Equivalence of Algebraic λ-calculi

Alejandro Díaz-Caro ${ }^{1}$ Simon Perdrix ${ }^{12}$
Christine Tasson ${ }^{3}$ Benoît Valiron ${ }^{1}$

${ }^{1}$ LIG, Université de Grenoble
${ }^{2}$ CNRS
${ }^{3}$ CEA-LIST, MeASI
HOR • July 14th, 2010 • Edinburgh

Algebraic calculi

- Algebraic \equiv Module structure

$$
\left(\lambda x . y x+\frac{1}{2} \cdot \lambda x . y(y x)\right) \lambda z . z
$$

- Two origins
- $\lambda_{\text {alg }} \longrightarrow$ differential calculus
- $\lambda_{\text {lin }} \longrightarrow$ quantum computation
- Differences in
- the encoding of the module structure
- how the reduction rules apply

$\lambda_{\text {alg }}$ and $\lambda_{\text {lin }}$

share the same set of terms

$$
\begin{aligned}
M, N, L & ::=V|(M) N| M+N \mid \alpha \cdot M \\
U, V, W & ::=B|\alpha \cdot B| V+W \mid \mathbf{0} \\
B & ::=x \mid \lambda x . M
\end{aligned}
$$

closed under associativity and conmutativity

$$
M+N=N+M \quad(M+N)+L=M+(N+L)
$$

- base term is either a variable or abstraction
- a value is either $\mathbf{0}$ or of the form $\sum \alpha_{i} \cdot B_{i}$;
- a general term can be anything.

Rules for $\lambda_{\text {alg }}$

ㄴ
을
은
는

$$
\begin{array}{cc}
\mathbb{<} & (M+N) L={ }_{a}(M) L+(N) L \\
\text { ò } & (M) N={ }_{a} \alpha \cdot(M) N \\
\text { 은 } & (\alpha \cdot M) N \\
(\mathbf{0}) M={ }_{a} \mathbf{0}
\end{array}
$$

$$
(\lambda x . M) N \rightarrow_{a} M[x:=N]
$$

Rules for $\lambda_{\text {lin }}$

ᄂ	$\alpha \cdot M+\beta \cdot M$	\rightarrow_{ℓ}	$(\alpha+\beta) \cdot M$
을	$\alpha \cdot M+M$	\rightarrow_{ℓ}	$(\alpha+1) \cdot M$
은	$M+M$	\rightarrow_{ℓ}	$(1+1) \cdot M$

$$
\begin{array}{cc|c}
\varangle & (M+N) L \rightarrow_{\ell}(M) L+(N) L & (M)(N+L) \rightarrow_{\ell}(M) N+(M) L \\
\text { о. } & (M) N \\
\text { 은 } & (\alpha \cdot M) N \rightarrow_{\ell} \alpha \cdot(M) N & (M) \alpha \cdot N \rightarrow_{\ell} \alpha \cdot(M) N \\
\hline(M) \mathbf{0} \rightarrow_{\ell} \mathbf{0}
\end{array}
$$

∞
$\stackrel{0}{3}$
$\stackrel{0}{\top}$
©

$$
(\lambda x . M) B \rightarrow_{a} M[x:=B]
$$

Context rules

Some common rules

$$
\begin{array}{cc}
\frac{M \rightarrow M^{\prime}}{(M) N \rightarrow\left(M^{\prime}\right) N} & \frac{M \rightarrow M^{\prime}}{M+N \rightarrow M^{\prime}+N} \\
\frac{N \rightarrow N^{\prime}}{M+N \rightarrow M+N^{\prime}} & \frac{M \rightarrow M^{\prime}}{\alpha \cdot M \rightarrow \alpha \cdot M^{\prime}}
\end{array}
$$

plus one additional rule for $\lambda_{\text {lin }}$

$$
\frac{M \rightarrow_{\ell} M^{\prime}}{(V) M \rightarrow_{\ell}(V) M^{\prime}}
$$

Modifications to the original calculi

The most important

- No reduction under lambda (à la Plotkin)
- $\lambda x . M$ is a base term for any M

$$
\lambda x \cdot(\alpha \cdot M+\beta \cdot N) \neq \alpha \cdot \lambda x \cdot M+\beta \cdot \lambda x . N
$$

Confluence

This system is not trivially confluent
Example
Let $Y_{b}=(\lambda x .(b+(x) x))(\lambda x .(b+(x) x))$, then

$$
\mathbf{0} \leftarrow Y_{b}-Y_{b} \rightarrow Y_{b}+b-Y_{b} \rightarrow b
$$

Several possible solutions

- Type system \rightarrow strong normalisation
- Take scalars as positive reals
- Restrict some of the reduction rules

For this talk, we simply assume that confluence holds.

Question

Can we simulate $\lambda_{\text {lin }}$ with $\lambda_{\text {alg }}$ and $\lambda_{\text {alg }}$ with $\lambda_{\text {lin }}$?

Simulating $\lambda_{\text {alg }}$ with $\lambda_{\text {lin }}$

Thunks

Idea: encapsulating terms M as $B=\lambda f . M$. So $M \equiv(B) f$

Simulating $\lambda_{\text {alg }}$ with $\lambda_{\text {lin }}$

Thunks

Idea: encapsulating terms M as $B=\lambda f . M$. So $M \equiv(B) f$

$$
\begin{aligned}
(\mid x)_{f} & =(x) f \\
(0)_{f} & =0 \\
(\lambda x \cdot M \mid)_{f} & =\lambda x \cdot(\mid M)_{f} \\
((M) N)_{f} & =\left(\left(|M|_{f}\right) \lambda z \cdot(\mid N)_{f}\right. \\
(M+N)_{f} & =(M \mid)_{f}+\left(\left.N\right|_{f}\right. \\
(\alpha \cdot M \mid)_{f} & =\alpha \cdot\left(\left.M\right|_{f}\right.
\end{aligned}
$$

If the encoding $\lambda_{\text {alg }} \rightarrow \lambda_{\text {lin }}$ is denoted with $(\eta-)_{f}$, one could expect the result

$$
M \rightarrow_{a}^{*} N \quad \Rightarrow \quad\left(| M | _ { f } \rightarrow _ { \ell } ^ { * } \left(|N|_{f}\right.\right.
$$

Problem

Example

$$
\begin{aligned}
& (\lambda x . \lambda y \cdot(y) x) I \rightarrow_{a} \lambda y \cdot(y) I, \\
& \begin{aligned}
\left.(\lambda x . \lambda y \cdot(y) x) I\right|_{f} & =(\lambda x \cdot \lambda y \cdot((y) f)(\lambda z \cdot(x) f))(\lambda z \lambda x \cdot(x) f) \\
& \rightarrow_{l}^{*} \lambda y \cdot((y) f)(\lambda z .(\lambda z . \lambda x .(x) f) f), \\
\left(\lambda y .\left.(y) I\right|_{f}\right. & =\lambda y .((y) f)(\lambda z \cdot \lambda x .(x) f)
\end{aligned}
\end{aligned}
$$

"Administrative" redex hidden in the first one

Removing administrative redexes

$$
\begin{aligned}
\operatorname{Admin}_{f} 0 & =0 \\
\operatorname{Admin}_{f} x & =x \\
\operatorname{Admin}_{f}(\lambda f . M) f & =\operatorname{Admin}_{f} M \\
\operatorname{Admin}_{f}(M) N & =\left(\operatorname{Admin}_{f} M\right) A d \min _{f} N \\
A d m i n_{f} \lambda x \cdot M & =\lambda x \cdot \operatorname{Admin}_{f} M \quad(x \neq f) \\
\text { Admin }_{f} M+N & =A d \min _{f} M+A d \min _{f} N \\
\text { Admin }_{f} \alpha \cdot M & =\alpha \cdot \operatorname{Admin}_{f} M
\end{aligned}
$$

Theorem (Simulation)
For any program (i.e. closed term) M, and value V, if $M \rightarrow{ }_{a}^{*} V$ then exists a value W such that

$$
\left(|M|_{f} \rightarrow_{\ell}^{*} W \text { and } \operatorname{Admin}_{f} W=\operatorname{Admin}_{f}\left(\left.V\right|_{f}\right.\right.
$$

First,

$$
\begin{aligned}
& M \longrightarrow{ }_{\ell} N \\
& \equiv_{\text {Admin }_{f}} \\
& M^{\prime}
\end{aligned}
$$

Lemma

If $\operatorname{Admin}_{f} M=A d \min _{f} M^{\prime}$ and $M \rightarrow_{\ell} N$ then there exists N^{\prime} such that $A d \min _{f} N=A d \min _{f} N^{\prime}$ and such that $M^{\prime} \rightarrow_{\ell}^{*} N^{\prime}$.

First,

$$
\begin{array}{ll}
M \longrightarrow & N \\
\equiv \text { Admin }_{f} & \equiv_{\operatorname{Admin}_{f}} \\
M^{\prime} \longrightarrow N^{\prime}
\end{array}
$$

Lemma

If $A d \min _{f} M=A d \min _{f} M^{\prime}$ and $M \rightarrow_{\ell} N$ then there exists N^{\prime} such that $A d \min _{f} N=A d \min _{f} N^{\prime}$ and such that $M^{\prime} \rightarrow_{\ell}^{*} N^{\prime}$.

Then,

$$
\begin{aligned}
& M \\
& \\
& \equiv \operatorname{Admin}_{f}
\end{aligned}
$$

W

Lemma

If W is a value and M a term such that
Admin $_{f} W=\operatorname{Admin}_{f} M$, then there exists a value V such that
$M \rightarrow_{\ell}^{*} V$ and $A d m i n, ~ W=A d m i n ~ f$.

Then,

Lemma

If W is a value and M a term such that
$A d m i n_{f} W=A d \min _{f} M$, then there exists a value V such that
$M \rightarrow_{\ell}^{*} V$ and $A d m i i_{f} W=A d m i n_{f} V$.

Finally,

Lemma
For any program (i.e. closed term) M, if $M \rightarrow_{a} N$ and $(N)_{f} \rightarrow_{\ell}^{*} V$ for a value V, then there exists M^{\prime} such that $\left(M D_{f} \rightarrow{ }_{\ell}^{*} M^{\prime}\right.$ such that $\operatorname{Admin}_{f} M^{\prime}=\operatorname{Admin}_{f} V$.

Finally,

Lemma
For any program (i.e. closed term) M, if $M \rightarrow_{a} N$ and $(N)_{f} \rightarrow_{\ell}^{*} V$ for a value V, then there exists M^{\prime} such that $\left(M \|_{f} \rightarrow_{\ell}^{*} M^{\prime}\right.$ such that $\operatorname{Admin}_{f} M^{\prime}=\operatorname{Admin}_{f} V$.

Now, we want

$\left(\left.M\right|_{f}\right.$
$(V)_{f}$

Now, we want

Base case

$$
\begin{array}{ccc}
V & = & V \\
(V \mid)_{f} & & (V)_{f} \\
= & & = \\
& (V)_{f} &
\end{array}
$$

Inductive case

Inductive case

$\left(M^{\prime}\right)_{f}$

$(V)_{f}$
$\equiv \operatorname{Admin}_{f}$

Lemma 2
Lemma 3

$$
\begin{aligned}
&\left(\left|M^{\prime}\right|\right)_{f} \longrightarrow{ }_{\ell}^{*} M^{\prime \prime} \\
& \equiv_{A d m i n_{f}} \\
&\left(|M|_{f} \longrightarrow{ }_{\ell}^{*} W\right.
\end{aligned}
$$

Inductive case

Simulating $\lambda_{\text {lin }}$ with $\lambda_{\text {alg }}$

CPS encoding

We define $\rrbracket-\rrbracket: \lambda_{\text {lin }} \rightarrow \lambda_{\text {alg }}$

$$
\begin{aligned}
\llbracket x \rrbracket & =\lambda f \cdot(f) x \\
\rrbracket \mathbf{0} \rrbracket & =0 \\
\llbracket \lambda x \cdot M \rrbracket & =\lambda f \cdot(f) \lambda x \cdot \rrbracket M \rrbracket \\
\llbracket(M) N \rrbracket & =\lambda f \cdot(\rrbracket M \rrbracket) \lambda g \cdot(\rrbracket N \rrbracket) \lambda h \cdot((g) h) f \\
\| \alpha \cdot M \rrbracket & =\lambda f \cdot(\alpha \cdot \| M \rrbracket) f \\
\llbracket M+N \rrbracket & =\lambda f \cdot(\rrbracket M \rrbracket+\rrbracket N \rrbracket) f
\end{aligned}
$$

Now, given the continuation $I=\lambda x$. x, if $M \rightarrow_{\ell} V$ we want $(\rrbracket M \rrbracket) I \rightarrow_{a} W$ for some W related to $\llbracket V \rrbracket$

The encoding for values

$$
\begin{aligned}
\Psi(x) & =x \\
\Psi(0) & =0 \\
\Psi(\lambda x \cdot M) & =\lambda x \cdot \llbracket M \rrbracket \\
\Psi(\alpha \cdot V) & =\alpha \cdot \Psi(V) \\
\Psi(V+W) & =\Psi(V)+\Psi(W)
\end{aligned}
$$

- $\Psi(V)$ is such that $\llbracket V \rrbracket \rightarrow_{a}^{*} \Psi(V)$.

Theorem (Simulation)

$$
M \rightarrow_{\ell}^{*} V \quad \Rightarrow \quad(\| M \rrbracket) \lambda x \cdot x \rightarrow_{a}^{*} \Psi(V) .
$$

An auxiliary definition

Note that

$$
(\| B \rrbracket) K=(\lambda f .(f) \Psi(B)) K \rightarrow_{a}^{*}(K) \Psi(B)
$$

- We define the term $B: K=(K) \Psi(B)$.
- We extend this definition to other terms in some not-so-easy way due to the algebraic properties of the language.
- It is the main difficulty in this proof.

The auxiliary definition

Let $(:): \lambda_{\text {lin }} \times \lambda_{\text {alg }} \rightarrow \lambda_{\text {alg }}:$

$$
\begin{aligned}
& B: K=(K) \Psi(B) \\
& (M+N): K=M: K+N: K \\
& \alpha \cdot M: K=\alpha \cdot(M: K) \\
& \mathbf{0}: K=\mathbf{0} \\
& (U) B: K=((\Psi(U)) \Psi(B)) K \\
& (U)(V+W): K=((U) V+(U) W): K \\
& (U)(\alpha \cdot B): K=\alpha \cdot(U) B: K \\
& (U) \mathbf{0}: K=\mathbf{0} \\
& (U) N: K=N: \lambda f \cdot((\Psi(U)) f) K \\
& (M) N: K=M: \lambda g \cdot(\rrbracket N \rrbracket) \lambda h \cdot((g) h) K
\end{aligned}
$$

Proof

If $M \rightarrow{ }_{\ell}^{*} V$,

$$
(\| M \rrbracket)(\lambda x \cdot x)
$$

$$
\Psi(V)
$$

Proof

If K is a value:

- For all $M,(\| M \rrbracket) K \rightarrow{ }_{a}^{*} M: K$
- If $M \rightarrow e N$ then $M: K \rightarrow_{a}^{*} N: K$
- If V is a value, $V: K \rightarrow{ }_{a}^{*}(K) \Psi(V)$

If $M \rightarrow{ }_{\ell}^{*} V$,

$$
\begin{gathered}
(\llbracket M \rrbracket)(\lambda x \cdot x) \quad \rightarrow_{a}^{*} M: \lambda x \cdot x \\
\Psi(V)
\end{gathered}
$$

Proof

If K is a value:

- For all $M,(\| M \rrbracket) K \rightarrow{ }_{a}^{*} M: K$
- If $M \rightarrow_{\ell} N$ then $M: K \rightarrow_{a}^{*} N: K$
- If V is a value, $V: K \rightarrow_{a}^{*}(K) \Psi(V)$

If $M \rightarrow{ }_{\ell}^{*} V$,

$$
\begin{array}{cc}
(\llbracket M \rrbracket)(\lambda x \cdot x) & \rightarrow_{a}^{*} M: \lambda x \cdot x \\
& \rightarrow_{a}^{*} V: \lambda x \cdot x \\
& \Psi(V)
\end{array}
$$

Proof

If K is a value:

- For all $M,(\| M \rrbracket) K \rightarrow{ }_{a}^{*} M: K$
- If $M \rightarrow_{\ell} N$ then $M: K \rightarrow_{a}^{*} N: K$
- If V is a value, $V: K \rightarrow{ }_{a}^{*}(K) \Psi(V)$

If $M \rightarrow{ }_{\ell}^{*} V$,

$$
\begin{aligned}
(\llbracket M \rrbracket)(\lambda x \cdot x) & \rightarrow_{a}^{*} M: \lambda x \cdot x \\
& \rightarrow_{a}^{*} V: \lambda x \cdot x \\
& \rightarrow_{a}^{*}(\lambda x \cdot x) \Psi(V) \\
& \Psi(V)
\end{aligned}
$$

Proof

If K is a value:

- For all M, $(\| M \rrbracket) K \rightarrow{ }_{a}^{*} M: K$
- If $M \rightarrow_{\ell} N$ then $M: K \rightarrow_{a}^{*} N: K$
- If V is a value, $V: K \rightarrow{ }_{a}^{*}(K) \Psi(V)$

If $M \rightarrow{ }_{\ell}^{*} V$,

$$
\begin{aligned}
(\llbracket M \rrbracket)(\lambda x \cdot x) & \rightarrow_{a}^{*} M: \lambda x \cdot x \\
& \rightarrow_{a}^{*} V: \lambda x \cdot x \\
& \rightarrow_{a}^{*}(\lambda x \cdot x) \Psi(V) \\
& \rightarrow_{a} \Psi(V)
\end{aligned}
$$

Future and ongoing work

In classical lambda-calculus:

- CPS can also be done to interpret call-by-name in call-by-value [Plotkin 75].
- The thunk construction can be related to CPS [Hatcliff and Danvy 96].
Can we relate to these?

Future and ongoing work

Other interesting questions

- The choice between equality and reduction rules seems arbitrary.
Can we exchange them?
Are the simulations still valid?

