
Fundamenta Informaticae 51(4) (2002) 325–338 325

IOS Press

Another Example of Higher Order Randomness

Verónica Becher C

Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Pabellón I, Ciudad Universitaria, (1428) Buenos Aires, Argentina

vbecher@dc.uba.ar

Gregory Chaitin
IBM Thomas J. Watson Research Center

P O Box 218, Yorktown Heights, NY 10598, USA

chaitin@us.ibm.com

Abstract. We consider the notion of algorithmic randomness relative to an oracle. We prove that
the probability β that a program for infinite computations (a program that never halts) outputs a
cofinite set is random in the second jump of the halting problem. Indeed, we prove that β is exactly
as random as the halting probability of a universal machine equipped with an oracle for the second
jump of the halting problem, in spite of the fact that β is defined without considering oracles.

Keywords: randomness, program size complexity, infinite computations.

1. Introduction

The theory of program size defines randomness on the basis of computability: an infinite sequence is
random if and only if its initial segments have essentially the same size as the shortest (minimal length)
computer programs needed to generate them [5].

The primary notion of effective computability is given by Turing machines. But when these machines
are equipped with an oracle for a subset A of natural numbers, i.e., an external procedure that answers
CCorresponding author

326 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

questions of the form “is n inA”, they define the notion of relative computability (or Turing reducibility).
A set A is computable from B (or recursive in B) if there is a Turing machine which, when equipped
with an oracle for B, computes the characteristic function of A. The relation of relative computability
induces an equivalence relation on the subsets of natural numbers (Turing equivalence classes or Turing
degrees), and a partial order on the equivalence classes [11].

The notion of relative computability allows for a definition of relative randomness: a sequence is
random in A if its initial segments can have essentially the same size as the shortest programs needed to
generate them in a computer equipped with and oracle A.

If a set A is computable from B, then randomness in B implies randomness in A. Thus, the Turing
equivalence relation on oracles induces an equivalence relation on sets of sequences according to their
property of relative randomness, and a partial order on these equivalence classes.

Although the definition of randomness is given for infinite sequences (over a finite alphabet), the
definition immediately extends to real numbers. A specific example of a random real is Ω [5], the
probability that a self-delimiting universal machine eventually halts. Ω is plainly random, or random in
the empty set. The halting probability Ω′ of a self-delimiting universal machine equipped with an oracle
for the halting problem is random in the first jump of the halting problem. Similarly, Ω′′ , Ω′′′ ,. . . , the
halting probabilities of self-delimiting universal machines equipped with oracles for the respective jumps
of the halting problem, are random in the respective jumps.

We are interested in examples of higher order randomness that are not defined in terms of oracles. In
[1] we proved that the probability that a program for infinite computations outputs finitely many symbols
is random in the first jump of the halting problem. In this note we go one step further: we show that the
probability β that a program for infinite computations outputs a cofinite set is random in the second jump
of the halting problem.

We show that β is exactly as random as Ω′′. However, although β and Ω′′ are Turing equivalent, the
proof of randomness of β is not immediate from the randomness of Ω′′. This is because randomness is
not a recursively invariant property: if two real numbers are computable from Turing equivalent sets, one
may be random but the other may not [3] (see Prop. 2.2).

The present work proves results announced by the second author in [8], and continues early work on
the program size complexity of infinite computations [6, 14].

2. Preliminaries

We denote IN the set of natural numbers and we work with the binary alphabet Σ = {0, 1}. As usual,
we refer to a finite sequence of elements of Σ as a string, and we denote the empty string by λ. Σ∗ is the
set of all strings on the Σ alphabet.

For a ∈ Σ∗, |a| denotes the length of a. We write a � b if a is a prefix of b, and we write a ≺ b if a
is a proper prefix of b (that is, |a| < |b|). We assume the recursive bijection string(i) as the i-th string
in the length and lexicographic order over Σ∗.

The abstract definition of a Turing machine is a partial recursive function f : Σ∗ → Σ∗; if the
machine is a equipped with an oracle A, the function is recursive in A. The domain of f is considered
a family of programs and the value of f(p) —if there is any— is the output of a halting computation
on the Turing machine on input p. As usual, we write f(p)↓ when the function is defined, and f(p)↑
otherwise. To deal with program inputs we consider a recursive bijection 〈. , . 〉 : Σ∗ → Σ∗, and we use

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 327

the convention f(ps1s2 . . . sn) = f(〈p, 〈s1, . . . 〈sn−1, sn〉 . . .〉. A function that can be computed by a
machine equipped with an oracle A is said recursive in A, and a set that can be enumerated by a machine
with an oracle A is said to be recursively enumerable in A.

In this work we are only concerned with oracles that are defined by applications of the jump operation.
Assume a given effective enumeration of all finite lists of Turing machine instructions relative to an
arbitrary oracle (notice that the enumeration does not depend on the oracle). For any set A, the jump of
A is A′ = {x : ϕA

x (x)↓}, where ϕA
x is the partial function recursive in A determined by the x + 1-th

list of instructions relative to the set A. We concentrate exclusively on the first and second jumps of the
empty set. The first is ∅′ = {x : ϕ∅x(x)↓}, which is recursively enumerable. The second jump is ∅′′
= {x : ϕ∅

′
x (x)↓}, which is recursively enumerable in ∅′.

The Arithmetical Hierarchy provides a classification of arithmetic relations according to their syn-
tactical representation in First Order Logic. Σ0

n is the class of relations definable by a formula in prenex
form with recursive matrix and n quantifier alternations in the prefix, the outer quantifier being existen-
tial. Π0

n is defined similarly, with the outer quantifier being universal. ∆0
n is (Σ0

n ∩ Π0
n), i.e., the class

of relations definable in both the n-quantifier forms. The Arithmetical Hierarchy admits also a purely
recursion-theoretical definition: A relation is ∆0

n+1 if and only if it is recursive in a Σ0
n or Π0

n relation.
A relation is Σ0

n+1 if and only if it is recursively enumerable in a Σ0
n or Π0

n relation. A relation is Π0
n+1

if and only if its complement is recursively enumerable in a Σ0
n or Π0

n relation. Thus, ∆0
1 is the class of

recursive relations and Σ0
1 is the class of recursively enumerable relations.

The Arithmetical Hierarchy relativizes to a given oracleA, defining the classes Σ0,A
n , Π0,A

n and ∆0,A
n ,

by simply substituting “recursive” with “recursive in A”. The Arithmetical Hierarchy and the hierarchy
generated by the iterated application of the jump operator are related: ∀n ≥ 0 ∅(n) is Σ0

n-complete and
A ∈ ∆0

n+1 iff A is recursive in ∅(n).
Let’s also recall Shoenfield’s Limit Lemma ([12] p.56)

Proposition 2.1. (Shoenfield’s Limit Lemma)
A set A is in ∆0

2 of the Arithmetical Hierarchy if and only if its characteristic function is the limit of a
recursive function g, i.e., cA(x) = limt→∞g(x, t).

∅′ is in Σ0
1, thus also in ∆0

2; hence its characteristic function is obtainable as the limit of a recursive

function. In general, ∅(n+1) is in Σ0
n, hence in ∆0,∅(n)

2 ; so, its characteristic function is obtainable as the
limit of a function recursive in ∅(n).

Σω is the set of all infinite binary sequences. For X ⊆ Σω the set theoretic measure of X is denoted
by µ(X) and represents the probability that any arbitrary sequence belongs to X . For B ⊆ Σ∗, BΣω

denotes the open subset of Σω whose elements have an initial segment inB. For example, for a particular
string s ∈ Σ∗, sΣω is the set of all sequences starting with s, and µ(sΣω) = 2−|s|. Infinite binary se-
quences can be identified with real numbers in [0, 1], when the sequence is taken as the binary expansion
of a real number. Hence, every real in [0, 1] has a corresponding sequence in Σω. Rational numbers of
the form k2−i, for natural numbers i, k, have two corresponding sequences, one ending with infinitely
many 1’s, the other with infinitely many 0’s. Since they form a set of measure 0, this fact does not affect
the considerations over probabilities that we make in this work. We refer to real numbers and elements
of Σω indistinctly. We use x to denote a real number or an infinite sequence and we write xi to denote
the prefix of x of length i.

A set of strings is prefix free if and only if no proper extension of an element of the set belongs to the

328 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

set. That is, B ⊆ Σ∗ is prefix free iff ∀a, b ∈ Σ∗ if a ∈ B and b 6= λ then ab 6∈ B. For example, the set
{λ} is prefix free and so is {0n1 : n ≥ 0}.

Prefix free sets satisfy Kraft’s inequality [10]:

If B ⊆ Σ∗ is prefix free, then 0 ≤
∑
a∈B

2−|a| ≤ 1.

This property allows us to conveniently express the measure of a set of all sequences extending a prefix
free set: If B ⊆ Σ∗ is prefix free then µ(BΣω) =

∑
a∈B 2−|a|.

A prefix free set B ⊂ Σ∗ is maximal when ∀a 6∈ B, B ∪ {a} is not prefix free. If B is finite and
maximal prefix free then every sequence x ∈ Σω has an initial segment in B, and

∑
a∈B 2−|a| = 1.

A set of strings is suffix closed if and only if every extension of an element of the set also belongs to
the set. That is, B ⊆ Σ∗ is suffix closed iff ∀a, b ∈ Σ∗ if a ∈ B then ab ∈ B.

Let us remark that for every suffix closed set B there exists a unique prefix free set A ⊂ B such that
AΣ∗ = B. This prefix free set A is the set of minimal elements of B with respect to the prefix ordering
�. It holds that µ(BΣω) = µ(AΣω) =

∑
a∈A 2−|a|.

Finally we recall two definitions.
A real x is computable [15] iff there is a total recursive function f : IN → Σ such that f(n) is the n-th
symbol in the binary expansion of the fractional part of x.
A real x is left computably enumerable [13] (resp. right computably enumerable) iff its left (resp. right)
Dedekind cut is recursively enumerable. I.e., iff there exists a recursive increasing (decreasing) sequence
of rationals whose limit is x.
Both definitions relativize to any oracle A.

2.1. Randomness: incompressibility in self-delimiting machines

For defining random sequences as those whose initial segments are algorithmically incompressible it is
required to consider self-delimiting Turing machines (see [7, 2, 9] for an explanatory exposition). The
space of programs has to be interpretable as a probabilistic space with all program symbols uniformly
distributed. This rules out having a blank marking the end of the program. Since there are no blanks on
the input tape, nor any other external way of delimitation, a program must contain in itself the information
to know where it ends, so the machine can realize when to finish reading the input tape; this is what self-
delimiting means.

Self-delimiting Turing machines are assumed to have: a pre-given finite table that determines the
computation, an input (or program) tape, a work tape and an output tape. The input tape contains a first
dummy cell (to allow for no input) and then just 0’s and 1’s. The input tape can only be read by the
machine, while the output tape can only be written with 0’s and 1’s. Both tapes are infinite to the right
and their heads only move in that direction. The work tape can be read, written and erased; it is infinite
in both directions and its head moves in both directions.

Assume an effective enumeration of machines. This enumeration is possible because each machine
is determined by its table of instructions, which is finite.

Self-delimiting machines can be equipped with an oracle A, adding to the previous architecture an
oracle tape, infinite to the right, that can only be read by the machine. The i-th square contains 1 if
string(i) ∈ A, and 0 otherwise. Assume also an effective enumeration of machines equipped with an
arbitrary oracle (the enumeration is independent of the oracle).

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 329

The abstract definition of a self-delimiting Turing machine (with an oracle A) is a function f : Σ∗ →
Σ∗ partial recursive (in A), whose domain is prefix free [5]: if f(a)↓ then f(b)↑ for all b that are proper
extensions of a.

Machines that are capable of simulating any other machine are universal. We choose a self-delimiting
universal machine U : Σ∗ → Σ∗ (with no oracle) such that U(0i1p) = Mi(p), where Mi is the i-th
machine in the effective enumeration. U reads its input tape until it finds the first 1. If it read i 0’s, it
starts simulating the execution of Mi, taking the rest of the input tape as an input for Mi. We also fix
self-delimiting universal machines U ′ : Σ∗ → Σ∗ and U

′′
: Σ∗ → Σ∗, containing oracles for the first and

second jump of the halting problem respectively, such that U ′(0i1p) = M ′i(p) and U
′′
(0i1p) = M ′′i (p),

where i denotes is the index in the given enumeration.
The program size complexity [5] in a given self-delimiting machine f : Σ∗ → Σ∗ is a function

Hf : Σ∗ → IN which maps a string s to the length of the shortest programs that output s.

Hf (s) =

{
min{|p| : f(p) = s} if s is in the range of f .
∞ otherwise

Since the subscript f can be any machine, even one equipped with an oracle, this is a definition of
program size complexity for both, effective and relative computability. The function Hf is not recursive.
When f is a universal machine, Hf is total and ∃c ∀s Hf (s) ≤ |s|+Hf (|s|) + c ≤ |s|+ 2 log |s|+ c,
where log stands for base 2 logarithm. This upper bound is obtained considering a program that contains
explicitly the actual string s plus a codification of the string length.

A machine f is asymptotically optimal if and only if for any machine g, there is a constant c such
that for all s, Hf (s) ≤ Hg(s) + c. For any pair of asymptotically optimal machines U1 and U2 there
is a constant c such that for every string s, |HU1(s) − HU2(s)| ≤ c. This is known as the invariance
theorem and implies that program size complexity is independent of the asymptotically optimal machine.
Thus, program size complexity on asymptotically optimal machines counts as an absolute measure of
complexity, up to an additive constant. The universal self-delimiting machine U(0i1p) = Mi(p), i ∈ IN ,
is asymptotically optimal because ∀i∀s ∈ Σ∗, HU (s) ≤ HMi(s) + i + 1. For the same reason, U ′ and
U

′′
that we fixed are also asymptotically optimal.
Randomness of a sequence is defined in terms of the program size complexity of its initial segments.

Definition 2.1. ([5] Random in A)
Let UA be a self-delimiting universal machine with oracle A.
A sequence x ∈ Σω is random in A iff ∃c ∀n HUA(xn) > n− c.

A real number in [0, 1] is random if its corresponding binary sequence is random. The definition is given
for the alphabet Σ = {0, 1}, but it can be shown to be invariant under any alphabet [2]. That is, the
property of being random is inherent to the number and it is independent of the system in which it is
represented.

A significant class of random reals was defined by Chaitin [5]:

Ω =
∑
U(p)↓

2−|p|

for a self-delimiting universal machine U . Since the domain of U is prefix free, Ω = µ(dom(U)Σω) is
the probability that a self-delimiting universal machine U halts. Ω is left computably enumerable and
random [5, 4].

330 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

We remark that the property of being random is not recursively invariant in the following sense: given
two Turing equivalent real numbers, one may be random but the other may not. A general result about
this fact was given by Calude and Nies [3].

Proposition 2.2. For prefix sets X ⊆ Σ∗ let r(X) =
∑

p∈X 2−|p|. There are recursively isomorphic
sets X,Y ⊂ Σ∗ such that r(X) is random but r(Y) is not random.

Proof:
Let X be the dom(U) and Y = {0i−11 : string(i) ∈ dom(U)}. By definition, the i-th bit of r(Y) is 1
iff U(string(i))↓. Then, the first 2n bits of r(Y) are determined by the halting behavior of all programs
of length less than n. There will be m of them, 0 ≤ m < 2n that halt in U .

For any n, the first 2n bits of r(Y) can be dramatically compressed: there is an algorithm which given
2n and m, dovetails all programs of length less than n and finds the m ones that halt and determines the
first 2n bits of r(Y). Then, HU (r(Y)2n) ≤ log(2n) + log(m) + c ≤ 2 log(2n) + c = 2n + c, for
some constant c. Hence, r(Y) is not random, while dom(U) and Y are recursively isomorphic and
r(dom(U)) = Ω is random. ut

As expected, the help of oracles can contribute to have programs that are shorter in length.

Proposition 2.3. For any string HU ′′ ≤ HU ′ ≤ HU within constant terms.

Proof:
We prove HU ′ ≤ HU . The other is exactly alike. There is a machine M ′i equipped with an oracle
for the halting problem which ignores its oracle and behaves exactly as U . Then for every p ∈ Σ∗,
U(p) = U ′(0i1p). If HU (s) is the length of the minimal size program that produces s in U , there is a
program of length HU (s) + i+ 1 which produces s in U ′. Take the constant term equal to i+ 1. ut

The inequalities of Proposition 2.3 can be strict, as exemplified by sufficiently large initial segments of
Ω. On the one hand Ω is random in the empty set, so ∃c ∀n HU (Ωn) > n − c. On the other hand,
Ω is computable from the domain of U , that is Ω is recursive in ∅′. In general, the initial segments of
computable sequences have very low program size complexity: If x is computable from A (or recursive
in A), then ∃c ∀i HUA(xi) ≤ HUA(i) + c, for a self-delimiting universal machine UA with oracle A.
Thus, ∃d ∀n HU ′(Ωn) ≤ HU ′(n) + d ≤ 2 log n + d. For every n sufficiently greater than c + d,
HU ′(Ωn) < HU (Ωn).

3. Random in the second jump of the halting problem

3.1. Machines for infinite computations

Turing’s original definition of the “automatic machine” in his fundamental paper in 1936 [15], is indeed
a machine that performs unending or infinite computations. Turing defines a number to be computable if
its decimal expansion can be written down by an automatic machine.

Infinite computations do not reach a final state because for every reached combination of a symbol in
the input tape, a symbol in the work tape and a state label there is always an entry in the machine table.

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 331

However, with respect to the output, an infinite computation may either produce just finite or infinitely
many symbols.

An infinite computation is the limit of executing a program for an unlimited number of steps. In
order to give an abstract definition we first define a partial recursive function f of two arguments, an
input p ∈ Σ∗ and a number of steps t. We consider f as a machine that on input p computes t steps and
halts. If the number of steps t are insufficient for the machine to read all of p, we require f(p, t) to be
undefined. We want f(p, t)↓ only if the head of the input tape reaches the last symbol of p in at most t
steps. When defined, f(p, t) is the output of the computation, which we interpret as a finite set of natural
numbers. n is in the output set iff 0 is written by the machine on the output tape followed by exactly n
1s, followed by another 0.

We write P(IN) for the set of all subsets of IN , and Pfin(IN) for the the set of all finite subsets of
IN .

Definition 3.1. (Self-delimiting step machine) Let f : Σ∗ × IN → Pfin(IN) be a partial recursive
function such that

initialized: f(λ, 0) ↓
continuously defined: If f(p, n)↓ then ∀s ≺ p ∃m < n such that f(s,m)↓.

If f(p, n)↓ then ∀m < n ∃s � p such that f(s,m)↓.

self-delimiting: If f(p, n)↓ then ∀a 6= λ, f(pa, n)↑.
recursive domain: There is a total recursive function deff : Σ∗ × IN → {0, 1}

such that deff (p, n) = 1 iff f(p, n)↓.

monotone: If m < n, s � p, f(s,m)↓ and f(p, n)↓ then f(s,m) ⊆ f(p, n).

The function f induces a definition for infinite computations. In principle programs are finite objects, just
strings. However, we will also face unending computations which are determined by possibly infinitely
many bits of the input tape. We define f∞ for this general case, as a function from sequences to sets of
natural numbers:

Definition 3.2. (Machine for infinite computation)
Let xit be the unique prefix of x ∈ Σω such that f(xit , t)↓ if such prefix exists, and let f∞ : Σω → P(IN)
be

f∞(x) =

{ ⋃
t≥0 f(xit , t) If ∀t ∃it f(xit , t)↓.
↑ otherwise.

The result of computing x for infinitely many steps is the limit of running the initial segments of x for t
steps, for t going to infinity. If defined, f∞(x) may be either a finite or an infinite set.

We fix universal machines U∞, U
′∞ : Σω → P(IN) such that U

′∞ is equipped with an oracle for
the halting problem in U . As usual, assuming the given enumerations of all tables of instructions, which
are finite, U∞(0i1x) = M∞i (x) and U

′∞(0i1x) = M
′∞
i (x) for the enumerations M∞1 , M∞2 , . . . and

M
′∞
1 , M

′∞
2 , Let u and u′ the self-delimiting step machines that respectively induce U∞ and U

′∞.

332 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

3.2. The probability of programs for cofinite sets

We define β as the probability that an arbitrary string p ∈ Σ∗ determines a cofinite output:

Pcofinite = {p ∈ Σ∗ : ∃m ∀n > m ∀x ∈ Σω n ∈ U∞(px)}
β = µ(PcofiniteΣ

ω)

We will show that the real number β is random in the second jump of the halting problem. To prove it
we use two correspondence results:

(a) between all the programs that halt in U
′′

and a subset of the programs that output a finite set in U
′∞.

And,

(b) between all the programs that output a finite set in U
′∞ and a subset of programs that output a

cofinite set in U∞.

Motivated by different purposes, the left to right side of (a) and (b) were proved by Chaitin in [6] (as
Theorems 14 and 16). We prove here the full correspondences using simulation in the limit technique,
also used in [6], that tells how to perform a simulation of a computation relative to an oracle, in a machine
for infinite computations that lacks the oracle. The problem is how to answer the questions to the lacking
oracle. The technique requires that the oracle be recursively enumerable in the machine performing the
simulation. The simulated program is run in increasing number of steps, using a fake oracle: at step t
a question to the oracle is answered “no” unless the question is found to be true less than t steps. As
the number of steps t goes to infinity any finite set of questions will eventually be answered correctly by
the fake oracle. The existence of this simulation algorithm is guaranteed by Shoenfield’s Limit Lemma
(Prop. 2.1), which ensures that, in the limit, one jump of the halting problem can be obtained. For (b)
we have to simulate ∅′, which is obtainable in the limit of a recursive function. And for (a) we have to
simulate ∅′′, which the limit of a function recursive in ∅′.

A critical feature of the simulation in the limit of self-delimiting machines is the so called harmless
overshoot [6]. Consider a simulation of a program p with oracle instructions. Although in the limit
the fake oracle realizes its mistakes and provides the correct answers, the simulation may already have
read beyond the program p. This happens because the domain of the machine being simulated is not
recursively enumerable so the simulation may not know where the program p ends until it has the correct
oracle answers. In the meantime, the machine performing the simulation may have read extra symbols
from the input tape, while its head can not move backwards. However, the actual value of the extra
bits is irrelevant because once the simulation reaches the correct oracle answers it will know where p
actually ends. A simulation of a program that halts will have at most finitely many symbols of harmless
overshoot.

Lemma 3.1. (adapted from [1])
∃%∈Σ∗ with the following property:

1. ∀p ∈ Σ∗ [if U ′(p) halts then ∀x ∈ Σω U∞(%px) is finite].

2. ∀p ∈ Σ∗ [if U ′(p) halts then ∃m ∀x ∈ Σω ∀t ∃i ≤ m u(%pxi, t)↓].
(finite harmless overshoot)

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 333

3. ∀p ∈ Σ∗∀x ∈ Σω [if U∞(%px) is finite then ∃s ∈ Σ∗ such that s ≺ px and U ′(s) halts].

Proof:
% contains instructions for U∞ to perform the simulation in the limit of the program for U ′ that comes
afterwards in the input tape. The following algorithm does that task:

t:=1
maximum:=0 (number of simulated instructions of U ′ when it halts)
do forever

Simulate U ′ for at most t instructions. For each question to the oracle of whether U(q) halts,
simulate U(q) and take as an answer whether it halts in less than t steps.

If U ′ did not halt, then print t on the output tape. Else, let c be the actual number of instructions of
U ′ that have been simulated (the simulation for U(q) is not charged). If c exceeds the maximum
number of simulated instructions for all previous values of t, then update the maximum to c and
print c on the output tape. Otherwise nothing is printed on the output tape.

t:=t+1

end do

Let us verify that % has the desired property. Assume x be any sequence after p on the input tape.

To see that 1 and 2 hold, suppose U ′(p) halts. Then p halts in finitely many steps and it asks only
finitely many oracle questions. Let Q be the set of programs for U that are consulted to the oracle. Every
q ∈ Q such that U(q)↓, does so in some finite number of steps. Let M be the maximum number of steps
required to halt by the programs of Q that indeed halt. For values of t less than M , the simulation of
some oracle questions will be wrong, but for every value of t > M , they will be correct. If U ′(p) halts
in N steps, then when t exceeds the maximum between M and N , the simulation at step t will find out
that p halts. For larger values of t the maximum number of executed steps will stabilize in N and there
will be no more symbols printed on the output tape.

Since the simulation finds out that U ′(p) halts in at most max(M + 1, N) steps, the amount of bits
read from the input tape after % will never exceed max(M + 1, N). Hence, ∀t ∃i ≤ max(M + 1, N)
such that u(%(px)i, t)↓ (finite harmless overshoot). Consequently,
∀n > max(M + 1, N) ∀t ∃i ≤ max(M + 1, N) such that u(%(px)i, t)↓ and n 6∈ u(%(px)i, t).
Thus, U∞(%px) is finite.

To prove 3, suppose ∃m ∀n > m n 6∈ U∞(%px). Then, during the simulation only finitely many
numbers are printed. Say the last number printed is N . We have to show that for some string s ≺ px,
U ′(s) halts. Suppose not. Then, in particular, the execution of U ′ does not halt in less than N + 1 steps.
In suchN+1 steps only a finite number of oracle questions can be asked, over a finitely many programs.
Following the same reasoning as before, there is a maximum number of steps M that lead to the correct
answer for all the programs q ∈ Q that halt in U . Therefore, in the maximum step betweenM andN+1,
the simulation should find out exactly what U ′ does in the first N + 1 instructions, which we assumed
does not halt. Then, the number N + 1 is printed in the output tape, contradicting that the maximum
number printed was N . Hence, for some s ≺ px, |s| ≤ N , it must be U ′(s) halts. ut

334 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

The relativization of this lemma considering U
′′

and its simulation on U
′∞, proves the correspondence

(a).

Now we turn to the correspondence (b), between all programs for U
′∞ that output a finite set and a

subset of programs for U∞ that output a cofinite set. Again we have to consider the harmless overshoot,
which in this case might be infinite. For example, let the following instructions be part of a program for
U

′∞:

do forever

if (O(U(factorial i)↑)) then read i bits from the input tape

...

i:= i+1

end do

When these instructions are run on U
′∞, no symbols from the input tape are read because the oracle

O knows that U (factorial i) halts. Instead, the simulation running on U∞, in the limit, will read
infinitely many symbols, because infinitely many times the fake oracle will be wrong.

Lemma 3.2. ∃# ∈ Σ∗ with the following property:

∀x ∈ Σω [U
′∞(x) is finite iff U∞(#x) is cofinite].

Proof:
contains instructions for U∞ to perform the simulation in the limit of the program for U

′∞ that comes
afterwards in the input tape. The following algorithm does that task.

The algorithm maintains a set HOLES of pairs (y, t), meaning that since step t the element y is
believed to belong to the output of U

′∞(x). If at some subsequent step t′ the element y is no longer
believed in the output of U

′∞(x) (this happens when the fake oracle changes at step t′ some of the
responses it gave at previous steps), the algorithm removes the pair (y, t) from HOLES.

We write π1(HOLES) for the set {y : ∃n (y, n) ∈ HOLES}.

t := 1
do forever

Yt := the output set obtained by simulating the computation of t steps of U
′∞ using the fake

oracle (for each question to the oracle of whether U(q) halts, simulate U(q) and take as an answer
whether it halts in less than t steps)

For each y ∈ Yt such that y 6∈ π1(HOLES)
(y is a new element encountered at this step t)

HOLES := HOLES ∪ {(y, t)}
t := t+ 1 (skip as many values of t as the number of new elements)

For each (z, tz) ∈ HOLES such that z 6∈ Yt
(z was mistakenly believed to be in the output of U

′∞).

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 335

HOLES := HOLES \ {(z, tz)}
print tz (fix the hole witnessed by z)

print t

t := t+ 1

end do

Let us verify that # has the desired property. Let x be any sequence after # on the input tape.

⇒. Suppose U
′∞(x) is a finite set. Then there is a step t0, since which U

′∞ outputs no new elements
(only repeated elements or no elements at all). In such t0 steps only finitely many oracle questions Q
can be performed. Every q ∈ Q such that U(q) halts, it does so in some finite number of steps. Let mQ

be the maximum number of steps required to halt by the halting programs in Q. For values of t less than
mQ + 1, the simulation of some oracle questions will be wrong, but for every value of t > mQ, they
will be correct. Then, for m = max(t0,mQ + 1) the simulation will have found out all the elements in
U

′∞(x) and the output of the simulation will contain at least as many holes as the number of elements
in U

′∞(x). Namely, ∀t ≥ m Yt ⊇ U
′∞(x). And for each y 6∈ U ′∞(x), for infinitely many values of

t, y 6∈ Yt. Hence, any missing number greater than m, sooner or later will be printed (i.e, all incorrect
holes sooner or later will be fixed). Therefore, U

′∞(x) is cofinite.

⇐. Each element y ∈ U
′∞(x) is obtained after finitely computation steps of U

′∞, say ty, which
involve just finitely many oracle questions Qy. The simulation on U∞ using the fake oracle finds the
right oracle answers forQy inmy steps. Then, each element y ∈ U ′∞ is found by the simulation no later
than step max(ty,my), and for every step t ≥ max(ty,my) y ∈ Yt. Therefore, a pair (y, Ty) —for
some value Ty ≤ max(ty,my)— will remain forever in HOLES, and the value Ty will remain forever
missing in the output. Hence, if U

′∞(x) is infinite, U∞(#x) is coinfinite. ut

Concatenating Lemmas 3.1 and 3.2 we obtain:

Proposition 3.1. ∃#% ∈ Σ∗ ∀p ∈ Σ∗ such that

1. if U
′′
(p) halts then #%p ∈ Pcofinite.

2. if #%p ∈ Pcofinite then either ∃s ∈ Σ∗ s � p and U
′′
(s) halts, or

∃S ⊂ Σ∗ finite and maximal prefix free such that ∀s ∈ S U
′′
(ps) halts.

Proof:
1. Suppose U

′′
(p) halts. By relativizing Lemma 3.1, we obtain ∀x ∈ Σω U

′∞(%px) is finite and
∃m ∀x ∀t ∃i ≤ m u′((%px)i, t)↓ (finite harmless overshoot). Since no computation on input %px reads
beyond m symbols of the input tape, there are at most 2m different output sets; that is, {U ′∞(%px) :
x ∈ Σω} is finite and contains at most 2m different finite sets. For each x ∈ Σω let tx be the minimum
step number at which all the different elements have already been found: ∀t ≥ tx ∃i u′(%pxi, t) =
U

′∞(%px). It follows that {tx : x ∈ Σω} is also finite.
By Lemma 3.2, if U

′∞(%px) is finite, U∞(#%px) is cofinite. According to the algorithm associated
with # in the proof of Lemma 3.2, for each x the simulation on U∞ discovers the last different element
of U

′∞(%px) by stepmax(tx,mx), wheremx stands for the number of steps required by the fake oracle

336 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

to get the correct answers for all the oracle questions asked in the tx steps. So, U∞(#%px) prints every
value greater than max(tx,mx). Since {max(tx,mx) : x ∈ Σω} is again finite, it has a maximum
element M = max

⋃
{max(tx,mx) : x ∈ Σω}. Consequently, ∀n > M ∀x ∈ Σω n ∈ U∞(#%px).

2. Assume %#p ∈ Pcofinite, and let M be such that ∀n > M ∀x ∈ Σω n ∈ U∞(#%px). By the proof
of Lemma 3.2, we know that U∞(#%px) performs the simulation of U

′∞(%px). The missing values
in the output of U∞ are the step numbers at which new elements have been found. Thus, all definitive
holes in the output of U∞ have been produced at some step ≤ M . Consequently, all the elements of
U

′∞(%px) have been found by the simulation on U∞ by step M , after having read at most M symbols
after # from the input tape. So, ∀x U ′∞(%px) is finite.

Now by Lemma 3.1, for each x ∈ Σω ∃s such that s ≺ px and U
′′
(s) halts. A simple application of

König’s lemma yields that there exists a finite prefix free set S ⊂ Σ∗ such that ∀x ∈ Σω ∃s ∈ S, s ≺ px
and U

′′
(s) halts. ut

To prove the main result of the paper we use that Pcofinite is recursively enumerable in the second jump
of the halting problem:

Proposition 3.2. Pcofinite is Σ0
3 in the Arithmetical Hierarchy.

Proof:
Let u : Σ∗× IN → P(IN) be the partial recursive function that induces U∞ and defu the total recursive
function that decides the domain of u.

p ∈ Pcofinite ⇔ ∃m ∀n > m ∀x ∈ Σω ∀t ∃i [defu((px)i, t) = 1 ∧ n ∈ u((px)i, t)]

⇔ ∃m ∀n > m ∀t ∀s ∈ Σ∗ ∃st ∈ Σ∗

[(st � ps ∨ ps � st) ∧ defu(st, t) = 1 ∧ n ∈ u(st, t)].

Since this is a ∃ ∀ ∃ formula, the set Pcofinite is Σ0
3. ut

Clearly Pcofinite is suffix closed, since for each p ∈ Pcofinite, ∀a ∈ Σ∗, pa ∈ Pcofinite. The prefix free
counterpart of Pcofinite is the set of minimal elements in the prefix order �:

PFcofinite = {p ∈ Pcofinite : ∀q ≺ p, q 6∈ Pcofinite}.

We now show that
β = µ(PcofiniteΣ

ω) =
∑

p∈PFcofinite

2−|p|

is random in the second jump of the halting problem.

Theorem 3.1. β is random in ∅′′: ∃c ∀n HU ′′ (βn) > n− c.

Proof:
Consider the following algorithm forU

′′
that receives as input a minimal size program forU

′′
that outputs

βn:

1. Compute βn.

V. Becher, G. Chaitin / Another Example of Higher Order Randomness 337

2. By Proposition 3.2 there is function g recursive in ∅′′ whose range is Pcofinite. Enumerate enough
programs g(1), g(2), . . . until we have a prefix free set X = {g(1), . . . , g(m)}, such that βn <∑

x∈X 2−|x|.

3. Since X is prefix free, it contains only minimal elements in the prefix ordering �. By Prop. 3.1,
for each #%x ∈ X there exists S ⊂ Σ∗ finite and maximal prefix free such that ∀s ∈ S, U ′′(xs)
halts. Let Y = {p ∈ Σ∗ : ∃x [#%x ∈ X ∧ x � p ∧ U ′′

(p)↓]}.

4. Output z such that z 6∈ {U ′′
(p) : p ∈ Y }.

5. Halt.

We give bounds for HU ′′ (z). On the one hand, by the universality of U
′′
, there exists a minimal size

program p such that U
′′
(p) = z. But #%p 6∈ X (and no prefix nor extension can be in X), so, by

Proposition 3.1, #%p ∈ Pcofinite. Hence, #%p contributes to β with 2−|#%p|.

βn + 2−|#%p| <
∑
x∈X

2−|x| + 2−|#%p| < β

Using that β ≤ βn + 2−n we obtain

βn + 2−|#%p| <
∑
x∈X

2−|x| + 2−|#%p| < β ≤ βn + 2−n

Therefore, 2−|#%p| < 2−n. Thus, n < |#%p| and n− |#%| < |p| = HU
′′ (z).

On the other hand, z is the output of the algorithm above, so there is a constant q such thatHU ′′ (z) ≤
HU ′′ (βn) + q. Hence, n − |#%| < HU ′′ (z) ≤ HU ′′ (βn) + q. So, HU ′′ (βn) > n − q − |#%|. Putting
c = q + |#%| the theorem is proved. ut

Proposition 3.3. β is exactly as random as Ω′′: ∃c ∀n |HU ′′ (Ω′′n)−HU ′′ (βn)| ≤ c.

Proof:
As in the proof of Theorem 3.1, assume given a minimal size program for U

′′
for βn. Compute βn and

enumerate enough programs of Pcofinite until we have a prefix free set X = {g(1), . . . , g(m)} such that
βn <

∑
x∈X 2−|x|.

Since X is prefix free, it contains only minimal elements in the prefix ordering �. By Prop 3.1, for
each #%x ∈ X there exists S ⊂ Σ∗ finite and maximal prefix free such that ∀s ∈ S, U ′′(xs) halts;
since S is finite maximal prefix free, it holds that

∑
s∈S 2−|xs| = 2−|x|. We conclude that Ω′′n−|#%|=∑

#%x∈X 2−|x|. Hence, HU ′′ (Ω′′n) ≤ HU ′′ (βn) + |#%|+ constant.

For the other inequality, assume given a minimal size program for U
′′

for Ω′′n. Compute Ω′′n and enumer-
ate dom(U

′′
) until X = {g(1), . . . g(m)} such that Ω′′n <

∑
x∈X 2−|x|. By Proposition 3.2, Pcofinite is

recursively enumerable in U
′′
, which implies that there is an algorithm for U

′′
that does the following:

“ if p ∈ Pcofinite then halt else loop forever. ”

Therefore, ∃@ ∈ Σ∗ such that p ∈ Pcofinite iff U
′′
(@p) halts. Then, βn−|@| =

∑
@p∈X 2−|p|. Thus,

HU ′′ (βn) ≤ HU ′′ (Ωn) + |@|+ constant. ut

338 V. Becher, G. Chaitin / Another Example of Higher Order Randomness

We conclude that β is computably enumerable in ∅′′ and random in ∅′′, hence, also random in ∅′, and ∅.
β and Ω′′ are equally random, while β is more random than Ω′, and more random than the probability
α that a program for infinite computations outputs finitely many symbols. This is because both, Ω′ and
α, are computable from ∅′′, hence not random in ∅′′. And of course, β is not random in ∅′′′ because it is
computable from ∅′′′.

The definitions and techniques used in this paper seem to be appropriate to generalize the results
for significant classes of real numbers, computably enumerable and random in any jump of the halting
problem.

Acknowledgements: We thank Serge Grigorieff and Denis Hirschfeldt for their valuable comments.

References
[1] V. Becher, S. Daicz, and G. Chaitin. A highly random number. In C. S. Calude, M. J. Dineen, and S. Sburlan,

editors, Combinatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics and The-
oretical Computer Science Conference (DMTCS’01), Springer-Verlag London, pp. 55–68, 2001.

[2] C. Calude. Information and Randomness. An Algorithmic Perspective. Springer-Verlag, Berlin, 1994.

[3] C. S. Calude, A. Nies. Chaitin Ω numbers and strong reducibilities, J. UCS 3 , pp. 1161–1166, 1997.

[4] C. Calude. A characterization of c.e. random reals. Theoretical Computer Science 271(1-2), pp. 3-14, 2002.

[5] G. J. Chaitin. A theory of program size formally identical to information theory. J. ACM, 22 , pp. 329–340,
1975.

[6] G. J. Chaitin. Algorithmic entropy of sets. Computers & Mathematics with Applications, 2 , pp. 233–245,
1976.

[7] G. J. Chaitin. Algorithmic Information Theory. Cambridge University Pres, Cambridge, 1987.

[8] G. J. Chaitin. Exploring Randomness. Springer-Verlag, London, 2001.

[9] M. Ferbus-Zanda and S. Grigorieff. Is randomness “native” to Computer Science?. Logic in Computer
Science Column. Bulletin of EATCS, vol 74. , pp. 78–118, 2001.

[10] L. G. Kraft. A device for quantizing, grouping and coding amplitude modulated pulses. Master’s thesis,
Dept. of Electrical Engineering, M.I.T., Cambridge, Massachusets, 1949.

[11] P.G. Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, Vol. 1, 1989.

[12] J.R. M. Shoenfield. Recursion theory, Lecture Notes in Logic, vol. 1, 1993, reprinted 2001, A K Peters, Ltd.

[13] R. Soare. Recursion theory and Dedekind cuts. Trans. Amer. Math. Soc., vol. 140, 271–294, 1969.

[14] R. M. Solovay. On random r.e. sets. In A. I. Arruda, N. C. A. da Costa, and R. Chuaqui, editors, Non-Classical
Logics, Model Theory and Computability, pp. 283–307. North-Holland Publishing Company, 1977.

[15] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society, 2nd series, 42, pp. 230–265, 1936.

