 1. \end{split}$$

Applying this computation to the prefix z = x[1..n] of x gives

$$\begin{split} \liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log|B|}{\log|A|} &\leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log|B|}{\log|A|} \\ &\leq \lim_{i \to \infty} \frac{n_i}{n_i k m} \frac{\log|B|}{\log|A|} + \sum_{u \in A^k} \frac{\|z\|_u}{k n_i / k} \frac{-\log f_u}{\log|B|} \frac{\log|B|}{\log|A|} \\ &\leq \frac{1}{k m} \frac{\log|B|}{\log|A|} + \frac{1}{k \log|A|} \sum_{u \in A^k} f_u(-\log f_u) \\ &< \frac{1}{k m} \frac{\log|B|}{\log|A|} + 1. \end{split}$$

Since at least one number f_u is not equal to $1/|A|^k$,

$$\sum_{u \in A^k} f_u(-\log f_u) < k \log |A|.$$

Applying this computation to the prefix z = x[1..n] of x gives

$$\begin{split} \liminf_{n \to \infty} \frac{|\mathcal{T}_m(x[1..n])|}{n} \frac{\log|B|}{\log|A|} &\leq \lim_{i \to \infty} \frac{|\mathcal{T}_m(x[1..n_i])|}{n_i} \frac{\log|B|}{\log|A|} \\ &\leq \lim_{i \to \infty} \frac{n_i}{n_i k m} \frac{\log|B|}{\log|A|} + \sum_{u \in A^k} \frac{\|z\|_u}{k n_i / k} \frac{-\log f_u}{\log|B|} \frac{\log|B|}{\log|A|} \\ &\leq \frac{1}{k m} \frac{\log|B|}{\log|A|} + \frac{1}{k \log|A|} \sum_{u \in A^k} f_u(-\log f_u) \\ &< \frac{1}{k m} \frac{\log|B|}{\log|A|} + 1. \end{split}$$

Since at least one number f_u is not equal to $1/|A|^k$,

$$\sum_{u\in A^k}f_u(-\log f_u) < k\log |A|.$$

Then, for *m* chosen large enough, we obtain that \mathcal{T}_m compresses *x*.
Theorem 5

normality

iff no finite-state martingale success (Schnorr and Stimm 1971)

Theorem 5

normality

iff no finite-state martingale success (Schnorr and Stimm 1971)

no finite-state martingale success iff

incompressibility (Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)

Theorem 5

normality	iff	no finite-state martingale success (Schnorr and Stimm 1971)
no finite-state martingale success	iff	incompressibility (Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
normality	iff	incompressibility (direct proof) (Becher and Heiber 2013)

Theorem 5

normality	iff	no finite-state martingale success (Schnorr and Stimm 1971)
no finite-state martingale success	iff	incompressibility (Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
normality	iff	incompressibility (direct proof) (Becher and Heiber 2013)
	iff iff	incompressibility by non-deterministic incompressibility by one counter (Becher, Carton and Heiber 2015)

Theorem 5

normality	iff	no finite-state martingale success (Schnorr and Stimm 1971)
no finite-state martingale success	iff	incompressibility (Dai, Lathrop, Lutz and Mayordomo 2004) (Bourke, Hitchcock and Vinodchandran 2005)
normality	iff	incompressibility (direct proof) (Becher and Heiber 2013)
	iff iff	incompressibility by non-deterministic incompressibility by one counter (Becher, Carton and Heiber 2015)
	iff	incompressibility two-way transducers (Carton and Heiber 2015)