
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Preservación de Normalidad
en Transductores

(Preservation of Normality in Transducers)

Tesis de Licenciatura en Ciencias de la Computación

Elisa Orduna

LU.: 341/08

ordunaelisaorduna@gmail.com

Directores: Verónica Becher y Olivier Carton

Buenos Aires, 19 de Julio de 2018

PRESERVACIÓN DE NORMALIDAD EN TRANSDUCTORES

En esta tesis se plantea el problema de determinar si un transductor finito determińıstico
arbitrario devuelve una palabra normal siempre que recibe como entrada una palabra nor-
mal, es decir, si preserva normalidad. Una palabra infinita x es normal si todos los bloques
de igual tamaño aparecen en x con la misma frecuencia asintótica. Trabajos anteriores
caracterizan algunas familias de transductores que preservan normalidad: selectores de
Agafonov, eliminación de todas las apariciones de un śımbolo (en alfabetos con al menos
tres śımbolos), eliminación de finitos śımbolos. Desarrollamos un algoritmo ideado por
Olivier Carton que decide si un transductor determińıstico preserva normalidad. Lo hace
además en tiempo polinomial. En primer lugar, el algoritmo obtiene una descomposición
del transductor en componentes fuertemente conexas y analiza todas aquellas que sean
recurrentes por separado. Para cada componente se construye un autómata con pesos que
permite calcular la frecuencia de una palabra finita arbitraria en la salida, suponiendo
que la entrada es una palabra normal. Por último, se verifica que estas frecuencias sean
las esperadas, utilizando una implementación polinomial del algoritmo de Schützenberger,
propuesta por Crochemore. Además, presentamos un prototipo en Python que implementa
el algoritmo.

Palabras clave: Aleatoriedad, Autómatas Finitos, Cadenas de Markov, Números Nor-
males.

i

PRESERVATION OF NORMALITY IN TRANSDUCERS

In this thesis, we study the problem of deciding whether a given deterministic transducer
outputs a normal word whenever it is fed with a normal word, in other words, whether
it preserves normality or not. An infinite word x is normal if every block of the same
length occurs in x with the same asymptotic frequency. Previous works characterize
some families of transducers which preserve normality: Agafonov selectors, removal of
all occurrences of a symbol (when alphabets contain at least three symbols), removal of
a finite number of symbols. We develop an algorithm designed by Olivier Carton that
decides if a given deterministic transducer preserves normality. Furthermore, this is done
in polynomial time. First, the algorithm obtains a decomposition of the transducer into
strongly connected components and analyzes those that are recurrent separately. For each
component, it builds a weighted automaton, which allows to determine the frequency of an
arbitrary finite word in the output, assuming that the input is a normal word. Finally, it
checks that these frequencies match the expected ones, using a polynomial implementation
of Schützenberger’s algorithm, due to Crochemore. Additionally, we provide a prototype
implementation in Python.

Keywords: Finite Automata, Markov Chains, Normal Numbers, Randomness.

iii

AGRADECIMIENTOS

A Vero quiero agradecerle haberme recibido como tesista y cuidarme como a una hija.
Es un momento de fragilidad y ansiedad, y tener toda esa atención y dedicación es un
privilegio. ¡Gracias Vero!

A Olivier quiero agradecerle la suma paciencia y generosidad que tuvo hacia mı́, nunca
se quejó de explicarme dos veces las cosas y siempre me guió con mucho entusiasmo.
Nunca tuve vergüenza de preguntar, y eso es porque siempre se encargaron de hacerme
sentir cómoda.

A Santi Figueira y Sergio Abriola, el jurado, quiero agradecerles haber hecho el es-
fuerzo de evaluar mi tesis, con todo el trabajo que eso conlleva. Y también agradecerles
haberlo hecho con cierto apremio, para que pudiera defender mi tesis con ambos directores
presentes.

A veces escucho decir sobre Argentina ‘¡Qué páıs generoso!’, y la verdad estoy de
acuerdo. Tengo el privilegio de vivir en un páıs con educación pública y gratuita de
excelencia, motor de oportunidades. Gracias por la oportunidad de formarme.

No quiero dejar pasar la oportunidad de agradecer a mis colegas docentes de las dis-
tintas materias en las que tuve oportunidad de participar, especialmente a mis amigos de
TeLeng ¡que ya son mucho más que colegas! También a los alumnos, es enriquecedor de
mil formas conocer a las nuevas camadas de estudiantes. Incluso estando un tiempo en la
misma materia siempre hay una vuelta más de tuerca para darle, y en mı́ al menos esto
sucede con las consultas de los chicos como disparador.

A mi familia por alentarme siempre, y especialmente a mis abuelas por hacerme sentir
tan querida incondicionalmente y por estar orgullosas de mı́ cualquiera fuera el resultado
de mis distintos proyectos.

¡A las poquitas amigas de hace mucho! A los amigos que ya no están, pero dejaron
marca. A mis amigos matemáticos, mi incursión en matemática me dejó hermosas amis-
tades. A mis amigos computadores.

A Pablo, por estar siempre, como compañero de cursada, como docente extraoficial,
como amigo, como confidente, como compañero de vida.

v

A Tila.

CONTENTS

1. Introduction . 1
1.1 The problem . 3

1.1.1 Normality . 3
1.1.2 Deterministic Transducers . 4
1.1.3 Weighted Automata . 6

1.2 Structure of this thesis . 7

2. Normality-Preserving Transducers . 9
2.1 The Algorithm . 9

2.1.1 Decomposition into recurrent strongly connected components 9
2.1.2 Preservation of normality . 11

2.1.2.1 Transducer normalization 11
2.1.2.2 Construction of the weighted automaton 12
2.1.2.3 Comparison against the expected frequencies 15

2.2 Correctness . 18
2.3 Complexity . 19

3. Implementation Notes . 21
3.1 Modules . 21

3.1.1 Transducer . 21
3.1.1.1 Interface . 21
3.1.1.2 Representation . 22

3.1.2 Automaton . 22
3.1.2.1 Interface . 22
3.1.2.2 Representation . 23

3.1.3 WeightedAutomaton . 23
3.1.3.1 Interface . 23
3.1.3.2 Representation . 24

3.2 Dependencies . 24
3.2.1 Graphics . 24

3.3 Test cases . 24
3.3.1 Transducers that preserve normality 25
3.3.2 Transducers that do not preserve normality 27

4. Conclusion . 31

ix

1. INTRODUCTION

Suppose that one were to flip a fair coin one million times. If the outcome turned out
to be a sequence of one million heads, one would become suspicious of the coin fairness:
one would expect about half of the tosses to be heads and about half to be tails. Now
suppose that the outcome turned out to be a sequence HTHTHT. . .HT. Even though half
of the tosses are heads, and half of the tosses are tails, one would still become suspicious
that something strange is going on. How come there are no two consecutive heads? One
would expect to obtain HH, HT, TH, TT with a frequency of about one fourth each. In
general, one would expect that any two blocks of the same length have the same frequency.
For example, HHHHH and THTTH should have the same frequency, namely they should
appear about once every thirty-two times.

This observation motivates the formal definition of normality: an infinite word is
normal if any two blocks of the same length have the same asymptotic frequency. More
precisely, if the alphabet has b symbols, a finite word of length k should occur in a normal
word with an asymptotic frequency of 1

bk
. The notion of normality was introduced in 1909

by Borel [?] as an attempt to determine conditions for a number to be “random”. In his
seminal work, Borel showed that almost all words are normal. Nevertheless, there are not
so many actual examples of words which have been proved to be normal.

The most famous example of a normal word is due to Champernowne [?], who showed
in 1933 that the infinite word obtained from concatenating all the natural numbers (in
their usual order):

0123456789101112131415161718192021222324252627282930 . . .

is normal in the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The same construction can be applied
to other alphabets: concatenating all the finite words in increasing lexicographical order
always yields a normal word.

Besicovitch [?] showed in 1935 that the word obtained from concatenating the squares
of all the natural numbers, in increasing order:

1491625364964811001211441691962252562893243614004414 . . .

is also normal, and later Copeland and Erdős [?] showed that the infinite word obtained
from concatenating the prime integers in increasing order:

2357111317192329313741434753596167717379838997101103 . . .

is normal as well.
In 1992, Nakai and Shiokawa [?] proved that given a non-constant polynomial function

f(x) with real coefficients such that f(x) > 0 for all x > 0, the infinite word:

bf(1)cbf(2)cbf(3)c . . .

that results from concatenating the integer part of f(i) for i = 1, 2, ... is normal in the
alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Nakai and Shiokawa’s result simultaneously generalizes
Champernowne’s, by taking f(x) = x, and Besicovitch’s, by taking f(x) = x2.

1

2 1. Introduction

Normal numbers are intimately related with finite automata. In 1971, Schnorr and
Stimm proved that a word is normal if and only if no martingale described by a finite-
state automaton succeeds in making unbounded profit [?]. Another characterization of
normality in terms of finite automata establishes that an infinite word is normal if and
only if it is incompressible by a finite-state transducer [?, ?, ?].

A finite-state transducer is a finite-state automaton in which each transition, besides
consuming an input symbol, also produces a word as part of the output. The following is
an example of a two-state transducer:

q0 q1

a | 0
b | 11

b | λ

a | 1

In this example, each transition is labeled with an input symbol from the alphabet {a, b}
and an output word in the alphabet {0, 1}. If this transducer is fed with ababa as an
input, starting from the initial state q0, the output is 01110.

Problems that can be posed as a yes or no question are called decision problems, for
example: Given a transducer, does it preserve normality? Given a program and an input,
does the program ever finish running? We say that a decision problem is decidable if there
exists an algorithm that solves the question in the general case. Additionally, we say that
a decision problem is undecidable if it cannot be decided in general with an algorithm.
Many questions that are decidable for finite-state automata turn out to be undecidable
for finite-state transducers. For instance, the problem of determining whether two given
transducers are equivalent, that is, whether they describe the same input/output relation,
is undecidable. In fact, it is not even possible to decide, given two transducers, whether
there exists an input word for which they yield the same output [?]. We are interested in
studying the behaviour of a finite-state transducer when the input is a normal word.

The main problem that motivates this thesis is to determine whether a given finite-
state transducer yields a normal word as an output, when it is fed a normal word as an
input. When this happens, we say that the transducer in question preserves normality.
Is this problem decidable? Recall that an infinite word x is normal if every finite word
of any length k in an alphabet with b symbols, occurs in x with an asymptotic frequency
of 1

bk
. Answering the question means analyzing the infinite outputs of all infinite normal

words and the frequencies of all (infinitely many) finite words in them. Since the question
is essentially infinitary, it is not obvious that the problem is indeed decidable.

It is known that Agafonov selectors preserve normality [?]. An Agafonov selector is a
deterministic transducer in which each state can be of one of two types: type I and type II.
Transitions going out from a state of type I behave as the identity function, that is, they
produce as output the same symbol that they consume. Transitions going out from a state
of type II only output λ, that is, they delete the symbol consumed. For instance, in the

1.1. The problem 3

following Agafonov transducer, the state q0 is of type I, and the states q1, q2 are of type II:

q0

q1 q2

a | a

b | b

a | λ
b | λ

a | λ

b | λ

Checking whether a given transducer is an Agafonov selector is easy, in fact it can be
done in linear time. It has been recently proved that deleting all the occurences of a fixed
symbol from a normal word also yields a normal word [?]. For example, removing the
symbol 1 from Champernowne’s constant results in the following infinite word:

023456789023456789202222324252627282930 . . .

which turns out to be normal in the alphabet {0, 2, 3, 4, 5, 6, 7, 8, 9}. It is clear that chang-
ing a finite number of symbols also preserves normality. Observe that normality is a
property about the asymptotic behaviour of an infinite word, so making any change in a
finite prefix does not change its status of being normal.

In this thesis we study an algorithm that given a deterministic transducer, determines
whether it preserves normality in polynomial time. We also give a prototype implementa-
tion in Python. In the following section, we present the formal notions of normality and
transducer, which are crucial to be able to state the goal more precisely.

1.1 The problem

In this section we provide the formal definitions required to determine whether an input-
deterministic transducer preserves normality. We also present the definition of weighted
automata, on which the algorithm relies as an essential tool.

1.1.1 Normality

Before giving the formal definition of normality, let us introduce some simple definitions
and notations. Let A be a finite set of symbols that we refer to as the alphabet. We write
Aω for the set of all infinite words in the alphabet A, and A∗ for the set of all finite words.
The size of A is written |A| and the length of a finite word w is denoted by |w|. The
positions of finite and infinite words are numbered starting at 1. To denote the symbol at
position i of a word w we write w[i], and to denote the substring of w from position i to
j inclusive we write w[i . . . j]. The empty word is denoted by λ. Given two words w and
v in A∗ , the number |w|v of occurrences of v in w is defined by:

|w|v = |{i : w[i . . . i+ |v| − 1] = v}|

For example, |aaaaa|aa = 4.

4 1. Introduction

Definition 1 (Frequency of a word). Given a finite word w ∈ A∗ and an infinite word
x ∈ Aω, we define the frequency of w in x as

freq(x,w) = lim
n→∞

|x[1 . . . n+ |w|]|w
n

where w = b1 . . . bn.

Definition 2 (Normal word). An infinite word x ∈ Aω is normal in the alphabet A if for
every word w ∈ A∗:

freq(x,w) =
1

|A||w|

An alternative definition of normality can be given by counting aligned occurrences,
and it is well-known that they are equivalent (see for example [?]).

1.1.2 Deterministic Transducers

Our main concern is to analyze Deterministic Transducers, which constitute the input of
the algorithm. In this section we give the formal definition of a transducer, some relevant
types of transducers and a run in a transducer. To determine whether a transducer
preserves normality means to determine whether the output of every run whose input is
a normal word is also normal.

Definition 3 (Transducer). A transducer T is a tuple 〈Q,A,B, δ, I〉, where
• Q is a finite set of states,
• A and B are the input and output alphabets respectively,
• δ ⊆ Q×A×B∗ ×Q is a finite transition relation,
• I ⊆ Q is the set of initial states.

For example, the following is a transducer that compresses blocks of consecutive as
into a single a:

T = 〈{1, 2}, {a, b}, {a, b}, {(1, b, b, 1), (1, a, a, 2), (2, a, λ, 2), (2, b, b, 1)}, {1}〉

As usual, a transducer can be represented graphically. Each state is represented with a
node, a transition (q, v, w, q′) ∈ δ is represented with a labeled arrow q v|w−−→ q′. Each initial
state is marked with an unlabeled arrow pointing to it, with no origin. The transducer T
above can be depicted as follows:

1 2b | b
a | a

a | λ
b | b

From now on, we represent transducers graphically when appropiate. We usually assume
that there is a single initial state, whose number is 1, and there is no need to mark it with
an unlabeled arrow.

Definition 4 (Deterministic transducer). A transducer T is called an input-deterministic
transducer, or deterministic transducer for short, if:

1.1. The problem 5

• It has a single initial state, that is, |I| = 1.
• If there exists transitions p a|v−−→ q and p a|v′−−→ q′, then q = q′ and v = v′.

1

2

a | a

b | a

a | b
b | a

(a) Deterministic

1

2

a | a

b | b
a | b

a | b
b | a

(b) Non determinis-
tic

Fig. 1.1: A deterministic transducer and a non deterministic transducer. Second one is non deter-
ministic since there are two different transitions leaving state 1 and consuming a.

Definition 5 (Complete transducer). A transducer T is said to be complete if for each
symbol a ∈ A and each state p ∈ Q there is a transition from p and consuming a, in other
words there exist a word w ∈ B∗ and a state q ∈ Q such that p a|δ−−→ q.

2 a | e

1

b | e c | e c | f

3

a | e b | f

a | f

c | f

b | e

(a) Complete

2 a | e

1

b | e c | e c | f

3

a | e b | f

a | f

(b) Incomplete

Fig. 1.2: A complete transducer and an incomplete transducer. Second one is incomplete since
there are no transitions leaving state 3 and consuming b.

Definition 6 (Deterministic complete transducer). A transducer T is said to be an input-
deterministic complete transducer or deterministic complete transducer for short, if it is
both input-deterministic and complete.

Definition 7 (Run). A finite (respectively infinite) run in T is a finite (respectively
infinite) sequence of consecutive transitions,

q0
a1|v1−−−→ q1

a2|v2−−−→ . . . qn−1
an|vn−−−→ qn

We may refer to a1a2 . . . an as the input or label of the run.

6 1. Introduction

For example, 1 a|e−−→ 3 a|f−−→ 2 a|e−−→ 2 b|e−→ 1 c|f−−→ 2 is a run in Figure 1.2a, with input aaabc
and output efeef .

When T is a deterministic complete transducer, we refer to the output word of the
only run in T starting in the initial state and consuming an infinite word x as T (x). We
may refer to T (x) as just the output when consuming x. Note that though x is infinite,
T (x) may be finite.

Definition 8 (Preserves normality). We say that a deterministic transducer T preserves
normality if and only if for all normal words x, T (x) is also normal.

1.1.3 Weighted Automata

Though weighted automata are not part of the problem itself, they are a key part of
the solution. The question of whether a deterministic transducer preserves normality
can be answered by conveniently building a weighted automaton that allows to calculate
freq(T (x), w) for every w ∈ B∗.

Definition 9 (Weighted automaton). A weighted automaton A is a tuple 〈Q,B,∆, I, F 〉,
where

• I : Q→ R is a function that assigns each state an initial weight
• F : Q→ R is a function that assigns each state an final weight
• ∆ : Q×B ×Q→ R is a function that assigns each transition a weight

Figure 1.3 displays an example of a weighted automaton. A weighted automaton is
represented graphically with the following convention. States are labeled with [wi]q[wf]
where q is the name of the state, wi is the initial weight and wf is the final weight.
Transitions are labeled with x[w], where x is an input symbol, and w is the weight of the
transition.

[1]q0[0] [0]q1[1]
1[1]

1[1]
0[1]

0[2]
1[2]

Fig. 1.3: An example of a weighted automaton

Definition 10 (Run). A run in A is a finite sequence of consecutive transitions, q0
b1−→

q1
b2−→ . . . bn−→ qn. We refer to b1 . . . bn as the label of the run.

Definition 11 (Weight of a run). The weight of a run q0
b1−→ q1

b2−→ . . . bn−→ qn in A is the
product of the weights of its n transitions times initial and final weights:

weightA(q0
b1−→ q1

b2−→ . . .
bn−→ qn) = I(q0)×∆(q0, b1, q1)× . . .∆(qn−1, bn, qn)× F (qn)

The weight of the empty run is 1.

1.2. Structure of this thesis 7

Definition 12 (Weight of a word). Given a weighted automaton A = 〈Q,B,∆, I, F 〉 and
a word w ∈ B∗, w = b1 . . . bn, we define the weight of the word w as the sum of weights of
all runs labeled with w:

weightA(w) =
∑

γ∈R(w)

weightA(γ)

where w = b1 . . . bn and R(w) = {γ | γ = q0
b1−→ q1 . . .

bn−→ qn is a run in A}

The run q0
1−→ q1

0−→ q1
1−→ q1

0−→ q1 in the weighted automaton from Figure 1.3 is labeled
with 1010 and its weight is 1 · 1 · 2 · 2 · 2 · 1 = 8. The run q0

1−→ q0
0−→ q0

1−→ q1
0−→ q1 in the

weighted automaton from Figure 1.3 is labeled with 1010 and its weight is 1·1·1·1·2·1 = 2.
Note that every run starting on q1 has weight zero, as the initial weight of q1 is 0. Moreover,
any other run labeled with 1010 starting on q0, besides the two runs we have already
discussed, must have weight 0, as it necessarily finishes on q0, which has final weight 0.
Hence, weightA(1010) = 8 + 2 = 10. Note that the weight of a word in this automaton
computes its value if interpreted as a number in base 2.

1.2 Structure of this thesis

The remainder of this thesis is organized as follows:
• In Chapter 2, we describe an algorithm for deciding whether a deterministic trans-

ducer preserves normality. We mention the facts that make the algorithm correct,
and we study its theoretical complexity.
• In Chapter 3, we describe the details of our implementation of the algorithm in

Python, including the test cases.
• In Chapter 4, we conclude.

8 1. Introduction

2. NORMALITY-PRESERVING TRANSDUCERS

In this chapter, we describe a solution for the problem of deciding whether a deterministic
transducer preserves normality. We focus in deterministic complete transducers in which
all states are reachable from the initial state: states that are not reachable from the
initial state have no impact in any translation, and transducers that are not complete
do not preserve normality. From now on, we assume transducers to be deterministic and
complete, and we assume each of its states to be reachable from the initial state.

The algorithm has two phases. Firstly, the algorithm finds the recurrent strongly
connected components of the transducer. A transducer may have one or more components,
each of which is a smaller transducer. Secondly, the algorithm relies on the observation
that the original transducer preserves normality if and only if all of its components do. As
a consequence, it suffices to analyze each component independently, to check whether it
preserves normality or not. We argue that a deterministic complete transducer can have
at most a linear number of recurrent strongly connected components, and that the cost of
analyzing each component is polynomial in time, thus obtaining a polynomial algorithm.

This chapter is organized as follows:
• In section 2.1, we describe the algorithm itself.
• In section 2.2, we mention the facts that prove the algorithm to be correct.
• In section 2.3, we study its worst-case asymptotic time complexity.

2.1 The Algorithm

In this section we describe the main algorithm, which has two phases, as mentioned before:

Input: T = 〈Q,A,B, δ, I〉 an input-deterministic complete transducer.
Output: True if T preserves normality, False if T does not preserve normality.
Procedure:

1. Find the set {S1, . . . , Sk} of recurrent strongly connected components of T .
2. Analyze if each Si ∈ {S1, . . . , Sk} preserves normality.

If they all do, return True, otherwise return False.

2.1.1 Decomposition into recurrent strongly connected components

We now present the definitions of strongly connected components and recurrent strongly
connected components, together with some examples.

Definition 13 (Strongly connected components). Let T = 〈Q,A,B, δ, I〉 be a determin-
istic complete transducer. If there exists a run

p = r0
a1|v1−−−→ r1

a2|v2−−−→ r2 . . .
an|vn−−−→ rn = q

for some n ≥ 0, we say that q is reachable from p. A subset S ⊆ Q of the set of all states is
called a strongly connected component (SCC) if S is a maximal set verifying the following
property: for any two states p, q ∈ S, the state q is reachable from p.

9

10 2. Normality-Preserving Transducers

Definition 14 (Recurrent SCC). A strongly connected component S is called recurrent
if no transition leaves it.

For example, in Fig. 2.1a, we exhibit a deterministic complete transducer T , in Fig. 2.1b
we mark its strongly connected components, and in Fig. 2.1c we mark its recurrent strongly
connected components.

9

10

a | a11

b | λ

b | b

a | λ7

5

a | ba b | bb

a | a

6

b | λ

2 b | bb

3

a | ba | b b | b

4

a | b b | bb

1

b | a

a | bb

b | b

a | a

8

b | ab a | aa

b | ba | b

(a) A deterministic complete transducer T .

9

10

a | a11

b | _

b | b

a | _7

5

a | ba b | bb

a | a

6

b | _

2 b | bb

3

a | ba | b b | b

4

a | b b | bb

1

b | a

a | bb

b | b

a | a

8

b | ab a | aa

b | ba | b

(b) Strongly connected components of T .

9

10

a | a11

b | _

b | b

a | _7

5

a | ba b | bb

a | a

6

b | _

2 b | bb

3

a | ba | b b | b

4

a | b b | bb

1

b | a

a | bb

b | b

a | a

8

b | ab a | aa

b | ba | b

(c) Recurrent strongly connected components of
T .

Fig. 2.1: An example of a transducer, its SCCs and its recurrent SCCs.

In order to find the strongly connected components of the transducer T , we apply
Kosaraju’s algorithm [?, Section 22.5], which finds all the SCCs of an arbitrary directed
graph. Only the recurrent SCCs are kept for the next phase of the analysis. Observe that
since T is complete, its recurrent strongly connected components are also complete.

2.1. The Algorithm 11

2.1.2 Preservation of normality

We now present how to analyze preservation of normality in a recurrent strongly connected
component. In later sections we explain each step in more detail.

For each recurrent strongly connected component S of T , we analyze the transducer
T ’= 〈S,A,B, δ′, {qi}〉 induced by S. It is clear that T ′ has the same input and output
alphabets as T , the set of states is precisely S ⊆ Q, and the transition function δ′ is δ
restricted to S. Now it may not be clear what the initial state qi should be. For the
purpose of analyzing the output of a normal word, and since we are working on a strongly
connected component, any choice of initial state can be made. Let us write f to refer to
the function f : X ⊆ Aω → Bω realized by T ’. The algorithm consists on three main
steps:

1. We apply a transformation called normalization to the transducer T ′. As a result,
we obtain a normalized transducer T ′′ which still realizes f .

2. We build a weighted automaton that realizes the function g that calculates the
frequency of a finite word in the output thrown by T ′′ when fed with a normal word.

3. We use the weighted automaton to check whether the frequency of every finite word
in B∗ is the expected one for the output to be normal, i.e. we check that the following
holds for every word w ∈ B∗:

g(w) =
1

|A||w|

In the rest of this chapter, we refer to T ’ as just T .

2.1.2.1 Transducer normalization

Normalizing consists in transforming the transducer to avoid having transitions of the form
p a|w−−→ q where |w| ≥ 2. This requires introducing λ-transducers, which are transducers
extended to allow λ-transitions, and the notion of normal form.

Definition 15 (λ-transducer). A λ-transducer T is a tuple 〈Q,A,B, δ, I〉, where:

• Q is a finite set of states,
• A and B are the input and output alphabets respectively,
• δ ⊆ Q× (A ∪ {λ})×B∗ ×Q is a finite transition relation,
• I ⊆ Q is the set of initial states.

We refer to transitions p λ|v−−→ q as λ-transitions.

Definition 16 (Normal form). A λ-transducer T = 〈Q,A,B, δ, I〉 is in normal form if
the three following conditions hold:

1. for every transition p a|w−−→ q we have that |w| ≤ 1,
2. for every transition p λ|w−−→ q we have that |w| = 1,
3. for every state q ∈ Q, either:

- there is either a single λ-transition leaving q, and no other transitions,
- or there are exactly |A| transitions leaving q, each labeled with a distinct symbol

from A.

To obtain an equivalent λ-transducer in normal form each transition p a|w−−→ q in T such
that |w| ≥ 2 is replaced by n transitions:

p a|b1−−→ q1
λ|b2−−→ q2 . . .

λ|bn−1−−−−→ qn−1
λ|bn−−→ q

12 2. Normality-Preserving Transducers

where w = b1 . . . bn and q1, q2, . . . , qn−1 are new states.

2

1

1 | λ 0 | 0 0 | 10

1 | 1

(a) Original transducer.

2

1

1 | λ0 | 0

1 | 1

3

0 | 1

λ | 0

(b) Normalized transducer.

Fig. 2.2: In this example, normalization adds a new state.

Note that the resulting normalized transducer may not be deterministic for finite in-
puts, in the sense that there may be more than one possible output for a single input, but
it is still deterministic for infinite inputs.

2.1.2.2 Construction of the weighted automaton

At this point, the transducer T = 〈Q,A,B, δ, I〉 is normalized so the output in each
transition is never longer than a symbol. The next goal is to produce a weighted automaton
A = 〈Q,B, δ′, I ′, F ′〉, to allow us to know, for any finite word, its frequency in the output
of a normal word. The weighted automaton is built to have the same states as T , and
transitions relating an output symbol with the frequency it has in the translation of any
normal word. The transitions of A and their corresponding weights are obtained by
assigning weights to the transitions of T . Once each transition has been assigned a weight,
we interpret A as a Markov chain, and we use its stochastic matrix and its associated
stationary distribution to define the initial weights for every state in A. The final weight
is defined to be 1 for every state in A. Built in this way, the weighted automaton allows
us to calculate the frequency of a finite word in the output produced by T when fed a
normal word.

Defining the transitions of the automaton and their weights. Recall that the
states of the transducer T have either all possible transitions with symbols from A or a
single λ-transition, since T has been normalized. If there are no transitions with output λ
then all transitions output a single output symbol. In that case, it is fairly clear how often
a symbol in B is produced as the output from a given state, when consuming a normal
word. To calculate this frequency, we can simply look at the transitions that have that
symbol as output and add their weights. The presence of λ as output makes this not so
obvious, since many transitions with empty output could be taken before producing any
output symbol. To deal with this issue, we consider separately all possible runs that start
in a fixed state and output λ, and their corresponding weights. Later we show that this

2.1. The Algorithm 13

can be effectively computed by solving a system of linear equations.
We assign weights to the transitions in T as follows: we assign weight 1/|A| to tran-

sitions that are labeled with a symbol from A, and 1 to λ-transitions, representing the
frequency with transitions from each state are taken when consuming a normal word. We
define the weight of a run in T . This allows us to assign weight to transitions of the form
p b−→ q in A, by combining the weights of every possible run r from p that output λ with
the weight of the single transition that connects the last state of the run r with q and
outputs b.

Given a word w = a1a2 . . . an and a run q0
a1|v1−−−→ q1

a2|v2−−−→ . . . an|vn−−−→ qn in T , the weight of
the run in T is the product of the weights of its n transitions:

weightT (q0
a1|v1−−−→ q1

a2|v2−−−→ . . .
an|vn−−−→ qn) =

n∏
i=1

weightT (qi−1
ai|vi−−−→ qi)

The weight of the empty run is 1.

Given two states p, q ∈ Q, we write Xp,q to denote the set of runs in T from p to q
with empty output:

Xp,q = {q0 a1|λ−−→ q1
a2|λ−−→ . . . a1|λ−−→ qn : q0 = p, qn = q}

We define xp,q as the sum of weights of runs in T from p to q with empty output:

xp,q =
∑

γ∈Xp,q
weightT (γ)

Observe that xp,q either converges to a non-negative real number or tends to infinity (+∞),
since all the terms of the sum are non-negative.

Computation of xp,q. To effectively calculate each xp,q, we show that the associated
matrix is the solution to a linear system of equations. For that purpose, consider the
matrix M ∈ RQ×Q whose entries are given by xp,q for each pair of states (p, q). Recall
that xp,q is the sum of the weights of runs in T that go from p to q and have empty output,
of arbitrary length. Moreover, let E ∈ RQ×Q be the matrix whose entry at position (p, q)
is the sum of the weights of runs from p to q with empty output, of length exactly 1, that
is:

Ep,q =
∑
p
a|λ−−→q

weightT (p
a|λ−−→ q)

The matrix M can be obtained from:

M = Id+ E + E2 + E3 + . . . =
∑
k≥0

Ek

where for each k ≥ 0, the entry of Ek at position (p, q) is the sum of the weights of runs
from p to q with empty output whose length is exactly k. Now let E∗ =

∑
k≥0E

k, and
note that the following equalities hold:

E∗ = Id+ (E + E2 + E3 + . . .)
= Id+ (Id+ E + E2 + E3 + . . .) · E
= Id+ E∗ · E

14 2. Normality-Preserving Transducers

Hence, E∗ is a solution to the equation X = Id+X ·E, which can be rewritten as follows:

X · (Id− E) = Id

Since E∗ is an infinite sum of matrices with non-negative coefficients, each entry of E∗

can either converge to a non-negative number or tend to infinity. If it is the case that
there is at least one infinite entry in E∗, we can already answer that T does not preserve
normality. In fact, this means that there exists a normal word for which the output is
finite.

For example, the matrices E and E∗ are the following for the transducer below:

2

1

1 | λ 0 | 0 0 | λ

1 | 1

E[
0 1/2

1/2 0

] E∗[
4/3 2/3
2/3 4/3

]

From E∗ and T we build the transitions of A over the alphabet B, with weights:

weightA(p
b−→ q) =

∑
r∈Q,a∈A

xp,r · weightT (r
a|b−−→ q)

For each b ∈ B, we define Nb ∈ QQ×Q as the matrix whose entry at position (p, q) is the
sum of the weights of all transitions from p to q whose output is b, that is:

(Nb)p,q =
∑

a∈A∪{λ}

weightT (p
a|b−−→ q)

Having calculated E∗ and Nb for each b ∈ B, we can effectively calculate weightA(p b−→ q)
as it is the (p, q)-entry of the product E∗ ·Nb.

It only remains to define the initial and final weights for every state of the weighted
automaton A. So far, we have an automaton with weights in transitions. Observe that
the sum of the weights of the transitions leaving any state q is always 1. Let us consider
A as a Markov chain1 to define its initial weights. We can do this since the weights on
transitions are positive, and the sum of weights of transitions leaving a state is 1. The
corresponding matrix T ∈ [0, 1]Q×Q is given by the entries:

Tp,q =
∑
b∈B

weight(p
b−→ q)

1 To the ends of this thesis, it suffices to say that a Markov chain is a connected graph whose transitions
have probabilities associated, hence the probabilities of transitions leaving a state add up to 1.

2.1. The Algorithm 15

Example 17. An automaton with weights and its associated matrix T :

4

2

3

1 5

c[1]

b[1/3]

b[1/9]

a[1/3]
b[1/3]

b[1/3]

a[1/9]
b[1/9]

b[1/3]

a[1/3]

b[1/3]

a[1/3]

b[1]

T
1/3 0 1/3 1/3 0
0 1/3 2/3 0 0
0 1/9 2/9 1/3 1/3
0 0 0 1 0
0 0 0 0 1


As defined, the matrix T happens to be a stochastic matrix:

Definition 18. A stochastic matrix (also known as Markov matrix) is a square matrix
P ∈ (R≥0)n×n such that each row adds up to 1.

Moreover, to define the initial weights of the automaton, we need the notion of sta-
tionary distribution of a stochastic matrix:

Definition 19. Let P be a stochastic matrix. A vector π = (x1, . . . , xn) is called a
stationary distribution of P if π · P = π and moreover

∑n
i=1 xi = 1.

The initial weights of the states of the automaton A are given precisely by the (unique)
stationary distribution of T . The final weights of the states of the automaton A are all
set to 1. Built in this way, A can be used to effectively calculate freq(T (x), w) for any
normal word x ∈ Aω, and for any finite word w ∈ B∗ as follows. Consider π and for
every b ∈ B, the matrix T (b) ∈ Rn×n≥0 containing the weights of transitions with label
b: (T (b))p,q = weightA(p b−→ q). For each word w = b1 . . . bn, the vector obtained from
multiplying π · T (b1) · T (b2) . . . T (bn) contains for each state the frequency with which the
word w is the next output, when the run from consuming a normal word goes through
that state. The sum of that vector is thus the frequency of w in the output of a normal
word, in other words, the product of π · T (b1) · T (b2) . . . T (bn) · (1 . . . 1)t is the frequency
of w in the output of a normal word.

2.1.2.3 Comparison against the expected frequencies

At this point we have an automaton A that calculates effectively freq(T (x), w), for any
normal word x ∈ Aω, and for any finite word w ∈ B∗. Now everything is set to compare,
for every word w ∈ B∗, this frequency to the expected one for T (x) to be normal. We do
this comparison by first building a weighted automaton A′ with a single state, representing
the expected frequencies in a normal word. In this section we refer to the union of A and
A′ as the union weighted automaton. More precisely, if A = 〈Q,B, δ, I, F 〉 and A′ =
〈Q′, B, δ′, I ′, F ′〉 the states of the union weighted automaton are Q∪Q′, the initial weights

are I ∪ I ′, the final weights are F ∪ F ′, and there is a transition p
b−→ q of weight w in the

union weighted automaton if and only if this transition exists in A or in A′.

16 2. Normality-Preserving Transducers

To verify that the frequencies match the expected ones, we assign initial weight −1
to the unique state of A′, so that the union weighted automaton has frequency 0 for all
words w ∈ B∗. We make this comparison using Schützenberger’s algorithm [?]. We refer
to the functions realized by A and A′ as g and g′ respectively.

For the output alphabet B, a weighted automaton A′with the expected frequencies in
a normal word in B can be described with a single state, having transitions with weight
1/|B| for each symbol. To make the comparison between A and A’, we analyze the union
automaton, considering A′ with initial weight −1.

Given an arbitrary finite word w ∈ B∗ and a state q ∈ Q, consider the frequency
fw,q with which the run labeled with a normal word x visits q and immediately after the
remaining output starts with w. We describe a procedure to find a base of the subspace
of R1×n generated by {πw | w ∈ B∗}, where πw = (fw,q1 , . . . , fw,qn).

The vector π of initial weights holds information on the frequency with which the
output after leaving each state starts with λ when consuming a normal word, so we have
that π = πλ. In other words, π holds information on how often a state is visited when
consuming a normal word. If b ∈ B, let us define T (b) as the Rn×n≥0 matrix such that
(T (b))p,q = weightA(p b−→ q). Then the vector π · T (b) holds information on the frequency
with which the word b outputs from each state when consuming a normal word.

In general, suppose that the output alphabet is of the form B = {b1, b2, . . . , bm}. For
each word w ∈ B∗, the vector πw ∈ R1×n can be calculated recursively:{

πλ = π
πw·b = πw · T (b)

For example, πb1b2b2 = π · T (b1) · T (b2) · T (b2).

To calculate a base of the subspace generated by {πw | w ∈ B∗}, we consider the
following infinite tree with branching factor m (one child per each symbol b ∈ B of the
alphabet):

πλ

πb1

πb1b1

πb1b1b1

. . .

πb1b1b2

. . .

. . . πb1b1bm

. . .

πb1b2

. . .

. . . πb1bm

. . .

πb2

πb2b1

. . .

πb2b2

. . .

. . . πb2bm

. . .

. . . πbm

. . .

The nodes of the tree are all the vectors πw, for all finite words w ∈ B∗. The vector πw is
located in the node of the tree following the path indicated by the word w.

We perform a depth-first exploration of the tree, collecting some of the vectors into
a linearly independent set {v1, v2, . . . , vn}. As soon as a node is found to be linearly
dependent with the ones collected so far, the subtree is pruned. Note that the subspace
is finite-dimensional so this procedure only needs to explore a finite prefix of the infinite
tree.

Once the base is calculated, we multiply each of the vectors by (1 1 . . . 1)t, to obtain the
frequency of the associated word in the output of a normal word. Since we are analyzing

2.1. The Algorithm 17

the union weighted automaton (which realizes the difference of functions g−g′), we expect
this product (frequency) to be zero for every vector. If it is positive, it means the word
associated to the vector appears more often than expected (since we are analyzing g− g′).
If it is negative, the word associated appears fewer times than expected.

Example 20. Below we continue the analysis started on Example 17, building a union
weighted transducer, including the original weighted automaton A, and also A′, each with
their expected weights. We also exhibit the base of the subspace of frequency vectors, and
we perform the verification for each vector in the base.

[5/36]4[1]

[11/36]2[1]

[1/3]3[1]

[1/6]1[1] [1/18]5[1]

[−1]6[1]

c[1]

b[1/3]

b[1/9]

a[1/3]
b[1/3]

b[1/3]

a[1/9]
b[1/9]

b[1/3]

a[1/3]

b[1/3]

a[1/3]

b[1]

a[1/3]
b[1/3]
c[1/3]

T (a)
0 0 1/3 0 1/3 0
0 0 1/3 0 0 0
0 0 1/9 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1/3



T (b)
0 1/3 0 0 0 0
0 0 1/3 1/3 0 0

1/3 1/3 1/9 1/9 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1/3



T (c)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1/3



With the above symbols matrices and the initial weight vector, this is how the base is
calculated for the example union weighted automaton:

1. v0 =



1/6
11/36
1/3
5/36
1/18
−1

, associated to λ

2. v0T (a) is LI with {v0} so v1 =



0
0

7/36
0

1/18
−1/3

, associated to a

3. v0T (b) is not LI with {v0, v1} (Hence discarding this branch)

18 2. Normality-Preserving Transducers

4. v0T (c) is LI with {v0, v1}, so v2 =



0
5/36

0
0
0
−1/3

, associated to c

5. v0T (c)T (a) is LI with {v0, v1, v2}, so v3 =



0
0

5/108
0
0
−1/9

, associated to ca

6. v0T (c)T (b) is LI with {v0, v1, v2, v3}, so v4 =



0
0

5/108
5/108

0
−1/9

, associated to cb.

7. v0T (c)T (c) is LI with {v0, v1, v2, v3, v4}, so v5 =



0
0
0
0
0
−1/9

, associated to cc.

8. The rest of the branches to explore result LD.

Thus the vector space base for this example with associated words is:
λ :



1/6
11/36
1/3
5/36
1/18
−1

 , a :



0
0

7/36
0

1/18
−1/3

 , c :



0
5/36

0
0
0
−1/3

 , ca :



0
0

5/108
0
0
−1/9

 , cb :



0
0

5/108
5/108

0
−1/9

 , cc :



0
0
0
0
0
−1/9




The next step is to verify that the product of the final weight vector

1
...
1

 and each

of the vectors of the base is 0, in other words, verify for each vector of the base that the
sum of its coordinates is 0. Since this does not hold for v5 and we obtain a negative value
instead, the algorithm can already return False and give some extra information, for a
certain normal word the frequency of cc (the word associated to v5) is too little. It has
not been implemented but we can give even more information on what normal word that
is, any normal word that leads us to this recurrent strongly connected component in T .

2.2 Correctness

In this section we state the main assertions that prove the algorithm correct.

2.3. Complexity 19

The following claim shows that it suffices to analyze preservation of normality in each
recurrent strongly connected component.

Claim: Each run labeled by a normal word ends in a recurrent strongly connected
component.

The following claim shows that the input transducer and its normalized version produce
the same output when fed with an infinite word, hence proving it is equivalent to analyze
preservation of normality in either of them.

Claim: T realizes the same function f : X ⊆ Aω → Aω before and after normaliza-
tion.

The following claim ensures that the weighted automaton A does realize the frequency
function for normal inputs.

Claim: For any normal input x, any finite word w, the frequency of w in y, where y
is the output of T when fed x, is given by

freq(y, w) = π · T (ai) . . . · T (an)

1
...
1


where w = b1 . . . bn, the matrix T (b) ∈ Rn×n≥0 is such that Tp,q = weightA(p a−→ q), and
π is the stationary distribution of T , the associated stochastic matrix of A.

2.3 Complexity

In this section we analyze the complexity, measured by counting the number of elementary
mathematical operations, of a possible implementation of the algorithm. We refer to the
size of the input, a deterministic complete transducer T = 〈Q,A,B, δ, I〉, as n =

∑
τ∈δ
|τ |,

where the size of a transition τ = p a|w−−→ q is |τ | = |aw|. The analysis is based on an
implementation that uses an adjacency matrix to represent transitions. The alphabet is
assumed to be fixed.

The following enumerates the main phases of the algorithm and an achievable com-
plexity.

1. Calculate recurrent strongly connected components. The cost of Kosaraju’s algo-
rithm is O(|Q|2) ⊆ O(n2) if the transducer is implemented with an adjacency matrix
[?, Section 22.5].

2. Decide if each recurrent strongly connected component S1, . . . , Sk preserves normal-
ity. The size of the component |Si| is written ni.
2.1 Normalize the component. The cost is O(n2i), assuming that the transducer is

implemented with an adjacency matrix
2.2 Build the weighted automaton:

2.2.1 Calculate its transitions and weights. The most expensive step is to calcu-
late E∗. The cost is O(n3i) to solve the system of linear equations.

20 2. Normality-Preserving Transducers

2.2.2 Calculate the initial weights, by calculating the stochastic matrix and solve
a system of equations to find its stationary distribution. The cost is O(n3i)
to solve the systems of equations.

2.2.3 Calculate the final weights. The cost is O(ni).
2.3 Compare the automaton thus obtained to the one representing the expected

frequencies. The cost is O(|B|n3i) = O(n3i) as B is fixed [?].
Overall, the cost of deciding if each component preserves normality is O(n3i) for each

component, and at most O(n3) in total, since
∑k

i=1 ni = n so O(
∑k

i=1 n
3
i) ⊆ O(n3).

Hence, the algorithm has complexity O(n3) where n =
∑
τ∈δ
|τ | is the size of the trans-

ducer.

3. IMPLEMENTATION NOTES

In this chapter we give an overview of the modules, dependencies and test cases of our
prototype implementation. The prototype has been implemented in Python 2.7.

3.1 Modules

We briefly describe the three main classes of our implementation.

3.1.1 Transducer

An instance of the Transducer class represents a deterministic transducer.

3.1.1.1 Interface

— class Transducer(states, initialState, inputAlphabet, outputAlphabet)

Construct a new deterministic transducer without transitions, where:
– states is the set of states,
– initialState is a single initial state (to enforce determinism),
– inputAlphabet is a set of strings representing the input alphabet,
– outputAlphabet is a set of strings representing the output alphabet.

The input alphabet should not contain the string "_", as it is reserved to represent
λ-transitions by the normalization stage.

— Transducer.addTransition(p, q, inputSymbol, outputWord)

Add a transition to the transducer:
– p is the source state,
– q is the target state,
– inputSymbol is a string which should be among the symbols of the input al-

phabet,
– outputWord is a list of strings, each of which should be among the symbols of

the output alphabet.

— Transducer.isComplete()

Return True if and only if the transducer is complete.

— Transducer.preservesNormality()

Return a tuple (boolean, message). The value of boolean is True if and only if
the transducer preserves normality. If the transducer does not preserve normality,
message is a string containing a human-readable message including a finite word
whose frequency is not the expected one in the translation of some normal word.

— Transducer.toDOT()

Return a string that represents the transducer as a graph in DOT format, suitable
for rendering it as an image using the Graphviz package1.

1 https://www.graphviz.org

21

https://www.graphviz.org

22 3. Implementation Notes

3.1.1.2 Representation

A deterministic transducer is represented with the following data structure:

Transducer._states

Transducer._initialState

Transducer._inputAlphabet

Transducer._outputAlphabet

Transducer._transitions

Transducer._weights

where:

– Transducer._states is the set of states.
– Transducer._initialState is the initial state, which is among the input states.
– Transducer._inputAlphabet is a set of strings (the input alphabet).
– Transducer._outputAlphabet is a set of strings (the output alphabet).
– Transducer._transitions is dictionary of transitions. The keys are of the form
(state, symbol) and Transducer._transitions[(p, inputSymbol)] is of the

form (q, outputWord), representing a transition p
inputSymbol|outputWord−−−−−−−−−−−−−−−→ q. Remark

that the representation enforces determinism.
– Transducer._weights is used internally during the normalization stage.

3.1.2 Automaton

The Automaton class represents a partially built weighted automaton. It has weights on
the transitions but it has no initial or final weights on the states.

3.1.2.1 Interface

— class Automaton(states, initialState, alphabet)

Construct a new automaton without transitions, where:
– states is the set of states,
– initialState is a single initial state,
– alphabet is a set of strings representing the alphabet.

— Automaton.addTransitionWithWeight(p, q, inputSymbol, weight)

Add a transition, where:
– p is the source state,
– q is the target state,
– inputSymbol is a string which should be among the symbols of the alphabet,
– weight is the weight of the transition. It should be an instance of any numeric

type. Usually it is an instance of the fractions.Fraction class of Python’s
standard library.

— Automaton.weightedAutomaton()

Return an instance of WeightedAutomaton, representing a weighted automaton. The
initial weights are obtained from the stationary distribution of the current automaton
(self) interpreted as a Markov chain. The final weights are set to 1.

3.1. Modules 23

3.1.2.2 Representation

A partially built automaton is represented with the following data structure:

Automaton._states

Automaton._initialState

Automaton._alphabet

Automaton._transitions

Automaton._transitionWeights

where:
– Automaton._states is the set of states,
– Automaton._initialState is the initial state,
– Automaton._alphabet is a set of strings (the alphabet),
– Automaton._transitions is a dictionary of transitions. The keys are of the form
(p, inputSymbol) and Automaton.transitions[(p, inputSymbol)] is a set of
states {q1, ..., qn}, representing the set of transitions:{

p
inputSymbol−−−−−−−→ qi : 1 ≤ i ≤ n

}
– Automaton._transitionWeights is a dictionary associating each transition to its

weight. The keys are of the form (p, inputSymbol, q) and the value of Automaton
.transitionWeights[(p, inputSymbol, q)] is an instance of a numeric type, rep-

resenting the weight of the transition p
inputSymbol−−−−−−−→ q.

3.1.3 WeightedAutomaton

The WeightedAutomaton class represents a weighted automaton, including weights on the
transitions, and also initial and final weights on the states.

3.1.3.1 Interface

— class WeightedAutomaton(states, initialWeights, finalWeights,

alphabet, transitions, transitionWeights)

Construct a new weigthed automaton:
– states is the set of states, which should be consecutive numbers 1, 2, . . . , n,
– initialWeights is a list of numbers, the i-th element of the list is the initial

weight for the i-th state,
– finalWeights is a list of numbers, the i-th element of the list is the final weight

for the i-th state,
– alphabet is a set of strings representing the alphabet,
– transitions is a dictionary of transitions, as described in Automaton,
– transitionWeights is a dictionary of weights, as described in Automaton.

— WeightedAutomaton.preservesNormality()

Return a tuple (boolean, message). The value of boolean is True if and only
if any two finite words of the same length have the same frequency (which means
that the original transducer preserves normality). If the original transducer does not
preserve normality, message is a string detailing the reason.

24 3. Implementation Notes

3.1.3.2 Representation

A weighted automaton is represented with the following data structure:

WeightedAutomaton._states

WeightedAutomaton._initialWeights

WeightedAutomaton._finalWeights

WeightedAutomaton._alphabet

WeightedAutomaton._transitions

WeightedAutomaton._transitionWeights

where:
– WeightedAutomaton._states is the set of states,
– WeightedAutomaton._initialWeights are the initial weights for each state,
– WeightedAutomaton._finalWeights are the final weights for each state,
– WeightedAutomaton._alphabet is a set of strings (the alphabet),
– WeightedAutomaton._transitions is the dictionary of transitions, as described in
Automaton,

– WeightedAutomaton._transitionWeights is the dictionary of weights, as described
in Automaton.

3.2 Dependencies

Our prototype implementation is written in Python 2.7 and has been tested using the
official Python distribution (CPython).

For dealing with matrices and systems of linear equations, we use the SymPy 1.1
package2. SymPy is a Python library for symbolic computation. In particular, we rely on
SymPy to solve the systems of linear equations which define the matrix E∗, required to
build the weigthed automaton, and to calculate the stationary distribution which defines
the initial weights for all states. Moreover, to compare the weighted automaton with the
expected frequencies, we also need to test whether a vector is linearly independent to a
set of vectors. For this step we also rely on SymPy.

Initially, we considered NumPy3 for dealing with matrices. However, NumPy is a
library oriented to numerical computation, and solutions are expressed as floating point
numbers, whereas in our case we need to obtain exact solutions to systems of linear
equations involving matrices with rational coefficients.

3.2.1 Graphics

As mentioned before, we represent transducers and automata in DOT format to be able
to render them graphically using the Graphviz package4.

3.3 Test cases

In this section we exhibit some of the cases with which we have tested the algorithm.
Test cases are classified according to whether the transducers involved preserve normality

2 http://www.sympy.org/en/
3 http://www.numpy.org/
4 http://www.graphviz.org

http://www.sympy.org/en/
http://www.numpy.org/
http://www.graphviz.org

3.3. Test cases 25

(Section 3.3.1) or not (Section 3.3.2).

3.3.1 Transducers that preserve normality

In this section we present test cases of transducers that preserve normality. We generate
them using known examples of transducers that preserve normality, such as Agafonov
selectors, deleting all occurences of a symbol from the input, changing only finite symbols
from the input.

Test case #1.

1

a | a
b | b
c | c
d | d

Preserves normality since it is the identity function (also it is a case of Agafonov’s selec-
tor).

Test case #2.

1

3

b | b 2

a | λ

b | b a | a

a | a

b | λ

Preserves normality since it behaves just as the Agafonov transducer resulting from chang-
ing 1 a|λ−−→ 2 for 1 a|a−−→ 2 and 2 a|a−−→ 3 for 2 a|λ−−→ 3.

26 3. Implementation Notes

Test case #3.

2 1 | 1

1

0 | 0 1 | λ

0 | λ

Preserves normality since it is an Agafonov’s selector.

Test case #4.

2 1 | 0 0 | 1

1

2 | λ 2 | λ

1 | 0 0 | 1

Preserves normality since it removes all occurrences of symbol 2 and permute the others.

Test case #5.

2 0 | λ

1

1 | 1 1 | λ

0 | 0

Preserves normality since it behaves just as the agafonov transducer resulting from chang-
ing 1 1|λ−−→ 2 for 1 1|1−−→ 2 and 2 1|1−−→ 1 for 2 1|λ−−→ 1.

3.3. Test cases 27

Test case #6.

2

3

1 | λ

1

0 | λ

1 | 1 0 | 0

1 | λ

0 | λ

Preserves normality as it only deletes finite symbols from a normal word (Deletes every
symbol until the first appearance of 11).

Test case #7.

7

5

b | bba | ba

a | a

6

b | _

8

b | aba | aa

1

2

b | a4

a | bb

b | bb

3

a | b b | b

9

a | b

b | b

10

a | a b | _

a | _

b | b

a | b

a | b b | bb

Preserves normality since each of its recurrent strongly connected components do.

3.3.2 Transducers that do not preserve normality

In this section we show test cases that do not preserve normality, we generate them by
forcing certain finite words to have the wrong frequency. In each there is a brief explanation
of why it does not preserve normality.

28 3. Implementation Notes

Test case #8.

2

1

a | a b | b b | λ

a | a

For any normal sequence, the output is not normal as the frequency of a is larger than
the frequency of b

Test case #9.

2

1

a | a b | b a | λ b | b

For any normal sequence, the output is not normal as the frequency of b is larger than
the frequency of a

Test case #10.

1

a | a
b | a
c | a
d | b

For any normal sequence, the output is not normal as the frequency of a is larger than
the frequency of b

Test case #11.

1
a | aa
b | bb

For any normal sequence, the output is not normal as the frequency of aaa is larger than
the frequency of aba (which is 0 in this case)

Test case #12.

1
a | aa
b | b

For any normal sequence, the output is not normal as the frequency of aaaa is larger
than the frequency of abab

3.3. Test cases 29

Test case #13.

2 1 | 1

1

0 | λ 1 | 1 0 | 0

For any normal sequence, the output is not normal as the frequency of 1 is larger than
the frequency of 0

Test case #14.

2 1 | 1

1

0 | λ 1 | λ 0 | 0

For any normal sequence, the output is not normal as the frequency of 1 is larger than
the frequency of 0 (Notice that blocks of 0 s only output half its 0 s, while blocks of 1 s
may at most output one fewer 1)

Test case #15.

2 1 | 1

1

0 | λ 1 | λ 0 | λ

For any normal sequence, the output is not normal as no 0 s are displayed.

30 3. Implementation Notes

Test case #16.

9

10

a | a11

b | λ

b | b

a | λ7

5

a | ba b | bb

a | a

6

b | λ

2 b | bb

3

a | ba | b b | b

4

a | b b | bb

1

b | a

a | bb

b | b

a | a

8

b | ab a | aa

b | ba | b

This transducer does not preserve normality as any normal word beginning with bab leads
to recurrent strongly connected component {9, 10, 11}, that does not preserve normality
since the frequency of b is smaller than the frequency of a in the output (Blocks of as
output just one a, while blocks of bs output half the number of bs in the block).

4. CONCLUSION

In the present thesis we describe an algorithm to determine preservation of normality for
a given deterministic transducer. It remains to present a full proof of correctness.

Additionally, the implemented prototype gives an incomplete witness when the trans-
ducer does not preserve normality. The algorithm currently returns a word that has the
wrong frequency in some normal word, but it does not specify which normal word that is.
This feature could be added by showing the path that leads to a failing recurrent strongly
connected component, as the output of a normal word with such path as prefix will not
be normal. The structures used could be improved to achieve better efficiency. Also, the
features to solve systems of equations could be implemented to benefit from the fact that
we only deal with matrices that have fractional numbers as coefficients, instead of using a
general library as the SymPy package.

A different yet related question appears: given the desired frequency of each letter in
the output alphabet, can we build a transducer that outputs a word with such properties
when being supplied with a normal word? This is an open question.

31

32 4. Conclusion

	Introduction
	The problem
	Normality
	Deterministic Transducers
	Weighted Automata

	Structure of this thesis

	Normality-Preserving Transducers
	The Algorithm
	Decomposition into recurrent strongly connected components
	Preservation of normality
	Transducer normalization
	Construction of the weighted automaton
	Comparison against the expected frequencies

	Correctness
	Complexity

	Implementation Notes
	Modules
	Transducer
	Interface
	Representation

	Automaton
	Interface
	Representation

	WeightedAutomaton
	Interface
	Representation

	Dependencies
	Graphics

	Test cases
	Transducers that preserve normality
	Transducers that do not preserve normality

	Conclusion

