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Abstract. We introduce two-dimensional periodic arrays that are a variant of the de Bruijn
tori. We call them nested perfect arrays. Instead of asking that every array of a given size has
exactly one occurrence, we partition the positions in congruence classes and we ask exactly
one occurrence in each congruence class. We also ask that this property applies recursively
to each of the subarrays. We give a method to construct nested perfect arrays based on
Pascal triangle matrix modulo 2. For the two-symbol alphabet, and for n being a power of

2, our method yields 2n
2+n−1 different nested perfect arrays allocating all the different n×n

arrays in each congruence class that arises from taking the line number modulo n and the
column number modulo n.
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1. Introduction, definitions and statement of results

An array of size n×n is a periodic array where the line numbers are considered modulo n and
the column numbers are considered modulo n. Here we consider arrays of symbols in a finite
alphabet. The problem of constructing arrays of minimal size that allocate a given family of
smaller arrays goes back to the 1960s, see for instance [9, 15]. The constructions of arrays
where each member of the family occurs exactly once generalize the classical unidimensional
de Bruijn sequences to two dimensional arrays, and they are known as de Bruijn tori or
perfect maps. There has been significant effort in solving the problem of determining the
existence of these arrays for the different subarrays sizes, and in giving construction methods,
for instance the work of [13, 7, 11, 5, 14, 4]. The first achievements focus on arrays of 0s
and 1s. Subsequent work solves the existence problem and the construction problem for
arbitrary alphabets. There is also work on constructions for three dimensional arrays [10].

In this note we introduce a variant of the de Bruijn tori. We call them nested perfect arrays.
Instead of asking that every array of a given size has exactly one occurrence, we partition the
positions in congruence classes and we ask exactly one occurrence in each congruence class.
We also ask that this property applies recursively to the subarrays.

Nested perfect arrays are the two-dimensional version of the work done by the authors in
the unidimensional case, that they call nested perfect necklaces [3]. Their graph theoretic
characterization uses graphs G(n, k) which are the tensor product of the de Bruijn graph of
order n and a simple cycle of length k. The perfect necklaces for blocks length n and k many
congruence classes, called (n, k)-perfect necklaces [1], correspond to the Hamiltonian cycles
in these graphs, which are exactly the Eulerian cycles in G(n − 1, k). Nested (n, k)-perfect
necklaces are recursively defined as the concatenation of b many of nested (n − 1, k)-perfect
necklaces, unless n = 1, where b is the alphabet size. Thus, nested (n, k)-perfect necklaces
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correspond to those Eulerian cycles in G(n − 1, k) which are the concatenation of b many
Hamiltonian cycles. In turn, these Hamiltonian cycles satisfy the nesting property.

Here we present the definition of nested perfect arrays for arbitrary alphabets together with
a method of constructing a large family of them for the binary alphabet. This is based on
the method of constructing nested (n, n)-perfect necklaces, when n is a power of 2 and uses a
simple n× n matrix related to Pascal triangle modulo 2. We require that n be a power of 2.
The construction of nested perfect arrays for n× n matrices and n× n congruence classes is

a tiling of an array of size n2n
2/2 × n2n

2/2 with all the different nested perfect n× n arrays.
The technical challenge is to prove that such a tiling exists and to exhibit it. This is proved in
Theorem 1 and the construction is very efficient. Theorem 2 gives a method of constructing

2n
2+n−1 many nested perfect arrays for for n× n matrices and n× n congruence classes.
The recent book [6] gives properties, constructions, and applications for one dimensional

and two dimensional de Bruijn arrays. The ability to recover efficiently any given subarray
receives special attention. With the exception of those applications where you need exactly
one occurrence of each pattern such as coding, if you solve a problem with a two dimensional
de Bruijn array you can also solve it with a nested perfect array. Locating a position in a
large area given a window in the array and a congruence class can be done in time linear to
the window size, because, as we show in the proof of Theorem 1, it is just to solve a linear
system of equations. Also nested perfect arrays can be used for recovering the surface of
objects by projecting structured-light patterns that are windows of the nested perfect array,
adapting the work in [16].

There are advantages and disadvantages for using nested perfect arrays instead de Bruijn
arrays. A disadvantage is that n must be a power of 2, while in the de Bruijn case it can be
any number. An advantage is that nested perfect arrays have very low discrepancy, which
means that the distribution of symbols and subarrays is close to uniform distribution. This
is a distinctive feature of nested perfect arrays that makes them particularly well suited for
structure-light-patterns.

In the one dimensional case the discrepancy of a sequence is the maximum, among all
substrings of the sequence, of the difference between the number of occurrences of the symbol
that occurs the most and the one that occurs the least. The block-discrepancy of a sequence
is similar, but instead of considering symbols it considers all blocks of a given size, and the
occurrences are computed in the circular sequence. The sequences with the least known
block-discrepancy are the nested perfect necklaces [12, 3]. Discrepancy in two dimensions is
defined similarly: the discrepancy of an array with respect to a size p × q, is the maximum
difference between the number of of occurrences of the p× q matrix that occurs the most and
the one that occurs the least, in all subarrays of the array. Nested perfect arrays, for n × n
matrices and n× n congruence classes, when n is a power of 2, have the distinctive property
of having a very low discrepancy with respect to all square sizes.

1.1. The definition of nested perfect arrays. Along the sequel we number the lines and
columns starting at 0 (instead of starting at 1). For any two-dimensional array A the subarray
of size n × n at position (k, ℓ) is the array made of the lines from k to k + n − 1 and the
columns from ℓ to ℓ+n− 1 where all these indices are taken modulo the number of lines and
columns of A. Note that (0, 0) is the position of the upper left corner of each array because
lines and columns are numbered starting from 0.

A modulo is a pair of positive integers written (p, q). The positions of any given array are
partitioned into pq residue classes according to their respective residue classes modulo p and
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modulo q: Thus, the modulo (1, 1) yields a single class containing all the positions, and the
modulo (2, 2) partitions the positions in four classes.

An array of size n× n occurs at position (k, ℓ) in an array if it is equal to the subarray of
size n× n at position (k, ℓ).

Definition 1 (Perfect array). An array A is perfect for window size s× t and modulo (p, q),
abbreviated (s, t, p, q)-perfect, if each s × t array has exactly one occurrence in A in each
residue class modulo (p, q).

Then, in an (s, t, 1, 1)-perfect array each s × t array has exactly one occurrence. Figure 1
gives an example of a (2, 2, 1, 1)-perfect array and two (2, 2, 2, 2)-perfect arrays. In the
leftmost, each 2 × 2 array occurs exactly once. In the other two, each 2 × 2 array occurs
exactly four times, with one occurrence in each residue class modulo (2, 2).

Definition 2 (Aligned subarray). Given an array A, a subarray of size k× ℓ is aligned if its
position (i, j) in A satisfies that k divides i and ℓ divides j.

Definition 3 (Subdivision). If both k and ℓ divides n, a k× ℓ-subdivision of an array of size
n× n yields kℓ aligned subarrays, each of size n/k × n/ℓ.

Definition 4 (Nested perfect array). Assume a b-symbol alphabet. A perfect array A is nested
for window size s× t and modulo (p, q), abbreviated nested (s, t, p, q)-perfect, if for each k =

0, . . . , s− 1, each aligned subarray of the bkt/2× bkt/2 subdivision of A is (s−k, t, p, q)-perfect.

Notice that (f, g, p, q)-perfect implies (f ′, g′, p, q)-perfect for 1 ≤ f ′ ≤ f and 1 ≤ g′ ≤ g.
The reverse implication may not be true. Definition 4 asks that the subdivisions yields
(s− k, t, p, q)-perfect subarrays instead of (s− k, t− k, p, q)-perfect, as it could be expected.
Our motivation is that we have a construction method that ensures the stronger property.
There are other natural options for the definition of a nested perfect array. For non square
arrays such definitions are not equivalent to each other, but they all coincide for square arrays.
In this work we are interested in the square case.

Consider a (n, n, n, n)-perfect array in the b-symbol alphabet. Its size is nbn
2/2×nbn

2/2 for

n even. For k = 0, . . . , n − 1, each part of its bkn/2 × bkn/2 subdivision has size nbn(n−k)/2 ×
nbn(n−k)/2.

For square arrays the definition of nested perfect arrays can be rephrased as follows.

Definition 5 (Square nested perfect array). Assume a b-symbol alphabet. An (n, n, n, n)-

perfect array is nested if, for k = 1, . . . , n, each aligned subarray of size nbnk/2 × nbnk/2 is
(k, n, n, n)-perfect.

For b = 2 and n = 4: an array A of size 1024× 1024 is a nested (4, 4, 4, 4)-perfect array if

• A is a (4, 4, 4, 4)-perfect array;
• each 256× 256 aligned subarray is a (3, 4, 4, 4)-perfect array;
• each 64× 64 aligned subarray is a (2, 4, 4, 4)-perfect array;
• each 16× 16 aligned subarray is a (1, 4, 4, 4)-perfect array.

The leftmost two arrays in Figure 1 above are not nested perfect: The leftmost one is
not nested because its left upper 2 × 2 subarray has 2 occurrences of the 1 × 2 array [0, 1]
but no occurrence of the 1 × 2 array [0, 0]. The middle array in Figure 1 is not a nested
(2, 2, 2, 2)-perfect array because its left upper 4 × 4 subarray contains more 0s than 1s. The
rightmost array is a nested (2, 2, 2, 2)-perfect array.
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0 1 0 0
0 1 1 1
1 1 1 0
0 0 1 0

(a) Not nested
(2, 2, 1, 1)-perfect

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 0 1 1
1 0 1 0 1 0 1 0
0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1

(b) Not nested
(2, 2, 2, 2)-perfect

0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1
1 0 1 1 1 1 1 0
1 0 1 1 1 0 1 1
1 0 1 1 1 1 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0
1 0 1 1 1 0 1 1

(c) Nested
(2, 2, 2, 2)-perfect

Figure 1. Examples of perfect arrays

Array size for nested (n, n, n, n)-perfect, n = 2d Window size Modulo

(bn×n/2 × n)× (bn×n/2 × n) n× n (n, n)

(bn/2×n/2 × n)× (bn/2×n/2 × n) (n/2)× n (n, n)

(bn/2
2×n/2 × n)× (bn/2

2×n/2 × n) (n/22)× n (n, n)
...

...
...

(b1×n/2 × n)× (b(1×n/2 × n) 1× n (n, n)

Figure 2. Subdivisions sizes and window sizes

1.2. Two theorems. The following is the main result in the present note. It states the
existence of nested perfect arrays of 0s and 1s when all parameters are equal to the same
power of 2.

Theorem 1. For every integer n ⩾ 2 that is a power of 2, there exist nested (n, n, n, n)-perfect
arrays of 0 and 1s.

Our construction method does not yield just one instance, but many. The next result,
Theorem 2, gives the exact number of different instances obtainable with our method.

Theorem 2. There is a construction method that, for each integer n that is a power of 2,

yields 2n
2+n−1 different nested (n, n, n, n)-perfect arrays of 0 and 1s.

We do not know if there are more.

2. Proof of Theorem 1

We assume that the alphabet is the two element field F2 = {0, 1}. We shall use matrices of
elements in F2 = {0, 1}, do matrix multiplication and matrix summation. The component-
wise sum of elements in F2 is denoted by the symbol ⊕. Matrices are named with the
letters M,N,P,Q with sub-indices and super-indices. When we depict a matrix we draw the
surrounding black parenthesis outside. The outcome of the construction in each case is an
array of 0s and 1s obtained by tiling with the above mentioned matrices. We name the arrays
with letters A,B,C and when we draw them we do not put the surrounding black parenthesis
outside.
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We start by defining the following family of matrices.

Definition 6. We give an inductive definition of the matrix Md of elements in F2, of size
2d × 2d, for each d ≥ 0 by

M0 = (1) and Md+1 =

(
Md Md

0 Md

)
.

Thus, the matrices M1 and M2 are

M1 =

(
1 1
0 1

)
and M2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

For every d, the matrix Md is upper triangular, that is (Md)i,j = 0 for 0 ⩽ j < i < 2d. The
following lemma states that the upper part of the matrix Md is the beginning of the Pascal
triangle modulo 2 also known as the Sierpiński triangle. The proof is a simple induction on d
and can be found in [3, Lemma 3].

The matrix Md is almost the one used by M. Levin in [12, Theorem 2] because we have
reversed the order of the columns. The Pascal triangle matrix has been previously used by
H. Fauré [8] for the construction of uniformly distributed sequences of real numbers.

Lemma 1 ([3, Lemma 3]). For all integers d, i, j such that d ⩾ 0 and 0 < i < 2d and
0 ⩽ j < 2d − 1, (Md)i,j = (Md)i−1,j ⊕ (Md)i,j+1.

Proof. To facilitate the review we include the proof already given in [3, Lemma 3]. The proof
is carried out by induction on d. For d = 0, the result is trivially true because there are
no such i and j. For d = 1, the result trivially holds. Suppose that the result holds for
Md and let i, j be integers such that 0 < i < 2d+1 and 0 ≤ j < 2d+1 − 1. If i ̸= 2d and
j ̸= 2d−1, the three entries (Md+1)i,j , (Md+1)i−1,j and (Md+1)i,j+1 lie in the same quarter of
the matrix Md+1 and the result follows from the inductive hypothesis. Otherwise, the result
is a consequences the following facts. For each integer d ≥ 1, the entry (Md)i,j is equal to 1

if either i = 0 or j = 2d − 1 (first row and last column) and it is equal to 0 if i = 2d − 1 or
j = 0 (last row and first column) and (Md)0,0 = (Md)2d−1,2d−1 = 1 (intersection of the two
previous cases). These facts are easily proved by induction on d. □

Bacher and Chapman [2, Theorems 1 and 3] proved that for every non negative integer d
and every integer k such that 1 ≤ k ≤ 2d, every k×k submatrix of Md given by k consecutive
rows and and the last k columns, or by the top k consecutive rows and any consecutive k
columns, is invertible. In case k = 2d this says that the whole matrix Md is invertible. A
proof of this result in more general form appears in Lemmas 2 and 3 in the next section.

Now we define an enumeration of all n× n matrices over F2. Suppose that the integer n is
fixed. Let N0, . . . , N2n2−1

be the enumeration of these matrices defined as follows. Informally,

for 0 ⩽ k < 2n
2
, the matrix Nk is filled by the digits of the binary expansion of k: the most n

significant binary digits are put in the first line, the following n digits are put in the second
line and so on, until the last line.

Definition 7 (Matrices enumeration). Fix a positive integer integer n. We define an enu-
meration N0, . . . , N2n2−1

of all the n × n matrices over F2. Let k be a non-negative integer
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and let an2−1 · · · a0 be its binary expansion (the least significant digit is a0). For each i, j such
that i, j = 0, . . . , n− 1 the (i, j)-entry of the matrix Nk is an2−1−in−j. The (0, 0)-entry of Nk

is thus the first digit an2−1 and the (n− 1, n− 1)-entry is the last digit a0.

For example the enumeration N0, . . . , N15 of the 16 matrices over F2 of size 2× 2 is

( 0 0
0 0 ) , (

0 0
0 1 ) , (

0 0
1 0 ) , (

0 0
1 1 ) , (

0 1
0 0 ) , (

0 1
0 1 ) , (

0 1
1 0 ) , (

0 1
1 1 ) ,

( 1 0
0 0 ) , (

1 0
0 1 ) , (

1 0
1 0 ) , (

1 0
1 1 ) , (

1 1
0 0 ) , (

1 1
0 1 ) , (

1 1
1 0 ) , (

1 1
1 1 )

For any given non negative integer k we consider its binary representation as a sequence
of bits an . . . a0. We denote with even(k) the integer whose binary representation is the
subsequence am . . . a2a0, made of the bits at even positions in the representation of k, so
where m = n in case n is even, otherwise m = n− 1. Similarly, odd(k) is the integer defined
from the subsequence determined by the odd indexes.

Definition 8 (Pascal array). Let d be a positive integer and let n = 2d. We define an array Ad

of size n2n
2/2 × n2n

2/2 over F2 by tiling it with all the n × n matrices over F2. Since there

are 2n
2
such matrices, the total number of placed cells is exactly the size of Ad. For each k

such that 0 ⩽ k < 2n
2
the matrix MdNk is placed in Ad at position (odd(k)n, even(k)n).

Since each matrix Md is upper triangular with 1s on the diagonal then it is invertible. Since
N0, . . . , Nn2−1 is an enumeration of all n × n matrices, then MdN0, . . . ,MdNn2−1 is also an
enumeration of all the n× n matrices, but in a different order. This implies that each n× n
matrix is used exactly once to tile the array Ad.

We illustrate the construction of Ad for d = 1, n = 2. The 2× 2 matrices N0, . . . , N15 are
listed above. The matrices M1Nk for k = 0, . . . , 15 are placed as follows in the array A1:

M1N0 M1N1 M1N4 M1N5

M1N2 M1N3 M1N6 M1N7

M1N8 M1N9 M1N12 M1N13

M1N10 M1N11 M1N14 M1N15

Since each matrix M1Nk has size 2× 2, the array A1 has size 8× 8. The nested (2, 2, 2, 2)-
perfect array given in the right of Figure 1 is actually the array A1.

Proposition 1. Let d be a non-negative integer and let n = 2d. Let k be an integer such that
1 ⩽ k ⩽ n. Each n2kn/2 × n2kn/2 aligned subarray of Ad is a nested (k, n, n, n)-perfect array.

Proof. Suppose that k is fixed, 1 ⩽ k ⩽ n, and let B be an aligned subarray of Ad of sizes
n2kn/2 × n2kn/2. Since B is aligned, the coordinates of its upper left corner are of the form
pn2kn/2 and qn2kn/2 for two integers p and q such that 0 ⩽ p, q < 2(n−k)n/2. This means that
the subarray B is tiled by the matrices MdNℓ∨m for integers ℓ and m satisfying

p2kn/2 ⩽ ℓ < (p+ 1)2kn/2 and q2kn/2 ⩽ m < (q + 1)2kn/2.

Note that the factor n disappeared since it accounts for the sizes of each of the matrices
MdNℓ∨m. The binary expansions of all integers ℓ satisfying p2kn/2 ⩽ ℓ < (p + 1)2kn/2 start

with the same (n−k)n/2 binary digits and the same hold for all integers m satisfying q2kn/2 ⩽
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i

i

j j

k

n−k

n−i

n

n n

n

n

P1 P2

P3 P4

Figure 3. An occurrence of array B in Ad, n = 2d.

m < (q+1)2kn/2. This implies that the binary expansion of ℓ∨m starts with the same (n−k)n
binary digits. Since the first binary digits of ℓ∨m are put in the first rows of the matrix Nℓ∨m
which have length n, all matrices Nℓ∨m for ℓ and m in their respective intervals have the same
first n− k rows.

Let (i, j) be a pair of integers such that 0 ⩽ i, j < n and let P be an array of size k×n. We
claim that P has exactly one occurrence in B which is congruent to (i, j) modulo (n, n). To
prove it, we show that P has a single such occurrence exactly when a certain system of linear
equations has a solution. Furthermore, this solution of the system provides the matrix Nℓ∨m
and thus the integers ℓ and m which, in turn, give the position of the occurrence of P in the
subarray B.

An occurrence P can overlap at most four matrices tiling the subarray B. Suppose that
the upper left corner of the occurrence of P lies in some matrix MdNℓ∨m where the integers
ℓ and m such that p2kn/2 ⩽ ℓ < (p+ 1)2kn/2 and q2kn/2 ⩽ m < (q + 1)2kn/2. The matrix on
the right of MdNℓ∨m and the matrix below it are respectively MdN(ℓ+1)∨m and MdNℓ∨(m+1)

where ℓ + 1 and m + 1 must be understood modulo 2kn/2 in order to remain in the right
intervals. Let P1, P2, P3 and P4 be the parts of P that overlap respectively the matrices
MdNℓ∨m, MdNℓ∨(m+1), MdN(ℓ+1)∨m and MdN(ℓ+1)∨(m+1). They are pictured in Figure 10.

If j = 0, the parts P2 and P4 of the occurrence are empty. If i+k ⩽ n, the parts P3 and P4

of the occurrence are also empty. The simplest case is the system of equations MdNℓ∨m = P
when i = j = 0 and k = n. We now treat the general case where none are empty, the other
cases are similar and easier.

We state now the system of equations. The unknowns are the entries in the matrix Nℓ∨m.
We claim that they can be found from the matrix Ad the pair (i, j) and the arrays P1,P2,P3

and P4. As explained before, since k = ℓ ∨ m, the first n − k rows of the matrix Nℓ∨m are
fixed by the subarray B. This part is marked in dark grey in Figure 4.

The height and width of P1 are respectively n − i and n − j. The part P1 is obtained
by the multiplication of the last n − i rows of the matrix Md and the last n − j columns of
the matrix Nℓ∨m (see grey parts in Figure 4a). Now we use the fact that the matrix Md is
upper triangular. This reduces the parts of Md and Nℓ∨m used to compute P1 (see grey parts
in Figure 4b). Furthermore, the part used in Md is upper triangular matrix with 1 on the
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i

j

P1

= i
Md ×

j

Nℓ∨n

(a) Parts of Md and Nℓ∨n used to compute P1

i

j

P1

= i Md
×

FIXED n−k

Nℓ∨n

(b) Taking into account that Md is upper triangular

Figure 4. Proof of Proposition 1, using P1

i

j

P2

= i
Md ×

j

Nℓ∨(n+1)

(a) Parts of Md and Nℓ∨n used to compute P2

i

j

P2

= i Md
×

FIXED n−k

Nℓ∨(n+1)

(b) Taking into account that Md is upper triangular

Figure 5. Proof of Proposition 1, using P2

diagonal. This matrix is therefore invertible. This means that the grey part in Nℓ∨m can be
obtained by multiplying the inverse of this triangular matrix with P1.

The height and width of P2 are respectively n − i and j. The part P2 is obtained by
the multiplication of the last n − i rows of the matrix Md and the first j columns of the
matrix Nℓ∨(m+1) (see grey parts in Figure 5a). As for P1, the fact that the matrix Md is
upper triangular reduces the parts of Md and Nℓ∨(m+1) used to compute P2 (see grey parts
in Figure 5b). Furthermore, the part used in Md is again invertible. This means that the
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i+k−n

j

P3

=

i+k−n

Md

×

j

N(ℓ+1)∨n

(a) Parts of Md and Nℓ∨n used to compute P3

i+k−n

j

P3

=

n−k i

i+k−n Md

×

FIXED

KNOWN i

n−k

N(ℓ+1)∨n

(b) Taking into account that Md is upper triangular

Figure 6. Proof of Proposition 1, using P3

i+k−n

j

P4

=

i+k−n

Md

×

j

N(ℓ+1)∨n

(a) Parts of Md and Nℓ∨n used to compute P4

i+k−n

j

P4

=

n−k i

i+k−n Md

×

FIXED

KNOWN i

n−k

N(ℓ+1)∨(n+1)

(b) Taking into account that Md is upper triangular

Figure 7. Proof of Proposition 1, using P4

grey part in Nℓ∨(m+1) can be obtained by multiplying the inverse of this triangular matrix
with P2.

We claim that n − i rows of Nℓ∨m are determined by part known in Nℓ∨m and Nℓ∨(m+1).
This is because, for integers r and s, the last r binary digits of s determine the last r binary
digits of s+1 and that conversely the last r binary digits if s+1 determine the last r binary
digits of s. It follows that the last i rows of the four matrices Nℓ∨m, Nℓ∨(m+1), N(ℓ+1)∨m and
N(ℓ+1)∨(m+1) are known. These parts are marked in dark grey in the Figure 5.
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The height and width of P3 are respectively i+ k − n and n− j. The part P3 is obtained
by the multiplication of the first i+ k − n rows of the matrix Md and the last n− j columns
of the matrix N(ℓ+1)∨m (see grey parts in Figure 6a). Now we use the fact that the first n− k
and the last i rows of N(ℓ+1)∨m are known. The elements of these rows can be considered
as constants in the system of equations. Combining this latter result and the fact that the
square (i + k − n) × (i + k − n) submatrix of Md in grey in Figure 6b) is invertible the still
unknown entries in the last n− j columns of N(ℓ+1)∨m can be found.

The height and width of P4 are respectively i + k − n and j. By a reasoning very similar
used with P3, the remaining entries of the matrix N(ℓ+1)∨(m+1) can be found, see Figures 7a
and 7b. □

In Proposition 1 the case k = n states that the Pascal array for n = 2d is a nested
(n, n, n, n)-perfect array. This is proves Theorem 1.

3. Proof of Theorem 2

We consider a family of matrices that were first defined in [3]. These matrices are obtained
by applying some rotations to columns of the matrices Md given in Definition 6.

Let σ be the function which maps each word a1 · · · an to ana1a2 · · · an−1 obtained by moving
the last symbol to the front. Since words over F2 are identified with column vectors, the
function σ can also be applied to a column vector.

Definition 9 (Pascal-like matrices). Let d be a non negative integer and let n = 2d. Let
m0, . . . ,mn−1 be integers such that mn−1 = 0 and mi+1 ≤ mi ≤ mi+1 + 1 for each integer
0 ≤ i < n. Let C0, . . . , Cn−1 be the columns of Md, that is, Md = (C0, . . . , Cn−1). Define

M
m0,...,mn−1

d =
(
σm0(C0), . . . , σ

mn−1(Cn−1)
)
.

The following are the eight possible matrices M
m0,...,mn−1

d for d = 2 and n = 22.

M0,0,0,0
2 M1,0,0,0

2 M1,1,0,0
2 M2,1,0,0

2
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1



0 1 1 1
1 1 0 1
0 0 1 1
0 0 0 1



0 0 1 1
1 1 0 1
0 1 1 1
0 0 0 1



0 0 1 1
0 1 0 1
1 1 1 1
0 0 0 1


M1,1,1,0

2 M2,1,1,0
2 M2,2,1,0

2 M3,2,1,0
2

0 0 0 1
1 1 1 1
0 1 0 1
0 0 1 1



0 0 0 1
0 1 1 1
1 1 0 1
0 0 1 1



0 0 0 1
0 0 1 1
1 1 0 1
0 1 1 1



0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1


The matrix M0,...,0

d is exactly the matrix Md of Definition 6. Not only M0,...,0
d but all the

matrices M
m0,...,mn−1

d of Definition 9 have the property that all the square submatrices on the
top and on the right are invertible.

A proof of this result appears in [3, Lemmas 4 and 5]. We include them below.

Lemma 2 ([3, Lemma 4]). Let d be a non negative integer and let n = 2d. Let matrix M be a
one of M

m0,...,mn−1

d . Let ℓ and k be two integers such that 0 ≤ ℓ < ℓ+ k ≤ n. The submatrix
given by the k rows ℓ, ℓ + 1, . . . , ℓ + k − 1 and the last k columns n − k, . . . , n − 1 of M is
invertible.
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Proof. Note that for k = n and ℓ = 0, the submatrix in the statement of the lemma, is the
whole matrix M

m0,...,mn−1

d , which is clearly invertible. By Lemma 1, each entry Mi,j for 0 <
i < n and 0 ≤ j < n−1 of the matrix M satisfies either Mi,j = Mi−1,j ⊕Mi,j+1 if mj = mj+1

(the column Cj has been rotated as much as the column Cj+1) or Mi,j = Mi−1,j ⊕Mi−1,j+1

if mj = mj+1 + 1 (the column Cj has been rotated once more than the column Cj+1).
Let P be the submatrix in the statement of the lemma:

M =


P

kn− k

k

ℓ

n

n

To prove that P is invertible we apply transformations to make it triangular. Note that all
entries of the last column are 1. The first transformation applied to P is as follows. The row
L0 is left unchanged and the row Li for 1 ≤ i < k is replaced by Li ⊕Li−1. All entries of the
last column but its top most one become zero. Furthermore, each entry is Pi,j is replaced by
either Pi,j+1 or Pi−1,j+1 depending on the value mj −mj+1. Note also that the new values of
the entries still satisfy either Pi,j = Pi−1,j ⊕ Pi,j+1 or Pi,j = Pi−1,j ⊕ Pi−1,j+1 depending on
the value mj −mj+1.

The second transformation applied to P is as follows. The rows L0 and L1 are left
unchanged and each row Li for 2 ≤ i < k is replaced by Li ⊕ Li−1. All entries of the
second to last columns but its two topmost ones are now zero. At step t for 0 ≤ t < k, rows
L0, . . . , Lt are left unchanged and each row Li for t+1 ≤ i < k is replaced by Li⊕Li−1. After
applying all these transformations for 0 ≤ t < k, each entry Pi,j for i + j = k − 1 satisfies
Pi,j = 1 and each entry Pi,j for i+ j > k−1 satisfies Pi,j = 0. It follows that the determinant
of P is 1 and that the matrix P is invertible. □

Let n = 2d for some d ⩾ 1 and let M be one matrix M
m0,...,mn−1

d . We introduce the notions

of upper and lower borders of such a matrix M
m0,...,mn−1

d . An entry Mi,j for 0 ⩽ i, j < n is
said to be in the upper border (respectively lower border) of M if Mi,j = 1 and Mk,j = 0 for
all k = 0, . . . , i− 1 (respectively for all k = i+ 1, . . . , n− 1). For example, the upper border

of the matrix M0,...,0
d = Md is the first row and its lower border is the main diagonal. The

upper and lower borders in column i lie in lines mi and mi + i respectively.

M3,3,2,1,1,1,0,0
3 =



0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 1
1 1 0 1 0 0 0 1
0 1 1 1 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1


Figure 8. Upper and lower borders of M3,3,2,1,1,1,0,0

3 are shown in boldface.
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Column i 0 1 2 3 4 5 6 7
Upper border mi 3 3 2 1 1 1 0 0

Lower border mi + i 3 4 4 4 5 6 6 7

Both borders of matrix M
m0,...,mn−1

d start in the unique entry 1 of the first column. The
upper border ends in the top most entry of the last column and the lower border ends in
the bottom most entry of the last column. The upper border is only made of either East
or North-East steps and the lower border is only made of either East or South-East steps.
The upper border contains an East step from column Cj to column Cj+1 if mj = mj+1 and
contains a North-East step if mj = mj+1 + 1. Furthermore, whenever the upper border uses
an East (respectively North-East) step to go from one columns to its right neighbour, the
lower border uses a South-East (respectively East) step. This is because the distance from
the upper border to the lower border in column i is exactly i. This allows us to define a
function τ from {0, . . . , n− 1} to {0, . . . , n− 1} as follows.

τ(i) =

{
mi if either i = 0 or mi−1 = mi + 1

mi + i otherwise, that is, i > 0 and mi−1 = mi

The value of τ(i) is the line index of either the upper or the lower border in column i. It
follows from the definition of the function τ thatMτ(i),i = 1 andMτ(i),j = 0 for each 0 ⩽ j < i.
The values of the function τ for the matrix of Figure 8 are given below. In Figure 8, the 1s
of the borders corresponding to values of τ are underlined. Note that there is exactly a single
underlined 1 in each line and in each column.

i 0 1 2 3 4 5 6 7
τ(i) 3 4 2 1 5 6 0 7

The function τ is onto and thus bijective because each leftmost occurrence of 1 in each line
belongs to either the upper or the lower border. It follows that each j in {0, . . . , n − 1} is
equal to τ(i) where i is the column of the leftmost 1 in line j.

Due to the symmetry in the matrix M0,...,0
d = Md, Lemma 2 applies also to the submatrices

of M0,...,0
d obtained by selecting the first row. Since this symmetry is lost in the other matrices

M
m0,...,mn−1

d , we need to consider the rotations made to the columns in M0,...,0
d to obtain

M
m0,...,mn−1

d .

Lemma 3 ([3, Lemma5]). Let d be a non negative integer and let n = 2d. Let matrix M be
one of M

m0,...,mn−1

d . Let k be an integer such that 1 ≤ k ≤ n. The k × k-submatrix of M
given by k consecutive rows and k consecutive columns with its top right entry on the upper
border of M is invertible.

Proof. Let P be the submatrix of M in the statement of the lemma:

M =


P

k

k
1
0
0

n

n
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We apply transformations to the submatrix P to put it in a nice form such that the deter-
minant is easy to compute. To fix notation, suppose that the submatrix P is obtained by
selecting rows Lr, . . . , Lr+k−1 and columns Cs, . . . , Cs+k−1. The hypothesis is that the entry
Mr,s+k−1 is in the upper border of M . Note that the upper borders of M and P coincide
inside P . We denote by j0, . . . , jt the indices of the columns of P in 0, . . . , k − 1 originally
defined by a North-East step of the upper border. This means that j0, . . . , jt is the sequence
of indices j such that ms+j−1 = ms+j +1. By convention, we set j0 = 0, that is, the index of
the first column of P .

The first transformation applied to the matrix P is the following. The columns C0, . . . , Cjt−1

and Ck−1 are left unchanged and each column Cj for jt ≤ j < k− 1 is replaced by Cj ⊕Cj+1.
All entries of the first row but its right most one become zero. Furthermore, each entry Pi+1,j

for jt ≤ j < k − 1 is replaced by Pi,j . The second transformation applied to the matrix P
is the following. The columns C0, . . . , Cjt−1−1 and Ck−2, Ck−1 are left unchanged and each
column Cj for jt−1 ≤ j < k−2 is replaced by Cj⊕Cj+1. The first row remains unchanged and
all entries of the second row but the last two become 0. We apply in total t+1 transformations
like this one using successively jt, jt−1, . . . , j0. Then k − t further steps are made, obtaining
that for each row i, all entries but the last i become 0.

After applying all these transformations, each entry Pi,j for i+ j = k − 1 satisfies Pi,j = 1
and each entry Pi,j for i + j < k − 1 satisfies Pi,j = 0. It follows that the determinant of P
is 1 and that the matrix P is invertible. □

We define the affine arrays by considering the family of Pascal-like matrices.

Definition 10 (Affine array). Let d be a non-negative integer and let n = 2d. Let M be
any Pascal-like matrix of size n×n (Definition 9). Let N0, . . . , N2n2−1

be the enumeration of

all n× n matrices over F2 (Definition 7) and let Z be any n× n matrix over F2.

An array A of size n2n
2/2 × n2n

2/2 is (n, n, n, n)-affine if for each integer k such that

0 ⩽ k < 2n
2
, the matrix MNk ⊕ Z is placed in A with its upper left corner cell at position

(odd(k)n, even(k)n).

Since each matrix M = M
m0,...,mn−1

d is invertible, every matrix Z is equal to MZ ′ for some
matrix Z ′.

For an array Z we write (Z)(n×n) to denote the array given by n2 copies of Z, n rows
and n columns. The next result states that any nested perfect array can be transformed into
another one of the same size but having the matrix 0 in the upper corner.

In what follows we use the operation ⊕ on subarrays denoting the usual sum on matrices
of elements in F2.

Lemma 4. Let d be a non-negative integer. Fix n = 2d . Let A be an array of size n2n
2/2 ×

n2n
2/2 and let Z be an array of size n×n. Then A is a nested (n, n, n, n)-perfect array if and

only if A⊕ (Z)2
n2/2×2n

2/2
is a nested (n, n, n, n)-perfect array.

Proof. Let A′ = A ⊕ (Z)2
n2/2×2n

2/2
. Let ℓ be an integer such that 1 ≤ ℓ ≤ n and let L be

an aligned subarray of A of size n2ℓ × n2ℓ starting at a position congruent to (0, 0). The

corresponding subarray L′ of A′ at the same position is L′ = L⊕ (Z)(2
ℓ×2ℓ).

First suppose A is nested (n, n, n, n)-perfect. Then, L is a nested (ℓ, ℓ, n, n)-perfect array.

Let i, j be such that 0 ≤ i, j < n and T be the subarray of (Z)(2×2) of size ℓ × ℓ starting at
position (i, j). Let U ′ be any array of size ℓ× ℓ. Then, the array U = U ′ ⊕ T has exactly one
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occurrence in the array L at some position (i′, j′) congruent to (i, j) modulo (n, n). It follows
that U ′ = U ⊕ T has an occurrence at the same position (i′, j′) in L′. Since each matrix U
has such an occurrence for each possible (i, j).Since L′ has size n2ℓ × n2ℓ, L′ it is a nested
(ℓ, ℓ, n, n)-perfect array.

If A is not nested (n, n, n, n)-perfect, there is a witness ℓ, 1 ≤ ℓ ≤ n and a subarray L of
size n2ℓ × n2ℓ that occurs twice at positions in the same congruence class. With a similar
argument as in the previous case it is easy to check that there is a subarray L′ of A′ with two
occurrences in A′ in the same congruence class. □

We can now prove that the affine arrays are nested perfect arrays.

Proposition 2. Let d be a non negative integer and let n = 2d. Every (n, n, n, n)-affine array
is a nested (n, n, n, n)-perfect array.

Proof. By Lemma 4, it may be assumed that the array Z in the definition of affine array is
the zero matrix. Let M be one of the matrices M

m0,...,mn−1

d . Suppose A is the (n, n, n, n)-
affine array defined by M and the zero matrix. The proof of the Proposition follows that of
Proposition 1, but now considering the matrix M = M

m0,...,mn−1

d instead of the Pascal matrix

M0,...,0
d Let k be an integer such that 1 ≤ k ≤ n. Let B be an aligned subarray of A of

sizes n2kn/2 × n2kn/2. The coordinates of the upper left corner of B are of the form pn2kn/2

and qn2kn/2 for two integers p and q such that 0 ⩽ p, q < 2(n−k)n/2. This means that the
subarray B is tiled by the matrices MNℓ∨m for ℓ and t satisfying

p2kn/2 ⩽ ℓ < (p+ 1)2kn/2 and q2kn/2 ⩽ t < (q + 1)2kn/2.

The binary expansions of all integers ℓ satisfying

p2kn/2 ⩽ ℓ < (p+ 1)2kn/2

start with the same 2n(n−k)/2 binary digits and the same hold for all integers t satisfying

q2kn/2 ⩽ t < (q + 1)2kn/2.

This implies that ℓ ∨ m start with the same n(k − n) digits. Since the first digits of ℓ ∨ m
are put in the first rows of Nℓ∨m which have length n, all matrices Nℓ∨m for ℓ and t in their
respective intervals have the same first n− k rows.

Let (i, j) be a pair of integers such that 0 ⩽ i, j < n and let P be an array of sizes k × n.
We claim that P has exactly one occurrence in B which is congruent to (i, j) modulo (n, n).
In order to prove it, we show that P has a single such occurrence exactly when a certain
system of linear equations has a solution. Furthermore, this solution of the system provides
the matrix Nℓ∨m and thus the integers ℓ and m which, in turn, give the position of the
occurrence of P in the subarray B. An occurrence P can overlap at most four matrices tiling
the subarray B.

Suppose that the upper left corner of the occurrence of P lies in some matrix MNℓ∨m where
the integers ℓ and m such that p2kn/2 ⩽ ℓ < (p + 1)2kn/2 and q2kn/2 ⩽ m < (q + 1)2kn/2.
The matrix on the right of MNℓ∨m and the matrix below it are respectively MN(ℓ+1)∨m and

MNℓ∨(m+1) where ℓ+1 and m+1 must be understood modulo 2kn/2 in order to remain in the
right intervals. Let P1, P2, P3 and P4 be the parts of P that overlap respectively the matrices
MNℓ∨m, MNℓ∨(m+1), MN(ℓ+1)∨m and MN(ℓ+1)∨(m+1). They are pictured in Figure 10.

If j = 0, the parts P2 and P4 of the occurrence are empty. This is a degenerate case, so we
only treat the case j ⩾ 1. Consider two main cases depending on whether i+ k ⩽ n or not.
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i

j j

k

n

n n

n

nP1 P2

Figure 9. An occurrence of array B in A with i+ k ⩽ n.

Suppose that i + k ⩽ n. Then, the parts P3 and P4 do not exist and the occurrence of P
is reduced to P1 and P2. Consider a column of the occurrence in P1, that is, a column of
the matrix MNℓ∨m with index s greater than j from line i+ 1 to line i+ k. This column is
obtained by multiplying the lines from i+1 to i+k of M with the column of index s of Nℓ∨m.
Note that the first n− k entries of this latter are known and can be considered as constant.
The k remaining entries of the column s of Nℓ∨m are thus the solution of the system y = Mx
where y is the column of P1, M is the k × k matrix made of lines from i to i + k − 1 and
columns n − k to n − 1 of M and x are the k entries of Nℓ∨m. By Lemma 2, the matrix M
is invertible and there is then a unique solution to the system. This means that the k entries
of the column of index s of Nℓ∨m can be found. An similar reasoning with a column of P2

allows us to find a column s with s ⩽ j of Nℓ∨(m+1) and thus of Nℓ∨m.

i

i

j j

k

n−k

n−i

n

n n

n

n

P1 P2

P3 P4

Figure 10. An occurrence of array B in A with i+ k > n.

Now we suppose that i + k > n and we make more explicit how the matrix Nℓ∨m can
be computed from the occurrence of P modulo (i, j). Let us recall that the n − k top lines
of Nℓ∨m, that is, lines 0, . . . , n− k − 1 are fixed by the subarray B. Let n− k, . . . , n− 1 the
indices of the lines of Nℓ∨m which are still unknown. The computation of these k remaining
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lines is carried out in two phases. The second and first phases respectively compute the lines
n − k, . . . , r − 1 and r, . . . , n − 1 where the cutting index r satisfying n − k ⩽ r ⩽ n − 1 is
defined as follows. The integer r is the least integer such that all the integers τ(r), . . . , τ(n−1)
belong to {0, . . . , i+k−n−1}∪{i, . . . , n−1}. Note that {0, . . . , i+k−n−1} are the indices
of the lines crossing P3P4 while {i, . . . , n − 1} are the indices of the lines crossing P1P2. If
r = n− k, all k lines n− k, . . . , n− 1 are computed by the first phase and the second phase
is void.

We describe more precisely the first phase. Let s be an integer satisfying r ⩽ s ⩽ n−1 and
let us suppose that lines s+ 1, . . . , n− 1 are already known and that line s is still unknown.
The entries of line s are computed from the rightmost one of index n− 1 to the leftmost one
of index 0. Let us consider the line τ(s) in the matrix M . By definition of τ , the entry Mτ(s),s

is equal to 1 and entries Mτ(s),s′ for s
′ < s are equal to 0. We consider two cases depending

on whether τ(s) belongs to {0, . . . , i+ k − n− 1} or to {i, . . . , n− 1}.
Assume τ(s) belongs to {i, . . . , n − 1}. Let t be an integer such that j ⩽ t ⩽ n − 1. The

multiplication of the line τ(s) in M and the column t of Nℓ∨m gives the entry (τ(s), t) in P1,
that is, the entry (τ(s)− i, t− j) in P . The properties of the line τ(s) in M and the fact that
lines below line r in Nℓ∨m are already known allow us to compute the entry (s, t) in Nℓ∨m.
Let t be an integer such that 0 ⩽ t < j. The multiplication of the line τ(s) in M and the
column t of Nℓ∨m+1 gives the entry (τ(s), t) in P2, that is, (τ(s)− i, t+ n− i) in P .

The properties of the line τ(s) in M and the fact that lines below line s in Nℓ∨m are already
known allow us to find the entry (s, t) in Nℓ∨(m+1). Since all entries (s, t) for j ⩽ t ⩽ n − 1
of Nℓ∨m and all entries (s, t) for 0 ⩽ t < j of Nℓ∨(m+1) and all lines below line s in Nℓ∨m are
known, line s of Nℓ∨m is known.

Now assume τ(s) belongs to {0, . . . , i + k − n − 1}. The same reasoning with matrices
N(ℓ+1)∨m and N(ℓ+1)∨(m+1) and parts P3 and P4 of P allows us to compute line s of N(ℓ+1)∨m
and thus line s of Nℓ∨m.

We finally describe the second phase. Lines 0, . . . , n − k − 1 are fixed by the subarray B
and lines r, . . . , n− 1 have been computed by the first phase. Lines n− k, . . . , r − 1 are still
unknown. We assume that n− k < r since otherwise no line is unknown. It follows from the
definition of r that the integer τ(r−1) is then either i+k−n or i−1. Suppose τ(r−1) = i−1,
the other case is similar. Consider the (k+r−n)×(k+r−n) matrix M ′ obtained by selecting
lines i − r, . . . , i + k − n − 1 and columns n − k, . . . , r − 1 from the matrix M . The upper
right entry of M ′ is the entry (i − r, r − 1) of M . Since τ(r − 1) = i − 1 and the distance
between the upper and the lower borders in column r − 1, is r − 1, the entry (i − r, r − 1)
lies on the upper border of M . By Lemma 3, the matrix M ′ is invertible. Note that selected
lines of M ′ are still unused lines of P and that selected columns correspond to still unknown
lines of Nℓ∨m. Invertibility of M ′ allows us to compute lines n − k, . . . , r − 1 of Nℓ∨m. This
completes the proof of the theorem. □

The next lemma computes the number of (n, n, n, n)-affine arrays.

Proposition 3. Let d be a non-negative integer and let n = 2d. Then,, there are 2n
2+n−1

(n, n, n, n)-affine arrays.

Proof. There are exactly 2n−1 matrices M
m0,...,mm−1

d . Indeed, the sequence m0, . . . ,mn−1 is
fully determined by the sequence m0 −m1, . . . ,mn−2 −mn−1 of n− 1 differences which take

their value in {0, 1}. There are also 2n
2
possible values for the matrix Z in Fn×n

2 . This proves

that the number of (n, n, n, n)-affine arrays is at most 2n
2+n−1.
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It remains to show that two (n, n, n, n)-affine array obtained for two different pairs (M,Z)
and (M ′, Z ′) are indeed different. Let N0, . . . , N2n2−1

be the enumeration of all n×n matrices

over F2. Let M and M ′ be two matrices of the form M
m0,...,mn−1

d . Let Z and Z ′ be two n×n
matrices F2. Let Ui = Ni ⊕ Z and U ′

i = Ni ⊕ Z ′ for i = 0, ..., 2n − 1. Let W and W ′

be the two placements is defined as follows: for each integer i such that 0 ⩽ i ⩽ 22
n − 1,

the matrix MUk is placed in W in such a way that its upper left corner cell is at position
(odd(i)n, even(i)n). Similarly for W ′ using U ′

i instead of Ui. We claim that if W = W ′,
then M = M ′ and Z = Z ′. We suppose that W = W ′. Since both matrices M and M ′

are invertible by Lemma 2, MUi (respectively M ′U ′
i) is the zero vector if and only if Ui

(respectively U ′
i) is the zero vector, that is, Z = Wi (respectively Z ′ = Wi). This implies that

Z = Z ′ and thus Ui = U ′
i for i = 0, .., 2n − 1. Note that the matrix Ui ranges over all possible

n× n matrices. If MUi = M ′Ui for all i = 0, ..., 2n − 1, then M = M ′. □

For d a non negative integer and n = 2d Definition 10 gives a construction method of
(n, n, n, n)-affine arrays. Proposition 3 counts how many can be constructed and proves that
they are all different. This completes the proof of Theorem 2.
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18 VERÓNICA BECHER AND OLIVIER CARTON

Verónica Becher
Departamento de Computación, Facultad de Ciencias Exactas y Naturales & ICC
Universidad de Buenos Aires & CONICET, Argentina
vbecher@dc.uba.ar

Olivier Carton
Institut de Recherche en Informatique Fondamentale
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