
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, UBA

Azar y Autómatas

Clase 7: Selección en secuencias normales. Independencia



Selection

Select a subsequence of symbols of an infinite word. Which selecting
functions f guarantee that f (x) is normal when x is normal?

Notice that if a selection procedure is allowed to read the symbol being
decided, it would be possible to “select only zeroes”, or yield similar
schemes that do not preserve normality.
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Proefix selection

Prefix-selection considers just the prefix of length i − 1 to decide
whether the symbol at position i is selected.

Let x = a1a2 · · · be an infinite word over alphabet A.

Let L ⊆ A∗ be a set of finite words over alphabet A.

The prefix-selection of x by L is x � L = ai1 ai2 ai3 · · · where i1, i2, · · · is
the enumeration in increasing order of all the integers i such that
a1a2 · · · ai−1 ∈ L.

Example:
x = 010010001000010000010000001000000001 . . .
L = (0∗1)∗,
x � L = 00000000 . . .

L = (A∗ \ L) = (0∗1∗)∗0
x � L = 101010010001 . . .
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Lemma 1

For any regular set L of words , the function x 7→ 〈x � L, x � A∗ \ L〉 is
one-to-one.

Proof.

Let y1 = x � L and y2 = x � A∗ \ L.

By definition, both y1 and y2 contain some symbols of x , in the same
relative order as they are in x .

It is possible to reconstruct x by interleaving y1 and y2 appropriately:
For each i ≥ 0, the symbol at position i of x comes from y1 if and only if
x [1..i − 1] is in L.

Thus, there is a unique x such that y1 = x � L and y2 = x � A∗ \ L.
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Selection by finite automata preserves normality

Theorem 1 (Agafonov 1968)

Let x ∈ Aω be normal and let L ⊂ A∗ be regular. Then x � L is normal.
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Proof of Theorem 1

Let x be a normal word. Let L ⊂ A∗ be a regular language.

Suppose x � L is not normal. Then, x � L is compressible and we will
prove that we can also compress x which contradicts normality of x .

Ingredients:

1. a finite state automaton that accepts L ⊆ A∗ (one input)

2. a splitter (one input, two outputs, x � L, x � L)

3. a compressor to compress x � L (one input, one output )

4. another compresor (one input, two outputs) that compresses x , by
compressing just x � L
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Automata with one input and two outputs

A (deterministic) one-input and two-output transducer 〈Q,A, δ, I ,F 〉
is such that the transitions are the form p a|v ,w−−−→ q where a is the symbol
read on the input tape and v and w are the words written to the first and
the second output tape respectively. We are interested in automatas of
this type only when they are are bounded to one.

An infinite word x = a1a2 · · · is compressible by a two-output
transducer if there is an accepting run

q0
a1|v1,w1−−−−−→ q1

a2|v2,w2−−−−−→ q2
a3|v3,w3−−−−−→ · · ·

that satisfies

lim inf
n→∞

(|v1v2 · · · vn|+ |w1w2 · · ·wn|)
n

< 1.
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Proof of Theorem 1

Let x be a normal word. Let L ⊂ A∗ be a regular language.

Suppose x � L is not normal. Then, x � L is compressible and we will
prove that we can also compress x .

Let A be a deterministic automaton accepting L.

Let S be a two-output transducer (splitter) such that on input x outputs
x � L and x � A∗ \ L. Each transition that leaves a final state of A, copies
its input symbol to the first output tape and each transition that leaves a
non-final state of A copies its input symbol to the second output tape.

Let C be a one-to-one determinsitic compressor that compresses x � L.

Let T be the following deterministic one-to-one transducer that
compresses x . Assume input x . It simulates the splitter S using two
buffers of length m large enough, one buffer places x � L, the other
x � A∗ \ L. Run the compressor C on the buffer that holds x � L.

Claim (proved in Lemma 2): the states that select symbols from x are
visited in the run linearly often.
Claim (proved in Lemma 3): x can be compressed and is not normal.
�

7 / 28



Key trivial observation

An infinite word x = a1, a2 . . . is normal in alphabet A if, and only if, for
any length `, for any w ∈ A`,

lim
n→∞

||a1 . . . an`||w
n

=
1

|A|`
iff

∀ε∃n0∀n ≥ n0

∣∣∣∣||a1 . . . an`||w −
n

|A|`

∣∣∣∣ < εn iff

∀ε∃n0∀n ≥ n0
n

|A|`
− εn < ||a1 . . . an`||w <

n

|A|`
+ εn.
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States visited infinitely often are visited linearly often

Lemma 2

Let x = a1a2 · · · be a normal word and let q0
a1−→ q1

a2−→ q2
a3−→ · · · be a

run in a deterministic automaton 〈Q,A, δ, q0,F 〉. If the state q ∈ Q is
visited infinitely often then

lim inf
n→∞

|{i : 0 ≤ i < n : qi = q}|
n

> 0.
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Proof of Lemma 2

Sea A un autómata finito determińıstico que acepta x . Para cada estado
p y cada palabra w , hay a lo sumo un único estado p w−→ q al que
escribimos p · w . Sean q1, . . . , qr los estados que ocurren infinitamente
en la corrida con entrada x .

Definamos w0 la palabra tal que q1 · w0 = qr . y Definamos las palabras
w1, ..,wr tales que qk · wk = q1: Sea ui,j las palabras tales que qi

ui,j−−→ qj .
Definamos wk que w1 = λ, w2 = u2,1w1, w3 = u3,2u2,1 = u32w2,
w4 = u43w3,. . . , wr = ur ,r−1wr−1.

Luego q1
w0wr−−−→ q1 · w0wr = q1.

Llamemos ` = |w0wr |. Como w0wr ocurre en x con frecuencia |A|−`

lim inf
n→∞

{i : 0 ≤ i < n : qi = q1}
n

≥ lim inf
n→∞

||x [1, n`]||w0wr

n
≥ |A|−`.

10 / 28



An extra tape does not help to compress better

Lemma 3

An infinite word is compressible by a bounded-to-one two-output
transducer if and only if it is compressible by a bounded-to-one
transducer.
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Proof of Lemma 3

The “if” part is immediate by not using one of the output tapes.

Suppose that x is compressible by the bounded-to-one two-output
transducer T2. We construct a transducer T1 with a single output tape
which also compresses x .

The idea is to merge the two outputs into the single tape.
Let m be an integer to be fixed later.
T1 simulates T2 on the input and uses two buffers of size m to store the
outputs made by T2. Whenever one of the two buffers is full and contains
m symbols, its content is copied to the output tape of T1 with an
additional symbol in front of it. This symbol is either 0 or 1, to indicate
whether the m following symbols comes from the first or the second
buffer.

This trick preserves the bounded-to-one assumption. The additional
symbol for each block of size m increases the length of the output by a
factor (m + 1)/m. For m large enough, the transducer T1 also
compresses x . �
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Other forms of selection

Let x = a1a2 · · · be an infinite word over alphabet A. Let L ⊆ A∗ be a
set of finite words over A and X ⊆ Aω a set of infinite words over A.

Prefix-selection looks at just the prefix of length i − 1 to decide whether
the symbol at position i is selected.

Suffix selection looks at just the suffix starting at position i + 1 to
decide whether symbol at position i is selected. The word obtained by
suffix-selection of x by X is x � X = ai1 ai2 ai3 · · · where i1, i2, · · · is the
enumeration in increasing order of all the integers i such that
ai+1ai+2ai+3 · · · ∈ X .

Two-sided selection looks at the prefix of length i − 1 and the suffix
starting at position i + 1 to decide the selection of the symbol at
position i .
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Suffix selection by a regular language preserves normality

Theorem 2 (Becher, Carton and Heiber 2015)

If x ∈ Aω is normal and X ⊂ Aω is regular then x � X is also normal.
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Two sided selection preserves normality?

Theorem 3

The two-sided selection rule “select symbols in between two zeroes” does
not preserve normality.
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Proof of Theorem 3

Let x = a1a2a3 · · · be a normal infinite word over {0, 1} and let y be the result
of selecting all symbols between two zeroes, namely y = ap(1)ap(2)ap(3) · · ·
where p(j) is the j-th smallest integer in {i : ai−1 = ai+1 = 0}.

We show that y is not normal. Let mn be the length of the shortest prefix of x
that contains n instances of 000 or 010,

mn = min{m : |{i : 2 ≤ i ≤ m − 1, ai−1 = ai+1 = 0}| = n}.

Let y = b1b2b3 · · · and kn = |{i : 1 ≤ i ≤ n − 1, bibi+1 = 00}|.
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Proof of Theorem 3

By definition of mn and y ,

kn ≥ |{i : 1 ≤ i ≤ mn − 3, aiai+1ai+2ai+3 = 0000}|
+|{i : 1 ≤ i ≤ mn − 8, aiai+1ai+2ai+3ai+4ai+5ai+6ai+7 = 00011000}|.

lim
n→∞

kn
n
≥ lim

n→∞

|{i : 1 ≤ i ≤ mn − 3, aiai+1ai+2ai+3 = 0000}|
n

+
|{i : 1 ≤ i ≤ mn − 8, aiai+1ai+2ai+3ai+4ai+5ai+6ai+7 = 00011000}|

n

> lim
n→∞

|{i : 1 ≤ i ≤ mn − 3, aiai+1ai+2ai+3 = 0000}|
n

= lim
n→∞

|{i : 1 ≤ i ≤ mn − 3, aiai+1ai+2ai+3 = 0000}|
mn

mn

n
.

By definition of normality and the properties of limit,

lim
n→∞

|{i : 1 ≤ i ≤ mn − 3, aiai+1ai+2ai+3 = 0000}|
mn

=
1

24
and lim

n→∞

mn

n
= 22,

Then,
lim

n→∞
kn/n > 2−4 22 = 1/4,

which implies that y is not normal. �
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Independence of normal words

When are two normal words independent?
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Independence of normal words

First attempt of a definition of independence (it fails):
Two normal words are independent exactly when their join is normal.

Theorem 4 (Becher, Carton and Heiber 2016)

There are two normal words x and y such that x join y = x.

Here x = even(x) and y = odd(x), hence they are obviously dependent.

Theorem 5 (Shen 2016)

Let x1, x3, x5, . . . be uniformly distributed independent symbols from
{0, 1} and for every odd n, let xn = x2n = x4n = . . .. Then, with
probability 1 the resulting word x1x2x3 . . . is normal.
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Independence of normal numbers

Two normal words are independent exactly when one does not help to
compress the other.
A deterministic finite transducer with 2 input tapes and 1 output tape

is a tuple A = 〈Q,A, δ, q0〉, where

I Q is the finite state set,

I A is the alphabet,

I δ : Q × (A ∪ {λ})× (A ∪ {λ})→ A∗ × Q is the transition function
where a transition is written p α,β|γ−−−→ q,

I q0 is the initial state.

A run with inputs x and y is a sequence of consecutive transitions

q0
α1,β1|γ1−−−−−→ q1

α2,β2|γ2−−−−−→ q2 · · ·

We write A(x , y) = γ1γ2γ3 · · · .
We say A is one-to-one if for each y fixed, x → A(x , y) is one-to-one.
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Independence of normal numbers

Let A be a finite transducer with two input tapes, deterministic and
one-to-one. Suppose inputs x and y and the run in A

q0
α1,β2|γ1−−−−−→ q1

α2,β2|γ2−−−−−→ q2
α3,β3|γ3−−−−−→ q3 · · ·

where x = α1α2 . . . and y = β1β2 . . .

The conditional compression ratio of x with respect to y in A is

ρA(x/y) = lim inf
n→∞

|γ1 . . . γn|
|α1 . . . αn|

.

Notice that the number of symbols read from y , namely |β1 . . . βn|, is not
taken into account in the value of ρA(x/y).

The conditional compression ratio of x given y , ρ(x/y), is the infimum

of ρA(x/y) for all A deterministic one-to-one.
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Independence of normal numbers

Two words x and y are independent if their compression ratios are not 0
and y does not help to compress x and x does not help to compress y ,

ρ(x) = ρ(x/y) > 0 and ρ(y) = ρ(y/x) > 0.
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Independence of normal numbers

Theorem 6 (Becher and Carton 2016)

The set {(x , y) : x and y are independent} has Lebesgue measure 1.

Lemma 4

The set of words that are compressible with the help of a given normal
word has Lebesgue measure 0.

23 / 28



Independence of normal numbers

A shuffler S = 〈Q,A, δ, q0〉 is a finite transducer with two input tapes
and one output tape. The transition function is
δ : Q × A ∪ {λ} × A ∪ {λ} → Q × A, transitions have the form

p
a,λ|a−−−→ q or p

λ,a|a−−−→ q.

For each state q, all incoming transitions have the same type.
Whether the next digit is taken from the first or the second input word
only depends the current state.
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Independence of normal numbers

Example of a Shuffler that computes the join

q0 q1

0, λ|0
1, λ|1

λ, 0|0
λ, 1|1

x = 0011010001...

y = 0100011000...

x join y = 00011010001101000010...
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Independence of normal numbers

Example of another shuffler. It alternates (possibly empty) blocks of 0s
followed by a 1, from each input word.

q0 q10, λ|0
1, λ|1

λ, 1|1
λ, 0|0

x = 001 1 01 0001 ...

y = 01 0001 1 0001 ...

z = 001011000101100010001...

Input words

Output word
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Independence of normal numbers

Theorem 7 (Alvarez, Becher and Carton 2016)

Two normal words are independent if and only if every shuffling is normal.

Theorem 8 (Alvarez, Becher and Carton 2016)

There is an algorithm that computes two normal independent words.
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Independence of normal numbers

Problem 9

Give combinatorial characterization of finite-state independence.

Problem 10

Construct a normal word that is independent of Champernowne.
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