A type system for the vectorial aspects of the
linear-algebraic lambda-calculus

Pablo Arrighi'? Alejandro Diaz-Caro! Benoit Valiron3*

LUniversité de Grenoble, LIG, France
2Ecole Normale Supérieure de Lyon, LIP, France
3Université de Paris-Nord, LIPN, France

“University of Pennsylvania, USA

7t DCM e July 3, 2011 e Zurich, Switzerland

M,N:=x| AXxM| (M)N|M+N|aM]|O0

Beta reduction:
(Ax-MYN — M[x := N|

“Algebraic” reductions:
a.M+ M — (a+ 58).M,
(M)(Nl + Nz) — (M)Nl + (M)N27

(oriented version of the axioms of vectorial spaces)
Two origins:
» Differential A-calculus: capturing linearity 4 /a Linear Logic
— Removing the differential operator: Algebraic A-calculus (Aaig) [Vaux’09]
» Quantum computing: superposition of programs

— Linearity as in algebra: Linear-algebraic A-calculus (Aiin)
[Arrighi,Dowek’08]

M,N:=x| XxM| (M)N|M+N|aM]|O0

Beta reduction:
(Ax-MYN — M[x := N|

“Algebraic” reductions:

a.M+ M — (a+ 58).M,
(M)(Ny + No) - _(M)/Vl + (M)Ny,

(oriented version of the axioms of vectorial spaces)

)\alg)\lin
Origin Linear Logic Quantum computing
Strategy Call-by-name Call-by-value

Algebraic part Equalities Rewrite system

An infinite dimensional vectorial space of values
B = {M; : M; is a variable or abstraction }

Set of values ::= Span(B)

(Now we should call Ayy,'s strategy: “call-by-base”)

Why would it be interesting?
» Several theories using the concept of linear-combination of terms
quantum, probabilistic, non-deterministic models, . ..
» “Why would vector spaces be an interesting theory?”
Many applications and moreover, interesting by itself!

Aim of the current work:
A type system capturing the “vectorial” structure of terms
to check for probability distributions

or “quantumness” of the term

or whatever application needing the structure of the vector
in normal form

a Curry-Howard approach to defining
Fuzzy/Quantum/Probabilistic logics from
Fuzzy/Quantum/Probabilistic programming languages.

The Scalar Type System [Arrighi,Diaz-Caro’09]
A polymorphic type system tracking scalars:
r=m:T

» Barycentric restrictions
N-aoaM:aT

» Characterises the “amount” of terms

The Additive Type System [piaz-Caro,Petit’10]
A polymorphic type system with sums:

FreEM: T r'EN:R » Sums ~ Assoc., comm. pairs

FTEM+N:T+R » distributive w.r.t. application

Can we combine them?

The Vectorial Type System

Types:
T,R,S=U|T+R|aT
Uv,w:=X|U—->T|VX.U
(U, V, W reflect the basis terms)

Equivalences:

1.T = T
a.(8.T) = (axp).T
aT+aR = a(T+R)
a.T+B.T = (a+8).T
T+R = R+T
T+(R+S) = (T+R)+S

(reflect the vectorial spaces axioms)

6/15

The factorisation rule problem

FrEM: T r=mM: 7’
rFaM+8.M:a.T+p5.T

» However, a.M + .M — (a + 5).M
> In general a.T + B.T' # (a+ B).T # (a+ B). T’

(and since we are working in System F, there is no principal types neither)

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial’ structure lost)

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial’ structure lost)

> Add several typing rules to allow typing (o + 3).M with «. T + 3.7’

> As soon as we add one, we have to add many to make it work
» Too complex and inelegant (subject reduction by axiom)

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial’ structure lost)

> Add several typing rules to allow typing (o + 3).M with «. T + 3.7’

> As soon as we add one, we have to add many to make it work
» Too complex and inelegant (subject reduction by axiom)

» Church style

» Seems to be the natural solution
» Big complexity with polymorphism and distributivity

v

v

v

v

Several possible solutions:

Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial’ structure lost)

Add several typing rules to allow typing (o + 3).M with . T + 3.T'

> As soon as we add one, we have to add many to make it work
» Too complex and inelegant (subject reduction by axiom)

Church style

» Seems to be the natural solution
» Big complexity with polymorphism and distributivity

Weak subject reduction (this work)
> What is the best we can get in Curry style?

Typing rules

re-M:T rem:T
ax

- 0, @
Mx:Ukx:U r-0:0.7 Mr-aM:aT

FEM:Y avX (U= T) TEN:D BV vy i Ry,
j=1

i=1

—E

n m

M= (MN:D > aix Bi.TilW;/X]

i=1 j=1

Mx:UFM:T remM-T TEN:R

+

I
FEAM:U—T PEM+N:T+R

r=mMm:u XgFV(T) r-m:vx.u v
P
M- M:vX.U r=Mm:uv/X]

(a+B).TCaT+BT ifIM/THFM:Tandl-M: T
(and its contextual closure)

(a+B).TCaT+BT ifIM/THFM:Tandl-M: T
(and its contextual closure)

Theorem (A weak subject reduction)

10/15

(a+B).TCaT+AT #3IM/THFM:Tandl+M: T
(and its contextual closure)

Theorem (A weak subject reduction)

IfTEM: T and M —g N, then
» if R is not a factorisation rule: T = N : T
> if R is a factorisation rule: ST T /TEN:S

How weak?

Let M — N,
Subject reduction
rEM:T=TEN:T
Subtyping
Fr-M:T=THFN:S, butS<T,sol-N:T
Our theorem
rTEM:T=TFN:S andSC T

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions’™

Ys = (Ax.(B + (x)x))Ax.(B + (x)x)

Yse +B+Ygs—>B+B+Ysg—...

11/15

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions’™

Ys = (Ax.(B + (x)x))Ax.(B + (x)x)

Ys > B+Ys—>B+B+Ysg— ...

Ys + (—1).YB — (1 - 1)-YB —*0

1 Solution in the untyped setting:
B+ Yg+(-1).Ys a.M+B.M— (a+5).M
1. only if M is closed-normal

B

11/15

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions’™

Ys = (Ax.(B + (x)x))Ax.(B + (x)x)

Yse +B+Ygs—>B+B+Ysg—...

Yg + (—1).YB — (1 - 1).YB —*0

1 Solution in the untyped setting:

B+ Yg+(-1).Ys a.M+B.M— (a+5).M
1 only if M is closed-normal
B

In the typed setting: Strong normalisation solves the problem

11/15

Theorem (Strong normalisation)

Proof.

12/15

Theorem (Confluence)

Proof.

13/15

Expressing matrices and vectors

true = Ax.\y.x

Two base vectors: false = Ax.\y.y

14/15

Expressing matrices and vectors

true = Ax.\y.x
false = Ax.\y.y
T=VXYX—=>Y =X
F=VXY.X—=>Y =Y

Two base vectors:

Their types:

F a.true + f.false : o.T + S.F

14/15

Expressing matrices and vectors

true = Ax.\y.x

false = Ax.\y.y

Their types: T=VXYX—=Y =X
T F=YXY X=>Y =Y

Two base vectors:

F a.true + f.false : o.T + S.F

(U)true = a.true + b.false

Linear map U s-t. (U)false = c.true + d.false

14/15

Expressing matrices and vectors

true = Ax.\y.x

false = Ax.\y.y

Their types: T=VXYX—=Y =X
T F=YXY X=>Y =Y

Two base vectors:

F a.true + f.false : o.T + S.F

(U)true = a.true + b.false

Linear map U s-t. (U)false = c.true + d.false

U := Mx.{((x)[a.true + b.false])[c.true + d.false]}

with [M] :==Xz.M
{M} == (M)
{(M]}— M

FU:VX((/ = (aT+bF) -/ - (cT+dF))—X)—=X

14/15

Contributions

» Scalar U Additive (“AC, distributive pairs”)
= linear-combination of types

v

The typing gives the information of
“how much the scalars sums” in the normal form

Weak SR
= Church style captures better the vectorial structure

v

v

Strong normalisation
= Confluence without restrictions

v

Representation of matrices and vectors

15/15

	Motivation
	The Vectorial Type System
	Contributions

