Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales
Departamento de Computación

Collares perfectos máximos

Tesis de Licenciatura en Ciencias de la Computación

Ezequiel Zimenspitz

Director: Verónica Becher

COLLARES PERFECTOS MÁXIMOS

Hay secuencias muy lindas. Otras aún más lindas. Pero hay algunas que son combinatoriamente perfectas. Estas se vuelven atractivas en la práctica si además podemos dar un algoritmo sencillo y rápido para generarlas. En esta tesis nos dedicamos a unas de estas secuencias combinatoriamente perfectas, variantes de las bien conocidas secuencias de Bruijn. Mostramos que el algoritmo goloso de Fredricksen de 1982 para generar las secuencias de Bruijn lexicográficamente máximas se puede adaptar para generar estas secuencias perfectas lexicográficamente máximas.

MAXIMAL PERFECT NECKLACES

There are very nice sequences. Others even nicer. But there are some that are combinatorially perfect. These become attractive in practice if we can give a simple and fast algorithm to generate them. In this thesis we focus on one of these combinatorially perfect sequences, variants of the well-known de Bruijn sequences We show that Fredricksen's greedy algorithm of 1982 to generate the lexicographically maximal de Bruijn sequences can be adapted to generate these lexicographically maximal perfect sequences.

A Vero, que siempre estuvo atenta y dispuesta a ayudarme durante todo este proceso.
A Agus, Chamo, Dona, Fabro y Fran, con quienes tuve la suerte de compartir muchos tps, horas de estudio y por sobre todo, muchas risas.

A mi equipo de Básquet de Exactas, con quienes espero seguir compartiendo cancha muchos años más.

A mi familia, que me banca en todas, siempre.

CONTENTS

1. Introduction 1
2. Algorithms 5
2.1 Prefer One Algorithm for de Bruijn necklaces (Fredricksen 1982) 5
2.2 Prefer One Algorithm for Perfect Necklaces 7
2.3 Prefer Max Algorithm 10
3. Examples 12
4. Appendix 16

1. INTRODUCTION

Fix a finite alphabet \mathcal{A} and write $|\mathcal{A}|$ for its cardinality. A word is a finite sequence of symbols in the alphabet. A rotation is the operation that moves the final symbol of a word to the first position while shifting all other symbols to the next position, or it is the composition of this operation with itself an arbitrary number of times. A circular word, or necklace is the equivalence class of a word under rotations.

Definition (de Bruijn necklace). A de Bruijn necklace [3] of order k in \mathcal{A} is a necklace of length $|\mathcal{A}|^{k}$ in which each word of length k occurs exactly once as a contiguous subsequence.

Example. For $\mathcal{A}=\{0,1\}$ and $k=2,[0011]$ is a de Bruijn necklace, but [0101] is not.

A total order on the symbols in the alphabet induces a total order of words of the same length, with in turn induces a total order on necklaces as follows: a necklace is greater than other if there is an element in the equivalent class of the first one that is greater than all the elements in the equivalent class of the second one. For example [11100100] is greater than [11011000]. Thus, for each order k there is a maximal de Bruijn necklace. The lexicographically least de Bruijn sequence of a given order is known as the Ford sequence [4]. In the sequel we consider the necklace defined by the Ford sequence, and refer to it as the Ford necklace.

Example (Minimal and Maximal de Bruijn necklaces).

For $k=1$ and $k=2$, the minimal and maximal necklaces are the same because they belong to the same equivalent class.

$$
\begin{aligned}
& k=1 \rightarrow[01] \\
& k=2 \rightarrow[0011] \\
& k=3 \rightarrow \text { minimal: [00010111], maximal: [00011101] }
\end{aligned}
$$

Fix the alphabet $\{0,1\}$, fix a positive integer k and consider all the words of length k, in lexicographic order. For example,
$\begin{array}{llllllll}000 & 001 & 010 & 011 & 100 & 101 & 110 & 111\end{array}$
Now consider the concatenation of these 8 words and consider the resulting necklace
[000001010011100101110111]

This necklace has the striking property that all words of length 3 occur exactly 3 times, but each time occur at a different position modulo 3 , for any convention on the starting position. Motivated by this example Alvarez, Becher, Ferrari and Yuhjtman in $[7$ formalized the notion of perfect necklaces, which are variants of the de Bruijn necklaces.

Definition ((k,n)-perfect necklace). A necklace is (k, n)-perfect if it has length $n|\mathcal{A}|^{k}$ and each word of length k occurs exactly n times at positions which are different modulo n for any convention on the starting point.

Remark. For any alphabet size, a ($k, 1$)-perfect necklace is a de Bruijn necklace.
Definition (Perfect necklace). A necklace is perfect if it is (k, k)-perfect for some k.
Example (Perfect Necklace). Let $\mathcal{A}=\{0,1\}$. We add spaces in the examples just for readability. For words of length 2 there are just two perfect necklaces:
[00 0110 11], [00 100111].

This is a perfect necklace for word length 3:
[000 110101111001010011 100].
The following are not perfect:
[00 011110] since 00 appears in position 1 and 7 which are equal modulo 2 , but it also appears a third time in position 2,
[000 001011010110111101100$]$ since 101 appears in position 5 and 8 which are equal modulo 3 .

Each de Bruijn necklace of order k in \mathcal{A} is the label of a Hamiltonian cycle in a de Bruijn graph of order k. Since the line graph of the de Bruijn graph of order k is the de Bruijn graph of order $k-1$, each de Bruijn necklace of order k is the label of an Eulerian cycle in the de Bruijn graph of order $k-1$. The number of distinct de Bruijn sequences of order k in an alphabet of b symbols is given by the formula (3)

$$
\frac{(b!)^{b^{k-1}}}{b^{k}}
$$

Thanks to these properties of the de Bruijn graphs, it is possible to extend a de Bruijn necklace of order k to a de Bruijn necklace of order $k+1$, see [1].

It is also possible to count the number of perfect necklaces of order k in an alphabet of b symbols 7 .

Becher and Carton studied a special class of perfect necklaces called nested perfect necklaces [2]

Definition (Astute graph). Let \mathcal{A} be an alphabet with cardinality b, let k be a word length and let n be a positive integer. The astute graph $G_{k, n}$ is a directed graph, with $n b^{k}$ nodes, each node is a pair (u, v), where u is in \mathcal{A}^{k} and v is a number between 0 and $n-1$. There is an edge from (u, v) to $\left(u^{\prime}, v^{\prime}\right)$ if the last $k-1$ symbols from u coincide with the first $k-1$ symbols from u^{\prime} and $(v+1) \bmod n=v^{\prime}$.

Perfect necklaces of order k are the label of Hamiltonian cycles in the astute graphs of order k. Equivalently, they are the label of Eulerian cycles in astute graphs of order $k-1$.

Example (Astute graph). Let $\mathcal{A}=\{0,1\}$.
$G_{1,1}=\{$
$G_{1,2}=\{$

Notice that the astute graphs for $n>1$ have no self loops.
Remark. For any alphabet size, the astute graph $G_{k-1,1}$ coincides with a de Bruijn graph
of words of length $k-1$; hence, the Eulerian cycles in $G_{k-1,1}$ yield exactly the de Bruijn necklaces of order k.

Remark. Each Eulerian cycle in the astute graph $G_{k-1, n}$ gives one (k, n)-perfect necklace [7.

Example (Eulerian cycle in $G_{1,2}$). Starting at $(1,1)$; current node in red and moving in the red edge; used edges in blue:

necklace $=[0]$	necklace $=[00]$	necklace $=[000]$
necklace $=[0001]$	$\text { necklace }=[00011]$	$\text { necklace }=[000110]$
necklace $=[0001101]$	$\text { necklace }=[00011011]$	necklace $=[00011011]$

2. ALGORITHMS

There are many of algorithms in the literature to generate de Bruijn necklaces, some of them can be found in the survey by Fredricksen in 1982 [5].

The simplest algorithm given by Fredricksen in [5] is the Prefer One algorithm and it generates the lexicographically greatest de Bruijn necklace.

2.1 Prefer One Algorithm for de Bruijn necklaces (Fredricksen 1982)

1. Start with a sequence of k zeros.
2. If the sequence has length 2^{k} stop; otherwise,
3. For the i th bit of the sequence, $i>k$, write a one if the newly formed k-tuple has not previously appeared in the sequence; otherwise write a zero. Increase i and repeat step 2;

Theorem (Fredericksen 1982 5). Prefer One is a greedy algorithm that generates a de Bruijn necklace of order k with alphabet $\mathcal{A}=\{0,1\}$ that has a running time linear in the size of the output.

Proof. In 1736, Euler showed that a directed graph G has an Eulerian cycle if and only if G is connected, and the indegree is equal to the outdegree at every node. In this case G is called Eulerian. The BEST theorem for de Bruijn, Ehrenfest, Smith and Tutte [6], states that the number of Eulerian cycles in a connected Eulerian graph can be obtained by counting the number of rooted trees which are subgraphs of a given graph $G=(V, E)$. A tree is a connected graph without cycles. The number of edges in a tree is therefore one less than the number of vertices in the tree. A root of the tree is a node which is not the initial node of any edge (we think here of directed trees).

For a given graph $G=(V, E)$ the BEST theorem determines the number of subgraphs of G which are rooted trees. We define the associated matrix A_{G} of size $|V| \times|V|$ as
$A_{G_{i i}}$ is the number of edges exiting the node numbered i.
$A_{G_{i j}}$ is the negative of the number of edges from node i to node j.
Then the number of trees rooted at i is given by the determinant of the minor of the element $A_{G_{i i}}$.

As an example, consider the de Bruijn graph of order $3 G_{3,1}$, in Figure 2.2. Since the theorem requires a graph without loops, we drop the loop at nodes 000 and 111. (Removing these loops does not alter the number of trees which are subgraphs of $G_{3,1}$.)

The associated matrix for a de Bruijn graph of order k, that we will call $A_{G_{k}}$, has the form: Row 0 has a 1 in column 0 and -1 in column 1 . Row i has a 2 in column i, a -1 in column $2 i$ and a -1 in column $2 i+1\left(\right.$ modulo $\left.2^{k}\right)$ for $i=1,2, \ldots, 2^{k}-2$. Row $2^{k}-1$ has a 1 in column $2^{k}-1$ and a -1 in column $2^{k}-2$.

Then we compute the determinant of the minor of the $(0,0)$ position of $A_{G_{k}}$ to get the number of rooted trees in G_{k}, with root 0^{k}. It can be shown by induction that there are $2^{2^{k}-(k+1)}$ trees with root 0^{k}.

From the BEST theorem it can be derived the following algorithm that can traverse a de Bruijn graph forming an Eulerian cycle.

1. Find a tree rooted at 0^{k-1} in G_{k-1}
2. Add the loop at node 0^{k-1} to any tree rooted at 0^{k-1} in G_{k-1}, place a star on it.
3. Place a star on all edges of the tree.
4. Choose node 0^{k-1} as the starting node
5. When at node i, leave the node by the unstarred edge unless that edge has been used. Otherwise leave by the starred edge,
6. Determine the state of the process by the label of the edge traversed.
7. When we enter a node, if the starred edge out of that node has been used we stop. Otherwise return to step 5 .

Fredricksen uses the tree rooted at 0^{k-1} formed by the edges with label 0 . The sequence obtained in the Eulerian cycle is the same sequence we obtain with the Prefer One algorithm.

Analyzing the running time, in each iteration of the loop the algorithm does a constant number of operations, and each decision is local with respect to the node being visited.

In order to make a decision it needs to verify if the newly formed k-tuple was already written in the output. So it maintains a set in which, if the word exist, then it was written in the output, otherwise, it was not. At each loop iteration:

1. the algorithm does one lookup in the set and chooses 1 or 0 .
2. writes the decision in the output.

3 . writes the set with the newly formed k-tuple.

We know that there are 2^{k} possible words of length k with 2 letters, so there will be 2^{k} loop iterations at most. Therefore, the algorithm has a running time linear in the size of the output.

Example ($G_{3,1}$ rooted tree at 000).

Fig. 2.1: Tree with root at 000 and the loop in 000

Fig. 2.2: $G_{3,1}$

Example (de Bruijn necklaces).

$$
\begin{aligned}
& k=1 \rightarrow[01] \\
& k=2 \rightarrow[0011] \\
& k=3 \rightarrow[00011101]
\end{aligned}
$$

2.2 Prefer One Algorithm for Perfect Necklaces

We adapt Fredricksen's Prefer One algorithm to produce the lexicographically greatest perfect necklace of order k with alphabet $\mathcal{A}=\{0,1\}$.

We are going to verify that a newly formed k-tuple has not previously appeared in the
same position $\bmod k$.

1. Start with a sequence of k zeros.
2. If the sequence has length $k * 2^{k}$ stop; otherwise,
3. For the i th bit of the sequence, $i>k$, write a one if the newly formed k-tuple either has not occurred yet in the sequence, or it has not occurred at a position j such that $j \bmod k$ is equal than $i \bmod k$. otherwise write a zero. Increase i and repeat step 2 ;

Theorem. Prefer One is a greedy algorithm that generates a perfect necklace of order k with alphabet $\mathcal{A}=\{0,1\}$ that has a running time linear in the size of the output.

Proof. For $k=1$, the proof remains the same as de Bruijn algorithm, since de Bruijn graph and astute graph are equivalent.

For $k>1$, consider the following algorithm:

1. Find a tree rooted at $\left(0^{k-1}, 0\right)$ in $G_{k-1, k}$
2. Place a star on the edge with label 0 that goes from node $\left(0^{k-1}, 0\right)$ to node $\left(0^{k-1}, 1\right)$.
3. Place a star on all edges of the tree.
4. Choose node $\left(0^{k-1}, 0\right)$ as the starting node
5. When at node i, leave the node by the unstarred edge unless that edge has been used. Otherwise leave by the starred edge,
6. Determine the state of the process by the label of the edge traversed.
7. When we enter a node, if there are no starred edges out of that node that can be used we stop. Otherwise return to step 5 .

To proof this algorithm works in general, we need to show that each edge is used once and that we terminate at node $\left(0^{k-1}, 0\right)$.

If the algorithm stops at any node it must have exited that node k times earlier, but when we do stop, we have just visited the node for the $(k+1)$ th time. This can only occur if the final node is the initial node $\left(0^{k-1}, 0\right)$.

If some edge is not used, we can assume it is starred. Since the original tree had no loops, there is a path starting from this starred edge and leading to the edge with label 0 that exits the node $\left(0^{k-1}, 0\right)$ along edges all of which are starred. (If one of these starred edges is unused, all of them must be.) Thus, the algorithm will not have terminated in node ($0^{k-1}, 0$), but it does, so this contradiction proves the algorithm.

Therefore, using the tree rooted at $\left(0^{k-1}, 0\right)$ formed by the edges with label 0 , the sequence obtained in the Eulerian cycle is the same sequence we obtain with the Prefer One algorithm.

Analyzing the running time, in each iteration of the loop the algorithm does a constant number of operations, and each decision is local with respect to the node being visited.

In order to make a decision it needs to verify if the newly formed k-tuple was already written in the output in a position mod k. So it maintains a multimap with k-tuples as keys and a 0 and/or a 1 as values, a 0 if the k-tuple was written in the output for position $0 \bmod k$, a 1 if it was written for position $1 \bmod k$. At each loop iteration:

1. the algorithm does one lookup in the set and chooses 1 or 0 .
2. writes the decision in the output.
3. writes the map with the newly formed k-tuple and its position $\bmod n$.

We know that there are $k * 2^{k}$ possible words of length k with 2 letters in k different positions, so there will be $k * 2^{k}$ loop iterations at most. Therefore, the algorithm has a running time linear in the size of the output.

Example $\left(G_{2,2}\right)$.

Fig. 2.3: Tree with root at $(00,0)$ and the edge 0 from node $(00,0)$

Fig. 2.4: $G_{2,2}$
Example (Perfect Necklaces).

$$
\begin{aligned}
& k=1 \rightarrow[01] \\
& k=2 \rightarrow[00111001] \\
& k=3 \rightarrow[000111110101100011010001]
\end{aligned}
$$

Theorem. Prefer One generates perfect necklaces of order k that are lexicographically greatest.
Proof. In every loop iteration we try to write the lexicographically greatest character in the alphabet, therefore, the necklace will be the greatest possible.

2.3 Prefer Max Algorithm

Now we are going to extend this algorithm to make perfect necklaces of order k with alphabet $\mathcal{A}=\{0,1, \ldots, b-1\}$ for any integer value of b greater than 1 .

1. Start with a sequence of k zeros.
2. If the sequence has length $k * b^{k}$ stop; otherwise,
3. For the i th bit of the sequence, $i>k$.

Select the higher p from $b-1$ to 0 that will make the newly formed k-tuple either not occurred yet in the sequence, or not occurred at a position j such that j $\bmod k$ is equal than $i \bmod k$.

Write p. Increase i and repeat step 2;
Theorem. Prefer Max is a greedy algorithm that generates a perfect necklace of order k with alphabet $\mathcal{A}=\{0,1, \ldots, b-1\}$ that has a running time linear in the size of the output times b.

Theorem. Prefer Max generates perfect necklaces of order k that are lexicographically greatest.

To proof the theorems, the idea is the same as for the Prefer One algorithm, but trying to use the greatest label in each step.

Remark. The Prefer Min version is identical but starting with a sequence of $k b-1 \mathrm{~s}$ and j iterating from 0 to $b-1$. This version will generate the lexicographically least necklace.

Remark. The algorithm can be slightly modified to generate (k, n)-perfect necklaces with the same strategy.

3. EXAMPLES

Here we show some outputs generated by the algorithms.

$$
\left.\begin{array}{rl}
\mathcal{A} & =\{0,1\} \\
k & =1 \rightarrow[01] \\
k & =2 \rightarrow[00111001] \\
k & =3 \rightarrow[000111110101100011010001] \\
k & =4 \rightarrow[0000111111101101110010111010100110000111011001010100001100100001] \\
\mathcal{A} & =\{0,1,2\} \\
k & =1 \rightarrow[021] \\
k & =2 \rightarrow[002221201211100201] \\
k & =3 \rightarrow[000222221220212211210202201200122121120112111110102101100022021020 \\
012011010002001] \\
k & =4 \rightarrow[000022222221222022122211221022022201220021222121212021122111211021
\end{array}\right]
$$

$\mathcal{A}=\{0,1,2,3,4\}$
$k=1 \rightarrow[04321]$
$k=2 \rightarrow[00444342414034333231302423222120141312111004030201]$
$k=3 \rightarrow[000444443442441440434433432431430424423422421420414413412411410404$ 403402401400344343342341340334333332331330324323322321320314313312311310304303 302301300244243242241240234233232231230224223222221220214213212211210204203202 201200144143142141140134133132131130124123122121120114113112111110104103102101 100044043042041040034033032031030024023022021020014013012011010004003002001]
$k=4 \rightarrow[000044444443444244414440443444334432443144304424442344224421442044$ 144413441244114410440444034402440144004344434343424341434043344333433243314330

432443234322432143204314431343124311431043044303430243014300424442434242424142 404234423342324231423042244223422242214220421442134212421142104204420342024201 420041444143414241414140413441334132413141304124412341224121412041144113411241 114110410441034102410141004044404340424041404040344033403240314030402440234022 402140204014401340124011401040044003400240014000344434433442344134403434343334 323431343034243423342234213420341434133412341134103404340334023401340033443343 334233413340333433333332333133303324332333223321332033143313331233113310330433 033302330133003244324332423241324032343233323232313230322432233222322132203214 321332123211321032043203320232013200314431433142314131403134313331323131313031 243123312231213120311431133112311131103104310331023101310030443043304230413040 303430333032303130303024302330223021302030143013301230113010300430033002300130 002444244324422441244024342433243224312430242424232422242124202414241324122411 241024042403240224012400234423432342234123402334233323322331233023242323232223 212320231423132312231123102304230323022301230022442243224222412240223422332232 223122302224222322222221222022142213221222112210220422032202220122002144214321 422141214021342133213221312130212421232122212121202114211321122111211021042103 210221012100204420432042204120402034203320322031203020242023202220212020201420 132012201120102004200320022001200014441443144214411440143414331432143114301424 142314221421142014141413141214111410140414031402140114001344134313421341134013 341333133213311330132413231322132113201314131313121311131013041303130213011300 124412431242124112401234123312321231123012241223122212211220121412131212121112 101204120312021201120011441143114211411140113411331132113111301124112311221121 112011141113111211111110110411031102110111001044104310421041104010341033103210 311030102410231022102110201014101310121011101010041003100210011000044404430442 044104400434043304320431043004240423042204210420041404130412041104100404040304 020401040003440343034203410340033403330332033103300324032303220321032003140313 031203110310030403030302030103000244024302420241024002340233023202310230022402 230222022102200214021302120211021002040203020202010200014401430142014101400134 013301320131013001240123012201210120011401130112011101100104010301020101010000 440043004200410040003400330032003100300024002300220021002000140013001200110010 0004000300020001]

Now we show some perfect necklaces as images in gray scale.

Fig. 3.1: Perfect necklace with $\mathcal{A}=\{0,1,2,3\}$ and $k=4$. \mathcal{A} and k were selected only so that $k|\mathcal{A}|^{k}$ is a perfect square. This is a plot of the sequence in a matrix of 32×32. Position (i, j) in the matrix depicts the symbol at position $32 \times i+j$ in the sequence. Black for 0 s , dark gray for 1 s , light gray for 2 s , white for 3 s .

Fig. 3.2: Perfect necklace with $\mathcal{A}=\{0,1\}$ and $k=16 . \mathcal{A}$ and k were selected only so that $k|\mathcal{A}|^{k}$ is a perfect square. This is a plot of the sequence in a matrix of 1024×1024. Position (i, j) in the matrix depicts the symbol at position $1024 \times i+j$ in the sequence. Black for 0 s , white for 1 s .

4. APPENDIX

```
Prefer One
def generate(self, k):
    expected_length = k * 2 ** k
    necklace = self.__zero * k
    apparitions_mod_k = {necklace: [0]}
    current_position = len(necklace) - k + 1
    for _ in range(expected_length - k):
            current_position_mod_k = current_position % k
            next_word = necklace[current_position:] + self.__one
            if not (next_word in apparitions_mod_k and current_position_mod_k in apparitions_mod_k[next_word]):
                necklace += self.__one
            else:
                necklace += self.__zero
            if next_word not in apparitions_mod_k:
                apparitions_mod_k[next_word] = []
            apparitions_mod_k[next_word].append(current_position_mod_k)
            current_position += 1
    return necklace
```

Prefer Max
def generate(self, k):
letters = self.__alphabet.get_letters()
expected_length $=\mathrm{k} *$ len(letters) $* * \mathrm{k}$
necklace $=$ letters[0] $*$ k
apparitions_mod_k = \{necklace: [0]\}
current_position $=$ len(necklace) $-\mathrm{k}+1$
for i in range (expected_length - k):
current_position_mod_k = current_position \% k
next_word = ''
for letter in reversed(letters):
next_word = necklace[current_position:] + letter
if not (next_word in apparitions_mod_k and current_position_mod_k in apparitions_mod_k[next_word]): necklace += letter
break
if next_word not in apparitions_mod_k:
apparitions_mod_k[next_word] = []
apparitions_mod_k[next_word].append(current_position_mod_k)
current_position += 1
return necklace

BIBLIOGRAPHY

[1] V. Becher and P. A. Herber. On extending de bruijn sequences. Information Processing Letters, 111:930-932, 2011.
[2] Verónica Becher and Olivier Carton. Normal numbers and nested perfect necklaces. Journal of Complexity, 54:101-403, 2019.
[3] Nicolaas G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch., Proc.:758$764=$ Indagationes Math. 8, 461-467 (1946), 1946.
[4] L. R. Ford. A cyclic arrangement of m-tuples. Journal of Combinatorial Theory, (Report P-1071), 1957.
[5] Harold Fredricksen. A survey of full length nonlinear shift register cycle algorithms. pages 195-221, 1982.
[6] Frank Harary. Graph theory. Addison-Wesley, 1969.
[7] Nicolás Álvarez, Verónica Becher, Pablo Ferrari, and Sergio Yuhjtman. Perfect necklaces. Advances in Applied Mathematics, 80:48-61, 2016.

