Exercise sheet 1: Grammars and automata

1. Find a finite automaton for each language over the alphabet $\{0,1\}$
(a) $\{00\}$
(b) $\{0,1010,110,001\}$
(c) $\{$ All the strings starting and ending with 1$\}$
(d) \{Strings with at least two consecutive zeros $\}$
(e) \{Strings ending with 00 or 11$\}$
(f) \{Strings with at least two equal consecutive symbols\}
(g) \{Strings starting with 1 and ending with 11$\}$
(h) $\{$ Strings not containing the substring 001$\}$
(i) \{Strings with an even number of zeros\}
(j) \{Strings with an even number of zeros and an odd number of ones\}
2. Draw a diagram of an automaton recognizing the union of the recognized languages of the following automata:

3. String concatenation is the operation of joining two character strings end-to-end. For example, the strings "snow" and "ball" may be concatenated to give "snowball". We write $M \circ N \mathrm{ll}$ to represent the concatenation of the word M with the word N. Language concatenation is the concatenation of all the words in one language with the words in the other. Notice that $L_{1} \circ L_{2} \neq L_{2} \circ L_{1}$.

Draw a diagram of an automaton recognizing the concatenation of the language recognized by
with the language recognized by

4. Given the alphabet $\{a, b, c\}$, find an automaton for each language.
(a) \{Strings with a number of b being a multiple of 3 and no starting with $a\}$
(b) \{Strings having at most two consecutive b and not ending with $c\}$
(c) $\{$ Strings with an even number of a and odd number of $b\}$
(d) $\{$ Strings ending with $c\}$
(e) \{Strings with an even number of a and odd number of b and ending with c \}
5. Find a regular grammar for each language of exercises 1 and 4.
6. Find a regular grammar for each automaton of exercises 2 and 3.

