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Abstract. In a manuscript entitled “A note on normal numbers” and
written presumably in 1938 Alan Turing gave an algorithm that produces
real numbers normal to every integer base. This proves, for the first time,
the existence of computable normal numbers and it is the best solution
to date to Borel’s problem on giving examples of normal numbers. Fur-
thermore, Turing’s work is pioneering in the theory of randomness that
emerged 30 years after. These achievements of Turing are largely un-
known because his manuscript remained unpublished until its inclusion
in his Collected Works in 1992. The present note highlights Turing’s ideas
for the construction of normal numbers. Turing’s theorems are included
with a reconstruction of the original proofs.

1 On the Problem of Giving Instances of Normal
Numbers

The property of normality on real numbers, defined by Émile Borel in 1909, is a
form of randomness. A real number is normal to a given integer base if its infinite
expansion is seriously balanced: every block of digits of the same length must
occur with the same limit frequency in the expansion of the number expressed in
that base.1 For example, if a number is normal to base two, each of the digits ‘0’

and ‘1’ occur in the limit, half of the times; each of the blocks ‘00’, ‘01’, ‘10’ and ‘11’

occur one fourth of the times, and so on. A real number that is normal to every
integer base is called absolutely normal, or just normal. Borel proved that almost
all real numbers are normal (that is, the set of normal numbers has Lebesgue
measure 1), and he asked for an explicit example. Since then it has been easier
to conjecture results on normality than to prove them. In particular, it remains
unproved whether the fundamental mathematical constants such as π,

√
2 and e

are normal to some integer base. Although its has been proved that there exist
numbers that are normal to one base but not to another [9,26], no examples
have been given. There are already many particular constructions of numbers

1 An alternative characterization proves that a real number x is normal to a base b if,
and only if, the sequence (xbn)n≥1 is uniformly distributed modulo one [6]. Also, a
real number is normal to a base b if, and only if, its expansion is compressible by no
information lossless finite automaton (injective transducer) [22,18,7].
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that are normal to a given base, but no explicit instance has been proved normal
to two multiplicatively independent bases; see [6] for up to date references.

It is fair to say that Borel’s question on providing an example of a normal
number (normal to every integer base) is still unresolved because the few known
instances are not completely satisfactory: it is desirable to show that a known
irrational number is normal, or, at least, to exhibit the number explicitly. We
would like an example with a simple mathematical definition and such that, in
addition of normality, some extra properties are proved. Considering that com-
putability is the acceptable notion of constructiveness since the 1930s, we would
also like that the number be easily computable. Let us recall that, as defined
by Turing [24], the computable real numbers are those whose expansion in some
integer base can be generated by a mechanical (finitary) method, outputting
each of its digits, one after the other.

There is no evident reason for the normal numbers to have a non-empty in-
tersection with the computable numbers. A measure-theoretic argument is not
enough to see that these two sets intersect: the set of normal numbers in the unit
interval has Lebesgue measure one, but the computable numbers are just count-
able, hence they form a null set (Lebesgue measure 0). Indeed, there are com-
putable normal numbers, and this result should be attributed to Alan Turing.
His manuscript entitled “A note on normal numbers”, presumably written in
1938, presents the best answer to date to Borel’s question: an algorithm that
produces normal numbers. This early proof of existence of computable normal
numbers remained largely unknown because Turing’s manuscript was only pub-
lished in 1997 in his Collected Works, edited by J.L.Britton [25]. The editorial
notes say that the proof given by Turing is inadequate and speculate that the the-
orem could be false. In [1] we reconstructed and completed Turing’s manuscript,
trying to preserve his ideas as accurately as possible and correcting minor errors.

The very first examples of normal numbers were independently given by Henri
Lebesgue and Waclaw Sierpiński2 in 1917 [16,23]. They also lead to computable
instances by giving a computable reformulation of the original constructions [2].
Together with Turing’s algorithm these are the only known constructions of com-
putable normal numbers. In his manuscript, Turing alerts the reader that the pro-
vided examples of normal numbers are not convenient and he explicitly says that
one would like that the expansion of such numbers be actually exhibited. From
his wording we suppose that he was aware of the problem that the n-th digit in
the expansion of a number output by his algorthm is defined by exponentially
many operations in n. Actually, a literal reading of Turing’s algorithm yields that
at most simple-exponentially many operations suffice. Our reconstruction wors-
ens this amount to double-exponentially many, due to a modification we had to
introduce in one expression that Turing wrote without a proof (see Section 2.2).
A theorem of Strauss [27] asserts that normal numbers computable in simple ex-
ponential time do exits, but this existential result yields no specific instances.

2 Both published their works in the same journal issue, but Lebesgue’s dates back
to 1909, immediately after Borel’s question.
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There are two other published constructions of normal numbers, one due
to W.M.Schmidt in 1962 [26], the other to M.B.Levin in 1979 [17], but it is
still unproved whether they yield computable numbers. Bugeaud in [5] demon-
strated the existence of Liouville numbers that are normal. It is an open problem
whether there are computable instances. Other non constructive examples of nor-
mal numbers follow from the theory of algorithmic randomness (recent reference
books are [10,20]; for an overview see [11] in this volume). Since randomness
implies normality, the particular real numbers that have been proved random
are, therefore, normal. For instance, Chaitin’s Omega numbers [8], the halting
probabilities of optimal Turing machines with prefix-free domain. But random
numbers are not computable, so Omega numbers are not the desired examples.3

2 Turing’s Construction of Normal Numbers

In his manuscript Turing proves two theorems. Here we discuss the main ideas
and include the proofs in accordance to our reconstruction in [1] of the original.
We intend our curent presentation to be simpler and more readable. Theorem
1 is a computable version of Borel’s fundamental theorem that establishes that
almost all real numbers, in the sense of Lebesgue measure, are normal [3]. The
theorem gives a construction of a set of real numbers as the limit of computably
definable finite approximations. This set has arbitrarily large measure and con-
sists only of normal numbers. This construction is valuable in its own right.

Turing’s Theorem 1. There is a computable function c(k, n) of two integer
variables with values consisting of finite sets of pairs of rational numbers such
that, for each k and n, if Ec(k,n) = (a1, b1)∪(a2, b2)∪...(am, bm) denotes the finite
union of the intervals whose rational endpoints are the pairs given by c(k, n), then
Ec(k,n) is included in Ec(k,n−1) and the measure of Ec(k,n) is greater than 1−1/k.
And for each k, E(k) =

⋂
n Ec(k,n) has measure 1− 1/k and consists entirely of

normal numbers.

In Theorem 2 Turing gives an algorithm to output the expansion of a normal
number in base two. The proof relies on the construction in Theorem 1. The
algorithm is a computable functional: it receives an integer value that acts as a
parameter to control measure, and an infinite sequence ν in base two to be used
as an oracle to possibly determine some digits of the output sequence. When ν
is a computable sequence (Turing puts the sequence of all zeros), the algorithm
yields a computable normal number. With this result Turing is the first one to
prove the existence of computable normal numbers.

Turing’s Theorem 2. There is an algorithm that, given an integer k and an
infinite sequence ν of zeros and ones, produces a normal number α(k, ν) in the
unit interval, expressed in base two, such that in order to write down the first n

3 The family of Omega numbers coincides with the family of random real numbers that
can be approximated by a computable non-decreasing sequence of rationals [14].
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digits of α(k, ν) the algorithm requires at most the first n digits of ν. For a fixed k
these numbers α(k, ν) form a set of measure at least 1− 2/k.

The algorithm can be adapted to intercalate the bits of the input sequence ν
at fixed positions of the output sequence. Thus, one obtains non-computable
normal numbers in each Turing degree.

Notation. For an integer base b ≥ 2, a digit in base b is an element in {0, ..., b−
1}, and a block in base b a finite sequence of digits in base b. |u| is the length of
a block u, and u[i..i+ r − 1] is the inner block of r consecutive digits in a block
u starting at position i, for 1 ≤ i ≤ |u| − r + 1. A block w occurs in a block u
at position i if u[i...i + |w| − 1] = w. The set of all blocks of length r in base
b is denoted by {0, ..., (b− 1)}r. For each real number x in the unit interval we
consider the unique expansion in base b of the form x =

∑∞
i=1 aib

−i, where the
integers 0 ≤ ai < b, and ai < b − 1 infinitely many times. This last condition
over an is introduced to ensure a unique representation of every rational number.
When the base b is fixed, we write x[i..i + r − 1] to denote the inner block of
length r in the expansion of x in base b, starting at position i. We write μ to
denote Lebesgue measure.

Turing uses the following definition of normality, given by Borel in [4] as a
characterising property of normal numbers.

Definition 1 (Normality). For a real number x and an integer base b ≥ 2, the
number of occurrences of a given block w in the first k digits of the expansion of
x in base b is S(x, b, w, k) = #{i : 1 ≤ i ≤ k−|w|+1 and x[i..i+ |w|−1] = w}.
The number x is normal to base b if for every block w, limk→∞

S(x,b,w,k)
k = b−|w|.

If x is normal to every base b ≥ 2 then we say x is normal.

2.1 Turings’s Theorem 1: A Construction via Finite Approximations

Themain idea in Turing’s Theorem1 is the construction of a set of normal numbers
of arbitrarily largemeasure, via finite approximations. This is done by pruning the
unit interval by stages such that, at the end, one obtains the desired set consist-
ing only of normal numbers. The construction is uniform on a parameter k, whose
only purpose is to establish the measure of the constructed set E(k) to be exactly
1 − 1/k. At each stage n the construction is a finite set of intervals with rational
endpoints determined by a computable function c(k, n). At the initial stage 0, the
setEc(k,0) is the whole unit interval. At stage n, the setEc(k,n) is the finite approx-
imation to E(k) that results from removing from Ec(k,n−1) the points that are not
candidates to be normal, according to the inspection of an initial segment of their
expansions. At the end of this infinite process all rational numbers are discarded,
because of their periodic structure. All irrational numbers with an unbalanced ex-
pansion are discarded. But also many normal numbers may be discarded, because
their initial segments remain unbalanced for too long.

The construction covers all initial segment sizes, all bases, and all blocks
by increasing computable functions of the stage n. And it has a decreasing
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bound on the acceptable discrepancy between the actual number of blocks in
the inspected initial segments and the perfect number of blocks expected by the
property of normality. These functions (initial segment size, base, block length
and discrepancy) are such that, at each stage n, the set of discarded numbers has
a small measure. The set E(k), obtained in the limit of the construction, is the
countable intersection of the sets Ec(k,n) and consists just of normal numbers.

The proof of Theorem 1 depends on a constructive version of the strong law
of large numbers: for each base there are a few blocks with too many or too few
occurrences of any given shorter block. The expected number of occurrences of
a given digit in a block of length k is k/b plus or minus a small fraction of k. An
upper bound for the number of blocks of length k having the expected occur-
rences of a given digit is proved in Hardy and Wright’s book4 [12], Theorem 148
(also in many books as [6,13,15]).

Definition 2. The number of blocks of length k in base b where a given block of
r digits occurs exactly i times is pb,r(k, i).

In particular, the number of blocks of length k with exactly i occurrences of a

given digit is pb,1(k, i) =

(
k
i

)

(b− 1)k−i.

Lemma 1. Fix a base b ≥ 2 and a block length k > 6b. For every real number ε

such that 6/k ≤ ε ≤ 1/b,
∑

i: |i−k/b|≥εk

pb,1(k, i) < 2 bke−bε2k/6.

Turing extends this result to count occurrences of blocks instead of digits.
Lemma 2 corresponds to our reconstruction in [1] where we give the full proof.
The upper bound used by Turing in his manuscript is smaller but unproved.

Lemma 2. Let base b ≥ 2 and and let k and r be block lengths such that k > r.
For every real number ε such that 6/�k/r� ≤ ε ≤ 1/br,

∑

i: |i−k/br |≥εk

pb,r(k, i) < 2 bk+2r−2r e−brε2k/6r .

Lemma 2 provides a lower bound for the measure of the set of real numbers that
are candidates to be normal based upon inspection of an initial segment of their
expansion in finitely bases. In the following we define A(ε, T, L, k) as the set of
real numbers such that their initial segment of size k in each base up to T has
a discrepancy of frequency below ε for each block of length up to L.

Definition 3. For a real value ε and integer values T , L and k, let

A(ε, T, L, k) =
⋂

2≤b≤T

⋂

1≤r≤L

⋂

w∈{0,...,b−1}r

{x ∈ (0, 1) : |S(x, b, w, k)− k/br| < εk}.

Observe that A(ε, T, L, k) is a finite union of intervals with rational endpoints.

4 Since the first edition of Introduction to the Theory of Numbers was in 1938 we
suppose the material was taught by G.H.Hardy in King’s College Cambridge at the
time Turing was a student.
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Proposition 1. If 6/�k/L� ≤ε ≤ 1/TL, μA(ε, T, L, k) ≥ 1−2L T 3L−1e−ε2k/3L.

Proof. By Definition 3, the complement of A(ε, T, L, k) in the unit interval is

A(ε, T, L, k)=
⋃

2≤b≤T

⋃

1≤r≤L

⋃

w∈{0,...,b−1}r

B(ε, b, w, k), where the setB(ε, b, w, k) =

{x ∈ (0, 1) : |S(x, b, w, k)− k/br| ≥ εk}. Observe that if a number x belongs to
B(ε, b, w, k) then so does each y such that x[1..k] = y[1..k]. Then, the interval
[0.x[1..k]000..., 0.x[1..k](b−1)(b−1)(b−1)...], which has measure b−k, is included
in B(ε, b, w, k). Recall that pb,r(k, i) (cf. Definition 2) is the number of different
blocks of length k in which a given block of length r occurs exactly i times. Let-

ting the block length r = |w| we have μB(ε, b, w, k) ≤ b−k
∑

i: |i−k/br |≥εk

pb,r(i, k).

Applying Lemma 2, μB(ε, b, w, k) < 2 b2r−2r e−brε2k/6r . Since 1 ≤ r ≤ L,
2r/L ≤ 2 ≤ br. Then, ε2k/3L ≤ brε2k/6r. This gives a uniform upper bound

μB(ε, w, b, k) < 2 T 2L−2L e−ε2k/3L for all b, r, w such that 2 ≤ b ≤ T , 1 ≤ r ≤ L

and w ∈ {0, ..., b−1}r. Thus, μA(ε, T, L, k) ≥
∑

2≤b≤T

∑

1≤r≤L

∑

w∈{0,...,b−1}r

μB(ε, b, w, k).

In the third sum there are br many blocks w. Using
∑

2≤b≤T

∑
1≤r≤L br =

∑
2≤b≤T

bL+1−1
b−1 ≤ TL+1, conclude μA(ε, T, L, k) < 2L T 3L−1e−ε2k/3L. The proof

is completed by taking the complement.

Turing defines the sets Ak as particular instances of the sets A(ε, T, L, k) where
ε, T and L are computable functions of the initial segment size k such that
ε(k) goes to 0 as k increases, and T (k), L(k) are increasing in k. Turing chose
the base T (k) to grow sub-linearly in k, and the block length L(k) to grow
sub-logarithmically in k, which would yield the maximum discrepancy ε(k) (ac-
cording to the bound of Lemma 1). Other assignments are possible.

Definition 4. Let Ak = A(ε, T, L, k) for L =
√
ln k/4, T = eL and ε = 1/TL.

Proposition 2. There is k0 such that for all k ≥ k0, μAk ≥ 1− 1/k(k − 1).

Proof. By Definition 4, L =
√
ln k/4, T = eL and ε = 1/TL. Assume k ≥ 2.

Then, 6/�k/L� ≤ε. By Proposition 1, μAk ≥ 1 − 2L T 3L−1e−ε2k/3L. To obtain

μAk ≥ 1 − 1/k(k − 1) it suffices to show 2LT 3L−1k2 ≤ eε
2k/3L, which can be

proved to hold for any k ≥ 1.

From now on let k0 be the value established in Proposition 2. Turing recursively
defines the set Ec(k,n) as a subset of Ak with measure exactly 1−1/k+1/(k+n).

Definition 5. Let c(k, n) be the function of two integer variables with values
in finite sets of pairs of rational numbers such that, for each k and n, Ec(k,n) =
(a1, b1) ∪ (a2, b2) ∪ ...(am, bm) denotes the finite union of the intervals whose
rational endpoints are given by the pairs in the set c(k, n). For any k ≥ k0 let
Ec(k,0) = (0, 1) and Ec(k,n+1) = Ak+n+1 ∩ Ec(k,n) ∩ (βn, 1) where (βn, 1) is an
interval such that μEc(k,n+1) = 1− 1/k + 1/(k + n+ 1).
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The βn above necessarily exists, it is unique, and it is a rational number com-
putable from the two other sets in the definition. Both are a union of finitely
many intervals with rational endpoints, so their respective measure are com-
putable, and they are big enough.

Proof of Turing’s Theorem 1. We first prove that
⋂

k≥k0
Ak contains only nor-

mal numbers. By way of contradiction assume x ∈ ⋂
k≥k0

Ak and x is not normal

to base b. Then, limk→∞
S(x,b,w,k)

k 
= 1
br for some block w of length r. So, there is

δ > 0 and there are infinitely many values k such that |S(x, b, w, k)− k/br| > kδ.
Let T (k), L(k) and ε(k) be the assignments of Definition 4 and fix k1 ≥ k0 large
enough such that T (k1) ≥ b, L(k1) ≥ r and ε(k1) ≤ δ. This is always possible be-
cause T (k) and L(k) are increasing in k, and ε(k) goes to 0 as k increases. Then,
for each k ≥ k1, x ∈ Ak and by Definition 3, |S(x, b, w, k)− k/br| < k ε(k) ≤ kδ,
a contradiction. E(k) ⊆ ⋂

i≥k Ai for k ≥ k0; therefore, all real numbers in E(k)
are normal. Since μEc(k,n) = 1− 1/k + 1/(k + n), μE(k) = limn→∞ μEc(k,n) =
1− 1/k. This completes the proof.

2.2 Turing’s Theorem 2: An Algorithm to Output Normal Numbers

Turing’s algorithm is uniform in the parameter k and it receives as input an
infinite sequence ν of zeros and ones. The algorithm works by stages. The main
idea is to split the unit interval by halves, successively. It starts with the whole
unit interval and at each stage it chooses either the left half or the right half
of the current interval. The sequence α(k, ν) of zeros and ones output by the
algorithm is the trace of the left/right selection at each stage. The invariant
condition of the algorithm is that the intersection of the current interval with
the set E(k) of normal numbers of Theorem 1 has positive measure. Since Ec(k,n)

is the finite approximation of E(k) at stage n, the algorithm chooses the half of
the current interval whose intersection with Ec(k,n) reaches a minimum threshold
of measure which avoids running out of measure at any later stage. In case both
halves reach this minimum, the algorithm uses the n-th symbol of the input
sequence ν to decide. The chosen intervals at successive stages are nested and
their measures converge to zero; therefore, their intersection contains exactly one
number. This is the sequence α(k, ν) output by the algorithm. The algorithm is
correct if the number denoted by α(k, ν) is normal to base two. This is proved
by induction on the stage n, the only non obvious part is the verification of the
invariant condition.

Each sequence output by the algorithm has an explicit convergence to nor-
mality: in the initial segment of length � in each base up to base T (�), all blocks
of length up to L(�) occur with the expected frequency plus or minus at most

ε(�), where L(�) =
√
ln �/4, T (�) = eL and ε(�) = e−L2

= k−1/16.
The time complexity of the algorithm is the number of needed operations

to produce the n-th digit of the output sequence α(k, ν). This just requires to
compute, at each stage n, the measure of the intersection of the current interval
with the set Ec(k,n). Turing gives no hints on properties of the sets Ec(k,n)

that could allow for a fast calculation. The naive way does the combinatorial
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construction of Ec(k,n) in a number of operations exponential in n. Turing’s
algorithm verbatim would have simple-exponential time complexity, but we have
been unable to verify its correctness. In our reconstruction in [1] the number of
intervals we consider in Ec(k,n) is exponentially larger than in Turing’s literal
formulation, so we end up with double-exponential time complexity.

Proof of Turing’s Theorem 2. Let k be the integer parameter and ν the input
infinite sequence of zeros and ones. We write α to denote the output sequence,
α(i) for its digit in position i. Similarly for ν. Redefine the computable function
c(k, n) of Theorem 1 as follows. Assuming k is big enough, let Ec(k,0) = (0, 1)
and for n > 0, Ec(k,n) = Ak22n+1 ∩Ec(k,n−1)∩ (βn, 1), where (βn, 1) is an interval
such that μEc(k,n) = 1− 1/k + 1/k22n+1. Here is the algorithm:

Start with I0 = (0, 1). At stage n > 0,
Split the interval In−1 = (an−1, bn−1) into two halves

I0n = (an−1,
an−1+bn−1

2 ) and I1n = (an−1+bn−1

2 , bn−1).
If μ(Ec(k,n) ∩ I0n) > 1/k22n and μ(Ec(k,n) ∩ I1n) > 1/k22n then

let α(n) = ν(n) and In = I
ν(n)
n .

Else if μ(Ec(k,n) ∩ I1n) ≤ 1/k22n then

let In = I0n and α(n) = 0.
Else, let In = I1n and α(n) = 1.

To show that α is normal, we prove α ∈ E(k) =
⋂

n Ec(k,n) by induction on n.
For n = 0, Ec(k,0) = (0, 1); so, μ(Ec(k,n) ∩ I0) = 1 > 1/k. For n > 0, assume the
inductive hypothesis μ(Ec(k,n) ∩ In) >1/k22n. Since the sets Ec(k,n) are nested

Ec(k,n+1) ∩ In =
(
Ec(k,n) ∩ In

) \ ((
Ec(k,n) \ Ec(k,n+1)

) ∩ In
)
.

So, μ(Ec(k,n+1) ∩ In) = μ(Ec(k,n) ∩ In) − μ(
(
Ec(k,n) \ Ec(k,n+1)

) ∩ In). Then,
μ(Ec(k,n+1) ∩ In) ≥ μ(Ec(k,n) ∩ In) − μ(Ec(k,n) \ Ec(k,n+1)). Using the equality

μ(Ec(k,n) \ Ec(k,n+1)) = 1/k22n+1 − 1/k22(n+1)+1 and the inductive hypothesis,

we obtain μ(Ec(k,n+1) ∩ In) > 1/k22n− (1/k22n+1− 1/k22n+3) > 2/k22(n+1).
It is impossible that both μ(Ec(k,n+1)∩I0n+1) and μ(Ec(k,n+1)∩I1n+1) be less than

or equal to 1/k22(n+1). At least one of the sets Ec(k,n+1) ∩ Iin+1, for i ∈ {0, 1},
has measure greater than 1/k22(n+1). The algorithm picks as In+1 the set Iin+1

which fulfills this condition. In case both verify it, the oracle is used to choose
left or right. By construction, the expansion of each real number in Ec(k,n) ∩ In
starts with α(0) α(1)...α(n).

We now prove that for a fixed k, the set of output numbers α(k, ν) for all
possible inputs ν has measure at least 1 − 2/k. Turing bounds the measure of
the unqualified intervals up to stage n, as the n first bits of the sequence ν run
through all possibilities. Let Im =

(
m

2n+1 ,
m+1
2n+1

)
, for m = 0, 1, ..., 2n+1 − 1. The

algorithm discards the interval Im when μ(Ec(k,n) ∩ Im) ≤ 1/k22n. The set of
intervals that are not discarded is recursively defined as follows. Let M(k, 0) =
(0, 1) and for n > 0, let M(k, n+ 1) be the union of the intervals Im such that
Im ⊆ M(k, n) and μ(Ec(k,n) ∩ Im)>1/k22n. Then, μ(E(k) ∩M(k, n+ 1)) equals

μ(E(k) ∩M(k, n))−
2n−1∑

m=0

μ(E(k) ∩ (M(k, n) \M(k, n+ 1)) ∩
(
m

2n
,
m+ 1

2n

)

).
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Each term in the sum is at most 1/k22n. Therefore, μ(E(k) ∩ M(k, n + 1)) ≥
μ(E(k) ∩ M(k, n)) − 1/k2n. Applying this inequality recursively n times, we
get μ(E(k) ∩M(k, n+ 1)) ≥ μ(E(k) ∩M(k, 1))− 1/k

∑n
i=1 1/2

n. Finally, since
Ec(k,0) = (0, 1) and k ≥ 2, M(k, 1) = (0, 1

2 ) ∪ (12 , 1); so, E(k) ∩M(k, 1) = E(k).
Then, μ(E(k) ∩ ⋂

n M(k, n)) > μE(k) − 1/k. Using that μE(k) = 1 − 1/k,
conclude that E(k) ∩⋂

n M(k, n) has measure at least 1− 2/k.

3 Towards the Theory of Algorithmic Randomness

Turing’s manuscript conveys the impression that he had the insight, ahead of
his time, that traditional mathematical concepts specified by finitely definable
approximations, such as measure or continuity, could be made computational.
This point of view has developed under the general name of effective mathemat-
ics, a part of which is algorithmic randomness. From the modern perspective,
Turing’s construction of the set of normal numbers in Theorem 1, done via finite
approximations, is an instance of a fundamental entity in the theory of algorith-
mic randomness: a Martin-Löf test 5 [19]. Intuitively, a real number is random
when when it exhibits the almost-everywhere behavior of all reals, for example
its expansion has no predictable regularities. A random real number must pass
every test of these properties. Martin-Löf had the idea to focus just in properties
definable in terms of computability: a test for randomness is a uniformly com-
putably enumerable sequence of sets whose measure converges to zero. A real
number is random if it is covered by no such test. That is to say that it has
the almost-everywhere property of avoiding the measure-zero intersection. This
definition turned out to be equivalent to the definition of randomness in terms
of description complexity [8]. The equivalence between the two been taken as a
sign of robustness of the defined notion of randomness.

Definition 6. 1. A Martin-Löf randomness test, hereafter ML-test, is a uni-
formly computably enumerable sequence (Vi)i≥0 of sets of intervals with rational
endpoints such that, for each i, μVi ≤ 2−i.
2. A real number x is random if for every ML-test (Vi)i≥0, x 
∈ ⋂

i≥0 Vi.

Turing’s set E(k) of Theorem 1 leads immediately to a ML-test6. Hence, it
provides a direct proof that randomness implies normality.

Corollary 1. The sequence (Vk)k≥0 = ((0, 1) \ E(2k))k≥0 is a ML-test.

Proof. By Theorem 1, E(k) =
⋂

n≥1 Ec(k,n), where c(k, n) is computable and
for each k and n, Ec(k,n) is a finite set of intervals with rational endpoints.
So, the complement of each Ec(k,n) is also a finite set of intervals with rational

5 Martin-Löf presented the test in terms of sequences of zeros and ones. We give here
an alternative formulation in terms of sets of intervals with rational endpoints.

6 In fact, Theorem 1 yields a Schnorr test [21]. This is a ML-test where µVi is com-
putable uniformly in i. The notion is unchanged if we, instead, let a Schnorr test be
a ML-test such that µVi = 2−i, for each i ≥ 0.
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endpoints. Then, (0, 1) \E(k) =
⋃

n≥1(0, 1) \Ec(k,n) is computably enumerable.
Since Turing’s construction is uniform in the parameter k, ((0, 1) \ E(k))k≥0 is
uniformly computably enumerable. Finally, since the measure of E(k) is 1−1/k,
μ((0, 1) \ E(k)) = 1/k. Thus, (Vk)k≥0 = ((0, 1) \ E(2k))k≥0 is a ML-test.

Corollary 2. Randomness implies normality.

Proof. If x is not normal then, by Theorem 1, x belongs to no set E(k), for
any k. So, x ∈ ⋂

k≥0(0, 1) \ E(k). By Corollary 1, (Vk)k≥0 = ((0, 1) \ E(2k))k≥0

is a ML-test. Hence, x ∈ ⋂
k≥0 Vk; therefore, x is not random.
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