Affine computation and affine automaton

Alejandro Díaz-Caro UNIVERSIDAD NACIONAL DE QUILMES (Argentina)

Abuzer Yakaryılmaz Laboratório Nacional de Computação Científica (Brazil)

Computer Science Symposium in Russia St. Petersburg, June 9–13, 2016

Outline

Motivation

Affine computation

Affine finite Automaton (AfA)

Main results

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

Is there any computational power in the destructive interference?

Preliminaries

Probabilistic state:	I_1 -norm-1 vector (defined on \mathbb{R}^+_0)
Probabilistic operator:	Linear operator (stochastic matrix)
Quantum state: Quantum operator:	$I_2\text{-norm-1}$ vector (defined on $\mathbb{C})$ Linear operator (unitary matrix)

Preliminaries

Probabilistic state:	I_1 -norm-1 vector (defined on \mathbb{R}^+_0)
Probabilistic operator:	Linear operator (stochastic matrix)
Quantum state: Quantum operator:	$I_2\text{-}norm\text{-}1$ vector (defined on $\mathbb{C})$ Linear operator (unitary matrix)

Aim

- Generalization of probabilistic system
- Allowing negative values
- Linear operator
- Defined in a simple way

Preliminaries

Probabilistic state:	I_1 -norm-1 vector (defined on \mathbb{R}^+_0)
Probabilistic operator:	Linear operator (stochastic matrix)
Quantum state: Quantum operator:	$I_2\text{-norm-1}$ vector (defined on $\mathbb{C})$ Linear operator (unitary matrix)

Aim

- Generalization of probabilistic system
- Allowing negative values
- Linear operator
- Defined in a simple way

Affine state: Affine operator: Barycentric vector (defined on \mathbb{R}) Linear operator (affine transformation)

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

Getting information

Weighting operator

- Analogous to quantum measurement
- Projects the state into the computational basis
- The weight is the absolut value
- ▶ Normalization after measurement (I₁-norm can be > 1)
- Normalized magnitude = probability of observation

Formal definition: Affine state

- $E = \{e_1, \ldots, e_n\}$ basis states (deterministic states)
- Affine state: linear combination $a_1e_1 + \cdots + a_ne_n$ with

$$\sum_{i=1}^n a_i = 1$$
 $a_i \in \mathbb{R}$

Formal definition: Affine state

- $E = \{e_1, \ldots, e_n\}$ basis states (deterministic states)
- Affine state: linear combination $a_1e_1 + \cdots + a_ne_n$ with

$$\sum_{i=1}^n a_i = 1$$
 $a_i \in \mathbb{R}$

Formal definition: Affine transformation and weighting operator

Affine transformation

 $A = (a_{ij})_{ij}$ is an affine transformation $\Leftrightarrow \forall j, \sum_i a_{ij} = 1$

Formal definition: Affine transformation and weighting operator

Affine transformation

 $A = (a_{ij})_{ij}$ is an affine transformation $\Leftrightarrow \forall j, \sum_i a_{ij} = 1$

Weighting operator In QC, sign of amplitudes does not matter for measurement We follow the same idea

Magnitude of an affine state:

$$|v| = \sum_{i} |a_i| + |a_2| + \dots + |a_n| \ge 1$$
 (l₁ norm)

Probability of observing the *j*-th state:

$$\frac{|a_j|}{|v|}$$

Affine finite Automaton (AfA)

Formal definition

An AfA M is a 5-tuple

$$M = (E, \Sigma, \{A_{\sigma} \mid \sigma \in \Sigma\}, e_{s}, E_{a})$$

where

- E is the set of deterministic states
- $e_s \in E$ is the starting state
- $E_a \subseteq E$ set of accepting states
- Σ is the input alphabet
- A_{σ} is the **affine transformation matrix** for the symbol σ .

Idem PFA except for the transition matrices

(and a PFA with matrices consisting only of 0s and 1s is a DFA)

Affine finite Automaton (AfA)

Language recognition

- Input: $w \in \Sigma^*$
- After reading the whole input, a weighting operator is applied
- Accepting probability of M in w:

$$f_M(w) = \sum_{e_k \in E_a} \frac{|v_f[k]|}{|v_f|} \in [0,1]$$

Affine finite Automaton (AfA)

Language recognition

- Input: $w \in \Sigma^*$
- After reading the whole input, a weighting operator is applied
- Accepting probability of M in w:

$$f_M(w) = \sum_{e_k \in E_a} rac{|v_f[k]|}{|v_f|} \in [0,1]$$

▶ A language is recognized by an AfA *M* with cutpoint $\lambda \in [0, 1)$ iff

$$L = \{w \in \Sigma^* \mid f_M(w) > \lambda\}$$

▶ Nondeterministic *AfA*: cutpoint 0.

► A language is recognized by an AfA *M* with bound error iff

$$\exists \delta \text{ such that } \begin{cases} \forall w \in L, \ f_M(w) \geq \lambda + \delta \\ \forall w \notin L, \ f_M(w) \leq \lambda - \delta \end{cases}$$

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

The languages and automata zoo

Cutpoint	Language	Class	Automaton
<i>CP</i> > 0	Stochastic lang.	SL	PFA
CP = 0	Regular lang.	REG	NFA
Bound error	Regular lang.	REG	BPFA
<i>CP</i> > 0	Stochastic lang.	SL	QFA
CP = 0	Nondeterministic quantum lang.	NQAL	NQFA
Bound error	Regular lang.	REG	BQFA

 $\texttt{REG} \subsetneq \texttt{NQAL} \subsetneq \texttt{SL}$

The languages and automata zoo

Cutpoint	Language	Class	Automaton
<i>CP</i> > 0	Stochastic lang.	SL	PFA
CP = 0	Regular lang.	REG	NFA
Bound error	Regular lang.	REG	BPFA
<i>CP</i> > 0	Stochastic lang.	SL	QFA
CP = 0	Nondeterministic quantum lang.	NQAL	NQFA
Bound error	Regular lang.	REG	BQFA

$\texttt{REG} \subsetneq \texttt{NQAL} \subsetneq \texttt{SL}$

Cutpoint	Language	Class	Automaton
<i>CP</i> > 0	Affine lang.	AfL	AfA
CP = 0	Nondeterministic affine lang.	NAfL	NAfA
Bound error	Bounded-error affine lang.	BAfL	BAfA
BAfL ⁰ : All non-members are accepted with value 0			
BAfL ¹ : All members are accepted with value 1.			

Bounded-error affine languages (BAfL) Language $EQ = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\} \notin REG$

Language $EQ = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\} \notin REG$

After reading *m* as and *n* bs the state is $\binom{2^{m-n}}{1-2^{m-n}}$

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

Language $EQ = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\} \notin REG$

After reading *m* as and *n* bs the state is $\begin{pmatrix} 2^{m-n} \\ 1-2^{m-n} \end{pmatrix}$

Theorem

$$\mathtt{REG} \subsetneq \mathtt{BAfL}^1$$

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

Taking x larger we get smaller error

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

 $\begin{aligned} \texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} & \notin \texttt{SL} \\ & [\texttt{Jānis Lapiņš, 1974}] \end{aligned}$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

 $\texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} \notin \texttt{SL}$ $[J\bar{\texttt{a}}nis Lapiņš, 1974]$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

$$\begin{split} \texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} & \notin \texttt{SL} \\ & [\texttt{Jānis Lapiņš, 1974}] \end{split}$$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

1. Check $|w|_a^2 > |w|_b$ with an AfA simulating the PFA $\begin{pmatrix} |w|_a^2 \\ |w|_b \end{pmatrix}$

 $\begin{aligned} \texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} & \notin \texttt{SL} \\ & [\texttt{Jānis Lapiņš, 1974}] \end{aligned}$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

1. Check $|w|_{a}^{2} > |w|_{b}$ with an AfA simulating the PFA $\begin{pmatrix} |w|_{a}^{2} \\ |w|_{b} \end{pmatrix}$ 2. Check $|w|_{b}^{2} > |w|_{c}$ by producing the state $\begin{pmatrix} |w|_{b}^{2} - |w|_{c} \\ 1 - (|w|_{b}^{2} - |w|_{c}) \end{pmatrix}$

 $\begin{aligned} \texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} & \notin \texttt{SL} \\ & [\texttt{Jānis Lapiņš, 1974}] \end{aligned}$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

- 1. Check $|w|_a^2 > |w|_b$ with an AfA simulating the PFA $\begin{pmatrix} |w|_a^2 \\ |w|_b \end{pmatrix}$
- 2. Check $|w|_b^2 > |w|_c$ by producing the state $\begin{pmatrix} |w|_b^2 |w|_c \\ 1 (|w|_b^2 |w|_c) \end{pmatrix}$
- 3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

 $\begin{aligned} \texttt{LAPINS}' = \{ w \in \{a, b, c\}^* \mid |w|_a^2 > |w|_b \text{ and } |w|_b^2 > |w|_c \} & \notin \texttt{SL} \\ & [\texttt{Jānis Lapiņš, 1974}] \end{aligned}$

PFAs and QFAs can check one of the conditions, with cutpoint $\frac{1}{2}$, but not both

Theorem

LAPINS' is recognized by an AfA with cutpoint $\frac{1}{2}$

Proof (sketch).

- 1. Check $|w|_a^2 > |w|_b$ with an AfA simulating the PFA $\begin{pmatrix} |w|_a^2 \\ |w|_b \end{pmatrix}$
- 2. Check $|w|_b^2 > |w|_c$ by producing the state $\begin{pmatrix} |w|_b^2 |w|_c \\ 1 (|w|_b^2 |w|_c \end{pmatrix}$
- 3. Tensor both atomata

PFA and QFA cannot do steps 1 and 2 at the same time!

 Corollary
 SL \subsetneq AfL

 AFAs is more powerful than PFAs and QFAs with cutpoint

 Alejandro Diaz-Caro and Abuzer Yakaryulmaz

Nondeterministic affine languages (NAfL)

(NQAL contains some famous languages like the complement of EQ)

Theorem

 $\mathtt{NAfL} = \mathtt{NQAL}$

Proof. We prove the double inclusion by showing how to simulate one with the other.

NAfAs have the same power as NQFAs

Summarising

Bounded and unbounded error:
 AfAs more powerful than QFAs and PFAs

Nondeterministic computation:

AfAs equivalent to QFAs

(and are more powerful than PFAs)

Summarising

Bounded and unbounded error:
 AfAs more powerful than QFAs and PFAs

Nondeterministic computation:

AfAs equivalent to QFAs

(and are more powerful than PFAs)

Corroboration of the thesis:

The destructive interference

plays a role in the computational power of QC

Summarising

Bounded and unbounded error:
 AfAs more powerful than QFAs and PFAs

Nondeterministic computation:

AfAs equivalent to QFAs

(and are more powerful than PFAs)

Corroboration of the thesis:

The destructive interference plays a role in the computational power of QC

Further results

 Language recognition power and succinctness of affine automata (M. Villagra and A. Yakaryılmaz)
 To appear in UCNC'16

arXiv:1602.05432

Can one quantum bit separate any pair of words with zero-error?
 (A. Belovs, J. A. Montoya, A. Yakaryılmaz) arXiv:1602.07967

Alejandro Díaz-Caro and Abuzer Yakaryılmaz

Affine computation and affine automaton

Backup slides

Weighting operator

Can we use the weighting operator as a projective measurement? Answer: No

$$v = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Weighting based on separation $\{e_1\}$ and $\{e_2, e_3\}$:

Probability 1/3 of $\{e_1\}$ Probability 2/3 of $\{e_2, e_3\}$

But

$$v' = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 Not affine! (not even after normalization)

Conclusion: After weighting, the system must collapse to a single state