Perfect necklaces

Verónica Becher

Universidad de Buenos Aires

Séminaire de l'équipe de Théorie Ergodique et Systèmes Dynamiques
L'Institut Galilée, Université Sorbonne Paris Nord
October 11, 2023

Perfect necklaces

A necklace is the equivalence class of a word under rotations.
Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)
A necklace over a b-symbol alphabet is (n, k)-perfect if each word of length n occurs k times, at positions with different congruence modulo k, for any convention of the starting point.

The (n, k)-perfect necklaces have length $k b^{n}$.
De Bruijn circular sequences are exactly the ($n, 1$)-perfect necklaces.

Example

All words of length 2 concatenated in lexicographical order, view it circularly. 00011011

1		
1	8	0
${ }_{7}$		1
06		
$1{ }^{5}$		0
	4	0
	1	
00 occurs twice ($\mathrm{p}: 1,2$);		
01 occurs twice (p:3,6);		
10 occurs twice ($\mathrm{p}: 5,8$);		
11 occurs twice ($\mathrm{p}: 4,7$)		

Each word of length 2 occurs 2 times at positions with different congruence modulo n.

Example

All words of length 3 concatenated in lexicographical order, view it circularly.

$$
000001010011100101110111
$$

000 occurs three times (positions 1,2,3)
001 occurs three times (positions 4,9,14)

Each word of length 3 occurs n times at positions with different congruence modulo 3 .

The ordered necklace is perfect

Definition

The concatenation of all words of length n over a b-symbol alphabet in lexicographic order is called the ordered necklace for length n.

Proposition (Alvarez, Becher, Ferrari and Yuhjtman 2016)
The ordered necklace for length n is (n, n)-perfect.

Astute graphs

Fix b-symbol alphabet.
Consider the tensor product of the de Bruijn graph with a simple cycle. The astute graph $G_{b}(n, k)=(V, E)$ is directed, with $k b^{n}$ vertices.
$V=\{0, . ., b-1\}^{n} \times \mathbb{Z} / k \mathbb{Z}$
$E=\left\{(u, m),(v, m+1): u=a_{1} \ldots a_{n}, v=a_{2} \ldots a_{n} a_{n+1}\right\}$
$G_{2}(2,2)$

$G_{b}(n, 1)$ is the de Bruijn graph of words of length n over b-symbols. $G_{2}(2,1)$

Perfect necklaces characterization

Every Hamiltonian cycle in $G_{b}(n, k)$ yields an (n, k)-perfect necklace.
$G_{b}(n, k)$ is the line graph of $G_{b}(n-1, k)$.
Thus, every Hamiltonian cycle in $G_{b}(n, k)$ is Eulerian in $G_{b}(n-1, k)$,
Hence, every Eulerian cycle in $G_{b}(n-1, k)$ yields one (n, k)-perfect necklace.

Each (n, k)-perfect necklace can come from several Eulerian cycles in $G_{b}(n-1, k)$

Count

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)
The number of (n, k)-perfect necklaces over a b-symbol alphabet is

$$
\frac{1}{k} \sum_{d_{b, k}|j| k} e(j) \varphi(k / j)
$$

where

- if $k=p_{1}^{\alpha_{1}} \ldots p_{t}^{\alpha_{t}}$, then $d_{b, k}=\prod p_{i}^{\alpha_{i}}$, where p_{i} divides both b and k,
- $e(j)=(b!)^{j b^{n-1}} b^{-n}$ is the number of Eulerian cycles in $G_{b}(n-1, j)$
- φ is Euler's totient function.

Three families of perfect necklaces

Arithmetic, Nested, Succession

- Construction
- Count
- Discrete discrepancy

Arithmetic necklaces

Identify the words of length n over a b-symbol alphabet with the set of non-negative integers modulo b^{n} according to representation in base b.

Definition

Let $b \geq 2$ be an integer, let d be coprime with b. Let n be a positive integer. An arithmetic necklace is the concatenation of words of length n corresponding to the arithmetic progression with difference d :
$0 \quad d \bmod b^{n} \quad 2 d \bmod b^{n} \ldots\left(b^{n}-1\right) d \bmod b^{n}$

With $d=1$ we obtain the ordered necklace.
Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)
For each n, the arithmetic necklaces are (n, n)-perfect.

Count

Given b and n, \# numbers coprime to b and smaller than b^{n}.

Discrete discrepancy

Fix b-symbol alphabet with the uniform measure.

$$
\Delta_{\ell, N}\left(a_{1} a_{2} \ldots\right)=\max _{u \in\{0, . ., b-1\}^{\ell}}\left|\frac{\left|a_{1} a_{2} \ldots a_{N+\ell-1}\right|_{u}}{N}-\frac{1}{b^{\ell}}\right|
$$

where $\ell<\lfloor\log (N)\rfloor$. This is to obtain u.d. of almost all (with respect to the product measure) infinite sequences (Flajolet, Kirschenhofer and Tichy 1988)

Problem

What is minimal $\Delta_{\ell, N}(x)$ among all words x ?
This is the discrete counterpart of Korobov's question (1955) on the minimum $D_{N}\left(\left(b^{n} x \bmod 1\right)_{n \geq 0}\right)$ for some real number x and integer b.

Discrete discrepancy

Problem

What are the minimal and maximal discrete discrepancy for arithmetic necklaces?

The largest is presumably by the progression with difference 1 .
For small discrepancy:
Theorem (Levin 1999 Theorem 1, using Popov 1981)
For every n there is an arithmetic necklace such that $N \Delta_{N}=O\left(n^{3}\right)$.
Conjecture (Becher and Carton 2019)
For every n there is an arithmetic necklace such that $N \Delta_{N}=O\left(n^{2} \log n\right)$.

Using classical discrepancy

We need a sliding window of length n along this concatenation

These are $n b^{n}$ windows.
Convert the $n b^{n}$ windows to $n b^{n}$ rationals in the unit interval (base-b expansion) We obtain n progressions of b^{n} terms:
$0, \quad \frac{d}{b^{n}} \bmod 1, \quad \frac{2 d}{b^{n}} \bmod 1, \quad \ldots, \frac{\left(b^{n}-1\right) d}{b^{n}} \bmod 1$
$0, \quad \frac{d}{b^{n-1}} \bmod 1, \quad \frac{2 d}{b^{n-1}} \bmod 1, \quad \ldots, \frac{\left(b^{n}-1\right) d}{b^{n-1}} \bmod 1$ $0, \quad \frac{d}{b^{2}} \bmod 1, \quad \frac{2 d}{b^{2}} \bmod 1, \quad \ldots, \quad \frac{\left(b^{n}-1\right) d}{b^{2}} \bmod 1$
$0, \quad \frac{d}{b} \bmod 1, \quad \frac{2 d}{b} \bmod 1, \quad \ldots, \frac{\left(b^{n}-1\right) d}{b} \bmod 1$

Classical discrepancy on arithmetic progressions

For $\alpha=\left[a_{0} ; a_{1}, \ldots, a_{s}\right]$ let $S(\alpha)=\sum_{i=1}^{s} a_{i}$.
By a classical result,

$$
N D_{N}\left((k \alpha \bmod 1)_{k \geq 1}\right) \leq S(\alpha) \text { stop at } t(N)+1, q_{t(N)} \leq N \leq q_{t(N)+1}
$$

Levin 1999: For every $b \geq 2$ and n there is d coprime with b such that

$$
\sum_{i=1}^{n} S\left(d / b^{i}\right)<K n^{3}, \text { where } K \text { is constant. }
$$

Since $\Delta_{N} \leq D_{N}$, for N between 1 and $n b^{n}$,

$$
N \Delta_{N}(x) \leq \sum_{i=1}^{n} S\left(d / b^{i}\right)=O\left(n^{3}\right)
$$

Our conjecture

Definition (minimizer)

Let $b \geq 2$ be an integer and let n be a positive integer.
A minimizer for (b, n) is a positive integer d that minimizes $\sum_{i=1}^{n} S\left(d / b^{i}\right)$.

Stern-Brocot tree

The Stern-Brocot tree is a binary tree whose vertices are the positive rational numbers. The root is 1 (row $r=0$). The left subtree, the Farey tree, contains the rationals less than 1.

The number x is at row r if and only if $S(x)=r+1$.
For b and n, find d coprime with b, between 1 and $b^{n}-1$ minimizing

$$
\sum_{i=1}^{n} \operatorname{row}\left(d / b^{i}\right)
$$

Around Zaremba's conjecture

For the case of $b=2$, we need

```
For every \(n\),
find \(d\) odd between 1 and \(2^{n}-1\)
that minimizes \(S(d / 2)+S\left(d / 2^{2}\right)+\ldots+S\left(d / 2^{n}\right)\)
```

Theorem (Neiderreter 1986, Zaremba's conjecture for the powers of 2)
For very n there is a such that all the coefficients in the continued fraction expansion of $a / 2^{n}$ are bounded by 3 .

Zaremba's 1971 conjecture predicts that every integer appears as the denominator of a finite continued fraction whose coefficients are bounded by an absolute constant.

Nested perfect necklaces

Definition (Becher \& Carton 2019)

An (n, k)-perfect necklace over a b-symbol alphabet is nested
if $n=1$ or $i t$ is the concatenation of b nested $(n-1, k)$-perfect necklaces.

This is a nested (2,2)-perfect necklace for $b=2$

The ordered perfect necklace is not nested. For example, $b=3, n=2$,

$$
\underbrace{000102}_{\text {not }(1,2) \text {-perfect }} \underbrace{101112}_{\text {not }(1,2) \text {-perfect }} \underbrace{202122}_{\text {not }(1,2) \text {-perfect }}
$$

Nested perfect necklaces

For example, in the binary alphabet and n is a power of 2 ,

$2^{n-1} \quad(1, n)$-perfect necklaces

Levin's necklace, n power of 2

For n a power of 2 , M.Levin (1999) defines a matrix M in $\mathbb{F}_{2}^{n \times n}$ using Pascal triangle matrix modulo 2,

$$
M:=\left(p_{i, j}\right)_{i, j=0,1, \ldots n-1} \text { where } p_{i, j}:=\binom{i+j}{j} \bmod 2 .
$$

M is upper triangular and it has the following property on submatrices.
Lemma (Levin 1999 from Bicknell and Hoggart 1978; Mereb 2023)
For Pascal triangle matrix modulo 2, each square submatrix at the left or at the top has determinant computed in \mathbb{Z} equal to 1 or -1 .

Then, if these determinants are computed in $\mathbb{Z} / b \mathbb{Z}$, for any integer $b \geq 2$, they are equal to 1 or -1 .

Levin's necklace, n power of 2

Definition (Levin 1999)
Let integer $b \geq 2$ and let n be a power of 2 .
Identify the set of non-negative integers modulo b^{n} according to representation in base b with the vectors $w_{0}, \ldots w_{b^{n}-1}$ in $(\mathbb{Z} / b \mathbb{Z})^{n}$.

Let $M \in \mathbb{F}_{2}^{n \times n}$ be the Pascal triangle matrix modulo 2.
Define the necklace (computation is done in $\mathbb{Z} / b \mathbb{Z}$)

$$
M w_{0} \ldots M w_{b^{n}-1} .
$$

For example, for $b=2$,

```
n=\mp@subsup{2}{}{0}
n=\mp@subsup{2}{}{1}}00011100
```


Levin's necklace is nested perfect, n power of 2

Theorem (Becher and Carton 2019)
Let $b \geq 2$ be a integer and let n be a power of 2 . The necklace given by the Pascal triangle matrix modulo 2 is nested (n, n)-perfect.

Construction of nested (n, n)-perfect necklaces, n power of 2

Definition (Pascal-like family $\mathcal{P} \subseteq \mathbb{F}_{2}^{n \times n}$)

Let n be a power of 2 .
Let $\left(\eta_{j}\right)_{0 \leq j<n}$ such that $\eta_{0}=0, \eta_{j} \leq \eta_{j+1} \leq \eta_{j}+1$ (non decreasing step) Define $M^{\eta}=\left(p_{i, j}^{\eta}\right)_{0 \leq i, j<n}$ in $\mathbb{F}_{2}^{n \times n}$,

$$
p_{i, j}^{\eta}=\binom{i+j-\eta_{j}}{j} \quad \bmod 2
$$

For each M in $\mathcal{P}=\left\{M^{\eta}: \eta\right.$ non decreasing step $\}$, for every integer $b \geq 2$,

$$
M w_{0} \ldots M w_{b^{n}-1}
$$

(multiplication in $\mathbb{Z} / b \mathbb{Z})$ is a nested (n, n)-perfect necklace.

Count of binary nested (n, n)-perfect necklaces, n power of 2

Theorem (Becher and Carton 2019)
There are $2^{2 n-1}$ binary nested (n, n)-perfect necklaces, n power of 2 .

Proof.

For each M in \mathcal{P} and for each z in $\mathbb{F}_{2}^{n}, M\left(w_{0} \oplus z\right) \ldots M\left(w_{2^{n}-1} \oplus z\right)$ is a binary nested (n, n)-perfect necklace.
If $z^{\prime}=M z, \quad M\left(w_{0} \oplus z\right) \ldots M\left(w_{2^{n}-1} \oplus z\right)=M w_{0} \oplus z^{\prime} \ldots M w_{2^{n}-1} \oplus z^{\prime}$,
\# matrices $\in \mathbb{F}_{2}^{n \times n}$ in $\mathcal{P} \times \#$ vectors $z \in \mathbb{F}_{2}^{n}=2^{2 n-1} \leq$ Total.
By a graph theoretical argument we know that there can be no more.

Construction nested (n, n)-perfect necklaces, prime b, n power of b

Definition (Pascal-like family $\mathcal{P} \subseteq \mathbb{F}_{b}^{n \times n}$ Hofer and Larcher, 2022)

Let b be a prime.
Let n be a power of b.
Let $\left(u_{j}\right)_{0 \leq j<n}$ with $u_{j} \not \equiv 0 \bmod b$.
Let $\left(\eta_{j}\right)_{0 \leq j<n}$ such that $\eta_{0}=0, \eta_{j} \leq \eta_{j+1} \leq \eta_{j}+1$.
Define $M^{u, \eta}=\left(p_{i, j}^{u, \eta}\right)_{0 \leq i, j<n}$ in $\mathbb{F}_{b}^{n \times n}$,

$$
p_{i, j}^{u, \eta}=\binom{i+j-\eta_{j}}{j} u_{j} \quad \bmod b
$$

For each M in \mathcal{P},

$$
M w_{0} \ldots M\left(w_{b^{n}-1}\right)
$$

(multiplication in \mathbb{F}_{b}) is a nested (n, n)-perfect necklace.

Count, we know very little

Base $/ \mathrm{n}$	necklace in base $b=2$	necklace in base $b \geq 3$
n a power of 2	$2^{2 n-1}$	$?$
n a power of prime $b \geq 3$	$?$	$?$

Discrepancy

Theorem (Levin 1999; Becher and Carton 2019, Hofer and Larcher 2022,2023)

Base $/ n$	necklace in base $b \geq 2$
n a power of 2 n a power of prime b	$\Delta_{N}=O(n(\log N) / N)$

In case of the canonical Pascal triangle matrix in \mathbb{F}_{b}, prime $b \geq 2$, $\Delta_{N}=\Theta(n(\log N) / N)$.

Succession necklaces

Definition

The succession necklaces for (n, k) are (n, k)-perfect necklaces that correspond to Eulerian cycles in $G_{b}(n-1, k)$ obtained by joining cycles given by a succession rule.

We extend the shift registers of Golomb 1967 to construct some: (n, k)-rotation cycles and (n, k)-increment cycles.

We do not know how to count them.

Observation

For every n, the ordered necklace of words of length n is arithmetic and succession.

Discrepancy of succession necklaces

Theorem (Álvarez, Becher, Mereb, Pajor and Soto 2023)
We construct an ($n, 1$)-perfect necklace by joining ($n, 1$)-increment cycles
for $b=2, N \Delta_{1, N}=n / 2$, and this is optimal; for $b \geq 3, N \Delta_{1, N}=(n+1) / 2$.

Summary on necklaces and discrepancy

Arithmetic (n, n)-perfect necklaces
Exist arithmetic (n, n)-perfect $N \Delta_{N}=O\left(n^{3}\right)$, Levin 1999
Conjecture: Exist arithmetic (n, n)-perfect $N \Delta_{N}=O\left(n^{2} \log n\right)$

Nested (n, n)-perfect necklaces, n a power of $2, b \geq 2, N \Delta_{N}=O(n \log N)$, Levin 1999; Becher and Carton 2019 n a power of b, b prime, $N \Delta_{N}=O(n \log N)$
In Levin's cases, this is exact Hofer and Larcher 2022,2023
Succession (n, k)-perfect necklaces Alvarez,Becher,Mereb,Pajor,Soto 2023
There exist succession (n, n)-perfect with $N \Delta_{1, N}=\Theta(n)$.

There are many open questions.

Nikolai Korobov (1955)

What is the minimum discrepancy associated to a normal number?

Some references

- C. Aistleitner, B. Borda, M. Hauke. On the distribution of partial quotients of reduced fractions with fixed denominator. Arxiv 14095, 2022.
- N. Alvarez, V. Becher, M. Mereb, I. Pajor and C. Soto. An algorithm to onstruct a de Bruijn sequence with minimal discrepancy, manuscript, 2022.
- N. Alvarez, V. Becher, P. Ferrari and S. Yuhjtman. Perfect necklaces, Advances of Applied Mathematics 80:48-61, 2016.
- V. Becher and O. Carton. Normal numbers and nested perfect necklaces, Journal of Complexity 54:101403, 2019.
- P. Flajolet, P. Kirschenhofer, R. Tichy R. Discrepancy of Sequences in Discrete Spaces. In: Halász G., Sós V.T. (eds) Irregularities of Partitions. Algorithms and Combinatorics 8. Springer, Berlin, Heidelberg, 61-70, 1989.
- P. Flajolet, P. Kirschenhofer, R. Tichy. Deviations from Uniformity in Random Strings. Probability Theory and Related Fields 80, 139-150 (1988).
- P. Gauna. Tesis de Licenciatura en Ciencias de la Computación. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, 2019.
- S. Golomb. Shift register sequences. Aegean Park 1967.
- G. Larcher and R. Hofer. The exact order of discrepancy for Levin's normal number in base 2, Journal de Théorie des Nombres de Bordeaux, 2022.
- G. Larcher and R. Hofer. Discrepancy bounds for normal numbers generated by necklaces in arbitrary bases, Journal of Complexity, 2023.
- M. B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica 88(2):99-111, 1999.
- M. Mereb. Determinants of matrices related to the Pascal triangle.Periodica Mathematica Hungarica, 2023.

Classical definitions

Let b be a base. Let $\Sigma_{b}=\{0, \ldots b-1\}$.
Rotation $r: \Sigma_{b}^{n} \rightarrow \Sigma_{b}^{n}$ moves the last character of the string to the front.
For example: $r(0010)=0001 ; r(0001)=1000 ; r^{2}(0010)=1000$
The equivalence classes of Σ_{b}^{n} under rotation are the necklaces of size n.
Since r is invertible with $r^{-1}=r^{n-1},\langle r\rangle$ is a group that acts on Σ_{b}^{n}.

Incremented rotation $\iota: \Sigma_{b}^{n} \rightarrow \Sigma_{b}^{n}$ increments the last character of the string (modulo b) and moves that incremented character to the front.
For example, if $b=3$, we have: $i(0021)=2002, i(2002)=0200$
Since ι is invertible, $\langle\iota\rangle$ is a group that acts on Σ_{b}^{n}.

Succession perfect necklaces

Definition

For positive n and k we define $r_{k}: \Sigma_{b}^{n} \times \mathbb{Z} / k \mathbb{Z} \rightarrow \Sigma_{b}^{n} \times \mathbb{Z} / k \mathbb{Z}$,

$$
r_{k}(s, t)=(r(s), t+1)
$$

The (n, k)-rotation necklaces are the orbits of $\left\langle r_{k}\right\rangle$ on the set $\Sigma_{b}^{n} \times \mathbb{Z} / k \mathbb{Z}$ Applying Burnside's Lemma,

Proposition (ABMPS 2022)
The (n, k)-rotation necklaces correspond to some simple cycles in graph $G_{b}(n-1, k)$ and determine a partition of $G_{b}(n-1, k)$. The total number is

$$
\frac{\operatorname{gcd}(n, k)}{n} \sum_{\operatorname{gcd}(n, k)|d| n} \varphi(n / d) b^{d}
$$

Succession perfect necklaces

Definition

For a positive integer k we define $\iota_{k}: \sum_{b}^{n} \times \mathbb{Z} / k \mathbb{Z} \rightarrow \Sigma_{b}^{n} \times \mathbb{Z} / k \mathbb{Z}$,

$$
\iota_{k}(s, t)=(\iota(s), t+1)
$$

The (n, k)-increment necklaces are the orbits of $\left\langle\iota_{k}\right\rangle$ on the set $\Sigma_{b}^{n} \times \mathbb{Z} / k \mathbb{Z}$ Applying Burnside's Lemma,

Proposition (ABMPS 2022)

The (n, k)-increment necklaces correspond to some simple cycles in graph $G_{b}(n-1, k)$ and determine a partition of $G_{b}(n-1, k)$.
The total number is

$$
\frac{\operatorname{gcd}(\operatorname{gcd}(k, b s) n / s, k b)}{n b} \sum_{\operatorname{gcd}(n, \operatorname{lcm}(k, b s))|d| n} \varphi(n / d) \cdot b^{d}
$$

where s is the smallest divisor of n such that n / s is coprime with b.

Nested marvelous (semi-perfect) necklaces

Definition

A necklace over a a b-symbol alphabet is nested (n, k)-marvelous if all words of length n occur exactly k times, and in case $n>1$ it is the concatenation of b nested ($n-1, k$)-marvelous necklaces.
This is nested (3,3)-marvelous, not perfect,

$$
000111011001000111101010
$$

Theorem (Frizzo 2020; Larcher and Hofer 2022)
For every number x whose base-b expansion is the concatenation of nested (n, n)-marvelous necklaces, for n a power of b or a power of 2 , $D_{N}\left(\left\{b^{t} x\right\}_{t \geq 0}\right)$ is $O\left((\log N)^{2} / N\right)$.

