
Computability and complexity
ESISAR - INPG

Valence, France

http://membres-liglab.imag.fr/diazcaro/MA554.html

Alejandro Dı́az-Caro

alejandro.diaz-caro@imag.fr

2010

2

Contents

1 Reminder: Automata and grammars 1
1.1 Regular languages . 1
1.2 Deterministic finite automata . 1

1.2.1 Definitions . 1
1.2.2 Example . 2

1.3 Nondeterministic finite automata 3
1.3.1 Definitions . 3
1.3.2 Example . 4
1.3.3 A second example . 4

1.4 Removing the nondeterminism 4
1.5 Regular grammars . 4

1.5.1 Exercises . 6
1.6 Pushdown automata . 6
1.7 Context-free grammars . 7

2 Turing machines 9
2.1 The Standard Turing Machine 9

2.1.1 Turing machines as transducers 14
2.2 Turing’s Thesis . 17
2.3 Multi-tape Turing machine . 18
2.4 Non-deterministic Turing machines 18
2.5 Universal Turing machine . 19
2.6 The halting problem . 20
2.7 Unrecognizable Languages for Turing Machines 20

2.7.1 Example: ETM is undecidable 21
2.7.2 Example: EQTM is undecidable 22
2.7.3 Mapping reducibility . 23

3 Recursive functions 27
3.1 Primitive recursive functions . 27

3.1.1 Numeric functions . 27
3.1.2 Basis functions . 27
3.1.3 The composition . 28
3.1.4 The recursion . 29
3.1.5 Examples of primitive recursive functions 30
3.1.6 Primitive recursive sets (PRS) 30
3.1.7 Primitive recursive relations (PRR) 32

3.2 Beyond PRF . 33

i

3.2.1 Characteristics of PRF 33
3.2.2 The Ackermann sequence 33

3.3 Recursive functions . 36
3.3.1 The minimizer . 36

3.4 The Church thesis . 37
3.5 Beyond RF . 37

4 Complexity: computable functions in practice 39

ii

Chapter 1

Reminder: Automata and
grammars

1.1 Regular languages

Alphabet An alphabet Σ is a finite set of symbols.

Formal language A formal language over an alphabet Σ is a set of words,
i.e. finite strings of symbols from Σ.

Regular languages The collection of regular languages over an alphabet Σ
is defined recursively as follows:

• The empty language ∅ is a regular language.

• The empty string language {ε} is a regular language.

• For each a ∈ Σ, the singleton language {a} is a regular language.

• If A and B are regular languages, then A∪B (union), A·B (concatenation),
A∗ (Kleene star) and B∗ are regular languages.

• No other languages over Σ are regular.

All finite languages are regular. Other typical examples include the language
consisting of all strings over the alphabet {a, b} which contain an even number
of as, or the language consisting of all strings of the form: several as followed
by several bs.

A simple example of a language that is not regular is the set of strings
{anbn | n ≥ 0}.

1.2 Deterministic finite automata

1.2.1 Definitions

Deterministic finite automata A deterministic finite automaton is formally
defined by the 5-tuple 〈Q,Σ, δ, q0,F〉, where:

1

• Q is a finite set of states.

• Σ is the alphabet of the automaton.

• δ is the transition function, that is, δ : Q× Σ → Q.

• q0 is the start state, that is, the state which the automaton is in when no
input has been processed yet, where q0 ∈ Q.

• F is a set of states of Q (i.e. F ⊆ Q) called accepted states.

Input word An automaton reads a finite string of symbols a1a2 . . . an, where
ai ∈ Σ, which is called a input word. The set of all words is denoted by Σ∗.

Run A run of the automaton on an input word ω = a1a2 . . . an ∈ Σ∗, is a
sequence of states q0q1q2 . . . qn, where qi ∈ Q such that q0 is a start state and
qi = δ(qi − 1, ai) for 0 < i ≤ n. In words, at first the automaton is at the
start state q0 and then automaton reads symbols of the input word in sequence.
When automaton reads symbol ai then it jumps to state qi = δ(qi − 1, ai). qn
said to be the final state of the run.

Accepting word A word ω ∈ Σ∗ is accepted by the automaton if qn ∈ F .

Recognized language An automaton can recognize a formal language. The
recognized language L ⊂ Σ∗ by an automaton is the set of all the words that
are accepted by the automaton.

Recognizable languages The recognizable languages is the set of languages
that are recognized by some automaton. For above definition of automata the
recognizable languages are regular languages. For different definitions of au-
tomata, the recognizable languages are different.

1.2.2 Example

The following 5-tuple is an automaton:

M = 〈Q = {q0, q1, q2},Σ = {a, b}, δ, q0,F = {q0, q1}〉

where δ is defined by δ(, a) = q2
δ(q0, b) = q2
δ(q1, b) = q0
δ(q2, b) = q1

An easier way to define δ is graphically. As instance, the above automaton
can be drawn as follows:

q0

q1

q2

b

a

b
a b

a

Where

• Each nodes represent a state.

• Final states are marked with a double line.

2

• The initial state is pointed by an arrow

• Transitions are represented by directed edges between states, labeled with
the symbol of the alphabet which produces such a transition.

Let ω1 = abbaab be an input word. The run of the automaton on such a
word is the sequence q0q2q1q0q2q2q1 which is an accepted word since q1 is a final
state.

Let ω2 = bba be an input word. The run of the automaton on this word is
the sequence q0q2q1q2 which is not accepted since q2 is not a final state.

The recognized language L for this automaton can be characterized in the
following way.

Let denote by s∗ the string of zero or more occurrences of the symbol s, and
by s+ the string ss∗ (i.e. one or more more occurrences of s).

Then we define L recursively by

1. ε ∈ L

2. a+b is in L

3. ba∗b is in L

4. If ω is in L then ωa∗b is in L

5. L is the smallest set satisfying 1, 2, 3 and 4.

1.3 Nondeterministic finite automata

1.3.1 Definitions

Nondeterministic finite automata A nondeterministic finite automaton is
a generalization of the finite automaton which may allows

• more than one transition corresponding to a symbol in a given state

• transitions on the empty symbol (noted by ε)

• transitions on words

Formal definition A nondeterministic finite automaton is formally defined
by the 5-tuple 〈Q,Σ,∆, q0,F〉, where:

• Q is a finite set of states.

• Σ is the alphabet of the automaton.

• ∆ is the transition relation, that is, ∆ ⊂ Q× Σ∗ ×Q

• q0 is the start state, that is, the state which the automaton is in when no
input has been processed yet, where q0 ∈ Q.

• F is a set of states of Q (i.e. F ⊆ Q) called accepted states.

3

1.3.2 Example

The following is a nondeterministic finite automaton:

N = 〈Q = q0, q1,Σ = a, b,∆, q0,F = q1〉

where ∆ is implicitly defined by the following drawing

q0 q1
a

b

aa

Exercises

1. Give the explicit definition of ∆. (Tip: it is a relation).

2. What is the recognized language for this automaton?

1.3.3 A second example

q0 q1 q2

q3 q4

a

ab

ε

b

a

bb

a

b

a

bbb
bExercise

Give the formal description of
this nondeterministic automaton
and its recognized language.

1.4 Removing the nondeterminism

Equivalence Two automata M1 and M2 are equivalent if they accept the
same language, i.e. L(M1) = L(M2).

Theorem 1 For all nondeterministic finite automaton, it is possible to con-
struct an equivalent deterministic finite automaton.

Exercise Show a deterministic finite automaton equivalent to the one at ex-
ample 1.3.3

1.5 Regular grammars

Grammar A grammar is a 4-tupe 〈N,Σ, S, R〉 where:
• N is a finite set of nonterminal symbols.

• Σ is a finite set of terminal symbols.

• S ∈ N is the start symbol.

• R is a set of rewrite rules. This rules are formed from a term at the left,
an arrow (→) and a term at the right. The terms at left and right can
be any combination of symbols from N or Σ, provided that there is at
least one symbol N on the left. The right side may be empty, which is
indicated by ε. This is called ε-rule

4

Regular grammar A regular grammar is a grammar such that the rewriting
rules are of one of the following forms:

• B → a, where B ∈ N and a ∈ Σ.

• B → aC, where B,C ∈ N and a ∈ Σ.

• B → ε, where B ∈ N and ε denotes the empty string.

Theorem 2 Given a language Σ, every language generated by a regular gram-
mar over Σ can be recognized by a finite automaton and every accepted languages
by a finite automaton can be generated by a regular grammar.

{L(G) : G is a regular grammar over Σ} = {L(M) : M is a FA over Σ}

Conversion Automaton / Grammar LetM = 〈Q,Σ,∆, q0,F〉 be a nonde-
terministic finite automaton. The regular grammar that generate the accepted
language by M is

G = 〈N,Σ, S, R〉
where

• N = Q

• Σ = Σ

• S = q0

• R = {P → xQ : (P, x,Q) ∈ ∆} ∪ {Q → ε : Q ∈ F}

Example The following regular grammar generates the accepted language
from example 1.2.2:

Rewriting rules ∆− relation
A → aC (q0, a, q2)
B → aC (q1, a, q2)
C → aC (q2, a, q2)
A → bC (q0, b, q2)
B → bA (q1, b, q0)
C → bB (q2, b, q1)
A → ε q0 ∈ F
B → ε q1 ∈ F

Notice that we used A,B,C instead of q0, q1, q2 to improve the reading.

Conversion Grammar / Automaton Let G = 〈N,Σ, S, R〉 be a regular
grammar. It is always possible to define a grammar G′ = 〈N ′,Σ, S, R′〉 that
generates the same language but without having rules with the right side being
only one nonterminal symbol.

We define a nondeterministic automaton M = 〈Q,Σ,∆, q0,F〉 where

• Q = N ′

• Σ = Σ

5

• q0 = S

• ∆ = {(P, x,Q) : there is a rule of the shape P → xQ in R′}

• F = {X : X → ε is a rule in R′}

Example Let G be the following grammar:

S → aA
A → bB
B → aA
S → bB
A → ε
B → ε

This grammar has no rules with the right side being only one nonterminal
symbol, so we do not need to make any modification.

Begin N = {S,A,B} and Σ = {a, b}, we find the following automaton
M = 〈Q,Σ,Γ, q0,F〉 where

Q = {A,B, S}
Σ = {a, b}
∆ = {(S, a,A), (S, b, B), (A, b,B), (B, a,A)}
q0 = S
F = {A,B}

The transition diagram is the following

S

A

B

a

b

b
a

1.5.1 Exercises

1. Give a regular grammar producing the language L = {a∗bc+}.

2. Give a deterministic finite automaton accepting the same language.

1.6 Pushdown automata

Intuition A pushdown automaton is a finite automaton that can make use of
a stack containing data. Transitions are denoted by a 5-tuple. The intuition is
that (a, b, c; d, e) means “Being on state a, read b from the entrance and take c
from the stack, then move to state d and write e in the stack”.

Formalization A pushdown automaton is a 6-tuple 〈Q,Σ,Γ, T, q0,F〉 where
• Q is a finite set of states.

• Σ is a finite set of symbols which is called the input alphabet.

• Γ is a finite set of symbols which is called the stack alphabet.

6

• T is a finite set of transitions. T ⊆ Q×(Σ∪{ε})×(Γ∪{ε})×Q×(Γ∪{ε}).

• q0 ∈ Q is the start state.

• F ⊆ Q is the set of final states.

Example Let M be the following pushdown automaton:

M = 〈{1, 2, 3, 4}, {a, b}, {a, b,�}, T, 1, {1, 4}〉

where T = {(1, ε, ε; 2,�), (2, a, ε; 2, a), (2, b, a; 3, ε), (3, b, a; 3, ε), (3, ε,�; 4, ε)}.
Here it is the transitions diagram

1 2 3 4
ε, ε;�

a, ε; a

b, a; ε

b, a; ε

ε,�; ε

Exercise Show that this automaton accept the language {anbn : n ≥ 1}

1.7 Context-free grammars

Definition A context-free grammar is a grammar such that each rewrite rule
has only one nonterminal symbol on the left of the arrow.

Example 1 The canonical example of a context free grammar is parenthesis
matching, which is representative of the general case. Let N = {S} and Σ =
{(,)}. The rewriting rules are S → SS

S → (S)
S → ()

The first rule allows Ss to multiply; the second rule allows Ss to become
enclosed by matching parentheses; and the third rule terminates the recursion.

Starting with S, and applying the rules, one can construct:

S → SS → SSS → (S)SS → ((S))SS → ((SS))S(S)
→ ((()S))S(S) → ((()()))S(S) → ((()()))()(S) → ((()()))()(())

Example 2 A second canonical example is two different kinds of matching
nested parentheses. Let N = {S} and Σ = {(,), [,]}. The rewriting rules are
S → SS
S → ()
S → (S)
S → []
S → [S]

The following sequence can be derived in that grammar: ([[[()()[][]]]([])])

7

Exercise Show a context-free grammar generating the language {ambncm :
m ≥ 0, n ≥ 1}.

Theorem 3 For all context-free grammar G, there exists a pushdown automa-
ton M such that L(G) = L(M).

Theorem 4 For all pushdown automaton M , there exists a context-free gram-
mar G such that L(G) = L(M).

8

Chapter 2

Turing machines

Alan Mathison Turing was born in London, 23 June 1912. He gave a
definition of computation and an absolute limitation on what computation

could achieve. Turing’s most important work:
Turing, A. M., Computing machinery and intelligence, Mind 50:433–460.

Introduction Since the family of regular languages is a subclass of the family
of context-free languages, we say pushdown automata are more powerful than
finite automata. However, there are still languages that are not context-free,
for example, {anbncn} or {ww | w ∈ {a, b}∗}.

The main difference between a pushdown automaton and a finite automaton
is the storage. A finite automaton has no storage. A pushdown automaton has
a stack.

We might get even more powerful automata if we add a more flexible storage
method. For example, what may happen if a pushdown automaton is equipped
with 2 (instead of 1) stacks? 3 stacks? a queue?

This approach leads to the concept of a Turing machine, which, in turn,
leads to a precise definition of mechanic or algorithmic computation.

2.1 The Standard Turing Machine

Informal description The storage of a Turing machine is considered as a
single 1-dimensional array which extends indefinitely in both directions. The
storage can hold an unlimited amount of information. Information can be writ-
ten to and read from the storage in any order. This storage is called a tape.

The tape is divided into cells. Each cell
Control
↓ read/write head

is capable of holding one symbol of a given
alphabet. There is a read/write head that
can travel on the tape to the left or to the
right and can read or write a symbol on each move. There is no input nor
output device for a Turing machine. Instead, input and output are done on the
machine’s tape.

Formal definition A Turing machine is 7-tuple 〈Q,Σ,Γ, δ, q0,�,F〉, where:
• Q is the finite set of internal states.

9

• Σ ⊆ Γ \ {�} is the input alphabet (which is a finite set of symbols).

• Γ is the tape alphabet (which is a finite set of symbols).

• δ is the transition function, that is, δ : Q× Γ → Q× Γ× {L,R}
• q0 ∈ Q is the initial state.

• � ∈ Γ is the blank tape symbol.

• F ⊆ Q is the set of final states.

Example 1 Assume δ(q0, a) = (q1, d, R). The transition would be

Internal state q0
↓
a b c

⇒
Internal state q1

↓
d b c

A Turing machine can be thought of as a simple computer with a processing
unit (which has a finite memory) and a tape (which has unlimited capacity).

It has an internal state. It can read the symbol in the cell just under the
r/w head. Based on the internal state and the symbol just read, it consults the
transition function δ, writes a symbol on the cell and moves to the left or to the
right.

The transition function defines the behavior of a Turing machine. It is
comparable to the program in a conventional computer. The Turing machine
starts from the initial state with some symbols on the tape. Eventually, the
Turing machine may enter into a halt state. A Turing machine is said to halt
whenever it reaches a configuration for which δ is not defined. Note that δ is
a partial function. We usually assume that no transitions are defined for any
final state so that the Turing machine will halt whenever it enters a final state.

Example 2 Consider the following δ transition function:

δ(q0, a) = (q0, b, R)

δ(q0, b) = (q0, b, R)

δ(q0,�) = (q1,�, L)

q0
↓
a a

q0
↓

b a

q0
↓

b b

q1
↓

b b

This Turing machine replaces any a in the tape by a b, and halt as soon as it
reaches a blank symbol.

Example 3 Consider the following δ transition function:

δ(q0, a) = (q1, a, R)

δ(q0, b) = (q1, b, R)

δ(q0,�) = (q1,�, R)

δ(q1, a) = (q0, a, L)

δ(q1, b) = (q0, b, L)

δ(q1,�) = (q0,�, L)

10

Assume the input is ab. This Turing machine will move left and right alter-
natively, without changing the tape. Actually this behavior will always happen
whatever is on the tape. We say the Turing machine enters an infinite loop. It
will never halt.

The following table is a representation of the transition function in the last
example:

δ a b �

q0 (q1, a, R) (q1, b, R) (q1,�, R)
q1 (q0, a, L) (q0, b, L) (q0,�, L)

There are variations of the Turing machines. However, we will summarize
the model of a standard Turing machine:

• The tape is unbounded in both directions. This means that the read/write
head can go left and right without any restriction.

• A Turing machine is deterministic in that δ allows at most one move in
any configuration.

• There is no special input file. We assume the initial tape contents consti-
tute the input. Similarly, there is no special output file. When a Turing
machine halts, (part of) the tape contents constitute the output.

The configuration (or instantaneous description, a situation at a particular
instant) of a Turing machine consists in the current state of the control unit,
the contents of the tape, and the position of the r/w head. We use the notation

a1a2 . . . ak−1 q akak+1 . . . an

to denote a configuration, where q is the current state, ak is where the r/w head
is, and a1a2 . . . an is the contents of the tape. The unspecified part of the tape
is assumed to contain blanks.

q

↓
a1 a2 . . . ak−1 ak ak+1 . . . an

We use the notation bbq0ab ⊢ bbbq0b (for example 2) to denote a 1-step
transition. The relation ⊢∗ is the reflexive and transitive closure of ⊢.

For the example 2 we may have the following transitions:

q0aa ⊢ bq0a ⊢ bbq0� ⊢ bq1b

or

q0aa ⊢∗ bq1b

Lemma 1 a1a2 . . . ak−1pbak+1 . . . an ⊢ a1a2 . . . ak−1cqak+1 . . . an if and only if
δ(p, b) = (q, c, R).

Similarly, a1a2 . . . ak−1pbak+1 . . . an ⊢ a1a2 . . . qak−1cak+1 . . . an if and only
if δ(p, b) = (q, c, L).

11

This lemma should be considered as the definition of ⊢.

A Turing machine halts when it enters a configuration, say

a1a2 . . . ak−1qakak+1 . . . an

in which δ(q, ak) is not defined. This configuration is called a halting configura-
tion. The sequence of configurations leading from a given initial configuration
to a halting configuration is called a computation.

Example 3 shows that a Turing machine may not always halt. We use the
notation xqy ⊢∗ ∞ to denote a non-halting computation.

A Turing machine can serve as a language acceptor in the sense that, as-
suming the initial tape contents is the string to be tested, the rest of the tape
contains all blanks, the control unit is in the initial state, and the r/w head is
placed at the leftmost non-blank symbol (that is the first symbol of the string),
if the Turing machine eventually halts at a final state, then we say the Turing
machine accepts the string.

Definition Let M = 〈Q,Σ,Γ, δ, q0,�,F〉 be a Turing machine. The language
accepted by M is

LM = {w ∈ Σ+ | q0w ⊢∗ xpy for some p ∈ F , x, y ∈ Γ∗}

Note that we explicitly require that � /∈ Σ so that we know where the input
starts and ends. Without this restriction, we can never be sure that there is
any more input symbols in cells that are not examined by the machine.

Notice that ε /∈ LM .

On the other hand, if a string w /∈ LM , either the Turing machine M halts
on a non-final state; or the Turing machine M may never halt.

This raises a problem: how can we decide if M will halt on an input string.

Example 4 Let Σ = {0, 1}. Desing a Turing machine that accepts the regular
language 00∗.

Solution:

δ(p, 0) = (p, 0, R)

δ(p,�) = (q,�, R)

This Turing machine starts and stays in state p when reading 0’s. At the
end (that is, encountering the first �), it switches to state q, which is the only
final state. Whenever the Turing machine meets a 1, it hangs.

p000 ⊢ 0p00 ⊢ 00p0 ⊢ 000p� ⊢ 000�q

p001 ⊢ 0p01 ⊢ 00p1

This machine also enters in state q if the tape contains only �. We may in-
terpret that it accepts ε. However, according to a previous definition, a Turing
machine never accepts ε.

12

Example 5 Let Σ = {a, b}. Design a Turing machine that accepts the regular
language L = {anbn | n ≥ 1}.
Solution: This Turing machine starts and stays in state p when reading a’s. It
changes a to x during this left-to-right scan. When it encounters the first b, it
changes the b to y and moves from right to left to find the last x. This last x is
changed to y and the machine again moves from left to right to locate the next b.
After all b’s are examined, it changes to state s and moves from right to left to
the blank just before the input. At this time, the machine enters state t, which
is the only final state.

δ(p, a) = (p, x,R)

δ(p,�) = fail – no more b’s at all

δ(p, b) = (q, y, L)

δ(q, y) = (q, y, L)

δ(q, x) = (r, y, R)

δ(q,�) = fail — more b’s than a’s

δ(r, y) = (r, y, R)

δ(r, b) = (q, y, L)

δ(r,�) = (s,�, L)

δ(s, y) = (s, y, L)

δ(s,�) = (t,�, R)

δ(s, x) = fail — more a’s than b’s

paabb ⊢ xpabb ⊢ xxpbb ⊢ xqxyb ⊢ xyryb ⊢ xyyrb ⊢ xyqyy ⊢ xqyyy ⊢ qxyyy

⊢ yryyy ⊢ yyryy ⊢ yyyry ⊢ yyyyr ⊢ yyysy ⊢ yysyy ⊢ ysyyy ⊢ syyyy

⊢ s�yyyy ⊢ tyyyy

Another possible definition could be

δ(p, a) = (q, x,R)

δ(q, a) = (q, a, R)

δ(q, y) = (q, y, R)

δ(q, b) = (r, y, L)

δ(r, y) = (r, y, L)

δ(r, a) = (r, a, L)

δ(r, x) = (p, x,R)

δ(p, y) = (s, y, R)

δ(s, y) = (s, y, R)

δ(s,�) = (t,�, R)

Notice that the difference between one and the other is how it pairs the a’s
with the b’s. The first one pairs the first a with the last b, the second a with the
b after the last one, and so on. The second TM pairs the first a with the first b
and so on. In both cases, if the input string is not in the language, the machine
will halt in a non-final state.

13

Example 6 Design a Turing machine accepting the language

L = {anbncn | n ≥ 1}

Note that, though L is not context-free, there is a Turing machine accepting L.
Solution:

δ(p, a) = (q, x,R); δ(q, a) = (q, a, R);
δ(q, y) = (q, y, R); δ(q, b) = (r, y, R);
δ(r, z) = (r, z, R); δ(r, c) = (s, z, L);
δ(s, z) = (s, z, L); δ(s, b) = (s, b, L);
δ(s, y) = (s, y, L); δ(s, a) = (s, a, L);
δ(s, x) = (p, x,R);
δ(p, y) = (t, y, R); δ(t, y) = (t, y, R);
δ(t, z) = (t, z, R); δ(t,�) = (u,�, R).

This example shows that Turing machines can accept some languages that
are not context-free. This indicates that Turing machines are more powerful
than pushdown automata (in terms of the languages that they can recognized).

Note that this TM makes use of only a very limited part of the tape. This
kind of TMs is called linear-bounded automata.

2.1.1 Turing machines as transducers

The primary purpose of a digital computer is to transform input to output. It
acts as a transducer. Since we want to use Turing machines as a model of digital
computers, we have to view a Turing machine as a transducer as well.

The input of a computation would be all the non-blank symbols initially on
the tape. At the conclusion of a computation, the output will be whatever is left
on the tape. Thus, a Turing machine may be considered as a function, defined
by

ŵ = f(w)

provided that
q0w ⊢∗

M qf ŵ

where qf is a final state.

Definition A function f with a domain D is said to be Turing-computable
(or computable) if there is a Turing machine M such that, for all w ∈ D,
q0w ⊢∗

M qff(w), where qf is a final state.
This seemingly naive definition is very important. All the common mathe-

matical functions are computable in this sense.

Example 7 Design a Turing machine that computes x+ y, where x and y are
natural numbers.
Solution: Let Γ = {0, 1}. We adopt the convention that a natural number,
say n is represented by n 1’s on the tape. We use the notation n to denote n
consecutive 1’s.

We will assume that x and y are placed on the tape consecutively, separated
by a 0. Initially, the r/w head is located at the leftmost symbol of x.

We want to design a Turing machine such that q0x0y ⊢∗ qf (x + y)0.

14

This Turing machine simply moves the 0 to the right end.

δ(p, 1) = (p, 1, R)

δ(p, 0) = (q, 1, R)

δ(q, 1) = (q, 1, R)

δ(q,�) = (r,�, L)

δ(r, 1) = (s, 0, L)

δ(s, 1) = (s, 1, L)

δ(s,�) = (t,�, R)

p110111 ⊢ 1p10111 ⊢ 11p0111 ⊢ 111q111 ⊢ 1111q11 ⊢ 11111q1 ⊢ 111111q� ⊢
11111r1 ⊢ 1111s10 ⊢ 111s110 ⊢ 11s1110 ⊢ 1s11110 ⊢ s111110 ⊢ s�111110 ⊢
t111110

Unary notation results in very simple Turing machines.

Example 8 Design a Turing machine that copies strings of 1’s. That is, let
w ∈ {1}∗ . We want the following computation: q0w ⊢∗ qfww.

This machine actually computes 2 · x, for a positive integer x.
Solution: Our program consists of 4 steps:

1. Replace every 1 with x in a left-to-right scan.

2. Find the rightmost x in a right-to-left scan and replace it with 1.

3. Add at the right end a symbol 1.

4. Repeat steps 2 and 3 until there are no more x’s.

In the following machine, p is the initial state and s is the (only) final state.

δ(p, 1) = (p, x,R)

δ(p,�) = (q,�, L)

δ(q, 1) = (q, 1, L)

δ(q, x) = (r, 1, R)

δ(q,�) = (s,�, R)

δ(r, 1) = (r, 1, R)

δ(r,�) = (q, 1, L)

p11 ⊢ xp1 ⊢ xxp� ⊢ xqx ⊢ x1r� ⊢ xq11 ⊢ qx11 ⊢ 1r11 ⊢ 11r1 ⊢ 111r� ⊢
11q11 ⊢ 1q111 ⊢ q1111 ⊢ q�1111 ⊢ s1111�

Example 9 Design a Turing machine that copies strings of 1’s. That is, let
w ∈ {1}∗ . We want the following computation: q0w ⊢∗ qfwww.

This machine actually computes 3 · x, for a positive integer x.
Solution: Our program consists of 4 steps:

1. Replace every 1 with x in a left-to-right scan.

2. Find the rightmost x in a right-to-left scan and replace it with 1.

15

3. Add at the right end two symbols 11.

4. Repeat steps 2 and 3 until there are no more x’s.

In the following machine, p is the initial state and s is the (only) final state.

δ(p, 1) = (p, x,R)

δ(p,�) = (q,�, L)

δ(q, 1) = (q, 1, L)

δ(q, x) = (r, 1, R)

δ(q,�) = (s,�, R)

δ(r, 1) = (r, 1, R)

δ(r,�) = (t, 1, R) new move

δ(t,�) = (q, 1, L) new move

p11 ⊢ xp1 ⊢ xxp� ⊢ xqx ⊢ x1r� ⊢ x11t� ⊢ x11q1 ⊢ x1q11 ⊢ xq111 ⊢ qx111 ⊢
1r111 ⊢ 11r11 ⊢ 111r1 ⊢ 1111r� ⊢ 11111t� ⊢ 11111q1 ⊢ 1111q11 ⊢ 111q111 ⊢
11q1111 ⊢ 1q11111 ⊢ q111111 ⊢ q�111111 ⊢ s111111�

Example 10 Let x and y be two natural numbers. Write a Turing machine
that compares them. If x ≥ y, the machine should halt in a final state. Other-
wise, it should halt in a non-final state. Specifically, let x and y be the unary
representations of x and y, respectively. We want

px0y ⊢∗ gx0y if x ≥ y

px0y ⊢∗ lx0y if x < y

Solution: We match each digit of x with a digit of y and see which is exhausted
first. This example shows that a Turing machine can make decisions based on
arithmetical comparisons, which occur frequently in computer programming.

δ(p, 1)=(q, x,R) δ(q, 1)=(q, 1, R) δ(q, 0)=(s, 0, R)
δ(s, y)=(s, y, R) δ(s, 1)=(t, y, L) δ(s,�)=(h,�, L) i.e. x ≥ y
δ(t, y)=(t, y, L) δ(t, 0)=(t, 0, L) δ(t, 1)=(t, 1, L)
δ(t, x)=(p, x, L)
δ(p, 0)=(u, 0, R) δ(u, y)=(u, y,R) δ(u,�)=(h,�, L) i.e. x = y
δ(u, 1)=(m, 1, L) i.e. x < y
δ(h, y)=(h, 1, L) δ(h, 0)=(h, 0, L) δ(h, 1)=(h, 1, L)
δ(h, x)=(h, 1, L) δ(h,�)=(g,�, R)
δ(m, y)=(m, 1, L) δ(m, 0)=(m, 0, L) δ(m, 1)=(m, 1, L)
δ(m,x)=(m, 1, L) δ(m,�)=(l,�, R)

Exercise In the previous example, there is a mistake. Find it and correct it.

Example 11 This TM computes the modulo function

f(x) = x mod 3

We assume that the input x is expressed in unary notation and the r/w head is
placed at the leftmost 1 of x.

δ(p0, 1)=(p1, x, R) δ(p1, 1)=(p2, x, R) δ(p2, 1)=(p3, x, R)
δ(p3, 1)=(p1, x, R) δ(p3,�)=(p4,�, L) δ(p4, 1)=(p4, 1, L)

16

An operation, such as addition or multiplication, is a function, which, in
turn, is a special relation. A relation is a set of tuples. A tuple can be encoded
as a string. Thus, an operation may be viewed as a set of strings or a language.
A TM accepting a language is said to be able to perform the corresponding
operation.

2.2 Turing’s Thesis

Turing machines are conceptually simple. In reality, it is quite tedious to con-
struct (and prove) a Turing machine for a non-trivial problem, say sorting.

Turing’s Thesis Any computation that can be done by mechanical means can
be done by a Turing machine.

This is not a theorem since we do not have a rigorous definition of a me-
chanical means. Though we can define such a computation model M (remember
Turing machines are also a model of computation), the most we can do is to
prove that Turing machines are equal to M.

Rather, Turing machines can be viewed as a definition of mechanical compu-
tation. Other computation models can, thus, be compared to Turing machines.

It is logically possible to find a more powerful model. However, all attempts
to find a more powerful model have failed up to now.

Though anybody can propose a new model and a similar thesis. Turing’s
thesis is unusual in that it agrees with our current experience and observations
in the study of computation, which include

• Anything that could be done with existing digital computers can be done
with Turing machines.

• Nobody has not yet discovered a problem that can be solved with an
algorithm (in the intuitive sense) but that cannot be solved with a Turing
machine.

• All the proposed computation models up to now are equivalent to Turing
machines.

What Turing machines are to computer science is what Newton’s laws of motion
are to classical physics. Newton’s laws are not logical necessity; rather they are
plausible models that can explain (and predict) much of the physical world.

We may use algorithms as synonyms for Turing machines.

Definition An algorithm for a function f : D → R is a Turing machine,
M , which, when given any input d ∈ D on its tape, eventually halts with the
correct answer f(d) ∈ R on its tape. Specifically, we require that, for all d ∈ D,
q0d ⊢∗

M qff(d), with qf ∈ F .

Once we have asserted that whatever a C program can do can be done with
a Turing machine (that is, Turing’s thesis), we could use C, instead of Turing
machines, to discuss algorithms because Turing machines are tedious to use.

17

2.3 Multi-tape Turing machine

Equivalence of multi-tape TMs with normal TMs

Theorem 5 Multi-tape Turing machines are as powerful as regular Turing ma-
chines.

Definition A multi-tape Turing machine has n tapes (n ≥ 1), a control, and
a head for each tape. In the initial configuration, the first tape contains the
input and its head starts at beginning of the input. The rest of the tapes are
blank.

Idea of proof Given a multi-tape TM, M , produce a single-tape TM, M ′,
such that L(M) = L(M ′).

To simulate M with M ′ what we do basically is to use a new symbol, ♯, to
separate the contents of the different tapes (note that the last symbol of M ′ is
♯). Then for each of the simulated tapes we are going to put a dot above the
tape symbol where the head is. So the alphabet for M ′ is

ΓM ′ = ΓM ∪ {ṡ | s ∈ M} ∪ {♯}
The following is an example of what we do.

Say we want simulate writing a symbol σ, then moving to the right of where
the head on tape n is:

• Move the head to the most-left position (the beginning of the input).

• Move the head to the (n − 1)-th ♯ (Say that the first tape is the n = 1
tape. So if the head of M is on the first tape, we simply stay at the first
symbol of M ′)

• Move the head over the first dotted symbol.

• Replace that symbol with σ and move the head to the right.

• If the head is over a non-♯ symbol, then put a dot above the current symbol
and we are done. Otherwise, if the head is over a ♯ symbol, that means
we want to move to a previously blank symbol. We can accomplish this
by, first replacing the ♯ we are on with a blank with a dot over it, then
shift everything over to the right by one.

2.4 Non-deterministic Turing machines

Definition Similar to other forms of non-deterministic computations, the
computation of a nondeterministic Turing machine is a tree whose branches
correspond to different possibilities for the machine. If some branch of the com-
putation leads to the accept state, the machine accepts its inputs. Without loss
of generality, assume the tree is binary.

The root of the tree would be the start configuration and each node is a pos-
sible continuation from the root node. Note that we should use a breadth-first,
rather than a depth-first, search to explore the tree. If we did the latter, we could
easily be tracing an infinite branch while missing the accepting configurations
of some other branches.

18

Theorem 6 Non-deterministic TMs are no more powerful than regular TMs.

General idea of the proof Using a multi-tape TM, add a new tape to
represent each ‘branch’ of the non-deterministc TM. So to branch, add a new
tape and copy the tape that is branching to the new tape. Then take, say,
the first continuation on the original tape, and the second continuation on the
new tape. Keep in mind that we should use a breadth-first search, so we do
only one computation on each of the node-representing tape and do at most one
branching before we go back to computing the first node-representing tape.

2.5 Universal Turing machine

Let 〈M〉 denote the string representing a Turing machine M1. Furthermore, let
〈M,ω〉 denote the string representing M and its input, ω.

Let ATM = {〈M,ω〉 | M is a TM that accepts ω}.

Theorem 7 ATM is recognizable.

This is same as saying that there is a Turing machine U (“Universal Turing-
machine”), that accepts ATM .

Program Trivally assume that the format is correct.

1. Run M on input ω.

2. If M accepts, accept; if M rejects, reject.

How? Let’s say U has 3 tapes. 1st tape for the tape of the simulated machine
(SM), 2nd tape for SM ’s description. 3rd tape for scratch-work, to keep track
of what state we are in.

1. Copy SM to tape 2, then delete SM from tape 1.

2. Copy q0 to tape 3.

3. Find a rule in δ that starts with the state we are in.

4. Find a rule that works on the symbol we are over.

5. Copy the new state in that rule onto tape 3.

6. Write the symbol in that rule onto tape 1 over the old symbol.

7. Move Left/Right as appropriate, by the length of a symbol on tape 1.

8. If the state on tape 3 is either qaccept or qreject, then we accept or reject,
otherwise go back to step 3.

1For example, 〈M〉’s alphabet can be ΓM ∪QM ∪{L,R,→, , , ♯}, so we could represent the

transition function by state, symbol → state, symbol,move and separate each entrance by ♯.

19

2.6 The halting problem

Definition A decider is a Turing machine which always explicitly accepts or
rejects (always terminates). A language is said to be decidable if it is recognized
by a decider.

The halting problem is a decision problem which can be stated as follows:
Given a description of a Turing machine and an input, decide whether the
machine will eventually halt when run with that input, or will run forever.

Alan Turing proved in 1936 that a general algorithm to solve the halting
problem for all possible 〈M,ω〉 pairs cannot exist.

Theorem 8 (Halting problem) ATM is undecidable.

Suppose there exists a Turing machine D which can decide whether an input
consisting in a pair TM-input halts or not. Then, using D, we can decide
L = {〈M〉 | M accepts 〈M〉}, and also we can build a D∗ which can decide
L̄ = {〈M〉 | M does not accept 〈M〉}.

Question: What does D∗ on input 〈D∗〉? Given our assumption that D∗ is
a decider, there are two possible cases:

1. Accept. Then 〈D∗〉 ∈ L̄ ⇒ D∗ is a TM that does not accepts 〈D∗〉 .

2. Reject. Then 〈D∗〉 ∈ L ⇒ D∗ is a TM that accepts 〈D∗〉 .

For case 1, we accept because D∗ rejects 〈D∗〉, however, by accepting we
are also saying that D∗ accepts 〈D∗〉; similarly for case 2, we reject because D∗

accepts 〈D∗〉, however, by rejecting we are also saying that D∗ rejects 〈D∗〉.
In both cases we get a contradiction, since they both accept and reject their
inputs. Thus, our assumption that there exists such a D must incorrect, and
therefore the halting problem is undecidable.

The Library of Congress example This is an enlightening, simple example.
Say we want to write two books, the first one listing all the books which refer
to themselves, and the second one listing all the books which does not refer to
themselves.

We run into trouble for the second one: If it includes itself in the list, it
would contradict the condition that it only contains books that do not refer
themselves, but if it does not includes to itself, then it would be incomplete
since it is supposed to contain all books that do not refer to themselves.

2.7 Unrecognizable Languages for Turing Ma-
chines

Just as FAs, NDFAs, and PDAs each had some associated class of language
that they could not “recognize”, so do TMs. We call these languages Turing-
unrecognizable.

We introduce two theorems which we will use in our treatment of unrecog-
nizable and undecidable languages.

Theorem 9 ATM is Turing-unrecognizable.

20

Theorem 10 L is decidable ⇐⇒ L and L̄ are both recognizable.

Note that Theorem 10 is the stronger statement. In fact, Theorem 10 implies
Theorem 9.

As usual, in order to prove Theorem 10 (the stronger of the two statements)
we must prove both directions. We will start with the simpler direction.

1. L is decidable ⇒ L and L̄ are recognizable.

(a) L is decidable ⇒ L is recognizable. This is the trivial case. The same
TM that decides L also recognizes it.

(b) L is decidable ⇒ L̄ is recognizable. To show this is the case, simply
flip the results derived when deciding L. So when L accepts, L̄ rejects,
and vice versa.

2. L and L̄ are recognizable ⇒ L is decidable.

Imagine you have a couple of machines M and M ′ such that M recognizes
L and M ′ recognizes L̄. Keep in mind that each machine will either
accept, reject, or loop forever on input. Because the two languages are
complements of one another, however, they can never both accept or both
reject the same input. This idea leads us to our proof:

On input ω, simultaneously simulate M on input ω, and M ′ on the same
input, ω. If M accepts, accept. If M ′ accepts, reject.

Clearly then, LD = LM = L and D, being our decider, always halts.

To sum up, if w is a string then either w ∈ L or w /∈ L. In the former
case, M will eventually accept w. In the latter case, M ′ will eventually
accept w. Thus, D will halt eventually.

2.7.1 Example: ETM is undecidable

In this example, we will show that a turing machine that accepts the empty
language is undecidable.

ETM = {〈M〉 | LM = ∅}
This is a proof by contradiction. First, suppose D decides ETM : We are

looking for a transformation, 〈M,ω〉 ⇒ XM,ω such that LX = ∅ ⇐⇒ M does
not accept ω.

Now let’s designate XM,ω. On input ω′: Simulate M on input ω. If M
accepts, accept. Otherwise, reject.

This description leads us to the following observations:

• If 〈M,ω〉 ∈ ATM then L(XM,ω) = Σ∗ and,

• If 〈M,ω〉 /∈ ATM then L(XM,ω) = ∅

The next step may require a little leap of faith (or alternatively, a lot of
insight). Here we go: given M and ω we can create a description of X and, as
it turns out, the algorithm below shows us how to create a decider, R, for ATM .

21

R = On input 〈M,ω〉: create 〈XM,ω〉 and then simulate D on input 〈XM,ω〉.
If D accepts, reject. Otherwise, accept.

We have now simulated R, a decider for ATM . If D decides ETM then R
decides ATM . But we proved a ATM is not decidable, so this is a contradiction.
Therefore, we know ETM is undecidable by contradiction.

Note: We can alter the method above slightly to construct a proof that shows
ETM is unrecognizable.

Change the line:

This is a proof by contradiction. First, suppose D decides ETM :

to

This is a proof by contradiction. First, suppose D recognizes ETM :

Then, in the second step of our construction of a decider D for ATM , change

Simulate D on input 〈XM,ω〉. If D accepts, reject. Otherwise, accept.

to

Simulate D on input 〈XM,ω〉. If D accepts, accept. Otherwise, reject.

It follows that if ω ∈ LM , we reject. If ω /∈ LM , we accept. But we proved ATM

is not recognizable, so by contradiction ETM is not recognizable.

2.7.2 Example: EQTM is undecidable

EQTM = {〈M1,M2〉 | LM1
= LM2

}

Suppose that Z is a TM such that LZ = ∅.
Then the question of whether 〈M,Z〉 ∈ EQTM is equivalent to the question

of whether 〈M〉 ∈ ETM .

Suppose D decides EQTM . We can describe D in the following manner:

D = On input 〈M〉, produce 〈M,Z〉 and then run D on 〈M,Z〉. If D accepts,
accept. Otherwise, reject.

If 〈M〉 ∈ ETM we accept. If 〈M〉 /∈ ETM we reject. But we know that ETM

is undecidable, thus EQTM is undecidable.

Alternatively, we can use ATM instead of ETM to prove the same thing by
changing our construction of Decider D to be as follows:

D = On input 〈M,w〉, produce 〈XM,w〉, produce 〈XM,w, Z〉 and then run D
on 〈XM,w, Z〉. If D accepts, reject. Otherwise, accept.

If D decides EQTM it must also decide ATM . But we know ATM is not
decidable, thus EQTM must not be decidable.

22

2.7.3 Mapping reducibility

Mapping reducibility allows us to formalize reducibility. When you can reduce
a problem A to another problem B, then a function exists that can convert
instances of problem A to problem B. This function is called a reduction. We
can used the reduction to solve A with a solver for B, because any instance of
A can be solved by using the reduction to convert it to an instance of B.

A TM computes a function by starting with the input to the function on
the tape and halting with the output of the function on the tape. (cf. section
2.1.1). We say that a computable function is a function on strings such that
there is a TM that on input x halts with f(x) on the tape.

Definition Language A is mapping reducible to language B, written A ≤m B,
if there is a computable function f : Σ∗ −→ Σ∗, where for every w, w ∈ A ⇐⇒
f(w) ∈ B. The function f is called the reduction of A to B.

In other words, a mapping reduction is a relationship between languages.
We say that A mapping reduces to B (or A ≤m B) if there is a computable
function f such that ∀x ∈ A, f(x) ∈ B and ∀x /∈ A, f(x) /∈ B (i.e., ∀x, x ∈
A ⇐⇒ f(x) ∈ B).

The following are some interpretations of the meaning of A ≤m B: A is
easier to figure out than B. If we can solve B then we can solve A. In other
words, A is easier than B because if we can solve B we can solve A by applying
f then determining if the output is in B. B is more useful or more general than
A.

Examples

• ETM = {〈M〉 | L(M) = φ}

– ATM ≤m ETM - if you can decide/recognize ETM , you can with
ATM as well

– To show this, you must find f : f(〈M,w〉) ∈ ETM ⇐⇒ 〈M,w〉 ∈
ATM . This means that you need to find the function that will map-
ping reduce items in ATM to ETM .

– f : 〈M,w〉 −→ 〈XM,w〉 where XM,w is such that on input w′: Run
M on input w, accept if it accepts, reject otherwise.

– f is computable

– 〈M,w〉 ∈ ATM ⇒ f(〈M,w〉) ∈ ETM since in this case L(XM,w) = ∅
– 〈M,w〉 ∈ ATM ⇐ f(〈M,w〉) ∈ ETM , since ifM accepts w, L(XM,w) =

Σ∗ 6= ∅.

• EQTM = {〈M1,M2〉 | L(M1) = L(M2)}

– Let Z be a Turing machine that always rejects (so, L(Z) = φ)

– Let XM,w be: On input w′, run M on w, if M accepts w, accept,
otherwise reject.

– Suppose R recognizesEQTM then R′ on input 〈M,w〉 runs as follows:

23

1. Produce the pair 〈XM,w, Z〉
2. Run R on this; if R accepts, accept; otherwise, reject.

– Claim R′ recognizes ATM .

– If 〈M,w〉 ∈ ATM , accept.

– If 〈M,w〉 /∈ ATM (in other words, 〈M,w〉 ∈ ATM), do not accept.

– Therefore there is no R. Therefore EQTM is not recognizable.

– So f : 〈M,w〉 −→ 〈XM,w, Z〉
– If 〈M,w〉 ∈ ATM , L(XM,w) = φ = L(Z) so f(〈M,w〉) ∈ EQTM

– If 〈M,w〉 /∈ ATM , L(XM,w) = Σ∗ 6= φ = L(Z) so f(〈M,w〉) /∈ EQTM

• ATM ≤m EQTM ; EQTM = {〈M1,M2〉 | L(M1) 6= L(M2)}

– A is a TM that always accepts

– mapping reduction: f : 〈M,w〉 −→ 〈XM,w, A〉
– Suppose R recognizes EQTM

– Then R′: on input 〈M,w〉
1. Produce 〈XM,w, A〉
2. Run R on this. If it accepts, accept; otherwise, reject.

– Claim: R′ recognizes ATM

∗ If 〈M,w〉 ∈ ATM , R accepts, so we accept

∗ If 〈M,w〉 ∈ ATM , R does not accept, so neither do we

– Therefore, EQTM is not recognizable.

• Let L = {〈M〉 | M accepts 0}. Prove ATM ≤m L.

– f : 〈M,w〉 −→ 〈XM,w〉, such that M accepts w if and only if XM,w

accepts 0. You want it to work out so that if M accepts w, then
XM,w accepts 0, and if M does not accept w, then XM,w does not
accept 0.

– XM,w: on input w′:

1. if w′ 6= 0, reject

2. otherwise (if w′ = 0) run M on input w, if it accepts, accept;
otherwise, reject.

– Assume L is decidable

– D decides L

– D′ on input w′

1. Produce 〈XM,w〉
2. Run D on this. If it accepts, accept; otherwise, reject.

– This is a decider for ATM , but there can be no such decider.

• L = {〈M1,M2〉 | L(M1) 6⊆ L(M2) and L(M2) 6⊆ L(M1)}

24

– This means that neither language can be empty or Σ∗. There must
be some elements in L1 that are not in L2 and there must be some
elements in L2 that are not in L1.

– Prove L is undecidable.

– Prove ATM ≤m L (〈XM,w,M2〉)
– f : 〈M,w〉 −→ 〈M1,M2〉
– M2 is a machine accepting 0∗

– XM,w:

1. We will accept 1∗ if M accepts w

2. We will accept only ǫ if M does not accept w.

Thus, XM,w’s language is a subset of M2’s if M does not accept w,
but if M accepts w then neither is a subset of the other.

Summary A mapping reduction of A to B (A ≤m B) is a way to convert
questions about membership testing in A to membership testing in B, which is
an easier, more general problem. To find out if w ∈ A, we can use f to map w
to f(w) and see if f(w) ∈ B. A mapping reduction describes the mapping that
creates the reduction.

25

26

Chapter 3

Recursive functions

3.1 Primitive recursive functions

What is the expressiveness power of a given programming language? To answer
this question, in the quest for a model of what we understand by calculus, we
will build a set of functions that we call Primitive Recursive Functions (PRF).

We start with a collection of functions of which its simplicity make it im-
possible to doubt about its computability. This set of functions, which will be
used as basis for construct others, will be called Basis Functions. Then we will
show that we can combine those basis functions to form others of which its
computability is derived from the originals.

3.1.1 Numeric functions

Definition A numeric function is a function such that its domain is a Carte-
sian power of N0 and its target is N0, i.e. f : Nk

0 → N0 with k ∈ N0.

Notations We denote by f (k) the function f : Nk
0 → N0. Also, we denote by

X,Y, Z the kth-tuples of Nk
0 , and when we what to emphasize that there are

k elements we denote it by Xk. From now on, unless we specify the contrary,
all the numbers are considered elements of N0. As a last remark, we follow the
convention that a function of zero variables, f : N0

0 → N0 denotes one element
of its target, so we can refer to the elements of N0 by referring to functions of
type N

0
0 → N0.

3.1.2 Basis functions

The base of the hierarchy of computable functions is a family of functions, which
will be the key to defining the PRF.

Successor The successor function is defined by

s : N0 → N0

x ∈ N0 7→ s(x)
def
= x+ 1 ∈ N0

27

That is, s produces the successor to its input value. Looking at it this way,
s is a computable function, since we already know a computable process for the
sum of integers.

Zero The zero function is defined by

z : N0 → N0

x ∈ N0 7→ z(x)
def
= 0 ∈ N0

We can easily accept that z is computable, since it only replaces a value by
0.

Projections The projection of the k-th component, or projection function is
defined by

u
(n)
k : Nn

0 → N0

(x1, x2, . . . , xn) 7→ u
(n)
k (x1, x2, . . . , xn)

def
= xk ∈ N0

Where n, k ∈ N with 1 ≥ k ≥ n.

For example u
(4)
3 (x, y + 1, f(x, y), f(x, y + 1)) = f(x, y)

Analogously to previous cases, it is easy to proof that projections are in the
class of computable functions.

We refer to s(1), z(1) and all the projections u
(n)
k with 1 ≤ k ≤ n as basis

functions.

The functions presented at this section cannot do so much by themselves, so
we will study how them can be used to make more complex functions.

3.1.3 The composition

Given a numeric function f (n) and a family of numeric functions {g(m)
i }ni=1, we

define a new function h(m) as

h : Nm
0 → N0

X ∈ N
m
0 7→ h(X)

def
= f(g1(X), g2(X), . . . , gn(X)) ∈ N0

Is easy to see that the composition of computable functions is computable, since
being f computable and also the family gi (i ∈ N), it suffices to calculate all
the gi and use its outputs as input for f .

Notation h = Φ(f, g1, g2, . . . , gn)

Example Let us define the function one : N0 → N0, such that ∀x, one(x) = 1.
It is easy to see that one = Φ(s, z). In the same way two = Φ(s,Φ(s, z)) =
Φ(s, one).

Continuing with the same process, all constant function can be expressed
with the basis functions and the composition.

28

3.1.4 The recursion

Finally, we will see the a constructor called recursion. This, combined with the
previous ones, will allows as to represent many computable functions.

Definition Let k ∈ N0 and let g(k) and h(k+2) be two numeric functions. We
define a new function f (k+1) in the following way

f(Xk, 0)
def
= g(Xk)

f(Xk, y + 1)
def
= h(Xk, y, f(Xk, y))

Notation f = R(g, h).

We can see that f is well defined. Notice that the definition allows the
possibility of k being equal to zero. In this case we find that g have to accept
zero variables, which by convention we identify it with elements of N .

To conclude, notice that a function constructed by recursion over computable
functions must be considered computable. If f is defined by recursion over two
computable functions g and h, we can calculate f(X, y) by calculating first
f(X, 0) = g(X), which is computable, then f(X, 1), then f(X, 2) and so on
until f(X, y) is reached.

Example Let us define the function Σ(x) (sum) such that Σ(x, y)
def
= x+ y.

We have

Σ(x, 0) = x+ 0 = x = u
(1)
1 (x)

Also,

Σ(x, y + 1) = x+ (y + 1) = (x+ y) + 1 = s(Σ(x, y))

= s(u
(3)
3 (x, y,Σ(x, y))) = Φ(s, u

(3)
3)(x, y,Σ(x, y))

So we say we can construct Σ by recursion over u
(1)
1 and Φ(s, u

(3)
3), moreover,

Σ = R(u
(1)
1 ,Φ(s, u

(3)
3))

Now we can define the set of primitive recursive functions. We do it by
induction.

Primitive recursive functions

1. The basis functions defined in section 3.1.2 are primitive recursive func-
tions.

2. Functions obtained from the basis functions by applying a finite number
of compositions and recursions are primitive recursive functions.

3. Those are all the primitive recursive functions.

We denote by PRF to the set of primitive recursive functions.

29

Power of a function Given a function f (1), we define a new function F (2),
called power of f , such that ∀x ∈ N0, F (x, 0) = x and if y ∈ N0, F (x, y + 1) =

f(F (x, y)). Notation fy(x)
def
= F (x, y).

Theorem 11 If f ∈ PRF, then F ∈ PRF.

Proof F = R(u
(1)
1 ,Φ(f, u

(3)
3)).

3.1.5 Examples of primitive recursive functions

The following function belong to the set PRF.

1. Pd(x)
def
=

{

0 if x = 0
x− 1 in other case

2. Π(x, y)
def
= xy

3. Fac(x)
def
= x!

4. Exp(x, y)
def
= xy with the convention that 00 = 1

5. E(x, y)
def
=

{

1 if x = y
0 in other case

We show only the first example. The rest is left as exercise.
We want to construct a function Pd(x) which follows the specification 1.

Notice that Pd(0) = 0 = z(0), also Pd(y + 1) = y = u
(2)
1 (y, f(y)). Then

we can deduce that we can construct Pd by recursion over z(0) and u
(2)
1 as

Pd = R(z(0), u
(2)
1). Then Pd ∈ PRF.

3.1.6 Primitive recursive sets (PRS)

Characteristic function Given a set X , for every subset A ⊆ X we define
its characteristic function χ : X → {0, 1} by

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

Notice that the characteristic function of a set fully determines it. Inversely,
given a function χ : X → {0, 1}, there exists a unique subset A ⊆ X such that
χA = χ. The following theorem formalizes this idea

Theorem 12 Let X be a set, P(X) its power set and F the set of all the
functions χ : X → {0, 1}. Then the application

Ψ : P(X) → F

A ∈ P(X) 7→ Ψ(A)
def
= χA ∈ F

is a bijection, of which its inverse is given by

Φ : F → P(X)

χ ∈ F 7→ Φ(χ)
def
= {x ∈ X : χ(x) = 1} ∈ P(X)

30

Proof It suffices by showing that ΨΦ = IdF and ΦΨ = IdP(X) which is
trivial.

What this theorem tells us is that it is essentially the same work with subsets
of X or with functions in F .

Our interest in characteristic functions is that they allow us to express
boolean operations between sets in an algebraic way. Moreover, we can stand
the following theorem.

Theorem 13 Let X be a set. For each A,B ⊆ X, one has

1. χA∪B = χA + χB − χA.χB

2. χA∩B = χA.χB

3. χX\A = 1− χA

Proof Exercise

This idea is linked to the PRF by the following definition

Primitive recursive sets Let k ∈ N. We say that a subset A ⊆ N
k
0 is

a primitive recursive set if its characteristic function χA : N
k
0 → {0, 1} is a

primitive recursive function.

With this definition plus theorem 13, we can stand the following theorem.

Theorem 14 Let k ∈ N and let A,B ⊆ N
k
0. If A and B are primitive recursive

sets, then A ∪B, A ∩B and N
k
0 \A are primitive recursive sets.

Proof Exercise

Further results

Theorem 15 Let k ∈ N. All the finite subsets of Nk
0 are primitive recursive.

Proof Let A ⊂ N
k
0 a finite subset. Since A =

⋃

x∈A

{x}, it suffices to show that

the empty set and all the one-element subsets of Nk
0 are primitive recursive.

Let’s start with the empty set. We know that ∀X ∈ N
k
0 , χ∅(X) = 0. So

χ∅ = z(k) ∈ PRF.
Now will see what happen with sets of exactly one element. We proceed

by induction on k. Let k = 1 and a ∈ N0. We must show that A = {a} ⊂
N0 is a primitive recursive set. To do so, we only have to verify that χA =

Φ(E, u
(1)
1 , a(1)) where a(1) is the constant function of one variable of value a and

E is defined in section 3.1.5, which is trivial.
Now assume k ∈ N such that all the one-element sets of Nk

0 are primitive
recursive. We have to show the case k + 1. Let a = (a1, a2, . . . , ak+1) ∈ N

k+1
0

and let b = (a1, a2, . . . , ak). We know that χ
(k)
{b} is PRF. Then

χ
(k+1)
{a} = Φ(Π,Φ(χ{b}, u

(k+1)
1 , . . . , u

(k+1)
k),Φ(E, u

(k+1)
k+1 , ak+1))

which tell us that χ{a} is PRF.

31

Theorem 16

1. Let m ∈ N and let A,B ⊂ N
m
0 be primitive recursive sets such that A∪B =

N
m
0 and A ∩ B = ∅, i.e. A and B form a partition of Nm

0 . Let also f (m)

and g(m) be primitive recursive functions. Then the function

h(m)(X)
def
=

{

f(X) if X ∈ A
g(X) if X ∈ B

is primitive recursive.

2. If {Ai}li=1 ⊂ P(Nm
0) is a finite partition of Nk

0, where ∀i, Ai ∈ PRS, and

also {f (m)
i }li=1 ⊂ PRF is a family of primitive recursive functions, then

the function

F (m) def
= fi(X) if X ∈ Ai

is a primitive recursive function.

Proof

1. Let h = f.χA+ g.χB = Φ(Σ,Φ(Π, f, χA),Φ(Π, g, χB)). Since A and B are
PRS, χA and χB are PRF, so h is PRF.

2. Exercise.

Corollary 17 Let f (m) be a numeric function such that {X ∈ N
m
0 : F (X) = 0}

is finite. Then f ∈ PRF.

Proof It follows from previous theorem and the fact that one-element sets are
primitive recursive.

3.1.7 Primitive recursive relations (PRR)

Finally, we introduce the primitive recursive relations. Remind that a relation
R between two sets A and B is such that R ⊆ A×B.

Primitive recursive relations A relation R ⊆ N0×N0 is primitive recursive
if the defined set if primitive recursive.

For the previous definition we can deduce that a relation is primitive recur-
sive if the characteristic function of the defined set is primitive recursive.

Example Let’s show that the relation ‘=’ is primitive recursive. The equal
relation defines the set R= = {(x, x), x ∈ N0}. The idea is to find a primitive
recursive function f which characterize the set R=. Notice that the function
E(x, y) defined in section 3.1.5 is the one that we are looking for. So fR=

= E
and then the relation ‘=’ is primitive recursive.

32

3.2 Beyond PRF

In our quest to find a model of calculus we have defined the set of primitive
recursive functions, and after certain amount of examples we could think that
PRF is the model we were looking for. Would it be any function which we can-
not represent as primitive recursive? We will see later that there are. To better
understand why, we will start looking at the characteristics of the primitive
recursive functions.

3.2.1 Characteristics of PRF

Theorem 18 If f is PRF, then f is a total function.

Proof Notice that basis functions are defined for all the values of N0, so basis
functions are total functions. In addition, the composition and recursion pro-
cesses are conservative with the totalness property (exercise), so functions in
PRF are total functions.

Notice that there are functions which are no total in N0. As instance, the
numeric function which calculates the square root of a number. Then we find
that there are computable functions which cannot be represented by a PRF.

Furthermore, in 1928 Wilhelm Ackermann showed a total, computable func-
tion which is not primitive recursive. Nowadays that functions is known as
Ackermann function.

3.2.2 The Ackermann sequence

To show that there are total functions which are not PRF, we will look for a
property which all the PRF have, and then we will look for a total function
which has not such a property.

First, let us define the following sequence of functions, which will be called
Ackermann functions:

f0(x) = s(x)

f1(x) = fx+2
0 (x) = sx+2(x) = 2x+ 2

f2(x) = fx+2
1 (x) = (sx+2)x+2(x) = 2(. . . 2(2(2x+ 2) + 2) + 2 . . .) + 2

...

fk+1(x) = fx+2
k (x)

where fn is the power function (the function which applies f , n times).

Theorem 19 (Properties)

1. ∀k, fk ∈ PRF

2. x > x′ ⇒ fk(x) > fk(x
′)

3. ∀x, k ⇒ fk(x) > x

4. ∀x, k ⇒ fk+1(x) > fk(x)

33

Proof

1. Induction over k. Base case, k = 0, notice that f0(x) = s(x) ∈ PRF. As-
sume fk ∈ PRF, then notice that fk+1(x) = fx+2

k (x), which by property
of power, is a PRF.

2. Exercise (Tip: Induction over k)

3. Induction over k. Base case, k = 0, f0(x) = s(x) > x. Assume is true for
k, so fk(x) > x, we must prove fk+1(x) > x.

fk+1(x) = fx+2
k (x) = fk(f

x+1
k (x))

(IH)
> fx+1

k (x) = fk(f
x
k (x))

(IH)
> fx

k (x) =

...

= f2
k (x) = fk(fk(x))

(IH)
> fk(x)

(IH)
> x

4. fk+1(x)
(a)
= fx+2

k (x)
(b)
= fx+1

k (fk(x))
(c)
> fx+1

k (x) > . . . > fk(x)

(a) By definition of the Ackermann function.

(b) By definition of the power function.

(c) Direct from items 2 and 3

Majoration We say that a function f (1) majorates a function g(n) if

∀x1, x2, . . . , xn, f(max(x1, x2, . . . , xn)) ≥ g(x1, x2, . . . , xn)

Notation: f (1) → g(n)

Theorem 20 Let g(n) ∈ PRF. Then there exists a fk in the Ackermann se-
quence such that fk → g(n).

Proof Taking advantage of the inductive definition of PRF we show this
property by induction. First we prove basis functions have this property (1),
then we prove that it is preserved by composition (2) and by recursion (3).

1. The proof that basis functions are majorated by f0 is left as exercise.

2. We want to prove that if g(n) = Φ(I(m), h
(n)
1 , h

(n)
2 , . . . , h

(n)
m), then

fk → I(m) ∧ ∀i, fk → h
(n)
i ⇒ fk+1 → g(n)

First, notice that if h
(n)
1 (X) ≤ fk(max(X)), . . . h

(n)
m (X) ≤ fk(max(X))

then
max{h(n)

1 (X), h
(n)
2 (X), . . . , h(n)

m (X)} ≤ fk(max(X)) (3.1)

Then

g(X)
def
= I(h1(X), . . . , hn(X))

3.1
≤ fk(max(h1(X), . . . , hn(X))) ≤

(a)

≤ fk(fk(max(X)))
(b)

≤ f
max(X)+2
k (max(X))

def
= fk+1(max(X))

34

(a) By 3.1 and property 2.

(b) By successive applications of properties 2 and 3.

3. We want to prove that if g(n+1) = R(I(n), h(n+2)), then

fk → I ∧ fk → h ⇒ fk → g(n)

First, we know by definition of R that g(X, 0) = I(X) and g(X, y + 1) =
h(X, y, g(X, y)) and by hypothesis we have

g(X, 0) = I(X) ≤ fk(max(X)) (3.2)

Also

g(X, 1) = h(X, 0, g(X, 0))
hyp

≤ fk(max(X, 0, g(X, 0))) ≤
(a)

≤ fk(max(fk(max(X)), 0, X))
(b)

≤ fk(fk(max(X)))

(a) By property 2 and 3.2.

(b) ∀k, fk(max(X)) > max(X, 0).

It can be proven by induction that ∀y, g(X, y) ≤ f
(y+1)
k (max(X)) and

notice that

fy+1
k (max(X))

(a)

≤ fy+1
k (max(y,X))

(b)

≤ f
max(y,X)+1
k (max(y,X)) ≤

f
max(y,X)+2
k (max(y,X)) = fk+1(max(y,X))

(a) Adding one element to the set, it can be equal in case y is not the
max or bigger in other case.

(b) By property 2.

So, we conclude that g(X, y) ≤ fk+1(max(y,X)).

From 1, 2 and 3 we can conclude that the theorem holds, since every f ∈ PRF
is obtained by applying a finite number of operators R and Φ to the basis
functions.

Despite the fact that all the functions in the Ackermann sequence are PRF
(cf. property 1), we can use them to define a function which is not in PRF.

The Ackermann function We define the Ackermann function by

ACK(x) = fx(x)

Notice that this function is computable, since each fx is, so we just have to
find the x-th one and compute it with argument x. However it is not PRF, as
stated in the following theorem.

Theorem 21 ACK(x) /∈ PRF

35

Proof AssumeACK(x) ∈ PRF, then ACK(x)+1 ∈ PRF, and so by theorem
20, there exists k such that ∀x, ACK(x) + 1 ≤ fk(x). In particular, it must be
also valid for x = k, soACK(k)+1 ≤ fk(k) = ACK(k), which is a contradiction.

So, ACK(x) is not majored by any function in the Ackermann sequence,
a fundamental property of PRF, so ACK(x) is a computable, total function,
which is not PRF.

3.3 Recursive functions

In the previous section we just proved that there exists total functions which
are not primitive recursive. In this section we add a new operator in order to
define a new family of functions, which will be called recursive functions.

3.3.1 The minimizer

We add to the previous constructors (namelly, the composition and the recur-
sion), a new operator, called the minimizer.

The minimizer Given f (n+1), we say that g(n) is constructed by minimization
of f , notation M [f] if

g(n)(X) = M [f](X) = µt(f(t,X) = 0)

That is, g(X) is the minimum t such that f(t,X) = 0.

Example We define the partial function root such that root(x) =
√
x. Notice

that this function is not defined for values of x such that
√
x /∈ N0.

root(x) =
√

(x) = min{t ∈ N0 | t2 = x}

Notice that

t2 = x ⇐⇒ E(t2, x) = 1 ⇐⇒ ◦D(E(t2, x)) = 0

where ◦D(x)
def
= 1 if x = 0 or 0 in other case (cf. exercise sheet).

Then g(x) = µt(
◦D(E(t2, x)) = 0) = M [Φ[◦D,Φ[E,Φ[Π, u

(2)
1 , u

(2)
1], u

(2)
2]]](x)

Now we can define the recursive functions.

Recursive functions We define inductively the set RF of recursive functions
as follows

1. If f ∈ PRF then f ∈ RF

2. If f (n) ∈ RF, then g(n−1) = M [f] ∈ RF.

3. No other functions are in RF.

36

3.4 The Church thesis

Church Thesis A function of positive integers is effectively calculable only if
recursive

This thesis, formulated by Alonso Church, is equivalent to the one presented
in section 2.2. What we are saying is, every computable function (in terms of
Turing Machines as defined in the previous chapter) is in RF.

3.5 Beyond RF

Are there natural functions which are not RF? According to the Turing-Church
thesis it is equivalent to ask if there are non-calculable natural functions. The
answer is YES.

Notice that, by definition, every RF is identified by a unique formula. To
write this formula, we use a numerable set of symbols. The finite combinations of
subsets of a numerable set is a numerable set. Notice that not every combination
of symbols is a RF, so we can conclude that the cardinality of combinations of
symbols (ℵ0) is the same or bigger than the cardinality ofRF. So the cardinality
of RF formulas is at most ℵ0.

Now we can calculate the cardinality of natural functions. It is easy to see
that the functions with {0, 1} as image set, form a subset of the set of natural
functions. These functions are known as characteristic functions, which have a
biunivocal correspondence with the set P(N). The cardinality of P(N) is ℵ1,
therefore, the cardinality of the set of characteristic functions is ℵ1. Since the set
of characteristic functions is a subset of the natural functions, we can conclude
that the last set has also cardinality ℵ1.

Then, there exists natural functions which are not recursive functions.

37

38

Chapter 4

Complexity: computable
functions in practice

During World War II, Alan Turing helped design and build a specialized com-
puting device called the Bombe at Bletchley Park. He used the Bombe to crack
the German “Enigma” code, greatly aiding the Allied cause. By the 1960’s
computers were widely available in industry and at universities. As algorithms
were developed to solve myriad problems, some mathematicians and scientists
began to classify algorithms according to their efficiency and to search for best
algorithms for certain problems. This was the beginning of the modern theory
of computation.

In this section we are dealing with complexity instead of computability, and
all the Turing machines that we consider will halt on all their inputs.

The time that an algorithm takes depends on the input and the machine
on which it is run. The first important insight in complexity theory is that a
good measure of the complexity of an algorithm is its asymptotic worst-case
complexity as a function of the size of the input, n.

Worst-case complexity For an input, ω, let n = |ω| be the length of ω. We
say that a Turing machine M runs in time T (n) if for all ω of length n, M(ω)
takes at most T (n) steps and then halts. This is called worst-case complexity
because T (n) must be as large as the time taken by any input of length n.

Big O notation Upper and lower bounds are usually stated using the big
O notation, which hides constant factors and smaller terms. This makes the
bounds independent of the specific details of the computational model used.
For instance, if T (n) = 7n2 + 15n + 40, in big O notation one would write
T (n) = O(n2).

Big O notation characterizes functions according to their growth rates: dif-
ferent functions with the same growth rate may be represented using the same
O notation.

Example 12 Let M be a Turing machine that accepts the regular language
L = {anbn | n ≥ 1}.

This Turing machine starts and stays in state p when reading a’s. It changes
a to x during a left-to-right scan. When it encounters the first b, it changes the

39

b to y and moves from right to left to find the last x. This last x is changed to
y and the machine again moves from left to right to locate the next b.

After all b’s are examined, it changes to state s and moves from right to
left to the blank just before the input. At this time, the machine enters state t,
which is the only final state.

See example 5 for a low-level description.

What is its complexity? First will see what happen with an accepted word
as input, say anbn, so the size of the input is N = 2n. The first step changes
each a by x until it encounters a b, so it takes n steps to do so. At the b it
changes it by y (1 step) and moves right to find the last x (1 step). Then it
moves to right to find the next b, so 2 steps, and do the same: moves to left
which takes 3 steps to find the first x, then to right again 4 steps, to left 5 steps,
to right 6 and so on. The last move to the right takes 2n − 1 steps. At this
point the machine have to move to the first position again, which takes 2n more
steps. So we have n+ 1 + (1 + 2 + 3 + . . .+ 2n− 1) + (2n) steps, which is the

same to n + 1 +
∑2n

i=1 i = n + 1 + 2n(2n+1)
2 = 2n2 + 2n + 1 = 1

2N
2 + N + 1.

So we use the big O notation to say that the complexity of this machine with an
accepted word is given by O(N2).

Now will see what happen with a non accepted word. Say ambn with m > n.
The size of this word is N = n+m < 2m = N ′. This machine will do all the
process until it match the last b with an a, at this point it halts (in a non-final
state). Then the number of steps is given by m+ 1 + (1 + 2 + . . .+ 2n− 1) =
2n2 − n+m+ 1 < 2m2 + 1 = 1

2N
′2 + 1. So we take O(N ′2) as an upper bound

of the complexity in this case.
Similarly, if the input word is anbm with m > n, we get 2m2 −m+ n+ 1 <

2m2 + 1 steps, so again the upper bound is given by O(N ′2).
So, in the general case, if the input is a succession of a’s and b’s, the upper

bound complexity is given by O(N2) being N twice the maximum between the
amount of a’s and b’s, i.e., being N an upper bound of the input size.

Notice that other input configurations can be detected faster, and so, the
upper bound complexity holds.

Complexity classes Let f : N → N. Then

TIME[f(n)] = {A | A = L(M) for some M that runs in time f(n)}

Alan Cobham and Jack Edmonds identified the complexity class, P , of prob-
lems recognizable in some polynomial amount of time, as being an excellent
mathematical wrapper of the class of feasible problems – those problems all of
whose moderately-sized instances can be feasibly recognized,

P =
⋃

i=1,2,...

TIME[O(ni)]

Any problem not in P is certainly not feasible. On the other hand, natural prob-
lems that have algorithms in P , tend to eventually have algorithms discovered
for them that are actually feasible.

Many important complexity classes besides P have been defined and studied;
a few of these are NP , PSPACE, and EXP . PSPACE consists of those

40

problems solvable using some polynomial amount of memory space. EXP is
the set of problems solvable in time 2p(n) for some polynomial, p.

Perhaps the most interesting of the above classes is NP : nondeterministic
polynomial time. The definition comes not from a real machine, but rather
a mathematical abstraction. A nondeterministic Turing machine, N , makes a
choice (guess) of one of two possible actions at each step. If, on input ω, some
sequence of these choices leads to acceptance, then we say that N accepts ω, and
we say the nondeterministic time taken by N on input ω, is just the number
of steps taken in the sequence that leads to acceptance. A nondeterministic
machine is not charged for all the other possible choices it might have made,
just the single sequence of correct choices.

NP is sometimes described as the set of problems, S, that have short proofs
of membership. For example, suppose we are given a list of m large natural
numbers: a1, . . . , am, and a target number, t. This is an instance of the Subset
Sum problem: is there a subset of the m numbers whose sum is exactly t? This
problem is easy to solve in nondeterministic linear time: for each i, we guess
whether or not to take ai. Next we add up all the numbers we decided to take
and if the sum is equal to t then accept. Thus the nondeterministic time is
linear, i.e., some constant times the length of the input, n. However there is no
known (deterministic) way to solve this problem in time less than exponential
in n.

There has been a large study of algorithms and the complexity of many im-
portant problems is well understood. In particular reductions between problems
have been defined and used to compare the relative difficulty of two problems.
Intuitively, we say that A is reducible to B (A ≤ B) if there is a simple trans-
formation, τ , that maps instances of A to instances of B in a way that preserves
membership, i.e., τ(ω) ∈ B ⇐⇒ ω ∈ A.

Remarkably, a high percentage of naturally occurring computational prob-
lems turn out to be complete for one of the above classes. (A problem, A, is
complete for a complexity class C if A is a member of C and all other problems
B in C are no harder than A, i.e., B ≤ A. Two complete problems for the same
class have equivalent complexity.)

The reason for this completeness phenomenon has not been adequately ex-
plained. One plausible explanation is that natural computational problems tend
to be universal in the sense of Turing’s universal machine. A universal problem
in a certain complexity class can simulate any other problem in that class. The
reason that the class NP is so well studied is that a large number of impor-
tant practical problems are NP complete, including Subset Sum. None of these
problems is known to have an algorithm that is faster than exponential time,
although some NP -complete problems admit feasible approximations to their
solutions.

A great deal remains open about computational complexity. We know that
strictly more of a particular computational resource lets us solve strictly harder
problems, e.g.. TIME[n] is strictly contained in TIME[n1.01] and similarly
for SPACE and other measures. However, the trade-offs between different
computational resources is still quite poorly understood. It is obvious that
P is contained in NP . Furthermore, NP is contained in PSPACE because in
PSPACE we can systematically try every single branch of an NP computation,
reusing space for the successive branches, and accepting if any of these branches
lead to acceptance. PSPACE is contained in EXP because if a PSPACE

41

machine takes more than exponential time, then it has exactly repeated some
configuration so it must be in an infinite loop. The following are the known
relationships between the above classes:

P ⊆ NP ⊆ PSPACE ⊆ EXP

However, while it seems clear that P is strictly contained in NP , that NP
is strictly contained in PSPACE, and that PSPACE is strictly contained
in EXP , none of these inequalities has been proved. In fact, it is not even
known that P is different from PSPACE, nor that NP is different from EXP .
The only known proper inclusion from the above is that P is strictly contained
in EXP . The remaining questions concerning the relative power of different
computational resources are fundamental unsolved problems in the theory of
computation.

42

