### Perfect necklaces

Verónica Becher

Universidad de Buenos Aires

Séminaire de l'équipe de Théorie Ergodique et Systèmes Dynamiques L'Institut Galilée, Université Sorbonne Paris Nord October 11, 2023

### Perfect necklaces

A necklace is the equivalence class of a word under rotations.

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

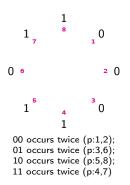
A necklace over a *b*-symbol alphabet is (n, k)-perfect if each word of length n occurs k times, at positions with different congruence modulo k, for any convention of the starting point.

The (n,k)-perfect necklaces have length  $kb^n$ .

De Bruijn circular sequences are exactly the (n, 1)-perfect necklaces.



# All words of length 2 concatenated in lexicographical order, view it circularly. $00\ 01\ 10\ 11$

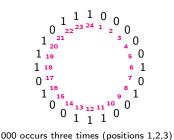


Each word of length 2 occurs 2 times at positions with different congruence modulo n.



#### All words of length 3 concatenated in lexicographical order, view it circularly.

 $000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111$ 



001 occurs three times (positions 1,2,3) 001 occurs three times (positions 4,9,14)

Each word of length 3 occurs n times at positions with different congruence modulo 3.

# The ordered necklace is perfect

#### Definition

The concatenation of all words of length n over a b-symbol alphabet in lexicographic order is called the ordered necklace for length n.

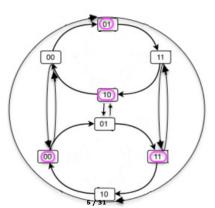
Proposition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The ordered necklace for length n is (n, n)-perfect.

### Astute graphs

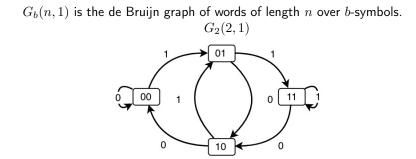
Fix *b*-symbol alphabet.

Consider the tensor product of the de Bruijn graph with a simple cycle. The astute graph  $G_b(n,k) = (V,E)$  is directed, with  $kb^n$  vertices.  $V = \{0,..,b-1\}^n \times \mathbb{Z}/k\mathbb{Z}$  $E = \{(u,m), (v,m+1) : u = a_1...a_n, v = a_2...a_na_{n+1}\}$  $G_2(2,2)$ 



Perfect necklaces

Verónica Becher



### Perfect necklaces characterization

Every Hamiltonian cycle in  $G_b(n,k)$  yields an (n,k)-perfect necklace.

 $G_b(n,k)$  is the line graph of  $G_b(n-1,k)$ . Thus, every Hamiltonian cycle in  $G_b(n,k)$  is Eulerian in  $G_b(n-1,k)$ ,

Hence, every Eulerian cycle in  $G_b(n-1,k)$  yields one (n,k)-perfect necklace.

Each  $(n,k)\mbox{-perfect}$  necklace can come from several Eulerian cycles in  $G_b(n-1,k)$ 

### Count

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The number of (n, k)-perfect necklaces over a b-symbol alphabet is

$$\frac{1}{k} \sum_{d_{b,k}|j|k} e(j)\varphi(k/j)$$

where

- if  $k = p_1^{\alpha_1} \dots p_t^{\alpha_t}$ , then  $d_{b,k} = \prod p_i^{\alpha_i}$ , where  $p_i$  divides both b and k,
- $e(j) = (b!)^{jb^{n-1}}b^{-n}$  is the number of Eulerian cycles in  $G_b(n-1,j)$
- $\varphi$  is Euler's totient function.

Three families of perfect necklaces

Arithmetic, Nested, Succession

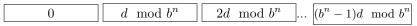
- Construction
- Count
- Discrete discrepancy

### Arithmetic necklaces

Identify the words of length n over a b-symbol alphabet with the set of non-negative integers modulo  $b^n$  according to representation in base b.

#### Definition

Let  $b \ge 2$  be an integer, let d be coprime with b. Let n be a positive integer. An arithmetic necklace is the concatenation of words of length ncorresponding to the arithmetic progression with difference d:



With d = 1 we obtain the ordered necklace.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

For each n, the arithmetic necklaces are (n, n)-perfect.

#### Count

Given b and n, # numbers coprime to b and smaller than  $b^n$ .

#### Perfect necklaces

### Discrete discrepancy

Fix *b*-symbol alphabet with the uniform measure.

$$\Delta_{\ell,N}(a_1 a_2 \dots) = \max_{u \in \{0,\dots,b-1\}^{\ell}} \left| \frac{|a_1 a_2 \dots a_{N+\ell-1}|_u}{N} - \frac{1}{b^{\ell}} \right|$$

where  $\ell < \lfloor \log(N) \rfloor$ . This is to obtain u.d. of almost all (with respect to the product measure) infinite sequences (Flajolet, Kirschenhofer and Tichy 1988)

#### Problem

What is minimal  $\Delta_{\ell,N}(x)$  among all words x?

This is the discrete counterpart of Korobov's question (1955) on the minimum  $D_N((b^n x \mod 1)_{n\geq 0})$  for some real number x and integer b.

# Discrete discrepancy

### Problem

What are the minimal and maximal discrete discrepancy for arithmetic necklaces?

The largest is presumably by the progression with difference 1. For small discrepancy:

Theorem (Levin 1999 Theorem 1, using Popov 1981)

For every *n* there is an arithmetic necklace such that  $N\Delta_N = O(n^3)$ .

Conjecture (Becher and Carton 2019)

For every *n* there is an arithmetic necklace such that  $N\Delta_N = O(n^2 \log n)$ .

### Using classical discrepancy

We need a sliding window of length n along this concatenation



These are  $nb^n$  windows.

Convert the  $nb^n$  windows to  $nb^n$  rationals in the unit interval (base-*b* expansion) We obtain *n* progressions of  $b^n$  terms:

Perfect necklaces

Verónica Becher

### Classical discrepancy on arithmetic progressions

For 
$$\alpha = [a_0; a_1, \dots, a_s]$$
 let  $S(\alpha) = \sum_{i=1}^s a_i$ .

By a classical result,  $ND_N((k\alpha \mod 1)_{k\geq 1}) \leq S(\alpha)$  stop at t(N) + 1,  $q_{t(N)} \leq N \leq q_{t(N)+1}$ 

Levin 1999: For every  $b \ge 2$  and n there is d coprime with b such that

$$\sum_{i=1}^n S(d/b^i) < Kn^3, \text{where } K \text{ is constant.}$$

Since  $\Delta_N \leq D_N$ , for N between 1 and  $nb^n$ ,

$$N\Delta_N(x) \le \sum_{i=1}^n S(d/b^i) = O(n^3).$$

Perfect necklaces

Verónica Becher

### Our conjecture

### Definition (minimizer)

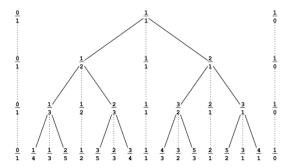
Let  $b \ge 2$  be an integer and let n be a positive integer.

A minimizer for (b, n) is a positive integer d that minimizes  $\sum S(d/b^i)$ .  $\begin{array}{c|c} b=2 \\ & \\ \sum_{i=1}^{n} S(d/b^{i}) \end{array} \end{array} \qquad b=3 \\ & \\ r \end{array} \left| \begin{array}{c|c} & \\ \sum_{i=1}^{n} S(d/b^{i}) \end{array} \right|$ b = 10 $\sum_{i=1}^{a} S(d/b^{i})$ d rn $\mathbf{2}$  $\mathbf{5}$ 

Perfect necklages 13893 260 - 15/31 - - Verónica Becher

### Stern-Brocot tree

The Stern-Brocot tree is a binary tree whose vertices are the positive rational numbers. The root is 1 (row r = 0). The left subtree, the Farey tree, contains the rationals less than 1.



The number x is at row r if and only if S(x) = r + 1. For b and n, find d coprime with b, between 1 and  $b^n - 1$  minimizing

$$\sum_{i=1}^n \operatorname{row}(d/b^i).$$

Perfect necklaces

Verónica Becher

### Around Zaremba's conjecture

For the case of b = 2, we need

For every n, find d odd between 1 and  $2^n - 1$ that minimizes  $S(d/2) + S(d/2^2) + \ldots + S(d/2^n)$ 

Theorem (Neiderreter 1986, Zaremba's conjecture for the powers of 2)

For very n there is a such that all the coefficients in the continued fraction expansion of  $a/2^n$  are bounded by 3.

Zaremba's 1971 conjecture predicts that every integer appears as the denominator of a finite continued fraction whose coefficients are bounded by an absolute constant.

### Nested perfect necklaces

Definition (Becher & Carton 2019)

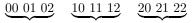
An (n, k)-perfect necklace over a *b*-symbol alphabet is nested if n = 1 or it is the concatenation of *b* nested (n - 1, k)-perfect necklaces.

This is a nested  $({\bf 2},{\bf 2})\text{-perfect}$  necklace for b=2



(1,2)-perfect (1,2)-perfect

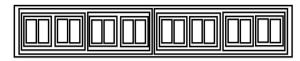
The ordered perfect necklace is not nested. For example, b = 3, n = 2,



not (1,2)-perfect not (1,2)-perfect not (1,2)-perfect

### Nested perfect necklaces

For example, in the binary alphabet and n is a power of 2,



| 1       | nested $(n, n)$ -perfect necklace    | determines |
|---------|--------------------------------------|------------|
| 2       | nested $(n-1, n)$ -perfect necklaces | determine  |
| $2^{2}$ | nested $(n-2,n)$ -perfect necklaces  | determine  |
|         |                                      |            |

 $2^{n-1} \quad (1,n)\text{-perfect necklaces}$ 

### Levin's necklace, n power of 2

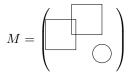
For n a power of 2, M.Levin (1999) defines a matrix M in  $\mathbb{F}_2^{n \times n}$  using Pascal triangle matrix modulo 2,

$$M := (p_{i,j})_{i,j=0,1,...n-1}$$
 where  $p_{i,j} := {i+j \choose j} \mod 2.$ 

M is upper triangular and it has the following property on submatrices.

Lemma (Levin 1999 from Bicknell and Hoggart 1978; Mereb 2023)

For Pascal triangle matrix modulo 2, each square submatrix at the left or at the top has determinant computed in  $\mathbb{Z}$  equal to 1 or -1.



Then, if these determinants are computed in  $\mathbb{Z}/b\mathbb{Z}$ , for any integer  $b \geq 2$ , they are equal to 1 or -1.

Perfect necklaces

Verónica Becher

### Levin's necklace, n power of 2

#### Definition (Levin 1999)

Let integer  $b \ge 2$  and let n be a power of 2.

Identify the set of non-negative integers modulo  $b^n$  according to representation in base b with the vectors  $w_0, \ldots w_{b^n-1}$  in  $(\mathbb{Z}/b\mathbb{Z})^n$ .

Let  $M \in \mathbb{F}_2^{n \times n}$  be the Pascal triangle matrix modulo 2. Define the necklace (computation is done in  $\mathbb{Z}/b\mathbb{Z}$ )

 $Mw_0\ldots Mw_{b^n-1}$ .

For example, for b = 2,

```
 \begin{array}{ll} n=2^0 & 0 \ 1 \\ n=2^1 & 00 \ 11 \ 10 \ 01 \\ n=2^2 & 0000 \ 1111 \ 1010 \ 0101 \ 1100 \ 0011 \ 0110 \ 1000 \ 0111 \ 0010 \ 1101 \ 0100 \ 1011 \ 1110 \\ \dots \end{array}
```

Levin's necklace is nested perfect,  $\boldsymbol{n}$  power of  $\boldsymbol{2}$ 

Theorem (Becher and Carton 2019)

Let  $b \ge 2$  be a integer and let n be a power of 2. The necklace given by the Pascal triangle matrix modulo 2 is nested (n, n)-perfect.

#### Construction of nested (n, n)-perfect necklaces, n power of 2

Definition (Pascal-like family  $\mathcal{P} \subseteq \mathbb{F}_2^{n \times n}$ )

Let n be a power of 2. Let  $(\eta_j)_{0 \leq j < n}$  such that  $\eta_0 = 0, \eta_j \leq \eta_{j+1} \leq \eta_j + 1$  (non decreasing step) Define  $M^{\eta} = (p_{i,j}^{\eta})_{0 \leq i,j < n}$  in  $\mathbb{F}_2^{n \times n}$ ,

$$p_{i,j}^{\eta} = \binom{i+j-\eta_j}{j} \mod 2$$

For each M in  $\mathcal{P} = \{M^{\eta} : \eta \text{ non decreasing step}\}$ , for every integer  $b \geq 2$ ,

$$Mw_0 \dots Mw_{b^n-1}$$

(multiplication in  $\mathbb{Z}/b\mathbb{Z}$ ) is a nested (n, n)-perfect necklace.

Perfect necklaces

### Count of binary nested (n, n)-perfect necklaces, n power of 2

Theorem (Becher and Carton 2019)

There are  $2^{2n-1}$  binary nested (n, n)-perfect necklaces, n power of 2.

#### Proof.

For each M in  $\mathcal{P}$  and for each z in  $\mathbb{F}_2^n$ ,  $M(w_0 \oplus z) \dots M(w_{2^n-1} \oplus z)$  is a binary nested (n, n)-perfect necklace.

If z' = Mz,  $M(w_0 \oplus z) \dots M(w_{2^n-1} \oplus z) = Mw_0 \oplus z' \dots Mw_{2^n-1} \oplus z'$ ,

# matrices  $\in \mathbb{F}_2^{n \times n}$  in  $\mathcal{P} \times #$  vectors  $z \in \mathbb{F}_2^n = 2^{2n-1} \leq$ Total.

By a graph theoretical argument we know that there can be no more.

#### Construction nested (n, n)-perfect necklaces, prime b, n power of b

Definition (Pascal-like family  $\mathcal{P} \subseteq \mathbb{F}_b^{n imes n}$  Hofer and Larcher, 2022)

Let b be a prime. Let n be a power of b. Let  $(u_j)_{0 \le j < n}$  with  $u_j \not\equiv 0 \mod b$ . Let  $(\eta_j)_{0 \le j < n}$  such that  $\eta_0 = 0, \eta_j \le \eta_{j+1} \le \eta_j + 1$ . Define  $M^{u,\eta} = (p_{i,j}^{u,\eta})_{0 \le i,j < n}$  in  $\mathbb{F}_b^{n \times n}$ ,

$$p_{i,j}^{u,\eta} = \binom{i+j-\eta_j}{j} u_j \mod b.$$

For each M in  $\mathcal{P}$ ,

$$Mw_0\ldots M(w_{b^n-1})$$

(multiplication in  $\mathbb{F}_b$ ) is a nested (n, n)-perfect necklace.

#### Perfect necklaces

# Count, we know very little

| Base/n                         | necklace in base $b = 2$ | necklace in base $b \ge 3$ |
|--------------------------------|--------------------------|----------------------------|
| n a power of $2$               | $2^{2n-1}$               | ?                          |
| $n$ a power of prime $b \ge 3$ | ?                        | ?                          |

### Discrepancy

Theorem (Levin 1999; Becher and Carton 2019, Hofer and Larcher 2022,2023)

| Base/n                 | necklace in base $b \ge 2$  |  |
|------------------------|-----------------------------|--|
| n a power of $2$       | $\Delta_N = O(n(\log N)/N)$ |  |
| n a power of prime $b$ |                             |  |

In case of the canonical Pascal triangle matrix in  $\mathbb{F}_b$ , prime  $b\geq 2$ ,  $\Delta_N=\Theta(n(\log N)/N).$ 

### Succession necklaces

### Definition

The succession necklaces for (n, k) are (n, k)-perfect necklaces that correspond to Eulerian cycles in  $G_b(n-1, k)$  obtained by joining cycles given by a succession rule.

We extend the shift registers of Golomb 1967 to construct some: (n, k)-rotation cycles and (n, k)-increment cycles.

We do not know how to count them.

#### Observation

For every n, the ordered necklace of words of length n is arithmetic and succession.

### Discrepancy of succession necklaces

Theorem (Álvarez, Becher, Mereb, Pajor and Soto 2023)

We construct an (n, 1)-perfect necklace by joining (n, 1)-increment cycles

for b = 2,  $N\Delta_{1,N} = n/2$ , and this is optimal; for  $b \ge 3$ ,  $N\Delta_{1,N} = (n+1)/2$ .

# Summary on necklaces and discrepancy

Arithmetic (n, n)-perfect necklaces Exist arithmetic (n, n)-perfect  $N\Delta_N = O(n^3)$ , Levin 1999 **Conjecture**: Exist arithmetic (n, n)-perfect  $N\Delta_N = O(n^2 \log n)$ 

Nested (n, n)-perfect necklaces, n a power of 2,  $b \ge 2$ ,  $N\Delta_N = O(n \log N)$ , Levin 1999; Becher and Carton 2019 n a power of b, b prime,  $N\Delta_N = O(n \log N)$ In Levin's cases, this is exact Hofer and Larcher 2022,2023

Succession (n, k)-perfect necklaces Alvarez, Becher, Mereb, Pajor, Soto 2023 There exist succession (n, n)-perfect with  $N\Delta_{1,N} = \Theta(n)$ .

There are many open questions.

Nikolai Korobov (1955)

What is the minimum discrepancy associated to a normal number?

### Some references

- C. Aistleitner, B. Borda, M. Hauke. On the distribution of partial quotients of reduced fractions with fixed denominator. Arxiv 14095, 2022.
- N. Alvarez, V. Becher, M. Mereb, I. Pajor and C. Soto. An algorithm to onstruct a de Bruijn sequence with minimal discrepancy, *manuscript*, 2022.
- N. Alvarez, V. Becher, P. Ferrari and S. Yuhjtman. Perfect necklaces, Advances of Applied Mathematics 80:48–61, 2016.
- V. Becher and O. Carton. Normal numbers and nested perfect necklaces, *Journal of Complexity* 54:101403, 2019.
- P. Flajolet, P. Kirschenhofer, R. Tichy R. Discrepancy of Sequences in Discrete Spaces.
  In: Halász G., Sós V.T. (eds) *Irregularities of Partitions*. Algorithms and Combinatorics
  8. Springer, Berlin, Heidelberg, 61-70, 1989.
- P. Flajolet, P. Kirschenhofer, R. Tichy. Deviations from Uniformity in Random Strings. Probability Theory and Related Fields 80, 139-150 (1988).
- P. Gauna. *Tesis de Licenciatura en Ciencias de la Computación*. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, 2019.
- S. Golomb. Shift register sequences. Aegean Park 1967.
- G. Larcher and R. Hofer. The exact order of discrepancy for Levin's normal number in base 2, Journal de Théorie des Nombres de Bordeaux, 2022.
- G. Larcher and R. Hofer. Discrepancy bounds for normal numbers generated by necklaces in arbitrary bases, Journal of Complexity, 2023.
- M. B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica 88(2):99–111, 1999.
- M. Mereb. Determinants of matrices related to the Pascal triangle. *Periodica Mathematica Hungarica*, 2023.

### Classical definitions

Let b be a base. Let  $\Sigma_b = \{0, \dots b - 1\}$ .

Rotation  $r: \Sigma_b^n \to \Sigma_b^n$  moves the last character of the string to the front. For example:  $r(0010) = 0001; r(0001) = 1000; r^2(0010) = 1000$ The equivalence classes of  $\Sigma_b^n$  under rotation are the necklaces of size n.

Since r is invertible with  $r^{-1} = r^{n-1}$ ,  $\langle r \rangle$  is a group that acts on  $\Sigma_b^n$ .

Incremented rotation  $\iota : \Sigma_b^n \to \Sigma_b^n$  increments the last character of the string (modulo b) and moves that incremented character to the front. For example, if b = 3, we have: i(0021) = 2002, i(2002) = 0200

Since  $\iota$  is invertible,  $\langle \iota \rangle$  is a group that acts on  $\Sigma_b^n$ .

### Succession perfect necklaces

#### Definition

For positive n and k we define  $r_k : \Sigma_b^n \times \mathbb{Z}/k\mathbb{Z} \to \Sigma_b^n \times \mathbb{Z}/k\mathbb{Z}$ ,

$$r_k(s,t) = (r(s), t+1)$$

The (n,k)-rotation necklaces are the orbits of  $\langle r_k \rangle$  on the set  $\Sigma_b^n \times \mathbb{Z}/k\mathbb{Z}$ Applying Burnside's Lemma,

#### Proposition (ABMPS 2022)

The (n,k)-rotation necklaces correspond to some simple cycles in graph  $G_b(n-1,k)$  and determine a partition of  $G_b(n-1,k)$ . The total number is

$$\frac{\gcd(n,k)}{n} \sum_{\gcd(n,k)|d|n} \varphi(n/d) b^d$$

### Succession perfect necklaces

### Definition

For a positive integer k we define  $\iota_k: \Sigma_b^n \times \mathbb{Z}/k\mathbb{Z} \to \Sigma_b^n \times \mathbb{Z}/k\mathbb{Z}$ ,

$$\iota_k(s,t) = (\iota(s), t+1)$$

The (n,k)-increment necklaces are the orbits of  $\langle \iota_k \rangle$  on the set  $\Sigma_b^n \times \mathbb{Z}/k\mathbb{Z}$ Applying Burnside's Lemma,

### Proposition (ABMPS 2022)

The (n,k)-increment necklaces correspond to some simple cycles in graph  $G_b(n-1,k)$  and determine a partition of  $G_b(n-1,k)$ . The total number is

$$\frac{\gcd(\gcd(k,bs)n/s,kb)}{nb} \sum_{\gcd(n,\operatorname{lcm}(k,bs))|d|n} \varphi(n/d) \cdot b^d$$

where s is the smallest divisor of n such that n/s is coprime with b.

# Nested marvelous (semi-perfect) necklaces

### Definition

A necklace over a a *b*-symbol alphabet is nested (n, k)-marvelous if all words of length n occur exactly k times, and in case n > 1 it is the concatenation of b nested (n - 1, k)-marvelous necklaces.

This is nested (3,3)-marvelous, not perfect,

#### $000111 \ 011001 \ 000111 \ 101010$

Theorem (Frizzo 2020; Larcher and Hofer 2022)

For every number x whose base-b expansion is the concatenation of nested (n, n)-marvelous necklaces, for n a power of b or a power of 2,  $D_N(\{b^tx\}_{t\geq 0})$  is  $O\left((\log N)^2/N\right)$ .