Affine computation and affine automaton

Alejandro Díaz-Caro Universidad Nacional de Quilmes (Argentina)

Abuzer Yakaryılmaz
Laboratório Nacional de Computação Científica (Brazil)

Computer Science Symposium in Russia
St. Petersburg, June 9-13, 2016

Outline

Motivation

Affine computation

Affine finite Automaton (AfA)

Main results

Probabilistic vs. Quantum

Destructive interference

Probabilistic vs. Quantum

Destructive interference

Probabilistic vs. Quantum

Destructive interference

Probabilistic vs. Quantum

Destructive interference

Probabilistic vs. Quantum

Destructive interference

Quantum
$\left(\left\|\frac{1}{\sqrt{2}}\right\|^{2}+\left\|\frac{-1}{\sqrt{2}}\right\|^{2}=1\right)$

$$
\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2} \ggg \infty\right)+\frac{1}{2}(
$$

Probabilistic vs. Quantum

Destructive interference

Quantum
$\left.\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}{ }^{2}+\left\|\frac{1}{\sqrt{2}}\right\|^{2}+\left\|\frac{-1}{\sqrt{2}}\right\|^{2}=1\right)$

Probabilistic vs. Quantum

Destructive interference

Quantum
$\left(\left\|\frac{1}{\sqrt{2}}\right\|^{2}+\left\|\frac{-1}{\sqrt{2}}\right\|^{2}=1\right)$

$$
\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2} \underset{\pi}{2}+\frac{1}{2}\left(\frac{3}{4}+8\right)\right.
$$

Probabilistic vs. Quantum

Destructive interference

$$
\begin{gathered}
\text { Quantum } \\
\left.\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}},{ }^{0.0}\right) \\
\left(\left|\frac{1}{\sqrt{2}}\right|^{2}+\left|\frac{-1}{\sqrt{2}}\right|^{2}=1\right) \\
\hline
\end{gathered}
$$

$$
\frac{1}{2}\left(\frac{1}{2}+\frac{1}{2} \underset{\infty}{2}+\frac{1}{2}\left(\frac{3}{4}\right)+\infty\right.
$$

$$
\frac{5}{8}+\frac{3}{8} \geq
$$

Probabilistic vs. Quantum

Destructive interference

$$
\begin{aligned}
& \text { Probabilistic } \\
& \frac{1}{2}+\frac{1}{2} \rightarrow 5 \\
& \left(\frac{1}{2}+\frac{1}{2}=1\right) \\
& \begin{array}{c}
\text { Quantum } \\
\left.\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}{ }^{2}+\left|\frac{1}{\sqrt{2}}\right|^{2}+\left|\frac{-1}{\sqrt{2}}\right|^{2}=1\right) \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5}{8}+\frac{3}{8} \rightarrow 2 \\
& \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right.
\end{aligned}
$$

Probabilistic vs. Quantum

Destructive interference
Probabilistic
$\left(\frac{1}{2}+\frac{1}{2}=1\right)$

Quantum
$\frac{1}{\sqrt{2}}$
$\left(\left\|\frac{1}{\sqrt{2}}\right\|^{2}+\left\|\frac{-1}{\sqrt{2}}\right\|^{2}=1\right)$

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \text {, }\right)\right. \text {) }
$$

Is there any computational power in the destructive interference?

Affine systems

Preliminaries

Affine systems

Preliminaries
Probabilistic state: $\quad I_{1}$-norm-1 vector (defined on \mathbb{R}_{0}^{+})
Probabilistic operator: Linear operator (stochastic matrix)
Quantum state: $\quad \mathrm{I}_{2}$-norm- 1 vector (defined on \mathbb{C}) Quantum operator: Linear operator (unitary matrix)

Aim

- Generalization of probabilistic system
- Allowing negative values
- Linear operator
- Defined in a simple way

Affine systems

Preliminaries

$\begin{array}{ll}\text { Probabilistic state: } & \mathrm{l}_{1} \text {-norm- } 1 \text { vector (defined on } \mathbb{R}_{0}^{+} \text {) } \\ \text { Probabilistic operator: } & \text { Linear operator (stochastic matrix) }\end{array}$
Quantum state: $\quad \mathrm{I}_{2}$-norm- 1 vector (defined on \mathbb{C}) Quantum operator:

Aim

- Generalization of probabilistic system
- Allowing negative values
- Linear operator
- Defined in a simple way

Affine state: Affine operator:

Barycentric vector (defined on \mathbb{R}) Linear operator (affine transformation)

Affine systems

Getting information

Weighting operator

- Analogous to quantum measurement
- Projects the state into the computational basis
- The weight is the absolut value
- Normalization after measurement (l_{1}-norm can be >1)
- Normalized magnitude $=$ probability of observation

Affine systems (AfS)

Formal definition: Affine state

- $E=\left\{e_{1}, \ldots, e_{n}\right\}$ basis states (deterministic states)
- Affine state: linear combination $a_{1} e_{1}+\cdots+a_{n} e_{n}$ with

$$
\sum_{i=1}^{n} a_{i}=1 \quad a_{i} \in \mathbb{R}
$$

Affine systems (AfS)

Formal definition: Affine state

- $E=\left\{e_{1}, \ldots, e_{n}\right\}$ basis states (deterministic states)
- Affine state: linear combination $a_{1} e_{1}+\cdots+a_{n} e_{n}$ with

$$
\sum_{i=1}^{n} a_{i}=1 \quad a_{i} \in \mathbb{R}
$$

In \mathbb{R}^{2} Probabilistic state Set of states: A segment	Quantum state Set of states: A circle	Affine state Set of states: A line

Affine systems (AfS)

Formal definition: Affine transformation and weighting operator

Affine transformation

$$
A=\left(a_{i j}\right)_{i j} \text { is an affine transformation } \quad \Leftrightarrow \quad \forall j, \sum_{i} a_{i j}=1
$$

Affine systems (AfS)

Formal definition: Affine transformation and weighting operator
Affine transformation

$$
A=\left(a_{i j}\right)_{i j} \text { is an affine transformation } \quad \Leftrightarrow \quad \forall j, \sum_{i} a_{i j}=1
$$

Weighting operator

In QC, sign of amplitudes does not matter for measurement We follow the same idea

- Magnitude of an affine state:

$$
\begin{equation*}
|v|=\sum_{i}\left|a_{i}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| \geq 1 \tag{llnorm}
\end{equation*}
$$

- Probability of observing the j-th state:

$$
\frac{\left|a_{j}\right|}{|v|}
$$

Affine finite Automaton (AfA)

Formal definition

An AfA M is a 5-tuple

$$
M=\left(E, \Sigma,\left\{A_{\sigma} \mid \sigma \in \Sigma\right\}, e_{s}, E_{a}\right)
$$

where

- E is the set of deterministic states
- $e_{s} \in E$ is the starting state
- $E_{a} \subseteq E$ set of accepting states
- Σ is the input alphabet
- A_{σ} is the affine transformation matrix for the symbol σ.

Idem PFA except for the transition matrices (and a PFA with matrices consisting only of 0 s and 1 s is a DFA)

Affine finite Automaton (AfA)

Language recognition

- Input: $w \in \Sigma^{*}$
- After reading the whole input, a weighting operator is applied
- Accepting probability of M in w :

$$
f_{M}(w)=\sum_{e_{k} \in E_{a}} \frac{\left|v_{f}[k]\right|}{\left|v_{f}\right|} \in[0,1]
$$

Affine finite Automaton (AfA)

Language recognition

- Input: $w \in \Sigma^{*}$
- After reading the whole input, a weighting operator is applied
- Accepting probability of M in w :

$$
f_{M}(w)=\sum_{e_{k} \in E_{a}} \frac{\left|v_{f}[k]\right|}{\left|v_{f}\right|} \in[0,1]
$$

- A language is recognized by an AfA M with cutpoint $\lambda \in[0,1)$ iff

$$
L=\left\{w \in \Sigma^{*} \mid f_{M}(w)>\lambda\right\}
$$

- Nondeterministic AfA: cutpoint 0.
- A language is recognized by an AfA M with bound error iff

$$
\exists \delta \text { such that }\left\{\begin{array}{l}
\forall w \in L, f_{M}(w) \geq \lambda+\delta \\
\forall w \notin L, f_{M}(w) \leq \lambda-\delta
\end{array}\right.
$$

The languages and automata zoo

Cutpoint	Language	Class	Automaton
$C P>0$	Stochastic lang.	SL	PFA
$C P=0$	Regular lang.	REG	NFA
Bound error	Regular lang.	REG	BPFA
$C P>0$	Stochastic lang.	SL	QFA
$C P=0$	Nondeterministic quantum lang.	NQAL	NQFA
Bound error	Regular lang.	REG	BQFA

$$
\text { REG } \subsetneq \mathrm{NQAL} \subsetneq \mathrm{SL}
$$

The languages and automata zoo

Cutpoint	Language	Class	Automaton
$C P>0$	Stochastic lang.	SL	PFA
$C P=0$	Regular lang.	REG	NFA
Bound error	Regular lang.	REG	BPFA
$C P>0$	Stochastic lang.	SL	QFA
$C P=0$	Nondeterministic quantum lang.	NQAL	NQFA
Bound error	Regular lang.	REG	BQFA

$$
\text { REG } \subsetneq \mathrm{NQAL} \subsetneq \mathrm{SL}
$$

Cutpoint	Language	Class	Automaton
$C P>0$	Affine lang.	AfL	AfA
$C P=0$	Nondeterministic affine lang.	NAfL	NAfA
Bound error	Bounded-error affine lang.	BAfL	BAfA

$B A f L^{0}$: All non-members are accepted with value 0 BAfL ${ }^{1}$: All members are accepted with value 1 .

Bounded-error affine languages (BAfL)

Language EQ $=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\} \quad \notin$ REG

Bounded-error affine languages (BAfL)

Language $\mathrm{EQ}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\} \quad \notin$ REG

After reading m as and n bs the state is $\binom{2^{m-n}}{1-2^{m-n}}$

- $\forall w \in \mathrm{EQ}, v_{f}=\binom{1}{0}$ (accepting value 1)
- $\forall w \notin \mathrm{EQ}$, max accepting value: $v_{f}=\binom{2}{-1}$ (accepting value $2 / 3$)

Bounded-error affine languages (BAfL)

Language $\mathrm{EQ}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\} \quad \notin$ REG

$$
\begin{aligned}
& A_{a}=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1
\end{array}\right) \\
& A_{b}=\left(\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right)
\end{aligned}
$$

After reading m as and $n b s$ the state is $\binom{2^{m-n}}{1-2^{m-n}}$

- $\forall w \in \mathrm{EQ}, v_{f}=\binom{1}{0}$ (accepting value 1)
- $\forall w \notin \mathrm{EQ}$, max accepting value: $v_{f}=\binom{2}{-1}$ (accepting value $2 / 3$)

$$
\mathrm{REG} \subsetneq \mathrm{BAfL}^{1}
$$

Bounded-error affine languages (BAfL)

$$
A_{a}=\left(\begin{array}{r}
1 \\
x \\
x
\end{array} 1\right.
$$

After reading m as and $n b s$ the state is $\left(\begin{array}{c}1 \\ (m-n) x \\ (n-m) x\end{array}\right)$
Accepting value: $\begin{cases}1 & \text { if } m=n \\ \frac{1}{2 x|m-n|+1} & \text { if } m \neq n\end{cases}$
Taking x larger we get smaller error

Bounded-error affine languages (BAfL)

$$
A_{a}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
x & 1 & 0 \\
-x & 0 & 1
\end{array}\right)
$$

After reading m as and $n b s$ the state is

$$
\left(\begin{array}{c}
1 \\
(m-n) x \\
(n-m) x
\end{array}\right)
$$

$$
\text { Accepting value: } \begin{cases}1 & \text { if } m=n \\ \frac{1}{2 x|m-n|+1} & \text { if } m \neq n\end{cases}
$$

Taking x larger we get smaller error

Theorem

$$
\mathrm{REG} \subsetneq \mathrm{BAfL} \mathrm{~L}^{0}
$$

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL
[Jānis Lapiṇš, 1974]
PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL [Jānis Lapiṇš, 1974] PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS ${ }^{\prime}$ is recognized by an AfA with cutpoint $\frac{1}{2}$
Proof (sketch).

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL [Jānis Lapiṇš, 1974] PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$
Proof (sketch).

1. Check $|w|_{a}^{2}>|w|_{b}$ with an AfA simulating the PFA $\binom{|w|_{a}^{2}}{|w|_{b}}$

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL [Jānis Lapiṇš, 1974] PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$
Proof (sketch).

1. Check $|w|_{a}^{2}>|w|_{b}$ with an AfA simulating the PFA $\binom{|w|_{a}^{2}}{|w|_{b}}$
2. Check $|w|_{b}^{2}>|w|_{c}$ by producing the state $\binom{|w|_{b}^{2}-|w|_{c}}{1-\left(|w|_{b}^{2}-|w|_{c}\right)}$

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL [Jānis Lapiṇš, 1974] PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

1. Check $|w|_{a}^{2}>|w|_{b}$ with an AfA simulating the PFA $\binom{|w|_{a}^{2}}{|w|_{b}}$
2. Check $|w|_{b}^{2}>|w|_{c}$ by producing the state $\binom{|w|_{b}^{2}-|w|_{c}}{1-\left(|w|_{b}^{2}-|w|_{c}\right)}$
3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

Cutpoint affine languages (AfL)

LAPINS $^{\prime}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} ^{2}>|w|_{b}\right.$ and $\left.|w|_{b}^{2}>|w|_{c}\right\} \quad \notin$ SL [Jānis Lapiṇš, 1974] PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$
Proof (sketch).

1. Check $|w|_{a}^{2}>|w|_{b}$ with an AfA simulating the PFA $\binom{|w|_{a}^{2}}{|w|_{b}}$
2. Check $|w|_{b}^{2}>|w|_{c}$ by producing the state $\binom{|w|_{b}^{2}-|w|_{c}}{1-\left(|w|_{b}^{2}-|w|_{c}\right)}$
3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

Corollary

$$
\mathrm{SL} \subsetneq \mathrm{AfL}
$$

AFAs is more powerful than PFAs and QFAs with cutpoint

Nondeterministic affine languages (NAfL)

(NQAL contains some famous languages like the complement of EQ)

Theorem

$$
\text { NAfL }=\text { NQAL }
$$

Proof. We prove the double inclusion by showing how to simulate one with the other.

Summarising

- Bounded and unbounded error: AfAs more powerful than QFAs and PFAs
- Nondeterministic computation:

AfAs equivalent to QFAs
(and are more powerful than PFAs)

Summarising

- Bounded and unbounded error:

AfAs more powerful than QFAs and PFAs

- Nondeterministic computation:

AfAs equivalent to QFAs
(and are more powerful than PFAs)
Corroboration of the thesis:
The destructive interference plays a role in the computational power of QC

Summarising

- Bounded and unbounded error:

AfAs more powerful than QFAs and PFAs

- Nondeterministic computation:

AfAs equivalent to QFAs

(and are more powerful than PFAs)
Corroboration of the thesis:
The destructive interference plays a role in the computational power of QC

Further results

- Language recognition power and succinctness of affine automata (M. Villagra and A. Yakaryılmaz)

To appear in UCNC'16 arXiv:1602. 05432

- Can one quantum bit separate any pair of words with zero-error? (A. Belovs, J. A. Montoya, A. Yakaryılmaz)
arXiv:1602.07967

Backup slides

Weighting operator
Can we use the weighting operator as a projective measurement? Answer: No

$$
v=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right)
$$

Weighting based on separation $\left\{e_{1}\right\}$ and $\left\{e_{2}, e_{3}\right\}$:

> Probability $1 / 3$ of $\left\{e_{1}\right\}$
> Probability $2 / 3$ of $\left\{e_{2}, e_{3}\right\}$

But

$$
v^{\prime}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) \quad \text { Not affine! (not even after normalization) }
$$

Conclusion: After weighting, the system must collapse to a single state

