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1. Introduction

Fix a finite alphabet A and write |A| for its cardinality. A word is a finite sequence 
of symbols in the alphabet. A rotation is the operation that moves the final symbol of a 
word to the first position while shifting all other symbols to the next position, or it is the 
composition of this operation with itself an arbitrary number of times. A circular word, 
or necklace, is the equivalence class of a word under rotations. In this note we introduce 
perfect necklaces.

Definition 1. A necklace is (k, n)-perfect if it has length n|A|k and each word of length k
occurs exactly n times at positions which are different modulo n for any convention on 
the starting point. A necklace is perfect if it is (k, k)-perfect for some k.

Perfect necklaces are a variant of the celebrated de Bruijn necklaces [10]. Recall that 
a de Bruijn necklace of order k in alphabet A has length |A|k and each word of length k

occurs in it exactly once. Thus, our (k, 1)-perfect necklaces coincide with the de Bruijn 
necklaces of order k. For a supreme presentation of de Bruijn necklaces, including a 
historic account of their discovery and rediscovery, see [5]. Observe that a necklace of 
length k|A|k admits k possible decompositions into |A|k consecutive (non-overlapping) 
words of length k. Hence, a necklace is (k, k)-perfect if and only if it has length k|A|k
and each word of length k occurs exactly once in each of the k possible decompositions.

For each k and n, we give a characterization of (k, n)-perfect necklaces in terms of 
Eulerian circuits in appropriate graphs (Corollary 14). We give a closed formula for the 
number of (k, n)-perfect necklaces (Theorem 20). These are the most elaborate results 
in this work.

We show that each arithmetic sequence with difference coprime with the alphabet 
size induces a perfect necklace (Theorem 5). In particular, the concatenation of all words 
of the same length in lexicographic order yields a perfect necklace (Corollary 6). This 
provides a gracious instance of a perfect necklace for any word length.

The combinatorial properties of the concatenation of all words of the same length 
in lexicographic order were, as far as we know, considered first by É. Barbier [3,2] (see 
also [1]). Later Champernowne [8] considered them in his construction of a real number 
normal to base 10, a property defined by Émile Borel [6]. Champernowne worked with 
alphabet A = {0, 1, . . . , 9} and for each k, he bounded the number of occurrences of 
each word of length up to k in the concatenation of all words of length k in lexicographic 
order. But neither Barbier nor Champernowne mentioned that each word of length k

occurs in this sequence exactly k times, once in each of the k different shifts.

2. Perfect necklaces

Notation We write A∗ for the set of all words, and Ak for the set of all words of length k. 
The length of a word w is denoted with |w| and the positions in w are numbered from 0
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to |w| −1. We write w(i) to denote the symbol in the i-th position of w. Let θ : A∗ → A∗

be the shift operator, such that for each position i, (θw)(i) = w((i + 1) mod |s|). That 
is, the shift operator is defined with the convention of periodicity. We let θn denote 
the application of the shift n times to the right, and with θ−n, n times to the left. As 
already stated, a necklace is the equivalence class of a word under rotations. To denote a 
necklace we write [w] where w is any of the words in the equivalence class. For example, 
if A = {0, 1},

[000] contains a single word 000, because for every n, θn(000) = 000.
[110] contains three words θ0(110) = 110, θ1(110) = 101 and θ2(110) = 011.

Example 2. Let A = {0, 1}. We add spaces in the examples just for readability.
For words of length 2 there are just two perfect necklaces:

[00 01 10 11],
[00 10 01 11].

This is a perfect necklace for word length 3:
[000 110 101 111 001 010 011 100].

The following are not perfect,
[00 01 11 10],
[000 101 110 111 010 001 011 100].

The so-called Gray numbers are not perfect, for instance,
[000 001 011 010 110 111 101 100].

2.1. Each ordered necklace is perfect

Definition 3. For an ordered alphabet A and a positive integer k, the k-ordered necklace
has length k|A|k and it is obtained by the concatenation of all words of length k in 
lexicographic order.

For A = {0, 1} the following are the ordered necklaces for k equal to 1, 2 and 3 respec-
tively:

[01],
[00 01 10 11],
[000 001 010 011 100 101 110 111].
We will prove that for every word length, the ordered necklace is perfect. We say that 

a bijection σ : Ak → Ak is a cycle if for each w ∈ Ak the set {σj(w) : 0 ≤ j < |A|k}
equals Ak. For a word w we write w(i . . . j) to denote the subsequence of w from position 
i to j.

Lemma 4. Let A be a finite alphabet, σ : Ak → Ak a cycle and v any word in Ak. Let 
s = σ0(v)σ1(v) . . .σ|A|k−1(v). The necklace [s] is perfect if and only if for every ℓ such 
that 0 ≤ ℓ < k, for every x ∈ Aℓ and every y ∈ Ak−ℓ, there is a unique w ∈ Ak such 
that w(k − ℓ . . . k − 1) = x and (σ(w))(0 . . . k − ℓ − 1) = y.
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Proof. Assume [s] is (k, k)-perfect. Take ℓ such that 0 ≤ ℓ < k, x ∈ Aℓ and y ∈ Ak−ℓ. 
Consider θ−ℓs, the (−ℓ)-th shift of s. Since [s] is (k, k)-perfect, xy occurs exactly once 
in the decomposition of θ−ℓs in consecutive words of length k. Thus, there is a unique 
word w in the decomposition of s in consecutive words of length k whose last ℓ symbols 
are equal to x and whose first k − ℓ symbols are equal to y. Conversely, suppose [s] is 
not (k, k)-perfect. Then, there is some ℓ, 0 ≤ ℓ < k, such that the decomposition of 
θ−ℓ(s) contains two equal words of length k. This contradicts that for every x ∈ Aℓ

and every y ∈ Ak−ℓ, there is a unique w ∈ Ak such that w(k − ℓ . . . k − 1) = x and 
(σ(w))(0 . . . k − ℓ − 1) = y. ✷

Theorem 5. Consider the alphabet A = {0, . . . , b −1} where b is an integer greater than or 
equal to 2, a word length k and a positive integer r coprime with b. Identify the elements 
of Ak with the set of integers modulo bk according to representation in base b. Define 
the word of length kbk by the juxtaposition of the elements of Ak corresponding to the 
arithmetic sequence 0, r, 2r, . . . , (bk − 1)r. Then the associated necklace is perfect.

Proof. Since r is coprime with b, the addition of r defines a cycle σ : Ak → Ak. We must 
check that it satisfies the condition in Lemma 4. For any w such that w(k−ℓ . . . k−1) = x

we have σ(w)(k − ℓ . . . k − 1) = x̃, where abusing notation x̃ = x + r mod bℓ. Since the 
word yx̃ appears only one time in the cycle, this fixes a unique w = σ−1(yx̃) with 
w(k − ℓ . . . k − 1) = x and (σ(w))(0 . . . k − ℓ − 1) = y. ✷

Corollary 6. For an ordered alphabet A and word length k, the k-ordered necklace is 
perfect.

Proof. Take r = 1 in Theorem 5. ✷

The following proposition is immediate, so we state it without proof.

Proposition 7. The following operators φ : A∗ → A∗ are well defined on necklaces and 
preserve perfection. That is, for every k and n and for every s ∈ A∗, if [s] is (k, n)-perfect 
then [φs] is (k, n)-perfect.

1. The digit permutation operator defined by φ(x0 . . . xkbk−1) = (πx0 . . .πxkbk−1) for 
any permutation π : A → A.

2. The reflection operator φ(x0 . . . xkbk−1) = (xkbk−1 . . . x0).

3. Characterizing and counting perfect necklaces

To characterize and count (k, n)-perfect necklaces in alphabet A we consider Eulerian 
circuits in an appropriate directed graph, defined from A, k and n. Recall that an Eulerian 
circuit in a graph is a path that uses all edges exactly once. A thorough presentation of 

Text

Errata: where it says ``whose first k − \ell symbols are equal to y’’ it should say ``such that the first k-\ell symbols 
of \sigma(w) are equal to y’’.
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the material on graphs that we use in this section can be read in the monographs [12,
19,9]. For the material on combinatorics on words see the books [16,17].

We write m|n when m divides n and we write gcd(m, n) for the maximum common 
divisor between m and n.

Definition 8. Let A be an alphabet with cardinality b, let s be a word length and let n
be a positive integer. We define the astute graph Gs,n as the directed graph, with nbs

nodes, each node is a pair (u, v), where u is in As and v is a number between 0 and n −1. 
There is an edge from (u, v) to (u′, v′) if the last s − 1 symbols from u coincide with the 
first s −1 symbols from u′ and (v+1) modn = v′. Observe that Gs,n is strongly regular 
(all nodes have in-degree and out-degree equal to b) and it is strongly connected (there 
is a path from every node to every other node).

Remark 9. For any alphabet size, the astute graph Gk−1,1 coincides with a de Bruijn 
graph of words of length k − 1; hence, the Eulerian circuits in Gk−1,1 yield exactly the 
de Bruijn necklaces of order k.

Although each Eulerian circuit in the astute graph Gk−1,n gives one (k, n)-perfect 
necklace, each (k, n)-perfect necklace can come from several Eulerian circuits in this 
graph.

3.1. From perfect necklaces to Eulerian circuits

Hereafter, we fix an alphabet A and we write b for its cardinality.

Definition 10. For a necklace of length ℓ, [a0, a2, . . . aℓ−1], we define its period as the 
minimum integer L such that for every non-negative integer j, aj mod ℓ = a(j+L) mod ℓ. 
Notice that the period L always exists, and necessarily L|ℓ. If the period coincides with 
the length we say the necklace is irreducible.

Definition 11. Let m, n be positive integers. We define dm,n =
∏

pαi
i where {pi} is the 

set of primes that divide m, and αi is the exponent of pi in the factorization of n.

Proposition 12. The period L of a (k, n)-perfect necklace satisfies the following:

1. L = jbk for j|n.
2. db,n|j.
3. The corresponding irreducible necklace of length L = jbk is (k, j)-perfect.

Proof. Let [s] be (k, n)-perfect, with s = a0 . . . anbk−1.
1. Since [s] has length nbk, we know L|nbk. Let us verify that bk|L. Since [s] has 

period L, [a0 . . . aL−1] is a necklace where all words of length k occur the same number 
of times. Otherwise, it would be impossible that they occur the same number of times 

Errata: In Definition 10 where it says  a_0, a_2 …  it should say a_0, a_1, a_2 …
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in [s]. If each word of length k occurs j times in [a0 . . . aL−1], then L = jbk. Since jbk|nbk, 
we conclude j|n.

2. The word a0 . . . ak−1 occurs at position 0 in s but also at positions L, 2L, . . . ,
(n/j − 1)L. These positions are of the form qjbk where 0 ≤ q < n/j. These numbers 
must have pairwise different congruences modulo n. Equivalently, the n/j numbers of 
the form rbk, where 0 ≤ q < n/j, are all pairwise different modulo n. This last condition 
holds exactly when gcd(bk, n/j) = 1, which in turn is equivalent to gcd(b, n/j) = 1, 
which is equivalent to db,n|j.

3. As argued in Point 1, in the necklace [a0 . . . aL−1] every word of length k occurs 
the same number of times. If the positions of two occurrences of a given word were 
equal modulo j then they would be equal modulo n, but this is impossible because [s] is 
(k, n)-perfect. ✷

Proposition 13. Let N be a (k, j)-perfect necklace. If n is such that db,n|j|n then the 
necklace of length nbk obtained by repeating N exactly n/j times is (k, n)-perfect.

Proof. Let Ñ be obtained by repeating N exactly n/j times. Then each word of length 
k occurs in Ñ exactly j×n/j = n times. Take a word w of length k and let q1, . . . , qj be 
integers, each between 0 and jbk − 1, be the positions of the occurrences of w in N for 
some convention on the starting point. Then, w occurs in Ñ at positions qi + jbkt, where 
0 ≤ t < n/j. Assume qi1 + jbkt1 ≡ qi2 + jbkt2 (modn). Taking modulo j we conclude 
i1 = i2 because N is (k, j)-perfect. Then we have bkt1 ≡ bkt2 (modn/j). Since db,n|j we 
have gcd(b, n/j) = 1, so t1 ≡ t2 (modn/j), which implies t1 = t2. ✷

Corollary 14. Fix an alphabet of b symbols, with b ≥ 2. Let k and n be positive integers. 
An Eulerian circuit in the astute graph Gk−1,n induces a (k, n)-perfect necklace. Each 
(k, n)-perfect necklace of period jbk corresponds to j different Eulerian circuits in Gk−1,j. 
Therefore, the number of Eulerian circuits in the astute graph Gk−1,n is

e(n) =
∑

db,n|j|n

j p(j),

where p(j) is the number of irreducible (k, j)-perfect necklaces.

3.2. The number of Eulerian circuits in astute graphs

Let G be a directed graph with n nodes. The adjacency matrix of a graph G is the 
matrix A(G) = (ai,j)ni,j=1 where ai,j is the number of edges between node i and node j. 
The characteristic polynomial [9] of a graph G is defined as

P(G;x) = determinant(xI −A(G)),

where I is the identity matrix of dimension n × n.

Errata: where it says  r b^k  it should say  q b^k, and where it says ``are all pairwise different modulo n´´ 
it should say ``are all pairwise different modulo n/j ’’.
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The BEST theorem (for the authors Bruijn, van Aardenne-Ehrenfest, Smith and 
Tutte) gives a product formula for the number of Eulerian circuits in directed graphs.

Lemma 15 (BEST Theorem [12]). Let G be a regular connected graph with n nodes. Let 
v be a node of G and let r(G) be the number of spanning trees oriented towards v. The 
number of Eulerian circuits in G is

r(G) ·
n∏

v=1
(degree(v) − 1)!

Lemma 16 (Hutschenreurther, Proposition 1.4 [9]). Let G be a regular multigraph with 
n nodes and degree b. For any of its nodes, the number of spanning trees r(G) oriented 
to it is

r(G) = 1
n

∂

∂x
P(G;x)|x=b,

where ∂
∂x is the derivative with respect to x.

Given a graph G, its line-graph Γ(G) is a graph such that each node of Γ(G) represents 
an edge of G; and two nodes of Γ(G) are adjacent if and only if their corresponding edges 
share a common node in G.

Lemma 17 ([9]). For any directed graph G, regular and connected,

P(Γ(G);x) = xm−nP(G;x),

where Γ(G) is the line-graph of G, m is the number of edges of G and n is the number 
of nodes of G.

In the next lemma we write λ for the empty word, namely the unique word in A0.

Lemma 18. Let b be any alphabet size, k be a word length, and j be an integer such that 
gcd(b, k)|j|k. Let G0,j be the graph with the set of nodes {(λ, 0), (λ, 1), . . . (λ, j−1)}, with 
b edges from (λ, i) to (λ, i + 1 mod j). Then, P(G0,j ; x) = xj − bj.

Proof. It is easy to check that P(G0,j ; x) = det(xI −A(G0,j)), which is equal to
xj − bj . ✷

Lemma 19. Suppose we have an alphabet of b symbols with b ≥ 2. Let k be a word length 
and j be a positive integer such that gcd(b, k)|j|k. The number of Eulerian circuits in 
the astute graph Gk−1,j is (b!)jbk−1

b−k.
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Proof. We write Γ(G) to denote the line graph of G. Notice that for every positive s and 
for every j, Gs,j = Γ(Gs−1,j). In this proof the value j will remain fixed.

Since Gk−1,j has jbk−1 nodes, each with in-degree b (also out-degree b), by Lemma 15
the number of Eulerian circuits in Gk−1,j is

r(Gk−1,j) ·
jbk−1∏

v=1
(degree(v) − 1)! = r(Gk−1,j) · (b− 1)!jbk−1

.

The rest of the proof is devoted to determine r(Gk−1,j) using Lemma 16.

P(Gk−1,j ;x) = P(Γ(Gk−2,j);x)

= xbk−1j−bk−2jP(Gk−2,j ;x)

= xj(bk−1−bk−2)P(Γ(Gk−3,j);x)

= xj(bk−1−bk−2)xj(bk−2−bk−3)P(Gk−3,j ;x)

= xj(bk−1−bk−3)P(Gk−3,j ;x)

= . . .

= xj(bk−1−b0)P(G0,j ;x)

= xj(bk−1−1)(xj − bj).
∂

∂x
P(Gk−1,j ;x) = ∂

∂x
xj(bk−1−1)(xj − bj)

= (jbk−1 − j)xjbk−1−j−1(xj − bj) + xjbk−1−jjxj−1.

∂

∂x
P(Gk−1,j ;x)|x=b = bjb

k−1−jjbj−1.

Finally, by Lemma 16,

r(Gk−1,j) = 1
jbk−1

∂

∂x
P(Gk−1,j ;x)|x=b = 1

jbk−1 b
jbk−1−jjbj−1 = bjb

k−1−k.

Hence, the total number Eulerian circuits in Gk−1,j is

bjb
k−1−k((b− 1)!)jbk−1 = b!jbk−1

b−k. ✷

3.3. The number of perfect necklaces

Recall that by Definition 11, db,n =
∏

pαi
i , where {pi} is the set of primes that divide 

both b and n, and αi is the exponent of pi in the factorization of n. The Euler totient 
function ϕ(n) counts the positive integers less than or equal to n that are relatively 
prime to n.
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Theorem 20. Suppose we have an alphabet of b symbols, with b ≥ 2. Let k and n be 
positive integers. The number of (k, n)-perfect necklaces is

1
n

∑

db,n|j|n

e(j)ϕ(n/j)

where e(j) = (b!)jbk−1
b−k is the number of Eulerian circuits in graph Gk−1,j and ϕ is 

Euler’s totient function.

Proof. Let p(j) be the number of irreducible (k, j)-perfect necklaces. Then, the number 
of (k, n)-perfect necklaces is

∑

db,n|j|n

p(j).

Let e(j) be the number of Eulerian circuits in the astute graph Gk−1,j. By Corollary 14, 
for each j such that db,n|j|n,

e(j) =
∑

db,n|ℓ|j

ℓ p(ℓ).

Notice that db,n = db,j . For a lighter notation, in the rest of the proof we abbreviate db,n
as just d. Then, writing each such j as a multiple of d, we obtain that for each m such 
that md|n,

e(md) =
∑

i|m

id p(id).

Let g(m) = e(md) and f(m) = p(md) md. Writing µ for the Möbius function we obtain

f(m) =
∑

i|m

µ(m/i) g(i).

p(md) md =
∑

i|m

µ(m/i) e(id).

p(md) = 1
md

∑

i|m

µ(m/i) e(id).

∑

d|j|n

p(j) =
∑

m|n/d

1
md

∑

i|m

µ(m/i) e(id)

=
∑

i|n/d

e(id)
∑

i|m|n/d

1
md

µ(m/i)

=
∑

d|j|n

e(j)
∑

j|q|n

1
q
µ(q/j).
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Applying the Möbius inversion,

∑

j|q|n

1
q
µ(q/j) =

∑

r|n/j

1
jr

µ(r) = 1
n

∑

r|n/j

n/j

r
µ(r) = 1

n
ϕ(n/j).

We have used the identity ϕ(m) =
∑

r|m
m
r µ(r), which is simply the inversion of m =∑

r|m ϕ(r). By Lemma 19, the number e(j) of Eulerian circuits in the astute graph Gk−1,j

is (b!)jbk−1
b−k. ✷

4. Finite-size tests and perfect necklaces

“Given a finite family of tests for randomness there is an infinite sequence x which 
passes all of them, but x will be rejected by a new more refined test”, proposed Norberto 
Fava to us. Our attempt to formalize this claim led to finite-size tests and perfect periodic 
sequences. The result is summarized in Proposition 21.

Let (X0, X1, . . . ) be a sequence of random variables with values in a given alpha-
bet A with at least two symbols. We say that the sequence is random if the vari-
ables are uniformly distributed in A and mutually independent. To test if a sample 
(x0, . . . , xn−1) ∈ An comes from a random sequence we consider the following finite-size 
hypothesis testing setup. As usual, we write R for the set of real numbers.
(a) The hypothesis

H0 : (X0, X1, . . . ) is random

(b) A test-size k and a test function t : Ak → R. Denote

τ = E0
[
t(X0, . . . , Xk−1)

]
= |A|−k

∑

(y0,...,yk−1)∈Ak

t(y0, . . . , yk−1),

where E0 is the expectation associated with the hypothesis H0.
(c) A function Tn : An → R defined by

Tn(x0, . . . , xn−1) =
∣∣∣
1
n

n−1∑

i=0
t(xi, . . . , xi+k−1) − τ

∣∣∣

with periodic boundary conditions xn+j = xj . Thus, Tn(x0, . . . , xn−1) is the absolute 
difference between the empirical mean of t for the sample and the expected value of t
under H0.
(d) An error ε > 0 and the decision rule

If Tn(x0, . . . , xn−1) > ε then reject the sample (x0, . . . , xn−1) as coming from H0.

In this case we say that the test t rejects the sample (x0, . . . , xn−1).
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This is called a test of size k because rejection is decided as a function of the em-
pirical mean of t, a function of k successive coordinates. Examples of finite-size tests 
include frequency test, block testing, number of runs in a block, longest run of ones in 
a block, etc. There are many (non-finite) tests, like the discrete Fourier transform test, 
the Kolmogorov–Smirnov test and many others. These tests also use some function T̃n

of the sample, not necessarily based on the empirical mean of a t. The common feature 
is the use of the distribution of T̃n(X1, . . . , Xn) under H0 to compute the probability of 
rejection when H0 holds.

Tests for H0 are used to check if a sequence of numbers produced by a random number 
generator can be considered random; see Knuth [13] and the battery of tests proposed 
by L’Ecuyer and Simard [14]. A nice account of the history of hypothesis testing is given 
by Lehmann [15].

In the usual hypotheses testing the sample-size n is kept fixed. Assuming H0
and repeating the test j times with independent data, the proportion of times that 
the hypothesis is rejected converges as j → ∞ to the probability under H0 that 
Tn(X0, . . . , Xn−1) > ε. Instead, we will take one infinite sequence, test its first n el-
ements, record rejection for each n and let n → ∞.

Let x = (x0, x1, . . . ) be an infinite sequence of symbols in A. Fix a test-size k, a 
test-function t of size k and let Tn be given by (c). We say that x passes the test t if

lim
n→∞

Tn(x0, . . . , xn−1) = 0. (∗)

That is, for each ε > 0 there is an n(x, ε) such that for all n > n(x, ε) we have

Tn(x0, . . . , xn−1) ≤ ε.

In other words, fixing the test function t of size k and the error ε, the test t rejects 
(x0, . . . , xn−1) for at most a finite number of n’s. When (∗) does not hold we say that t
rejects x.

The random sequence (X0, X1, . . . ) of independently identically distributed uniform 
random variables in A passes any finite-size test t almost surely. This is the same as 
saying that the set of real numbers in [0, 1] whose |A|-ary representation passes all finite 
tests has Lebesgue measure 1.

We say that the infinite sequence x is (k, m)-perfect if x is periodic with period m|A|k

and the necklace [x0 . . . xm|A|k−1] is (k, m)-perfect. Recall that (k, 1)-perfect necklaces 
are exactly the de Bruijn necklaces of order k, so the following proposition considers 
infinite de Bruijn sequences of order k as a special case: if x is de Bruijn of order k there 
is a test of size k + 1 that rejects x.

Proposition 21. Assume alphabet A has at least two symbols. Let m be a positive integer 
and let the infinite sequence x be (k, m)-perfect. Then, the following holds:
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1. The infinite sequence x passes every test of size j ≤ k.
2. For each h > k + log|A| m there exists a test t of size h such that t rejects x.

Proof. Let b be the number of symbols in A. Thus, the period of x has length mbk.
1. Let t be a test of size k. For any positive integer ℓ, by periodicity,

Tmbkℓ =
∣∣∣

1
mbkℓ

mbkℓ−1∑

i=0
t(xi, . . . , xi+k−1) − τ

∣∣∣ =
∣∣∣

ℓ

mbkℓ

mbk−1∑

i=0
t(xi, . . . , xi+k−1) − τ

∣∣∣ = 0

because x is (k, m)-perfect and the definition of τ in (b). Now take j ∈ {0, . . . , mbk − 1}
and use the above identity to get

(mbkℓ + j)Tmbkℓ+j = j Tj ≤ j max |t− τ | ≤ mbk max |t− τ |,

where max |t − τ | = maxz0,...,zk−1 |t(z0, . . . , zk−1) − τ |. Hence,

Tmbkℓ+j ≤
mbk

mbkℓ + j
max |t− τ | ≤ 1

ℓ
max |t− τ | −→

ℓ→∞
0.

This shows that x passes t. Let t̃ be a test of size j < k. To see that x also passes t̃ define 
t of size k as

t(x0, . . . , xk−1) = t̃(x0, . . . , xj−1).

2. Let h be an integer such that h > k + logb m. Then bh > mbk and there are more 
words w = w0 . . . wh−1 ∈ Ah than the possible mbk places to start. Hence, there is at 
least one word w̃ of length h not present in the sequence x and the test t consisting on 
the indicator of w̃ rejects x. ✷

Finite tests and normal numbers As stated by Borel (see [7]), a real number is simply 
normal to base bk exactly when each block of length k occurs in the b-ary expansion of 
x with asymptotic frequency b−k. Hence, a real number is simply normal to base bk if 
its b-ary expansion passes all tests up to size k. We have obtained that for each k and 
b, and for any m, each (k, m)-perfect sequence in alphabet {0, 1, . . . , b − 1} is the b-ary 
expansion of a number that is simply normal to base bk. Borel defines normality to base 
b as simple normality to all bases bk, for every positive integer k. Henceforth, a number 
is normal to base b if its b-ary expansion passes all statistical tests of finite size. Then, 
each instance of a number normal to a given base provides an example of a sequence 
that passes all finite-size tests. Many are known, such as [8,4] and the references in [7].

Infinite tests and algorithmically random sequences Martin-Löf introduced tests defined 
in terms of computability [18], which properly include all tests of finite size. The infinite 
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sequences that pass all those tests are called Martin-Löf random sequences or algorithmi-
cally random sequences. Due to the nature of the definition, the algorithmically random 
sequences can not be computed but some of them can be defined at the first level of 
the Arithmetical Hierarchy [11]. Since for every k and m, each (k, m)-perfect sequence 
is rejected by some Martin-Löf test, (k, m)-perfect sequences are not algorithmically 
random.
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