
Exercise sheet 3: Decidability

1. An enumerator is a Turing Machine that outputs strings one at a time. For instance, a TM
that outputs 1, then 11, then 111, et cetera, is said to be an enumerator for the language 11∗.
You may assume that the TM has a state that triggers it to output, and it has a second tape
specifically to write its output down.

The language of an enumerator is the set of all strings it will output after any finite amount of
time.

Prove that if a language has an enumerator that produces the strings in that language in
lexographic order, then that language is decidable.

2. Prove that if a language is decidable, there is an enumerator for that language that outputs
the strings in lexographic order.

3. Let NETM = {〈M〉 | M accepts a string}. Prove that NETM is undecidable.

4. Here is an attempt to solve the halting problem. Explain the flaw in the reasoning, and give
an example of a machine and a string that the proposed method would fail on. (Note: there is
actually a flaw here, not merely a lack of detail. You should find something that is false in this
paragraph and explain why, or identify something implicitly assumed and explain why that is
false.)

“In order to determine if a Turing machine is going to loop, we just have to simulate it while
keeping track of every configuration it enters. If the simulated machine ever enters the same
configuration twice, we know it will loop, and thus, we reject. To keep track of the configu-
rations, we use a second tape. When we enter a new configuration, we scan this new tape to
see if this new configuration had been seen before; if so, we reject, and if not, we write this
configuration at the end of the second tape. Whenever a TM enters the same configuration
twice, it will loop, thus, when we reject, the machine does not halt. If the Turing machine
does halt it will never enter the same configuration twice, so we will accept. Thus, this method
shows that the halting problem is decidable.”

1


