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Abstract. M. B. Levin used Sobol-Faure low discrepancy sequences with

Pascal traingle matrices modulo 2 to construct, a real number x such that the
firstN terms of the sequence (2nx mod 1)n≥1 have discrepancyO((logN)2/N).

This is the lowest discrepancy known for this kind of sequences. In this note we

characterize Levin’s construction in terms of nested perfect necklaces, which
are a variant of the classical de Bruijn sequences. Moreover, we show that every

real number x whose binary expansion is the concatenation of nested perfect

necklaces of exponentially increasing order satisfies that the first N terms
of (2nx mod 1)n≥1 have discrepancy O((logN)2/N). For the order being a

power of 2, we give the exact number of nested perfect necklaces and an explicit

method based on matrices to construct each of them. The computation of the
n-th digit of the binary expansion of a real number built from nested perfect

necklaces requires O(logn) elementary mathematical operations.

Mathematics Subject Classification: 68R15, 11K16, 11K38

1. Introduction and statement of results

A real number x is normal to an integer base b if every block of digits in
{0, . . . , b − 1}, of the same length, occurs in the base b expansion of x with the
same limit frequency. Borel [2, 3] gave this definition more than 100 years ago
and nowadays it is considered the most basic property of randomness for real
numbers. A longstanding open question on normal numbers is what is the maximum
achievable speed of convergence to normality [9]. The best result in this direction
is due to M. B. Levin [12] who exhibited, a construction of the binary expansion
of a number with the best known speed of convergence to normality. Either this
speed is already the maximum or, necessarily, it is within a logarithmic factor of
the absolute maximum due to a result of Schmidt [14].

In this note we give two results. The first, Theorem 1, is a characterization of
Levin’s construction in terms of a variant of classical de Bruijn sequences [4], that
we call nested perfect necklaces. Moreover, every real number x whose binary ex-
pansion is the concatenation of nested perfect necklaces of exponentially increasing
order has the same speed of convergence to normality as that obtained by Levin’s
construction [12]. Our second result, Theorem 2, gives the exact number of nested
perfect necklaces of a given order and a method to construct each of them. This
method is based on variants of Pascal triangle matrices modulo 2. Hence, the
computation of the n-th digit of the binary expansion of a real number built from
nested perfect necklaces requires O(log n) elementary mathematical operations.

The notion of speed of convergence to normality is formalized in the theory of
uniform distribution modulo 1. For a sequence (xn)n≥0 of real numbers in the unit
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interval the discrepancy of the first N elements is

DN ((xn)n≥0) = sup
0≤α<β≤1

∣∣∣∣ 1

N
#
{
n : 0 ≤ n < N and α ≤ xn < β

}
− (β − α)

∣∣∣∣ .
In [14] Schmidt showed that there is a constant C such that for every sequence (xn)n≥0

of real numbers in the unit interval there are infinitely many Ns such that

DN ((xn)n≥0) > C
logN

N
.

This is an optimal order of discrepancy since this lower bound is achieved by van
der Corput sequences, see [10, 5, 3].

The property of Borel normality for real numbers can be defined in terms of
uniform distribution. A sequence (xn)n≥0 of real numbers in the unit interval is
uniformly distributed exactly when limN→∞DN ((xn)n≥0) = 0. We write {x} to
denote x − bxc, the fractional part of x. For an integer b greater than 1, a real
number x is normal to base b if and only if the sequence ({bnx})n≥0, is uniformly
distributed in the unit interval. As said above, it is still unknown whether the
optimal order of discrepancy can be achieved by a sequence of the form ({bnx})n≥0

for some real number x [9, 5, 3]. The lowest discrepancy known for sequences of
this form is O((logN)2/N) and it holds for a real number x constructed by Levin
in [12, Theorem 2]. In that paper he uses Sobol-Faure sequences with the Pascal
triangle matrix modulo 2, see [11, 12, 6].

The known constructions of normal sequences based on classical de Bruijn se-
quences do not improve Levin’s discrepancy bound: in [15] it is proved that for

each such sequence x the discrepancy of ({bnx})n≥0 is O(
√

(log logN)/N), which
is the same as that for almost all real numbers, see [8, 13, 7].

Here we characterize the construction given by Levin in [12, Theorem 2] in terms
of combinatorics of words and with a refinement of the so called perfect necklaces
introduced in [1]. Fix an alphabet A. A word is a finite sequence of symbols and a
necklace, or circular word, is the equivalence class of a word under rotations. For
positive integers k and m, we call a necklace (k,m)-perfect if each word of length k
occurs in it exactly m times at positions which are different modulo m (for any
convention on the starting point). The length of a (k,m)-perfect necklace is m|A|k
where |A| denotes the cardinality of the alphabet A. In this note we consider the
modulus m being a power of 2.

Notice that for m = 1, the (k,m)-perfect necklaces are exactly the de Bruijn
sequences of order k. For the binary alphabet the word 0011 is a (1, 2)-perfect
necklace. Both words 00110110 and 00011011 are (2, 2)-perfect necklaces. The
segments in Champernowne sequence which are the concatenation in lexicographic
order of all words of length k is a (k, k)-perfect necklace. For instance the following
word is a (3, 3)-perfect necklace (the spacing is just for the readers convenience),

000 001 010 011 100 101 110 111

More generally, every arithmetic sequence with difference coprime with the alphabet
size yields a perfect necklace [1, Theorem 5].

A word w is a (k,m)-nested perfect necklace if for each integer ` = 1, 2, . . . , k,
each block of w of length m|A|` starting at a position congruent to 1 modulo m|A|`
is a (`,m)-perfect necklace. An alternative recursive definition of nested perfect
necklaces is as follows. A word w is a (k,m)-nested perfect necklace if, first, it is
a (k,m)-perfect necklace; and, second, either k = 1 or whenever w is factorized
w = w1 · · ·w|A| with each word wi of length m|A|k−1, then each word wi is a
(k − 1,m)-nested perfect necklace.
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Notice that each (k,m)-nested perfect necklace is not an equivalence class closed
under rotations, but it is a single word, with a unique initial position. The word
00110110 is a (2, 2)-nested perfect necklace because it is a (2, 2)-perfect necklace
and both words 0011 and 0110 are (1, 2)-perfect necklaces. The four words

0000111101011010

0011110001101001

0001111001001011

0010110101111000

are (2, 4)-nested perfect necklaces. Both the concatenation of the first two and the
concatenation of the last two are (3, 4)-nested perfect necklaces. The concatenation
of all of them is a (4, 4)-nested perfect necklace. The concatenation of all words of
the same length in lexicographic order yields a perfect necklace that is not a nested
perfect necklace.

The statement of our first result is as follows.

Theorem 1. The binary expansion of the number x defined by Levin in [12, The-
orem 2] using the Pascal triangle matrix modulo 2 is obtained as the concatenation
of (m,m)-nested perfect necklaces for m = 2d with d = 0, 1, 2, . . .. Conversely,
for every number x whose binary expansion is the concatenation of (m,m)-nested
perfect necklaces for m = 2d with d = 0, 1, 2 . . ., the discrepancy DN (({bnx})n≥0)
is O((logN)2/N).

The result of Theorem 1 holds for any base b that is a prime number, but we
can not prove that it holds for arbitrary integer bases. Actually in [12, Theorem 2]
Levin gives a construction of the base b expansion of a number that is normal to
base b, for any abritrary base b, not just for base 2. For each integer d = 0, 1, . . . he
considers Pascal triangle up to row m = 2d, he completes it with 0s to square form
and he takes the entries modulo 2. Then he defines a new matrix by taking these
entries modulo b. We have not been able to prove that the considered submatrices
of such a matrix have non-zero determinant, as required.

To see that the result of Theorem 1 holds for any base b that is a prime number
consider for each integer d = 0, 1, . . ., the Pascal triangle up to row m = bd.
Complete it with 0s to a square form, take it modulo b (instead of of modulo 2)
and call it Md. All the considered sub-matrices have determinant 1 before reducing
modulo b. Therefore, they also have determinant 1 modulo b. A similar argument
proves that every number x whose b-ary expansion is the concatenation of (m,m)-
nested perfect necklaces for m = bd with d = 0, 1, 2 . . . is such that the sequence (bnx
mod 1) has the stated discrepancy bound. Unfortunately this argument fails when
b is not prime (among the things that fail, the matrix Md is not upper triangular
anymore).

Now consider the field F2 with two elements. We introduce a family of 2m−1

matrices of dimension m × m over F2 obtained by rotating the columns of the
Pascal triangle matrix modulo 2. We identify words of two symbols with vectors
and, for each matrix M in this family, we construct a nested perfect necklace by
concatenating the words of the form Mw⊕z, where w ranges over all words over F2

of length m in lexicographic order, ⊕ is the addition of vectors and z is a fixed word
over F2 of length m. Such a necklace is called an affine necklace. Our second result
is as follows.

Theorem 2. For each m = 2d with d = 0, 1, 2, . . . there are 22m−1 binary (m,m)-
nested perfect necklaces and they are exactly the affine necklaces.
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2. Affine necklaces

We consider transformations on words obtained as linear maps over the field F2

with two elements. We identify the words of length n over F2 with the column
vectors of dimension n × 1 over F2. More precisely, we always identify the word
a1 · · · an where ai ∈ F2 with the column vector (a1, . . . , an)t ∈ (F2)n×1 where t

denotes transpose of vectors and matrices. Suppose w1, . . . , wk is a sequence of
words, each of them of length n andM is a n×n-matrix over F2, we may consider the
concatenation (Mw1)(Mw2) · · · (Mwk). In this writing, the matrix M is multiplied
with each word wi considered as a column vector, and the resulting column vector
is viewed again as a word of length n. Similarly, the component-wise sum of vectors
in F2 is used directly on words of the same length. It is denoted by the symbol ⊕.

We assume that the alphabet is F2 = {0, 1} and that the modulus m is always a
power of 2, namely m = 2d for some non-negative integer d. We define a family of
matrices that we will use to construct explicitly some nested perfect necklaces. We
start by defining by induction on d an m×m-matrix Md for each d ≥ 0 by

M0 = (1) and Md+1 =

(
Md Md

0 Md

)
.

The matrices M1 and M2 are then

M1 =

(
1 1
0 1

)
and M2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

The matrix Md is a variant of Pascal’s triangle modulo 2 in sqaure form, we
prove it in Lemma 3 below. This matrix is almost the one used by Levin in [12]
because we have reversed the order of the columns. This definition of the matrix
Md allows us to identify words with column vectors, which is not the case in [12].

For every d, the matrix Md is upper triangular, that is (Md)i,j = 0 for 1 ≤ j <
i ≤ 2d. The following lemma states that the upper part of the matrix Md is the
beginning of the Pascal triangle modulo 2 also known as the Sierpiński triangle.

Lemma 3. For all integers d, i, j such that d ≥ 0 and 1 < i ≤ 2d and 1 ≤ j < 2d,
(Md)i,j = (Md)i−1,j ⊕ (Md)i,j+1.

Proof. The proof is carried out by induction on d. For d = 0, the result is trivially
true because there are no such i and j. For d = 1, the result trivially holds. Suppose
that the result holds for Md and let i, j be integers such that 1 < i ≤ 2d+1 and
1 ≤ j < 2d+1. If i 6= 2d + 1 and j 6= 2d, the three entries (Md+1)i,j , (Md+1)i−1,j

and (Md+1)i,j+1 lie in the same quarter of the matrix Md+1 and the result follows
from the induction hypothesis. Otherwise, the result follows from the followings
facts. For each integer d ≥ 1, the entry (Md)i,j is equal to 1 if either i = 1 or j = 2d

(first row and last column) and it is equal to 0 if i = 2d or j = 1 (last row and
first column) and (Md)1,1 = (Md)2d,2d = 1 (intersection of the two previous cases).
These facts are easily proved by induction on d. �

We now introduce a family of matrices obtained by applying some rotations to
columns of the matrix Md. Let σ be the function which maps each word a1 · · · an
to ana1a2 · · · an−1 obtained by moving the last symbol to the front. Since words
over F2 are identified with column vectors, the function σ can also be applied to a
column vector.

Let n1, . . . , nm be a sequence of integers such that nm = 0 and ni+1 ≤ ni ≤
ni+1 + 1 for each integer 1 ≤ i < m. Let C1, . . . , Cm be the columns of Md, that
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is, Md = (C1, . . . , Cm). Define

Mn1,...,nm

d =
(
σn1(C1), . . . , σnm(Cm)

)
.

The following are the eight possible matrices Mn1,...,nm

d for d = 2 and m = 22.

M0,0,0,0
2 M1,0,0,0

2 M1,1,0,0
2 M2,1,0,0

2
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




0 1 1 1
1 1 0 1
0 0 1 1
0 0 0 1




0 0 1 1
1 1 0 1
0 1 1 1
0 0 0 1




0 0 1 1
0 1 0 1
1 1 1 1
0 0 0 1


M1,1,1,0

2 M2,1,1,0
2 M2,2,1,0

2 M3,2,1,0
2

0 0 0 1
1 1 1 1
0 1 0 1
0 0 1 1




0 0 0 1
0 1 1 1
1 1 0 1
0 0 1 1




0 0 0 1
0 0 1 1
1 1 0 1
0 1 1 1




0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1


Let m = 2d for some d ≥ 0 and let k be some integer such that 1 ≤ k ≤ m.

Let w1, . . . , w2m be the enumeration in lexicographic order of all words of length m
over F2. Let z be a word over F2 of length m and let w′i = wi ⊕ z for 1 ≤ i ≤ 2m.

Let M be a matrix of the form Mn1,...,nm

d as above. Then, the concatenation

(Mw′1)(Mw′2) · · · (Mw′2k)

is called an (k,m)-affine necklace. In the sequel we refer to this necklace as the
(k,m)-affine necklace obtained from the matrix M = Mn1,...,nm

d and the vector z.
Note that setting z′ = Mz gives Mw′i = Mwi ⊕ z′ which justifies the terminology.
In Lemma 4 each possible matrix M = Mn1,...,nm

d is proved to be invertible and
therefore each vector z′ is equal to Mz for some vector z.

M =


P

km− k

k

`

m

m

Figure 1. Position of the sub-matrix P in M in Lemma 4.

Lemma 4. Let M be a matrix of the form Mn1,...,nm

d . Let ` and k be two integers

such that 0 ≤ ` < ` + k ≤ 2d. The sub-matrix obtained by selecting the k rows
`+ 1, `+ 2, . . . , `+ k and the last k columns 2d − k + 1, . . . , 2d of M is invertible.

Note that for k = 2d and ` = 0, the sub-matrix in the statement of the lemma,
is the whole matrix Mn1,...,nm

d , which is invertible.

Proof. Let m = 2d be the number of rows and columns of M . By Lemma 3,
each entry Mi,j for 1 < i ≤ m and 1 ≤ j < m of the matrix M satisfies either
Mi,j = Mi−1,j ⊕Mi,j+1 if nj = nj+1 (the column Cj has been rotated as much as
the column Cj+1) or Mi,j = Mi−1,j ⊕Mi−1,j+1 if nj = nj+1 + 1 (the column Cj
has been rotated once more than the column Cj+1).

Let P be the sub-matrix in the statement of the lemma as shown in Figure 1.
To prove that P is invertible we apply transformations to make it triangular. Note
that all entries of the last column are 1. The first transformation applied to P is
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as follows. The row L1 is left unchanged and the row Li for 2 ≤ i ≤ k is replaced
by Li ⊕ Li−1. All entries of the last column but its top most one become zero.
Furthermore, each entry is Pi,j is replaced by either Pi,j+1 or Pi−1,j+1 depending
on the value nj − nj+1. Note also that the new values of the entries still satisfy
either Pi,j = Pi−1,j ⊕ Pi,j+1 or Pi,j = Pi−1,j ⊕ Pi−1,j+1 depending on the value
nj − nj+1. The second transformation applied to P is as follows. The rows L1

and L2 are left unchanged and each row Li for 3 ≤ i ≤ k is replaced by Li ⊕ Li−1.
All entries of the second to last column but its two topmost ones are now zero.
At step n for 1 ≤ n < k, rows L1, . . . , Ln are left unchanged and each row Li for
n+ 1 ≤ i ≤ k is replaced by Li⊕Li−1. After applying all these transformations for
1 ≤ n < k, each entry Pi,j for i+ j = k+ 1 satisfies Pi,j = 1 and each entry Pi,j for
i + j > k + 1 satisfies Pi,j = 0. It follows that the determinant of P is 1 and that
the matrix P is invertible. �

3. Affine necklaces are nested perfect necklaces

We introduce the notions of upper and lower border of a matrix Mn1,...,nm

d . Let

m = 2d for some d ≥ 0 and let M be one matrix Mn1,...,nm

d . An entry Mi,j for
1 ≤ i, j ≤ m is said to be in the upper border (respectively lower border) of M if
Mi,j = 1 and Mk,j = 0 for all k = 1, . . . , i−1 (respectively for all k = i+ 1, . . . ,m).

For instance, the upper border of the matrix M0,...,0
d = Md is the first row and its

lower border is the main diagonal. The following pictures in boldface the upper
and lower borders of the matrix M3,3,2,1,1,1,0,0

3 :

M3,3,2,1,1,1,0,0
3 =



0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 1
1 1 0 1 0 0 0 1
0 1 1 1 0 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1


We gather now some easy facts about the upper and lower borders of a ma-

trix Mn1,...,nm

d . Both borders start in the unique entry 1 of the first column. The
upper border ends in the top most entry of the last column and the lower border
ends in the bottom most entry of the last column. The upper border only uses either
East or North-East steps and the lower border only uses either East or South-East
steps. The upper border uses a East step from column Cj to column Cj+1 if
nj = nj+1 and uses a North-East step if nj = nj+1 +1. Furthermore, whenever the
upper border uses an East (respectively North-East) step to go from one columns
to its right neighbour, the lower border uses a South-East (respectively East) step.
This is due to the fact that the distance from the upper border to the lower border
in the i-th column is i− 1.

M =


P

k

k
1
0
0

m

m

Figure 2. Position of the sub-matrix P in M in Lemma 5
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Due to the symmetry in the matrix M0,...,0
d + Md Lemma 4 applies also to the

sub-matrices of M0,...,0
d obtained by selecting the first row. Since this symmetry is

lost for the other matrices Mn1,...,nm

d , we need the following lemma which accounts

for the rotations made to the columns in M0,...,0
d to obtain Mn1,...,nm

d .

Lemma 5. Let M be a matrix of the form Mn1,...,nm

d . Let k be an integer such that

1 ≤ k ≤ 2d. The k × k-sub-matrix obtained by selecting k consecutive rows and k
consecutive columns in such a way that its top right entry lies on the upper border
of M is invertible.

Proof. The proof is similar to that of Lemma 4. Let P be the sub-matrix in the
statement of the lemma, a picture appears in Figure 2. We apply transformations
to the sub-matrix P to put it in a nice form such that the determinant is easy to
compute. Just to fix notation, we suppose that the sub-matrix P is obtained by
selecting rows Lr+1, . . . , Lr+k and columns Cs+1, . . . , Cs+k. The hypothesis is that
the entry Mr+k,s+k is in the upper border of M . Note that the upper borders of
M and P coincide inside P . We denote by j1, . . . , jt the indices of the columns
of P in 1, . . . , k which are reached by a North-East step of the upper border. This
means that j1, . . . , jt is the sequences of indices j such that ns+j−1 = ns+j + 1. By
convention, we set j0 = 1, that is, the index of the first column of P .

The first transformation applied to the matrix P is the following. The columns
C1, . . . , Cjt−1 and Ck are left unchanged and each column Cj for jt ≤ j ≤ k − 1 is
replaced by Cj⊕Cj+1. All entries of the first row but its right most one become zero.

Furthermore, each entry Pi,j for jt ≤ j ≤ k − 1 is replaced by Pi−1,j . The
second transformation applied to the matrix P is the following. The columns
C1, . . . , Cjt−1−1 and Ck−1, Ck are left unchanged and each column Cj for jt−1 ≤
j ≤ k−2 is replaced by Cj⊕Cj+1. The first row remains unchanged and all entries
of the second row but the last two become 0. We apply t transformations like this
one using successively jt, jt−1, . . . , j1. Then k − t− 1 further steps are made using
then j0 = 1 each time. After applying all these transformations, each entry Pi,j for
i+ j = `+ 1 satisfies Pi,j = 1 and each entry Pi,j for i+ j < `+ 1 satisfies Pi,j = 0.
It follows that the determinant of P is 1 and that the matrix P is invertible. �

For a word w we write wn to denote the word given by concatenation of n copies
of w. The following lemma states that each (k,m)-nested perfect necklace can be
transformed into another (k,m)-nested perfect necklace which starts with 0m.

Lemma 6. Let w be a word of length m2k and let z be a word of length m. The

word w is a (k,m)-nested perfect necklace if and only if the word w ⊕ z2k

is a
(k,m)-nested perfect necklace.

Proof. Note first that both words w and z2k

have a length of m2k. Let w′ be the

word w⊕ z2k

. Let ` be an integer such that 1 ≤ ` ≤ k and let v′ be a block of w′ of
length m2` starting at a position j congruent to 1 modulo m2`. The corresponding

block of w at the same position j is of course v = v′⊕z2`

. By hypothesis, this later
block v is a (`,m)-nested perfect necklace. We claim that v′ is also a (`,m)-nested
perfect necklace.

Let i be such that 1 ≤ i ≤ m and let u′ any word of length `. Let t be the block
of zz of length ` starting at position i and consider the word u = u′⊕t. This word u
has an occurrence in the necklace v at a position j′ congruent to i modulo m. It
follows that u′ = u⊕ t has an occurrence at the same position j′ in v′. Since each
word u has such an occurrence for each possible i and v′ has length m2`, v′ is a
(`,m)-nested perfect necklace. �
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We can now prove that the all the (k,m)-affine necklaces are (k,m)-nested perfect
necklaces.

Proposition 7. Let k,m, d be integers such that d ≥ 0, m = 2d and 1 ≤ k ≤ m.
Each (k,m)-affine necklace is a (k,m)-nested perfect necklace.

The proof of Proposition 7 follows and extends that of [12, Lemma 5] but we use
a different notation.

Proof. It suffices of course to prove the result for k = m. By Lemma 6, it may be
assumed that the vector z in the definition of affine necklaces is the zero vector.
Let M be one of the matrices Mn1,...,nm

d , let w1, . . . , w2m be the enumeration
in lexicographic order of all words of length m over F2 and suppose that the
(m,m)-affine necklace w is the concatenation (Mw1)(Mw2) · · · (Mw2m). Let k
be an integer such that 1 ≤ k ≤ m and let w′ be a block of w of length m2k

starting at a position congruent to 1 modulo m2k. The word w′ is thus equal to a
concatenation of the form (Mwp2k+1) · · · (Mw(p+1)2k) for some fixed integer p such

that 0 ≤ p ≤ 2m−k − 1. We claim that w′ is a (k,m)-perfect necklace.
To prove the claim, it must be shown that for each integer ` such that 0 ≤ ` < m,

each word u of length k has exactly one occurrence in w with a starting position
congruent to ` + 1 modulo m (we write ` + 1 rather than ` because positions
are numbered from 1). We suppose that the word u and the integer ` such that
0 ≤ ` < m are fixed. We distinguish two cases depending on whether ` + k ≤ m
or not.

We first suppose that k + ` ≤ m. It follows that the wanted occurrence of u
must be fully contained in a single word Mwp2k+q for 1 ≤ q ≤ 2k. More precisely
it must lie in the positions ` + 1, . . . , ` + k of Mwp2k+q. In that case, the claim
boils down to showing that there is exactly one integer q such that u occurs in
positions `+1, . . . , `+k of Mwp2k+q. Let us recall that p is fixed and that q ranges

in 1, . . . , 2k. Since wi is the base 2 expansion of i − 1 with m bits, wp2k+q has a
factorization of the form xpyq−1, where xp and yq−1 are the base 2 expansions of p
and q − 1 with m− k and k bits, respectively.

M =


PN

The occurrence of u in wp2k+q is now translated into linear equations by in-
troducing the following two matrices N and P (see above). Let N and P be the
following sub-matrices of the matrix M . The k ×m − k matrix N is obtained by
selecting the k rows L`+1, . . . , L`+k and the m − k columns C1, . . . , Cm−k. The
k × k matrix P is obtained by selecting the same k rows L`+1, . . . , L`+k and the k
columns Cm−k+1, . . . , Cm. The word u occurs in the positions ` + 1, . . . , ` + k of
Mwp2k+q if and only if u = Nxp+Pyq−1 where words u, xp and yq−1 are considered
as columns vectors of respective dimensions k, m− k and k. Since xp is fixed and
P is invertible by Lemma 4, there is exactly one solution for yq−1 and thus one
solution for q. This proves the claim when k + ` ≤ m.

We suppose that `+ k > m. The wanted occurrence of u must then overlap two
consecutive words Mwp2k+q and Mwp2k+q+1 where p2k+q+1 should be understood

as p2k + 1 if q = 2k. Let us write u = u1u2 where u1 and u2 have length m− ` and
` + k −m. The wanted occurrences exist if u1 occurs at positions ` + 1, . . . ,m of
Mwp2k+q and u2 occurs at positions 1, . . . , `+ k−m of Mwp2k+q+1 with the same
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convention for p2k+q+1. As in the previous case, these occurrences are translated
into linear equations. For that purpose, we introduce the following four matrices.

M =


P2N2

P1N1

The matrices N1 and P1 are obtained by selecting the rows L`+1, . . . , Lm and the
columns C1, . . . , Cm−k for N1 and Cm−k+1, . . . , Cm for P1. The matrices N2 and P2

are obtained by selecting the rows L1, . . . , L`+k−m and the columns C1, . . . , Cm−k
forN2 and Cm−k+1, . . . , Cm for P2 (see above). The two words wp2k+q and wp2k+q+1

are then factorized wp2k+q = xpyq−1 and wp2k+q+1 = xpyq where xp is the base 2

expansion of p with 2m−k bits and words yq−1 and yq are the base 2 expansions of
q− 1 and q (understood as 0 if q = 2k) with 2k bits. The occurrences of u1 and u2

do exist as wanted if and only if these two equalities hold,

u1 = N1xp + P1yq−1,

u2 = N2xp + P2yq

Notice that the first equation involves yq−1 while the second one involves yq. These
two words are strongly related in the sense that each one determines the other. For
each i such that 0 ≤ i ≤ k, the i right most bits of either yq−1 or yq determine
the i right most bits of the other. This is due to the fact that either adding or
subtracting 1 can be performed on the bits from right to left. For that reason, we
will show that the equations u1 = N1xp + P1yq−1 and u2 = N2xp + P2yq have a
unique solution in q by successively computing the bits of q − 1 and q from right
to left.

We actually describe a strategy for solving the two equations. This strategy is
based of the upper and lower borders of the matrix M . The main ingredient is
that between two consecutive columns Cj and Cj+1, one of the two borders uses
a step which is not horizontal, that is, either North-East for the upper border or
South-East for the lower border.

The right most bit of yq−1 and yq can be found as follows. Either the upper
border or the lower border makes a non horizontal step from Cm−1 to Cm. It
means that either the first row or the last row of M has the form (0, . . . , 0, 1). This
row can be used to find the right most bit of yq−1 and yq as it is the first row the
equation u1 = N1xp + P1yq−1 or the last row of the equation u2 = N2xp + P2yq.
The second right most bit of yq−1 and yq can be found as follows. Either the upper
border or the lower border makes a non horizontal step from Cm−2 to Cm−1. It
means that one row of M has the form (0, . . . , 0, 1, ∗). It can be used to find the
second right most bit of yq−1 and yq as it is one row of one of the two equations.

This process can be continued using at each step a row of either the first or
the second equation. In the process rows of the first equation are used from the
first to the last while rows of the second equation are used from the last to the
first. This process can be continued until the rows of one the equations have been
exhausted. By symmetry, it can be assumed that all rows of the second equation
have been used. Suppose that the left most n bits of yq−1 and yq have still to be
found. Then the last n rows of the first equations have not been used. Considering
the known bits as constants, the matrix involving the r unknown bits is a matrix
as in Lemma 5. By this lemma, this matrix is invertible and these last r bits can
be found in a unique way. This proves the claim when `+ k > m and finishes the
proof of the proposition. �
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4. Nested perfect necklaces are affine necklaces

We show that all (k,m)-nested perfect necklaces are (k,m)-affine necklaces.
Since the other inclusion has been already proved, it suffices to show that they
have the same cardinality. The next lemma shows that for k = 1, they coincide.

Lemma 8. The (1,m)-nested perfect necklaces are the words of the form ww′ where
w and w′ are two words of length m satisfying w′ = w⊕ 1m. Furthermore, they are
all affine.

Proof. It is straightforward that (1,m)-nested perfect necklaces are the words of
the form stated in the lemma. And for each matrix M of the form Mn1,...,nm

d , Mw0

and Mw1 are respectively equal to 0m and 1m. This proves the last claim. �

The next lemma provides the number of (m,m)-affine necklaces. It shows that
(m,m)-affine necklaces obtained by the different choices of the matrix Mn1,...,nm

d

and of the vector z are indeed different.

Lemma 9. Let m = 2d for some d ≥ 0. There are exactly 22m−1 different (m,m)-
affine necklaces.

Proof. There are exactly 2m−1 matricesMn1,...,nm

d . Indeed, the sequence n1, . . . , nm
is fully determined by the sequence n1 − n2, . . . , nm−1 − nm of m − 1 differences
which take their value in {0, 1}. There are also 2m possible values for the word z
in Fm2 . This proves that the number of (m,m)-affine necklaces is bounded by 22m−1.

It remains to show that two (m,m)-affine necklaces obtained for two different
pairs (M, z) and (M ′, z′) are indeed different. Let w1, . . . , w2d be the enumeration
in lexicographic order of all words of length m over F2. Let M and M ′ be two
matrices of the form Mn1,...,nm

d . Let z and z′ be two words over F2 of length m
and let ui = wi ⊕ z and u′i = wi ⊕ z′ for 1 ≤ i ≤ 2m. Let w and w′ be the two
concatenations (Mu1) · · · (Mu2d) and (M ′u′1) · · · (M ′u′2d). We claim that if w = w′,
then M = M ′ and z = z′.

We suppose that w = w′. Since both matrices M and M ′ are invertible by
Lemma 4, Mui (respectively M ′u′i) is the zero vector if and only if ui (respectively
u′i) is the zero vector, that is, z = wi (respectively z′ = wi). It follows then that
z = z′ and thus ui = u′i for 1 ≤ i ≤ 2m. Note that the vector ui ranges over all
possible vectors of length m. If Mui = M ′ui for all 1 ≤ i ≤ 2m, then M = M ′. �

Lemma 12 will show how (k,m)-affine necklaces can be concatenated with (k,m)-
affine necklaces to get (k + 1,m)-perfect necklaces. The next two lemmas are
intermediate steps towards the proof. The first states that each rotation of a column
of Md is a linear combination of some columns to its right.

Lemma 10. Let d ≥ 0 be integer and let (C1, . . . , C2d) be the columns of the
matrix Md. For any integers i, k such that 1 ≤ i ≤ 2d and k ≥ 0, the vector

σk(Ci)⊕ Ci is equal to a linear combination
⊕2d

j=i+1 bjCj where bj ∈ F2.

Proof. The result is proved by the induction on the difference 2d − i. If i = 2d, the
result holds trivially because σ(C2d) = C2d . Assume that i < 2d is fixed. The proof
is now by induction on the integer k. The result for k = 0 is trivially true. By
Lemma 3 applied to the column Ci+2d of the matrix Md+1, the equality σ(Ci)⊕Ci =
Ci+1 holds. We apply Lemma 3 to the column Ci+2d of the matrix Md+1 because
this column has period 2d and its first half is the column Ci of Md. This proves the
result for k = 1. Suppose now that the result is true for some k ≥ 1. Applying σ
to both terms of the equality and replacing first σ(Ci) by the value Ci ⊕ Ci+1 and
second each σ(Cj) by the value given by the induction hypothesis gives the result
for k + 1. �
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The next lemma shows for each (k,m)-affine necklace, there is just one possible
way of rotating it to get another (k,m)-affine necklace.

Lemma 11. Let d, m, k and p be integers such that d ≥ 0, m = 2d, 1 ≤ k ≤ m
and p ≥ 0. Let w be a (k,m)-affine necklace. If m divides p and σp(w) is also a
(k,m)-affine necklace, then p ≡ m2k−1 mod |w|.

Proof. Since |w| = m2k and σ|w|(w) = w, we may assume that 0 ≤ p ≤ m2k. The
result holds if either p = 0 or p = m2k. Therefore we assume that 1 ≤ p ≤ m2k−1.
Let w1, . . . , w2m be the enumeration in lexicographic order of all words over F2 of
length m. Since w is an affine necklace, it is a concatenation (Mu1) · · ·M(u2k)
where M is a matrix Mn1,...,nm

d and ui is equal to wi ⊕ z for each integer 1 ≤
i ≤ 2k and for some fixed vector z. Since σp(w) is also an affine necklace, it is a
concatenation (M ′u′1) · · · (M ′u′2k) where M ′ is a matrix Mn1,...,nm

d and u′i is equal to

wi⊕z′ for each integer 1 ≤ i ≤ 2k and for some other fixed vector z′. For each ` such
that 0 ≤ ` < m, consider the vector M ′u′1⊕M ′u′1+2` . Since u′1⊕u′1+2` = w1⊕w1+2`

and since w1+2` is the vector having a single 1 in position m− `, M ′u′1 ⊕M ′u′1+2`

is equal to the column C ′m−` of the matrix M ′. Since M and M ′ are two matrices

of the form Mn1,...,nm

d , the column C ′m−` of M ′ is equal to σt(Cm−`) where Cm−`
is the corresponding column of M and t is some integer. Since m divides p, the
necklace σp(w) is also equal to

(Mui) · · · (Mu2k)(Mu1) · · · (Mui−1)

where i = 1 + p/m. We consider the word wi which is the base 2 expansion of i− 1
with m bits. Let ` be the greatest integer such that 2` divides i − 1 = p/m. The
integer i − 1 is equal to 2`(2r + 1) for some non-negative integer r. We claim
that ` = k − 1.

Suppose by contradiction that ` < k − 1. The integer r satisfies thus r ≥ 0 and
the base 2 expansion of 2r+1 is u1 where u the base 2 expansion of r. The word wi is
then equal to 0m−ku10` where 0m−k is the block leading zeros due to i ≤ 2k and u is
the base 2 expansion of r with k−`−1 digits. We consider the word wi+2` . This word
is equal to 0m−ku′0`+1 where u′ is the base 2 expansion of r+1 with k−`−1 digits.
Computing Mui⊕Mui+2` = Mwi⊕Mwi+2` gives C2d−`⊕R where R is a non-zero
linear combination of Cm−k, . . . , Cm−`−1. This linear combination R cannot be
equal to zero because the words u and u′ are different. The vector Mui ⊕Mui+2`

is also equal to M ′u′1 ⊕M ′u′1+2` = C ′m−` = σt(Cm−`). By Lemma 10, this vector

is equal to Cm−` ⊕ R′, where R′ is a linear combination of Cm−`+1, . . . , Cm. This
is a contradiction: the equality R = R′ is impossible because, by Lemma 4, the
matrix M is invertible. �

We are now ready to show that each (k,m)-affine necklace can be extended by
at most two (k,m)-affine necklaces to get a (k + 1,m)-perfect necklace.

Lemma 12. Let m = 2d for some d ≥ 0 and let k be an integer such that 1 ≤
k ≤ m. Let w be a (k,m)-affine necklace. There are at most two (k,m)-affine
necklaces w′ such that ww′ is a (k + 1,m)-perfect necklace.

Proof. We use the characterization of (k,m)-perfect necklaces as cycles in appro-
priate graphs Gk (variants of de Bruijn graphs) given in [1]. Consider the directed
graph Gk whose vertex set is Fk2 × {1, . . . ,m} and whose transitions are defined as
follows. There is an edge in Gk from (u, i) to (u′, i′) if first there are two symbols
a and b in F2 such that ua = bu′ and second i′ ≡ i+ 1 mod m. The condition on
u and u′ means that u and u′ are respectively the prefix and the suffix of length k
of the word v = ua = bu′ of length k + 1. Therefore, the edges of the graph Gk
can be identified with the words of length k + 1 over F2. Note that each vertex
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of Gk has two incoming and two outgoing edges. It follows from the definition
of the graph Gk, that each (k,m)-nested perfect necklace can be interpreted as a
Hamiltonian cycle in Gk and that each (k + 1,m)-nested perfect necklace as an
Eulerian cycle in Gk.

Let w be a (k,m)-affine necklace. Then w determines a Hamiltonian cycle C
in Gk. Since C visits each node of Gk exactly once, it uses one outgoing edge of each
node. Any (k,m)-nested perfect necklace w′ such that ww′ is a (k + 1,m)-nested
perfect necklace induces an Hamiltonian C ′ cycle which cannot use an edge of C.
Otherwise, it would not be possible to build an Eulerian cycle from C and C ′ and
ww′ would not be a (k + 1,m)-nested perfect necklace. If there is no (k,m)-affine
necklace w′ such that ww′ is a (k+1,m)-nested perfect necklace the lemma trivially
holds. Suppose now that there exists at least one such w′. Since the graph Gk \C
has only one outgoing edge from any vertex, any (k,m)-nested perfect necklace w′′

such that ww′′ is a (k+1,m)-nested perfect necklace must be of the form σp(w′) for
some integer p ≥ 0. Since both Hamiltonian cycles C ′ and C ′′ induced by w′ and w′′

must start from a vertex in Fk2 × {1} it follows that m divides p. By Lemma 11,
the only possible choices for p are 0 and m2k−1. This proves that there is at most
one such w′′ different from w′. �

We can now give the number of (k,m)-affine necklaces.

Proposition 13. Let m = 2d for some d ≥ 0. For each integer k such that
1 ≤ k ≤ m, the number of (k,m)-affine necklaces is exactly 2k+m−1.

Proof. We assume the integer m to be fixed and we let tk denote the number of
(k,m)-affine necklaces. By Lemma 8, t1 is equal to 2m and by Lemma 9, tm is equal
to 22m−1. It follows from Lemma 12 that tk+1 ≤ 2tk for each integer k such that
1 ≤ k < m. None of these inequalities can be strict because otherwise tm would be
striclty less that 22m−1. So, for each integer k such that 1 ≤ k ≤ m, tk+1 = 2tk,
hence, tk = 2k+m−1. �

The results above allows us to prove the wanted inclusion.

Proposition 14. Each (k,m)-nested perfect necklace is a (k,m)-affine necklace.

Proof. Fix m, let sk be the number of (k,m)-nested perfect necklaces and let tk
be the number of (k,m)-affine necklaces. By Proposition 7, sk ≤ tk holds for each
integer k such that 1 ≤ k ≤ m. To prove the statement, it suffices to prove that
sk = tk for each integer k such that 1 ≤ k ≤ m. We prove it by induction on k.
By Lemma 8, s1 = t1 = 2m. We suppose sk = tk and we prove that sk+1 = tk+1.
Each (k+ 1,m)-nested perfect necklace can be written as ww′ where w and w′ are
two (k,m)-nested perfect necklaces. Since sk = tk, w and w′ are also (k,m)-affine
necklaces. By Lemma 12, there are at most two possible choices of w′ for each w.
This proves that tk+1 ≤ 2tk. Since sk+1 = 2sk by Proposition 13 and sk+1 ≤ tk+1,
the equality sk+1 = tk+1 holds. �

5. Proof of Theorems 1 and 2

5.1. Proof of Theorem 1. For each integer d = 0, 1, . . . consider the Pascal
triangle up to row m = 2d. Complete it with 0s to obtain a square matrix and
now take this matrix modulo 2. Notice that Levin’s construction in [12, Theorem
2] is the concatenation of blocks obtained using this matrix for increasing m = 2d

with d = 0, 1, 2, . . .. Hence, each block of the constructed binary sequence is
an (m,m)-affine necklace and, as we proved in Proposition 7, each block is an
(m,m)-nested perfect necklace.

Conversely, assume that the binary expansion of a given real x can be split
in consecutive blocks such that each block is an (m,m)-nested perfect necklace
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for m = 2d with d = 0, 1, 2, . . .. In each (m,m)-nested perfect necklace, each
block of length m occurs exactly m times at different positions modulo m. To
bound the discrepancy of the sequence (2nx mod 1)n≥1 at positionN Levin bounds
the error in a multiplicative way: for each block of length m he multiplies the
number of possible congruence classes of a position (namely m) times the number of
occurrences that the block can have in the positions in that congruence class. Thus,

given a positionN there are positive integers k andR such thatN =
∑k−1
d=1 2d22d

+R

with 0 ≤ R < 2k 22k

and k is O(log logN). Thus, for a block of length 2k the the
number of occurrences in the last tail of R positions can have an error in the
order of 2k times 2k. This already explains the term O(logN)2 in the discrepancy
bound stated in Theorem 1 It is carefully counted in Levin’s chain of estimates [12,
Lemma 5], [12, Corollaries 1 and 2] and the end of the proof of [12, Theorem 2].

5.2. Proof of Theorem 2. It follows from Propositions 7, 13 and 14.
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