
A type system for the vectorial aspects of the
linear-algebraic lambda-calculus

Pablo Arrighi1,2 Alejandro Díaz-Caro1 Benoît Valiron3,4

1Université de Grenoble, LIG, France

2École Normale Supérieure de Lyon, LIP, France

3Université de Paris-Nord, LIPN, France

4University of Pennsylvania, USA

7th DCM • July 3, 2011 • Zurich, Switzerland

M,N ::= x | λx .M | (M)N | M + N | α.M | 0

Beta reduction:
(λx .M)N → M[x := N]

“Algebraic” reductions:
α.M + β.M → (α + β).M,

(M)(N1 + N2) → (M)N1 + (M)N2,. . .
. . .
. . .

(oriented version of the axioms of vectorial spaces)

Two origins:
I Differential λ-calculus: capturing linearity à la Linear Logic
→ Removing the differential operator : Algebraic λ-calculus (λalg) [Vaux’09]

I Quantum computing: superposition of programs
→ Linearity as in algebra: Linear-algebraic λ-calculus (λlin)

[Arrighi,Dowek’08]

2 / 15

M,N ::= x | λx .M | (M)N | M + N | α.M | 0

Beta reduction:
(λx .M)N → M[x := N]

“Algebraic” reductions:
α.M + β.M → (α + β).M,

(M)(N1 + N2) → (M)N1 + (M)N2,. . .
. . .
. . .

(oriented version of the axioms of vectorial spaces)

λalg λlin
Origin Linear Logic Quantum computing

Strategy Call-by-name Call-by-value
Algebraic part Equalities Rewrite system

2 / 15

An infinite dimensional vectorial space of values

B = {Mi : Mi is a variable or abstraction }

Set of values ::= Span(B)

(Now we should call λlin’s strategy: “call-by-base”)

3 / 15

Why would it be interesting?
I Several theories using the concept of linear-combination of terms

quantum, probabilistic, non-deterministic models, . . .
I “Why would vector spaces be an interesting theory?”

Many applications and moreover, interesting by itself!

Aim of the current work:
A type system capturing the “vectorial” structure of terms

. . . to check for probability distributions

. . . or “quantumness” of the term

. . . or whatever application needing the structure of the vector
in normal form

. . . a Curry-Howard approach to defining
Fuzzy/Quantum/Probabilistic logics from
Fuzzy/Quantum/Probabilistic programming languages.

4 / 15

The Scalar Type System [Arrighi,Díaz-Caro’09]

A polymorphic type system tracking scalars:
Γ ` M : T

Γ ` α.M : α.T
I Barycentric restrictions
I Characterises the “amount” of terms

The Additive Type System [Díaz-Caro,Petit’10]

A polymorphic type system with sums:

Γ ` M : T Γ ` N : R

Γ ` M + N : T + R

I Sums ∼ Assoc., comm. pairs
I distributive w.r.t. application

Can we combine them?

5 / 15

The Vectorial Type System

Types:
T ,R,S := U | T + R | α.T

U,V ,W := X | U → T | ∀X .U

(U,V ,W reflect the basis terms)

Equivalences:

1.T ≡ T
α.(β.T) ≡ (α× β).T

α.T + α.R ≡ α.(T + R)

α.T + β.T ≡ (α + β).T
T + R ≡ R + T

T + (R + S) ≡ (T + R) + S

(reflect the vectorial spaces axioms)

6 / 15

The factorisation rule problem

Γ ` M : T Γ ` M : T ′
======================
Γ ` α.M + β.M : α.T + β.T ′

I However, α.M + β.M → (α + β).M
I In general α.T + β.T ′ 6= (α + β).T 6= (α + β).T ′

(and since we are working in System F, there is no principal types neither)

7 / 15

Several possible solutions:

I Remove factorisation rule (Done. SR and SN both work)
I + in scalars not used anymore. Scalars ⇒ Monoid
I It works!... but it is no so expressive (“vectorial” structure lost)

I Add several typing rules to allow typing (α + β).M with α.T + β.T ′

I As soon as we add one, we have to add many to make it work
I Too complex and inelegant (subject reduction by axiom)

I Church style
I Seems to be the natural solution
I Big complexity with polymorphism and distributivity

I Weak subject reduction (this work)
I What is the best we can get in Curry style?

8 / 15

Several possible solutions:

I Remove factorisation rule (Done. SR and SN both work)
I + in scalars not used anymore. Scalars ⇒ Monoid
I It works!... but it is no so expressive (“vectorial” structure lost)

I Add several typing rules to allow typing (α + β).M with α.T + β.T ′

I As soon as we add one, we have to add many to make it work
I Too complex and inelegant (subject reduction by axiom)

I Church style
I Seems to be the natural solution
I Big complexity with polymorphism and distributivity

I Weak subject reduction (this work)
I What is the best we can get in Curry style?

8 / 15

Several possible solutions:

I Remove factorisation rule (Done. SR and SN both work)
I + in scalars not used anymore. Scalars ⇒ Monoid
I It works!... but it is no so expressive (“vectorial” structure lost)

I Add several typing rules to allow typing (α + β).M with α.T + β.T ′

I As soon as we add one, we have to add many to make it work
I Too complex and inelegant (subject reduction by axiom)

I Church style
I Seems to be the natural solution
I Big complexity with polymorphism and distributivity

I Weak subject reduction (this work)
I What is the best we can get in Curry style?

8 / 15

Several possible solutions:

I Remove factorisation rule (Done. SR and SN both work)
I + in scalars not used anymore. Scalars ⇒ Monoid
I It works!... but it is no so expressive (“vectorial” structure lost)

I Add several typing rules to allow typing (α + β).M with α.T + β.T ′

I As soon as we add one, we have to add many to make it work
I Too complex and inelegant (subject reduction by axiom)

I Church style
I Seems to be the natural solution
I Big complexity with polymorphism and distributivity

I Weak subject reduction (this work)
I What is the best we can get in Curry style?

8 / 15

Typing rules

ax
Γ, x : U ` x : U

Γ ` M : T
0I

Γ ` 0 : 0.T

Γ ` M : T
αI

Γ ` α.M : α.T

Γ ` M :
n∑

i=1

αi .∀~X .(U → Ti) Γ ` N :
m∑

j=1

βi .Vj ∀Vj ,∃~Wj/U[~Wj/~X]=Vj

→E

Γ ` (M)N :
n∑

i=1

m∑
j=1

αi × βi .Ti [~Wj/~X]

Γ, x : U ` M : T
→I

Γ ` λx .M : U → T

Γ ` M : T Γ ` N : R
+I

Γ ` M + N : T + R

Γ ` M : U X /∈FV (Γ)
∀I

Γ ` M : ∀X .U

Γ ` M : ∀X .U
∀E

Γ ` M : U[V /X]

9 / 15

(α + β).T v α.T + β.T ′ if ∃M / Γ ` M : T and Γ ` M : T ′

(and its contextual closure)

Theorem (A weak subject reduction)
If Γ ` M : T and M →R N, then

I if R is not a factorisation rule: Γ ` N : T
I if R is a factorisation rule: ∃S v T / Γ ` N : S

How weak?

Let M → N,
Subject reduction

Γ ` M : T ⇒ Γ ` N : T
Subtyping

Γ ` M : T ⇒ Γ ` N : S , but S ≤ T , so Γ ` N : T
Our theorem

Γ ` M : T ⇒ Γ ` N : S , and S v T

10 / 15

(α + β).T v α.T + β.T ′ if ∃M / Γ ` M : T and Γ ` M : T ′

(and its contextual closure)

Theorem (A weak subject reduction)
If Γ ` M : T and M →R N, then

I if R is not a factorisation rule: Γ ` N : T
I if R is a factorisation rule: ∃S v T / Γ ` N : S

How weak?

Let M → N,
Subject reduction

Γ ` M : T ⇒ Γ ` N : T
Subtyping

Γ ` M : T ⇒ Γ ` N : S , but S ≤ T , so Γ ` N : T
Our theorem

Γ ` M : T ⇒ Γ ` N : S , and S v T

10 / 15

(α + β).T v α.T + β.T ′ if ∃M / Γ ` M : T and Γ ` M : T ′

(and its contextual closure)

Theorem (A weak subject reduction)
If Γ ` M : T and M →R N, then

I if R is not a factorisation rule: Γ ` N : T
I if R is a factorisation rule: ∃S v T / Γ ` N : S

How weak?

Let M → N,
Subject reduction

Γ ` M : T ⇒ Γ ` N : T
Subtyping

Γ ` M : T ⇒ Γ ` N : S , but S ≤ T , so Γ ` N : T
Our theorem

Γ ` M : T ⇒ Γ ` N : S , and S v T

10 / 15

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions”:

YB = (λx .(B + (x)x))λx .(B + (x)x)

YB → B + YB → B + B + YB → . . .

YB + (−1).YB −→ (1− 1).YB −→∗ 0
↓

B + YB + (−1).YB

↓∗
B

Solution in the untyped setting:
α.M + β.M → (α + β).M
only if M is closed-normal

In the typed setting: Strong normalisation solves the problem

11 / 15

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions”:

YB = (λx .(B + (x)x))λx .(B + (x)x)

YB → B + YB → B + B + YB → . . .

YB + (−1).YB −→ (1− 1).YB −→∗ 0
↓

B + YB + (−1).YB

↓∗
B

Solution in the untyped setting:
α.M + β.M → (α + β).M
only if M is closed-normal

In the typed setting: Strong normalisation solves the problem

11 / 15

Confluence and Strong normalisation

In the original untyped setting: “confluence by restrictions”:

YB = (λx .(B + (x)x))λx .(B + (x)x)

YB → B + YB → B + B + YB → . . .

YB + (−1).YB −→ (1− 1).YB −→∗ 0
↓

B + YB + (−1).YB

↓∗
B

Solution in the untyped setting:
α.M + β.M → (α + β).M
only if M is closed-normal

In the typed setting: Strong normalisation solves the problem

11 / 15

Theorem (Strong normalisation)
Γ ` M : T ⇒ M strongly normalising.

Proof.
Reducibility candidates method.

Main difficulty: Show that

{Mi}i strongly normalizing⇒
∑

i

αi .Mi strongly normalizing

Done by using a measurement on terms decreasing on algebraic
rewrites.

12 / 15

Theorem (Confluence)

∀M / Γ ` M : T M →∗ N1
M →∗ N2

⇒ ∃L such that N1 →∗ L
N2 →∗ L

Proof.

1) local confluence: M → N1
M → N2

⇒ ∃L such that N1 →∗ L
N2 →∗ L

I Algebraic fragment: Coq proof
I Beta-reduction: Straightforward extension
I Commutation: Induction

2) Local confluence + Strong normalisation ⇒ Confluence [TeReSe’03]

13 / 15

Expressing matrices and vectors

Two base vectors: true = λx .λy .x
false = λx .λy .y

Their types: T = ∀XY .X → Y → X
F = ∀XY .X → Y → Y

` α.true + β.false : α.T + β.F

Linear map U s.t. (U)true = a.true + b.false
(U)false = c .true + d .false

U := λx .{((x)[a.true + b.false])[c .true + d .false]}

with [M] :=λz .M
{M} := (M)_
{[M]}→M

` U : ∀X .((I → (a.T + b.F))→ (I → (c .T + d .F))→ X)→ X

14 / 15

Expressing matrices and vectors

Two base vectors: true = λx .λy .x
false = λx .λy .y

Their types: T = ∀XY .X → Y → X
F = ∀XY .X → Y → Y

` α.true + β.false : α.T + β.F

Linear map U s.t. (U)true = a.true + b.false
(U)false = c .true + d .false

U := λx .{((x)[a.true + b.false])[c .true + d .false]}

with [M] :=λz .M
{M} := (M)_
{[M]}→M

` U : ∀X .((I → (a.T + b.F))→ (I → (c .T + d .F))→ X)→ X

14 / 15

Expressing matrices and vectors

Two base vectors: true = λx .λy .x
false = λx .λy .y

Their types: T = ∀XY .X → Y → X
F = ∀XY .X → Y → Y

` α.true + β.false : α.T + β.F

Linear map U s.t. (U)true = a.true + b.false
(U)false = c .true + d .false

U := λx .{((x)[a.true + b.false])[c .true + d .false]}

with [M] :=λz .M
{M} := (M)_
{[M]}→M

` U : ∀X .((I → (a.T + b.F))→ (I → (c .T + d .F))→ X)→ X

14 / 15

Expressing matrices and vectors

Two base vectors: true = λx .λy .x
false = λx .λy .y

Their types: T = ∀XY .X → Y → X
F = ∀XY .X → Y → Y

` α.true + β.false : α.T + β.F

Linear map U s.t. (U)true = a.true + b.false
(U)false = c .true + d .false

U := λx .{((x)[a.true + b.false])[c .true + d .false]}

with [M] :=λz .M
{M} := (M)_
{[M]}→M

` U : ∀X .((I → (a.T + b.F))→ (I → (c .T + d .F))→ X)→ X

14 / 15

Contributions

I Scalar ∪ Additive (“AC, distributive pairs”)
⇒ linear-combination of types

I The typing gives the information of
“how much the scalars sums” in the normal form

I Weak SR
⇒ Church style captures better the vectorial structure

I Strong normalisation
⇒ Confluence without restrictions

I Representation of matrices and vectors

15 / 15

	Motivation
	The Vectorial Type System
	Contributions

