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Short abstract. In a recent paper, a realizability technique has been used to give a semantics of a
quantum lambda calculus. Such a technique gives rise to an infinite number of valid typing rules,
without giving preference to any subset of those. In this paper, we introduce a valid subset of typing
rules, defining an expressive enough quantum calculus. Then, we propose a categorical semantics
for it. Such a semantics consists of an adjunction between the category of distributive-action spaces
of value distributions (that is, linear combinations of values in the lambda calculus), and the category
of sets of value distributions.

Extended abstract1

In quantum programming languages, the control flow of programs divides models in two classes. On the
one hand, there is the model of the QRAM [12], or classical control [17]. The classical control refers
to a scheme where the quantum operations are performed in a specialized device, known as QRAM,
attached to a classical computer, which instructs the device which operations to apply over which qubits.
In this model, the quantum operations are given by a series of “black boxes”. An example of this is the
quantum lambda calculus [18], as well as several high-level quantum programming languages such as
Quipper [10] and QWIRE [16]. On the other hand, there is the model of quantum control, aiming at
describing the “black boxes” explicitly. Under this scheme, Lineal [1, 2] is an untyped extension to the
lambda calculus allowing for linear combinations of lambda terms. The main idea behind Lineal is that
in order to describe the quantum control, it is needed to be able to superpose programs. This way, if s and
t are two terms, so is its formal linear combination α · s+β · t, with α,β ∈ C. Quantum programs can
be expressed in Lineal, except for the quantum measurement, which is left out of the system. However,
Lineal is not restricted to only quantum programs. In particular, to enforce the “quantumness”, one would
need to enforce that all the linear combinations have norm `2 equal to 1, and all the functions behave as
isometries. One main feature of Lineal is the fact that all the functions, even if they are not forced to
be linear or isometries, are treated linearly: if a function λx.s is applied to a formal linear combination
α · v+β ·w, it distributes linearly as follows: (λx.s)(α · v+β ·w)−→ α · (λx.s)v+β · (λx.s)w.

A drawback in taking all functions as linear, is that adding measurement is not trivial, since a mea-
surement is not a linear operation: If M is a measurement operator, M(α · v+β ·w) does not behave as
α ·Mv+β ·Mw.

Lambda-S [4,5] is a typed lambda calculus based on Lineal, mainly focused on adding measurement
to the calculus. Instead of treating all functions as linear, its types enforce linearity when the argument
is a superposition, and allow for duplication when it is not. This is done by labeling superpositions

1The full paper can be found at arXiv:2012.05887.
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with a modality S. Any term typed by S is treated linearly, so only basis terms are duplicable. It is
argued to be somehow the dual to Intuitionistic Linear Logic, where duplicable terms are marked (by a
!). Indeed, in [7–9] a categorical model for Lambda-S has been proposed, obtained by a monoidal monad
determined by a monoidal adjunction (S,m) a (U,n) and interpreting S as the monad US—exactly the
opposite to the ! of linear logic, which in the literature is often interpreted as the comonad SU [14].
This implies that on the one hand there is a tight control of the Cartesian structure of the model, and
on the other hand the world of superpositions lives inside the classical world, i.e. determined externally
by classical rules until one decides to explore it. This is given by the following composition of maps:
USA×USA n−→U(SA⊗SA) Um−−→US(A×A), that allows us to operate in a monoidal structure explicitly
allowing the algebraic manipulation and then to return to the Cartesian product. This is different from
linear logic, where the ! stops any algebraic manipulation, i.e. (!A)⊗ (!A) is a product inside a monoidal
category. A concrete example is an adjunction between the categories Set of sets and Vec of vector
spaces [7, 9].

In [6] another type system for Lineal has been worked out, this time, ensuring superpositions to
be in the unitary sphere S1 (that is, norm-1 vectors), as it is required by quantum computing, also
characterizing isometries via a specific type. This has been obtained by means of realizability tech-
niques [11,13,15,19]: Instead of deriving a computational meaning of proofs once the type system is set
up, the idea of realizability is to consider the type system as a by-product of the operational semantics—
programs are then potential realizers of types. For example, a program behaving as the identity will be
a realizer of A→ A, regardless of its inner structure. Realizability is a powerful and modular framework
amenable to many systems [3]. So, one particularity is that the typing rules are probable lemmas (any
typing rule conforming the semantics, is a valid rule), hence, the rules are potentially infinite. On this
scheme, there is a modality ], with similar behavior to the S of Lambda-S. The claimed main goal of
this system has been to solve the long-standing issue of how to ensure norm-1 superpositions, and char-
acterize unitary functions. This system does not include a measurement operator, which can be added in
the future.

In this new paper, we extract a (finite) fixed type system following the realizability semantics [6], a
calculus we call Lambda-S1, ensuring norm-1 superpositions. We prove its main correctness properties
such as progress, subject reduction, and strong normalization, and we give a categorical model for this
calculus. The developed model has some common grounds with the concrete model of Lambda-S [7,9],
however, the chosen categories this time are not Set and Vec, but categories that use the fact that values
in our calculus form a distributive-action space (an algebraic structure similar to a vector space, where its
additive structure is a semi-group). The two categories in the constructed adjunction are defined in terms
of~V, the set of values in the calculus, and their linear combinations (such a set forms a distributive-action
space). Then, the categories are defined by:

• Set~V: a category whose objects are the non-empty parts of ~V, and whose arrows are the arrows in
Set that can be defined in Lambda-S1. This category also includes a product �, which is the set of
separable tensor products.

• SVec~V: a category whose objects are the sub-distributive action spaces of ~V2, and whose arrows
are the linear maps which can be defined in Lambda-S1. It also includes a tensor product⊗, which
can also be defined as the span of the product �.

Hence, the main novelty and contribution of this paper is presenting a model for quantum computing
in the quantum control paradigm, which we show to be complete on qubits in the sense that if two

2V is a sub-distributive action space of W if V ⊆W and V forms a distributive-action space with the operations from W .



A. Díaz-Caro & O. Malherbe 3

closed terms with qubit types are interpreted by the same arrows in the model, then those terms are
computationally equivalent.
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