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Intersection types discipline [Coppo-Dezani’78]

M : α ∩ β
M enjoys both properties α and β

With this idea in mind intersection is idempotent α ∩ α = α.

Used to capture various notions of termination:
Head, Weak and Strong normalisation [Coppo-Dezani’78, Sallé’80]

Resource-aware intersection types [De Carvalho’07]
Let us change point of view:

M : α ∩ β
M will be called once as data of type α and once as data of type β

Hence α ∩ α 6= α =⇒ Multisets

Used to capture quantitative properties of programs, e.g.:
CBN λ-calculus: number of linear head-reduction steps [De Carvalho’07]
CBV λ-calculus: number of weak head-reduction steps [Ehrhard’12]

Our goal: extend Ehrhard’s system with non-determinism
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May/Must-convergent non-determinism

Consider the CBV λ-calculus extended with. . .

Non-deterministic choice
M + N The machine choses either M or N

I The non-deterministic choice M + N is may-convergent:
it converges if either M or N converges

Parallel composition
M ‖ N The machine interleaves reductions in M and in N

I The parallel composition M ‖ N is must-convergent:
it converges if both M and N do
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Λ+‖: Its syntax and operational semantics

Grammar of Λ+‖ terms
Terms: M,N,P,Q ::= V | MN | M + N | M ‖N
Values: V ::= x | λx .M

Reduction semantics
βv -reduction +-reductions ‖-reductions

(λx .M)V → M[V /x ]
M + N → M (M ‖ N)P → MP ‖ NP
M + N → N V (M ‖ N)→ VM ‖ VN

+ Contextual rules selecting the head redex. . .

The reduction is lazy (it does not reduce under λ-abstractions)

Convergence
M converges ⇔ M →∗ V1 ‖ · · · ‖ Vn
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Examples and remarks

Application is bilinear

(M + M ′)(N + N ′)
op
≡ MN + MN ′ + M ′N + M ′N ′

. . . but λ-abstraction is not

λx .(M + N)
op
6≡ λx .M + λx .N

Example of parallel composition and non-deterministic choice

(λx .(x ‖ x))(V + V ′) converges to either V ‖ V or V ′ ‖ V ′

(λx .(x + x))(V ‖ V ′) converges to V ‖ V ′ only
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Linear logic based type system
Translation: Intuitionistic Logic 7→ Polarized fragment of LL

ιv = ι, (α→ β)v = αc ( β‖, αc = !αv , α‖ =?αc

Based on [Ehrhard’12], based on second Girard’s translation.

Intuitions from the relational semantics of LL
I The type for computations (·)c is a multiset [αv

1 , . . . , α
v
n ] of value

types (representing n calls to a single value of type αv
i ),

I The type of parallel compositions (·)‖ is another multiset
[αc

1, . . . , α
c
n] of types of each term in the composition,

I The type for values (·)v are either basic types or functional types,
I A functional type in this system is a pair (αc , [αc

1, . . . , α
c
n]).

Notation
First multiset layer −→ ⊗

Second multiset layer −→ `
Functional type (αc , [αc

1, . . . , α
c
n]) −→ αc ( αc

1 ` · · ·` αc
n

Empty computational multiset −→ 1
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Linear logic based type system (cont.)

Grammar of Types:

parallel-types: α, β ::= α` β | τ
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ ( α

⊗ tensor product
` par

}
associative and commutative

1 neutral element of ⊗

Type environments:
Γ = x1 : τ1, . . . , xn : τn represents the map

Γ(y) =

{
τi if y = xi ,
1 otherwise.

Tensor is extended to environments pointwise (Γ⊗∆)(x) = Γ(x)⊗∆(x).

7 / 16



Linear logic based type system (cont.)

Grammar of Types:

parallel-types: α, β ::= α` β | τ
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ ( α

⊗ tensor product
` par

}
associative and commutative

1 neutral element of ⊗

Type environments:
Γ = x1 : τ1, . . . , xn : τn represents the map

Γ(y) =

{
τi if y = xi ,
1 otherwise.

Tensor is extended to environments pointwise (Γ⊗∆)(x) = Γ(x)⊗∆(x).

7 / 16



Linear logic based type system (cont.)
Type inference rules

∆ ` M : α
+`

∆ ` M + N : α

∆ ` N : α
+r

∆ ` M + N : α

+ is may-convergent, so it
is enough that one term is
typable

∆ ` M : α1 Γ ` N : α2
‖I

∆⊗ Γ ` M ‖ N : α1 ` α2

‖ is must-convergent, so both
components must be typable

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij ( αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

It reflects the distribution of the parallel operator over the application

ax
x : τ ` x : τ

∆i , x : τi ` M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx .M :
n⊗

i=1

(τi ( αi )

The axiom and the intersection type for values respectively
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Examples

∆ = x : (τ1 ( α1)⊗ (τ2 ( α2) Γ = y : τ1, y ′ : τ2

∆ ` x : (τ1 ( α1)⊗ (τ2 ( α2) Γ ` y ‖ y ′ : τ1 ` τ2
(E

∆⊗ Γ ` x(y ‖ y ′) : α1 ` α2

x(y ‖ y ′)→ xy ‖ xy ′

∆′ = x ′ : (τ1 ( α3)⊗ (τ2 ( α4)

∆⊗∆′ ` x ‖ x ′ : ((τ1 ( α1)⊗ (τ2 ( α2)) ` ((τ1 ( α3)⊗ (τ2 ( α4))
Γ ` y ‖ y ′ : τ1 ` τ2 Γ ` y ‖ y ′ : τ1 ` τ2

(E
∆⊗∆′ ⊗ Γ⊗ Γ ` (x ‖ x ′)(y ‖ y ′) : α1 ` α2 ` α3 ` α4

(x ‖ x ′)(y ‖ y ′)→∗ xy ‖ xy ′ ‖ x ′y ‖ x ′y ′
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Measuring derivation trees
π = ax

S
|π| = 0

π =
π1 · · · πn

(I
S

|π| =
∑n

i=1 |πi |

π =
π1 π2

‖I
S

|π| = |π1|+ |π2|

π =
π0 π1 . . . πk

(E ni ≥ 1
S

|π| =
∑k

i=0 |πi |+ (
∑k

i=1 2ni )− 1

π =
π′

+`
S

or π =
π′

+r
S

|π| = |π′|+ 1

Only(E , +` and +r type redexes
[
βv and ‖ redexes are typed by (E
+ redexes by +` and +r

]
Each +` and +r counts for 1 because a +-red. does not create new rules
in the derivation typing the contractum

(E counts the number of “active” connectives in the principal premise
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Measuring derivation trees (cont.)

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij ( αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

k∑
i=1

ni︸ ︷︷ ︸
(’s

+
k∑

i=1

(ni − 1)︸ ︷︷ ︸
⊗’s

+ (k − 1)︸ ︷︷ ︸
`’s

= (
k∑

i=1

2ni )− 1

The ‖-reduction creates two new (E rules in the derivation typing the
contractum

The measure decreases because the sum of their weights is less than the
weight of the eliminated rule
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Properties of the type system
Our system enjoys a quantitative version of standard properties.

Subject reduction
Let π = ∆ ` M : α

I If M → N without +-red. then ∃π′ = ∆ ` N : α

I If M → N1 and M → N2 with +-red.
then ∃π′ = ∆ ` N1 : α or π′ = ∆ ` N2 : α

In both cases, |π′| = |π| − 1

Subject expansion
If M → N and π = ∆ ` N : α
then ∃π′ = ∆ ` M : α s.t. |π′| = |π|+ 1

Characterization of convergence
Let M closed. M typable ⇔ M converges

Can we say anything more quantitative?
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Combinatorial proof of normalization

Measure
Let M be a closed term. If π is a derivation of

` M : α,

then |π| gives a bound on the number of steps M converges.

More precisely. . .

Exact bound
Let M be a closed term. If π is a derivation of

` M : 1` · · ·` 1,

then M reaches its normal form in exactly |π| steps

13 / 16



Properties of the underlying relational model

Let M, N and ~P be closed terms.

Definitions
I A closed term M is interpreted by JMK = {α | ` M : α}
I M v N iff ∀~P

[
M~P converges ⇒ N~P converges

]

As a corollary of the Convergence Theorem we get:

Adequacy
JMK ⊆ JNK implies M v N

14 / 16



Lack of full abstraction

Lack of full abstraction
M v N does not imply JMK ⊆ JNK

CBV λ-calculus admits the creation of an ogre

Y? = ∆?∆? where ∆? = λxy .xx .

Remark: The ogre Y? is a top of v:

Y?V ~V ′ → (λy .Y?)V ~V ′ → Y?~V ′ → · · · → Y?.

All types of Y? have shape α =
⊗n

i=0(1 ( αi ).

Counterexample (independent from + and ‖ )
Let I = λx .x , then

I v Y?, while JIK 6⊆ JY?K

since (1 ( 1) ( (1 ( 1) ∈ JIK− JY?K
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Summarising

I We introduced a call-by-value non-deterministic λ-calculus with a
type system ensuring convergence

I The type system gives a bound of the length of the lazy cbv
reduction sequences (exact when the typing is minimal)

I We show an adequate (but not fully abstract) model capturing the
type system
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