A lambda calculus for density matrices with classical and probabilistic controls

Alejandro Díaz-Caro
Universidad Nacional de Quilmes \& CONICET
Buenos Aires, Argentina

CONICET

$$
\text { APLAS } 2017
$$

November 27-29, 2017, Suzhou, China

Motivation

Two paradigms

Classical control / quantum data

Quantum control

In this work we propose a paradigm in between: "Probabilistic control" or "Weak quantum control"

Outline

Density matrices and quantum mechanics
Postulates of quantum mechanics
Density matrices
Postulates of quantum mechanics with density matrices
λ_{ρ}
Untyped
Typed language
Denotational semantics
λ_{ρ}°
Taking advantage of density matrices

Conclusions

Postulates of quantum mechanics

Postulate 1: State space

The state of an isolated quantum system can be fully described by a state vector, which is a unit vector in a complex Hilbert space*.

* Hilbert space: Vector space with inner product, complete in its norm

Examples

Space	Vectors
\mathbb{C}^{2}	$\|0\rangle=\binom{1}{0} \quad\|1\rangle=\binom{0}{1} \quad \frac{1}{\sqrt{2}}\|0\rangle+\frac{1}{\sqrt{2}}\|1\rangle=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$
$\mathbb{C}^{4}=\mathbb{C}^{2} \otimes \mathbb{C}^{2}$	$\|00\rangle=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right) \quad \frac{1}{\sqrt{3}}\|00\rangle+\frac{\sqrt{2}}{\sqrt{3}}\|11\rangle=\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ 0 \\ 0 \\ \frac{\sqrt{2}}{\sqrt{3}}\end{array}\right)$

Postulates of quantum mechanics

Postulate 2: Evolution

' The evolution of an isolated quantum system can be described by a I unitary matrix*.

* U unitary if $U^{\dagger}=U^{-1}$.

Examples

$$
\left.\begin{array}{ll}
& H\binom{1}{0}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=|+\rangle \\
H=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right) & H\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=|-\rangle \\
\hline \operatorname{Not}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \text { Not }\binom{1}{0}=\binom{0}{1} \\
\hline Z=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) & Z|+\rangle=|-\rangle \\
1
\end{array}\right)=\binom{1}{0} .
$$

Postulates of quantum mechanics

Postulate 3: Measurement

The quantum measurement is described by a collection of measurement matrices* $\left\{M_{i}\right\}_{i}$, where i is the output of the measurement.

Condition over $\left\{M_{i}\right\}_{i}$:

$$
\sum_{i} M_{i}^{\dagger} M_{i}=I
$$

The probability of measuring i is:

$$
p_{i}=\langle\psi| M_{i}^{\dagger} M_{i}|\psi\rangle
$$

The state after measuring i is:

$$
\left|\psi^{\prime}\right\rangle=\frac{M_{i}|\psi\rangle}{\sqrt{p_{i}}}
$$

* square matrices with complex coefficients

Example

$$
\begin{gathered}
\left\{M_{0}, M_{1}\right\} \text { with } M_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), M_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \\
p_{0}=\left(\begin{array}{ll}
\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)^{2}\binom{\frac{\sqrt{2}}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}=\frac{2}{3} \quad \frac{1}{\sqrt{p_{0}}} M_{0}\binom{\frac{\sqrt{2}}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}=\frac{1}{\sqrt{p_{0}}}\binom{\frac{\sqrt{2}}{\sqrt{3}}}{0}=\binom{1}{0} \\
p_{1}=\left(\frac{\sqrt{2}}{\sqrt{3}} \frac{1}{\sqrt{3}}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)^{2}\binom{\frac{\sqrt{2}}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}=\frac{1}{3} \quad \frac{1}{\sqrt{p_{0}}} M_{1}\binom{\frac{\sqrt{2}}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}=\frac{1}{\sqrt{p_{1}}}\binom{0}{\frac{1}{\sqrt{3}}}=\binom{0}{1}
\end{gathered}
$$

In general, with those $\left\{M_{0}, M_{1}\right\}$, the vector $\binom{a}{b}$ measures 0 with probability $|a|^{2}$ and 1 with probability $|b|^{2}$, and the sates after measuring are $\binom{1}{0}$ y $\binom{0}{1}$ respectively.

Postulates of quantum mechanics

Postulate 4: Composed system

The sate space of a composed system is the tensor product of the state space of its components.
Given n systems in states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$, the composed system is

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \cdots \otimes\left|\psi_{n}\right\rangle
$$

Example

System 1: $|\psi\rangle=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \quad$ System 2: $|\phi\rangle=\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}$
Composed system $|\psi\rangle \otimes|\phi\rangle$:

$$
\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \otimes\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}=\left(\begin{array}{l}
\frac{1}{\sqrt{10}} \\
\frac{2}{\sqrt{10}} \\
\frac{1}{\sqrt{10}} \\
\frac{2}{\sqrt{10}}
\end{array}\right)
$$

Density matrices

A representation of our ignorance about the system

Definition (Density matrix)

Mixed state: A distribution set of pure states: $\left\{\left(p_{i},\left|\psi_{i}\right\rangle\right)\right\}_{i}$
Density matrix: $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
Characterisation: ρ density matrix $\Leftrightarrow \operatorname{tr}(\rho)=1 \wedge \rho$ positive
Let $M=\left\{M_{0}, M_{1}\right\}$, with M_{0} and M_{1} projecting to the canonical base After measuring $\binom{\alpha}{\beta}:\left\{\begin{array}{l}\binom{1}{0} \text { with probability }|\alpha|^{2} \\ 0 \\ 1\end{array}\right)$ with probability $|\beta|^{2}$

Example: Pre and post measure

$$
\begin{aligned}
& \left\{\left(|\alpha|^{2},\binom{1}{0}\right),\left(|\beta|^{2},\binom{0}{1}\right)\right\} \Rightarrow \rho=|\alpha|^{2}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+|\beta|^{2}\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
|\alpha|^{2} & 0 \\
0 & |\beta|^{2}
\end{array}\right) \\
& \left\{\left(1,\binom{\alpha}{\beta}\right)\right\} \Rightarrow \rho=\binom{\alpha}{\beta}\left(\alpha^{*} \beta^{*}\right)=\binom{|\alpha|^{2} \alpha \beta^{*}}{\alpha^{*} \beta|\beta|^{2}}
\end{aligned}
$$

Postulates of quantum mechanics

with density matrices

Postulate 1 (with vectors): State space

The state of an isolated quantum system can be fully described by a state vector, which is a unit vector in a complex Hilbert space.

Postulate 1 (with matrices): State space

'The state of an isolated quantum system can be fully described by a density ! matrix, which is a square matrix ρ with trace 1 acting on a complex Hilbert ' ispace.

If a quantum system is in state ρ_{i} with probability p_{i}, the density matrix of the system is

$$
\sum_{i} p_{i} \rho_{i}
$$

Postulates of quantum mechanics

with density matrices

Postulate 2 (with vectors): Evolution

'The evolution of an isolated quantum system can be described by a unitary matrix.

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

Postulate 2 (with matrices): Evolution

' The evolution of an isolated quantum system can be described by a unitary matrix.

$$
\rho^{\prime}=U_{\rho} U^{\dagger}
$$

Postulates of quantum mechanics

with density matrices

Postulate 3 (with vectors): Measurement

The quantum measurement is described by a collection of measurement matrices $\left\{M_{i}\right\}_{i}$, where i is the output of the measurement.
Condition over $\left\{M_{i}\right\}_{i}: \quad \sum_{i} M_{i}^{\dagger} M_{i}=1$
The probability of measuring i is: $\quad p_{i}=\langle\psi| M_{i}^{\dagger} M_{i}|\psi\rangle$
The state after measuring i is: $\quad\left|\psi^{\prime}\right\rangle=\frac{M_{i}|\psi\rangle}{\sqrt{p_{i}}}$

Postulate 3 (with matrices): Measurement

TThe quantum measurement is described by a collection of measurement matrices $\left\{M_{i}\right\}_{i}$, where i is the output of the measurement.
Condition over $\left\{M_{i}\right\}_{i}$:

$$
\begin{align*}
& \sum_{i} M_{i}^{\dagger} M_{i}=l \\
& p_{i}=\operatorname{tr}\left(M_{i}^{\dagger} M_{i} \rho\right) \\
& \rho^{\prime}=\frac{M_{i} \rho M_{i}^{\dagger}}{p_{i}}
\end{align*}
$$

The probability of measuring i is:
The state after measuring i is:

Postulates of quantum mechanics

with density matrices

Postulate 4 (with vectors): Composed system

The sate space of a composed system is the tensor product of the state space of its components.
Given n systems in states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$, the composed system is

```
|\mp@subsup{\psi}{1}{}\rangle\otimes|\mp@subsup{\psi}{2}{}\rangle\otimes\cdots\otimes|\mp@subsup{\psi}{n}{}\rangle
```

Postulate 4 (with matrices): Composed system
The sate space of a composed system is the tensor product of the state , space of its components.
Given n systems in states $\rho_{1}, \ldots, \rho_{n}$, the composed system is

$$
\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{n}
$$

Example

[Nielsen-Chuang p371]
Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$

Experiment 1

$\left\{\left(1 / 2,\binom{1}{0}\right),\left(1 / 2,\binom{0}{1}\right)\right\}$
$\rho_{1}=1 / 2\binom{1}{0}\left(\begin{array}{ll}1 & 0\end{array}\right)+1 / 2\binom{0}{1}\left(\begin{array}{ll}0 & 1\end{array}\right)=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$
Experiment 2
$\left\{\left(1 / 2,\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}},\left(1 / 2,\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}\right)\right\}\right.$
$\rho_{2}=1 / 2\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)+1 / 2\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$

Same density matrix does not imply same mixed state
But mixed states with same density matrices are indistinguishable

Outline

Density matrices and quantum mechanics
 Postulates of quantum mechanics
 Density matrices
 Postulates of quantum mechanics with density matrices
 λ_{ρ}
 Untyped
 Typed language
 Denotational semantics
 Taking advantage of density matrices

Conclusions

Untyped λ_{ρ}

$$
t:=x|\lambda x . t| t t
$$

$$
\left|\rho^{n}\right| U^{n} t\left|\pi^{n} t\right| t \otimes t
$$

$$
\left|\left(b^{m}, \rho^{n}\right)\right| \text { letcase } x=r \text { in }\{t \ldots t\} \quad \text { (classical control over meas.) }
$$

where

- $\pi^{n}=\left\{\pi_{0}, \ldots, \pi_{2^{n}-1}\right\}$ is a measurement in the computational base
- b^{m} is a m-bits number

$$
\begin{aligned}
(\lambda x . t) r & \longrightarrow_{1} t[r / x] \\
U^{m} \rho^{n} & \longrightarrow_{1} \rho^{\prime \prime} \\
\pi^{m} \rho^{n} & \longrightarrow_{p_{i}}\left(i^{m}, \rho_{i}^{n}\right) \\
\rho_{1} \otimes \rho_{2} & \longrightarrow_{1} \rho^{\prime} \\
\text { letcase } x=\left(b^{m}, \rho^{n}\right) \text { in }\left\{t_{0}, \ldots, t_{2^{m}-1}\right\} & \longrightarrow_{1} t_{b^{m}}\left[\rho^{n} / x\right]
\end{aligned}
$$

Types

$$
A:=n|(m, n)| A \multimap A
$$

$$
\begin{aligned}
& \overline{\Gamma, x: A \vdash x: A} \text { ax } \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x \cdot t: A \multimap B} \multimap_{i} \\
& \frac{\Gamma \vdash t: A \multimap B \quad \Delta \vdash r: A}{\Gamma, \Delta \vdash \operatorname{tr}: B} \multimap_{e} \quad \overline{\Gamma \vdash \rho^{n}: n} \operatorname{ax}_{\rho} \\
& \frac{\Gamma \vdash t: n}{\Gamma \vdash U^{m} t: n} \mathrm{u} \quad \frac{\Gamma \vdash t: n}{\Gamma \vdash \pi^{m} t:(m, n)} \mathrm{m} \\
& \frac{\Gamma \vdash t: n \quad \Delta \vdash r: m}{\Gamma, \Delta \vdash t \otimes r: n+m} \otimes \quad \overline{\Gamma \vdash\left(b^{m}, \rho^{n}\right):(m, n)} \mathrm{ax}_{\mathrm{am}} \\
& \frac{\Delta, x: n \vdash t_{0}: A \quad \ldots \quad \Delta, x: n \vdash t_{2^{m}-1}: A \quad \Gamma \vdash r:(m, n)}{\Gamma, \Delta \vdash \text { letcase } x=r \text { in }\left\{t_{0}, \ldots, t_{2^{m}-1}\right\}: A} \text { lc }
\end{aligned}
$$

with $m \leq n$ and $0 \leq b^{m}<2^{m}$.

Denotational semantics

Intuition

$$
\llbracket \pi^{n} \rho^{n} \rrbracket=\left\{\left(p_{0}, \rho_{0}\right), \ldots,\left(p_{2^{n}-1}, \rho_{2^{n}-1}\right)\right\}
$$ where, with probability p_{i} the final state is ρ_{i}

$$
\left(\pi^{n} \rho^{n}\right)=\sum_{i} p_{i} \rho_{i}
$$

In general:

$$
\llbracket t \rrbracket=\left\{\left(p_{i}, e_{i}\right)\right\}_{i}
$$

with e_{i} density matrix or function from density matrices to density matrices

$$
(t)=\sum_{i} p_{i} e_{i}
$$

where $(a . f+b . g)(x)=a . f(x)+b . g(x)$

$$
(n)=((m, n))=\mathcal{D}_{n} \quad(A \multimap B)=\mathcal{D}_{\mathcal{D}_{A} \multimap \mathcal{D}_{B}}=\mathcal{D}_{A} \multimap \mathcal{D}_{B}
$$

Example 1

Experiment 1: Toss a coin

Experiment 2: Toss a coin to decide whether or not to apply Z to $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

Example 1

Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
Experiment 1: $\pi^{1}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

Experiment 2: letcase $x=\pi^{1}\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ in $\left\{\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right), Z\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\right\}$

Example 1

Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
Experiment 1: $\pi^{1}\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

$$
\llbracket \pi^{1}\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \frac{1}{2}\right) \rrbracket=\left\{\left(\begin{array}{ll}
\frac{1}{2}
\end{array},\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right),\left(\frac{1}{2},\left(\begin{array}{lll}
0 & 0 \\
0 & 1
\end{array}\right)\right)\right\}
$$

Experiment 2: letcase $x=\pi^{1}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \hline\end{array}\right)$ in $\left\{\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right), Z\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\right\}$

$$
\begin{aligned}
& \llbracket \text { letcase } x=\pi^{1}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \text { in }\left\{\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right), \mathrm{Z}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right\} \rrbracket \\
&=\left\{\left(\begin{array}{ll}
\frac{1}{2}
\end{array},\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right),\left(\begin{array}{cc}
\frac{1}{2} & \left.\left.\left(\begin{array}{cc}
\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right)\right\}
\end{array}\right.\right.
\end{aligned}
$$

Example 1

Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
Experiment 1: $\pi^{1}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$

$$
\llbracket \pi^{1}\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \frac{1}{2}\right) \rrbracket=\left\{\left(\begin{array}{ll}
\frac{1}{2}
\end{array},\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right),\left(\begin{array}{ll}
\frac{1}{2}
\end{array},\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)\right\}
$$

Experiment 2: letcase $x=\pi^{1}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \hline\end{array}\right)$ in $\left\{\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right), Z\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\right\}$

$$
\begin{aligned}
& \llbracket \text { letcase } x=\pi^{1}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right) \text { in }\left\{\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right), Z\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right\} \rrbracket \\
& =\left\{\left(\frac{1}{2},\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right),\left(\begin{array}{cc}
\frac{1}{2}, \\
2
\end{array},\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right)\right\}
\end{aligned}
$$

$$
\text { (letcase } x=\pi^{1}\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \frac{1}{2}\right) \text { in }\left\{\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \frac{1}{2}\right), Z\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\right\} D=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)=\left\{\pi^{1}\left(\begin{array}{c}
1 \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array} \frac{1}{2}\right) D\right.
$$

Example 2

Measure a given ρ and then toss a coin to decide whether to return the ' resulting state of the measurement, or the output of a tossing a new coin.

$$
\begin{aligned}
t= & \left(\text { letcase } y=\pi^{1}\left(\begin{array}{c}
\frac{1}{2} \frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)\right. \\
& \text { in }\left\{\lambda x . l e t c a s e ~ z=\pi^{1}\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) \text { in }\{z, z\}, \lambda x \cdot x\right\} \\
&) \\
& \text { (letcase } \left.z=\pi^{1} \rho \text { in }\{z, z\}\right)
\end{aligned}
$$

Example 2

A possible trace (confluence of trees to be proven following [DC-Martínez LSFA'17])

Let $\rho=\left(\begin{array}{cc}3 / 4 & \sqrt{3} / 4 \\ \sqrt{3} / 4 & 1 / 4\end{array}\right)$

Outline

Density matrices and quantum mechanics

Postulates of quantum mechanics

Density matrices

Postulates of quantum mechanics with density matrices

Untyped
Typed language
Denotational semantics
λ_{ρ}°
Taking advantage of density matrices

Conclusions

λ_{ρ}° : taking advantage of density matrices

$$
\begin{array}{rr}
t:=x|\lambda x . t| t t & \text { (lambda calculus) } \\
& \left|\rho^{n}\right| U^{n} t\left|\pi^{n} t\right| t \otimes t \\
& \left(b^{m}, \rho^{n}\right) \text { letcase } x-r \text { in_\{t...t\} } 4 \text { postulates) } \\
& \text { (elassical control over meas.) } \\
\left|\sum_{i=1}^{n} p_{i} t_{i}\right| \text { letcase }^{\circ} x=r \text { in }\{t \ldots t\} & \text { (probabilistic control) }
\end{array}
$$

$$
\begin{aligned}
(\lambda x . t) r & \rightarrow t[r / x] \\
U^{m} \rho^{n} & \rightarrow \rho^{\prime n} \\
\pi^{m} \rho^{n} & \longrightarrow p_{i}\left(i^{m}, \rho_{i}^{n}\right) \\
\rho_{1} \otimes \rho_{2} & \rightarrow \rho^{\prime} \\
\text { letcase } x=\left(b^{m}, \rho^{n}\right) \text { in }\left\{t_{0}, \ldots, t_{2^{m}-1}\right\} & \rightarrow t_{b^{m}}\left[\rho^{n} / x\right] \\
\hline \text { letcase }{ }^{\circ} x=\pi^{m} \rho^{n} \text { in }\left\{t_{0}, \ldots, t_{2^{m}-1}\right\} & \rightarrow \sum_{i} p_{i} t_{i}\left[\rho_{i}^{n} / x\right]
\end{aligned}
$$

Example 2 again

Measure a given ρ and then toss a coin to decide whether to return the resulting state of the measurement, or the output of a tossing a new coin.

$$
\begin{aligned}
t= & \left(\text { letcase }^{\circ} y=\pi^{1}\left(\begin{array}{c}
\frac{1}{2} \frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)\right. \\
& \text { in }\left\{\lambda x . \text { letcase }^{\circ} z=\pi^{1}\binom{\frac{1}{2} \frac{1}{2}}{\frac{1}{2} \frac{1}{2}} \text { in }\{z, z\}, \lambda x \cdot x\right\} \\
&) \\
& \left(\text { letcase }^{\circ} z=\pi^{1} \rho \text { in }\{z, z\}\right)
\end{aligned}
$$

$$
t \rightarrow^{*}\left(\begin{array}{cc}
\frac{5}{8} & 0 \\
0 & \frac{3}{8}
\end{array}\right)
$$

Summarising

- λ_{ρ} : classical control/quantum data (data $=$ density matrices)
- λ_{ρ}° : probabilistic control/quantum data
- Same denotational semantics

Future works

- Comparison between $\lambda_{\rho} / \lambda_{\rho}^{\circ}$, and Selinger-Valiron's λ_{q}
(with Agustín Borgna (UBA))
- Implementation of a simulator in Haskell (with Alan Rodas and Pablo E. Martínez López (UNQ))
- Polymorphic extension and proofs of SN and confluence
(with Lucas Romero (UBA))
- Studding a fixed point operator
(with Malena Ivnisky and Hernán Melgratti (UBA))

