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Turing’s Note on Normal Numbers

1937 Alan M. Turing’s writes the manuscript ”A Note on Normal Numbers”.

1992 The manuscript was included in the Collected Works of Alan Turing,
volume Pure Mathematics, 1992, edited by J.L.Britton. An editorial note,
page 264,

”[7] The proof of this theorem that is given is certainly inadequate.
Indeed I suspect that the theorem is false. ”

2007 The manuscript was reconstructed, corrected and completed

Becher, Figueira, Picchi, Theoretical Computer Science 377: 126-138, 2007.
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For a real number x, its expansion in an integer base b ≥ 2 is a sequence
of integers a1, a2 . . ., where 0 ≤ an < b for every n, such that

x− bxc =
∑
n≥1

anb
−n = 0.a1a2a3 . . .

We require that an < b− 1 infinitely often to ensure that every number
has a unique representation.
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Borel normal numbers

A real number is normal to an integer base b ≥ 2 if in its base-b expansion
all blocks of the same length occur with the same limit frequency.

0.010010001000010000010000... not normal to base 2.

A real number that is normal to every integer base is called absolutely
normal, or just normal.

In 1909, Borel defined a number as simply normal to base b if in its base b-expansion every digit in

{0, . . . b− 1} occurs with equal limit frequency. A number is normal to base b if is is normal to all

the bases bk, for k ≥ 1. In 1922, Borel provided an alternative formulation of normality in terms

of the equifrequency of blocks of digits. The equivalence of these definitions was proved by Niven

and Zuckerman in 1951.
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Borel (1909) proved that the set of normal numbers in the unit interval
has Lebesgue measure 1, and he asked for an explicit example.
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Turing’s note on normal numbers

Turing’s Theorem 1

Borel’s theorem on the Lebesgue measure of normal numbers,
constructively.

Turing’s Theorem 2

An algorithm to construct normal numbers.
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Turing’s Theorem 1

Turing’s Normal Numbers 10 / 37 Verónica Becher



Notation: E{(a1,b1),...(am,bm)} =
m⋃
i=1

(ai, bi) , and µ is Lebesgue measure.

Theorem (Turing’s Theorem 1)

There is a computable function c(k, n) of two integer variables with
values in finite sets of pairs of rational numbers such that for each k and n

Ec(k,n+1) ⊆ Ec(k,n), µEc(k,n) > 1− 1

k
,

and

E(k) =
⋂
n

Ec(k,n), µ(E(k)) = 1− 1

k
.

consists entirely of normal numbers.

The class of computable functions is the smallest class of functions N→ N that contains the

constant, the projections,the successor, and closed by composition, recursion and the unbounded

minimization. Equivalently, it is the set of functions carried by a Turing machine.
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Proof of Turing’s Theorem 1

The construction is uniform in the parameter k.

The construction prunes the unit interval, by steps.

step 0: Ec(k,0) is the whole unit interval.

step n: Ec(k,n) results from removing from Ec(k,n−1) the points
that are not candidates to be normal, according to the
inspection of an initial segment of their expansions.

At the end, the construction discards

all rational numbers, because of their periodic structure.

all irrational numbers with an unbalanced expansion.

all normal numbers whose convergence to normality is too slow.
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There are a few bad numbers

Let b ≥ 2. In most sequences of sufficiently large length P every
w ∈ {0, . . . b− 1}` occurs approximately Pb−` times.

Lemma (extends Hardy & Wright 1938)

Let b ≥ 2, P ≥ 1, ` ≥ 1, w ∈ {1, . . . b− 1}` and ε such that
7

P
≤ ε ≤ 1

b`
,

( ∑
|i−Pb−`|≥εP

number of length-P sequences

with exactly i occurrences of w

)
≤ bP 2 b2`e−

b`ε2P
6` .
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xb is the expansion of x in base b, and xb � n is the first n digits of xb.
|y|w is the number of occurrences of block w in the finite sequence y.

A number x is normal to base b if ∀` ≥ 1 ∀w ∈ {0, . . . b− 1}`,

lim
P→∞

|xb � P |w
P

= b−`

That is, ∀ε > 0 ∀` ≥ 1 ∀w ∈ {0, . . . b− 1}` ∃P0 ∀P ≥ P0∣∣∣∣xb � P |wP
− 1

b`

∣∣∣∣ < ε

we can rewrite as∣∣∣∣|xb � P |w − P

b`

∣∣∣∣ < Pε.

Thus, x is normal to base b if ∀ε > 0 ∀` ≥ 1 ∀w{0, . . . b− 1}` ∃P0 ∀P ≥ P0

x 6∈ Bad(ε, w, b, P ) =
{
x ∈ (0, 1) :

∣∣∣∣|xb � P |w − P

b`

∣∣∣∣ ≥ εP}
Notice Bad(ε, w, b, P ) is a finite union of intervals with rational endpoints.
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Define:

A(P ) =
⋂

2≤b≤B(P )

⋂
1≤`≤L(P )

⋂
w∈{0,...,b−1}L(P )

(
(0, 1)\Bad(ε(P ), w, b, P )

)
where
B(P ) = e

√
lnP/4 (sublinear in P )

L(P ) =
√
lnP/4 (sublogarithmic in P )

ε(P ) = P−1/16 (sublinear in P decay to zero, technically largest)

By the previous lemma, there is P0 such that for every P ≥ P0,

µA(P ) ≥ 1− 1

P (P − 1)
.

Let k0 be such that µA(k0) ≥ 1− 1
k0(k0−1) . Define for every k ≥ k0,

Ec(k,0) = (0, 1), and for n ≥ 1,

Ec(k,n) = A(k + n) ∩ Ec(k,n−1) ∩ (βn, 1), where (βn, 1) is such that

µEc(k,n) = 1− 1

k
+

1

k + n
.
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Proposition

Let k ≥ k0. Then,
⋂
n≥1

Ec(k,n) consists entirely of normal numbers.

Proof.

Assume x ∈
⋂
n≥0

Ec(k,n). Hence, x ∈
⋂
n≥1

A(k + n), where

A(k+n) =
⋂

2≤b≤B(k+n)

⋂
1≤`≤L(k+n)

⋂
w∈{0,...,b−1}L(k+n)

(
(0, 1)\Bad(ε(k+n), w, b, k+n)

)
B(k + n) (sublinear in n)
L(k + n) (sublogarithmic in n)
ε(k + n) (sublinear in n decay to zero)

For every δ > 0, b ≥ 2, ` ≥ 1 exists n0 such that
b ≤ B(k + n0), ` ≤ L(k + n0) and δ ≥ ε(k + n0).

So, for every n ≥ n0, every w ∈ {0, . . . b`},

x 6∈ Bad(δ, w, b, k + n).

Thus, x is normal to each base b.
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By construction, for every k ≥ k0 and n,

Ec(k,n) ⊆ Ec(k,n−1), µEc(k,n) > 1− 1

k
,

and

E(k) =
⋂
n

Ec(k,n), µ(E(k)) = 1− 1

k
.

and consists entirely of normal numbers.
The proof of Theorem 1 is complete. 2
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Turing’s Theorem 2
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Theorem (Turing’s Theorem 2)

There is an algorithm that, given an integer k and an infinite sequence ν
of zeros and ones, produces a normal number α(k, ν) in the unit interval,
expressed in base two.

In order to write down the first n digits of α(k, ν) the algorithm requires
at most the first n digits of ν.

For a fixed k these numbers α(k, ν) form a set of measure at
least 1− 2/k.

A real number x is computable if there is a computable function f : N→ N such that f(n) is the

n-the digit in the expansion of x in some base. Equivalently, a real number is computable if there

is a Turing machine, hence and algorithm, that outputs all of its digits, one after the other.
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Proof of Turing’s Theorem 2

It works by steps.

Start with the unit interval, I0 = (0, 1)

At each step n, divide the current interval In−1 in two halves, I0n, I1n and
choose the half that includes normal numbers in large-enough measure,

µ
(
Ec(k,n) ∩ I0n

)
> threshold ? µ

(
Ec(k,n) ∩ I1n

)
> threshold ?

If both halves do, use the current bit of the oracle to decide In.
(this will happen infinitely often)

The output α(k, ν) is the trace of the left/right selection at each step.
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Turing’s Algorithm
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Proof of Turing’s Theorem 2

We need the sets Ed(k,n) instead of Ec(k,n).

They are defined in terms of A(k22n+1), instead of A(k+ n), as follows.

Fix k0 and define d(k, n) of two integer values in pairs of rational
numbers such that for every k ≥ k0,

Ed(k,0) = (0, 1),

Ed(k,n) = A(k22n+1) ∩ Ed(k,n−1) ∩ (βn, 1), where (βn, 1) is such that

µEd(k,n) = 1− 1

k
+

1

k22n+1
.

Notice µ
( ⋂
n≥0

Ed(k,n)
)
= 1− 1

k
.
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Proof of Turing’s Theorem 2

Algorithm

Input. k ≥ k0, ν ∈ {0, 1}N.

Output. The unique α(k, ν) ∈
⋂
n≥1

In.

Step 0: I0 = (0, 1).

Step n > 0:

Divide In−1 in two halves: I0n and I1n.

If

(
µ
(
Ed(k,n) ∩ I0n

)
>

1

k22n
and µ

(
Ed(k,n) ∩ I1n

)
>

1

k22n

)
then

In = Iν(n)n .

Else if

(
µ
(
Ed(k,n) ∩ (I0n)

)
>

1

k22n

)
then

In = I0n.

Otherwise In = I1n.
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Proof of Turing’s Theorem 2

Proposition

For every n ≥ 0, µ(Ed(k,n) ∩ In) >
1

k22n
.
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Proof. By induction. IH µ(Ed(k,n) ∩ In) >
1

k22n
.

Case n = 0. Ed(k,0) = (0, 1) and µEd(k,0) = 1.

Case n > 0. The candidates at step n+ 1 in In are exactly
(the candidates at step n in In ) minus
(the candidates at step n that are not candidates step (n+ 1), in In):

Ed(k,n+1) ∩ In =
(
Ed(k,n) ∩ In

)
\
((
Ed(k,n) \ Ed(k,n+1)

)
∩ In

)
Then,

µ
(
Ed(k,n+1) ∩ In

)
= µ

(
Ed(k,n) ∩ In

)
− µ

( (
Ed(k,n) \ Ed(k,n+1)

)
∩ In

)
≥ µ

(
Ed(k,n) ∩ In

)
− µ

(
Ed(k,n) \ Ed(k,n+1)

)
.

Using IH and µEd(k,n) = 1− 1

k
+

1

k22n+1
,

µ
(
Ed(k,n+1) ∩ In

)
>

1

k22n
−
(

1

k22n+1
− 1

k22n+3

)
>

2

k22(n+1)

Since In = I0n+1 ∪ I1n+1, it is impossible that both µ
(
Ed(k,n+1) ∩ I0n+1

)
and µ

(
Ed(k,n+1) ∩ I1n+1

)
be less than or equal to 1/k22(n+1).

At least one is greater. 2
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Proof of Turing’s Theorem 2

Proposition

Let k ≥ k0. Then,
⋂
n≥1

Ed(k,n) consists entirely of normal numbers.
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Lemma (Piatetski-Shapiro 1957)

A real x is normal to an integer base b ≥ 2, if and only if, there is a
constant C such that for infinitely many lengths ` and for every
w ∈ {0, . . . b− 1}`,

lim sup
P→∞

|xb � P |w
P

< C · b−`.

Rediscovered by Borwein and Bailey 2008 calling it Hot Spot Lemma.
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Proof of Proposition
⋂
n≥0

Ed(k,n) consists entirely of normal numbers

Let Pn = k22n+1. Then,

Ed(k,n) = A(Pn) ∩ Ed(k,n−1) ∩ (βn, 1).

where
A(Pn) =

⋂
2≤b≤B(Pn)

⋂
1≤`≤L(Pn)

⋂
w∈{0,...,b−1}L(Pn)

(
(0, 1)\Bad(ε(Pn), w, b, Pn)

)
.

Then, if x ∈
⋂
n≥0

Ed(k,n) then ∀n ≥ 0,

∣∣∣∣ |xb � Pn|w|Pn
− b−`

∣∣∣∣ ≤ ε(Pn).
But we need it for all positions P , not just for all Pn.
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Suppose x ∈
⋂
n≥0

Ed(k,n). Let M be an arbitrary position. Let n be such

Pn ≤M < Pn+1

Using Pn+1/Pn = 4, and

|xb �M |w
M

≤ |xb � Pn+1|w
Pn

<
Pn+1

Pn

(
b−` + ε(Pn+1)

)
= 4

(
b−` + ε(Pn+1)

)
As n increases, Pn goes to ∞ and ε(Pn) goes to 0. Then,

lim sup
P→∞

|xb � P |w
P

< 4b−|w|.

By Piatetski-Shapiro theorem x is normal to each base b. 2
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Proof of Turing’s Theorem 2

Proposition

The number α(k, ν) output by the algorithm is normal.

Proof.

Since (In)n≥0 is a nested sequence of intervals and µ
(
Ed(k,n) ∩ In

)
> 0,

for every n, we obtain that⋂
n≥0

In =
⋂
n≥0

(
Ed(k,n) ∩ In

)
.

Since already showed that Ẽ(k) =
⋂
n≥0Ed(k,n) consists just of normal

numbers, then
⋂
n≥0(Ed(k,n) ∩ In) contains a unique real number α(k, ν)

that is normal,.
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Proof of Turing’s Theorem 2

Proposition

The set of real numbers produced by the algorithm by varying
ν ∈ {0, 1}N has measure at least 1− 2/k.
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Proof. For each n ≥ 1,m = 0, . . . 2n − 1. let Jn,m =

(
m

2n
,
m+ 1

2n

)
.

Define inductively the set M(k, n) consisting of all possible intervals Jn,m as
we allow the first n digits of ν to run through all possibilities. That is, having

deleted those intervals that would be discarded by the algorithm up to step n− 1.

Define M : N× N→ P(0, 1),
M(k, 0) = (0, 1), and for n > 0,

M(k, n) =
⋃

Jn,m ⊆M(k, n− 1)
µ
(
Ed(k,n) ∩ Jn,m

)
> 1/k22n

Jn,m

An interval Jn,m is descarded at level n if it was possible at level n− 1

but it is not possible at level n, (because it fails the threshold at level n).

Let Ẽ(k) =
⋂
n≥0Ed(k,n). For m = 0, 1, . . . 2n − 1,

Dn,m = Ẽ(k) ∩ Jn,m ∩ (M(k, n− 1) \M(k, n))

Thus, µDn,m ≤
1

k22n
.

Want µ
(
Ẽ(k) ∩

⋂
n

M(k, n)
)
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Ẽ(k) ∩M(k, n) = Ẽ(k) ∩M(k, n− 1) \
⋃

0≤m<2n

Dn,m

= Ẽ(k) ∩M(k, n− 2) \
( ⋃

0≤m<2n−1

Dn−1,m ∪
⋃

0≤m<2n

Dn,m

)
. . .

= Ẽ(k) ∩M(k, 0) \
( ⋃

1≤j≤n

⋃
0≤m<2j

Dj,m

)
Since M(k, 0) = (0, 1), µẼ(k) = 1− 1

k
, and µDj,m ≤

1

k22j
,

µ(Ẽ(k) ∩M(k, n)) = µ(Ẽ(k) ∩M(k, 0))−
( ∑

1≤j≤n

∑
0≤m<2j

µDj,m

)
≥ µẼ(k)−

( ∑
1≤j≤n

∑
0≤m<2j

1

k22j

)
>
(
1− 1

k

)
− 1

k

= 1− 2

k
.

We conclude µ
(
Ẽ(k) ∩

⋂
n

M(k, n)
)
≥ 1− 2

k
. 2

The proof of Turing’s Theorem 2 is now complete.
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Turing’s First Page of the Handwritten Manuscript

Not transcribed. His own appraisal of his work.
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Turing’s First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne’s 0.123456789101112131415...
as an example of a number that is normal to base ten.

“It may also be natural that an example of a normal number be demonstrated
as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers”//

//“but rather, to counter [...] that the existence proof of normal numbers
provides no example of them. The arguments in the note, in fact,

follow the existence proof fairly closely.”

He was aware of the algorithm’s computational complexity.
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Letter G.H.Hardy to Turing (AMT/D/5)
June 1

Dear Turing,

I have just came across your letter (March

28) which I seem to have put aside for

reflection and forgotten.

I have a vague recollection that Borel

says in one of his books that Lebesgue

had shown him a construction. Try Leçons

sur la théorie de la croissance (including

the appendices), or the productivity book

(written under his direction by a lot

of people, but including one volume on

arithmetical prosy, by himself).

Also I seem to remember vaguely that

when Champernowne was doing his stuff I

had a hunt, but could not find nothing

satisfactory anywhere.

Now, of course, when I do write, I do so

from London, where I have no books to refer

to. But if I put it off till my return, I

may forget again.

Sorry to be so unsatisfactory. But my

’feeling’ is that Lebesgue made a proof

which never got published.

Yours sincerely,

G.H. Hardy



independently, each gave a non-finitary based construction:
Bulletin de la Société Mathématique de France 45, 1917,
respectively in page s 127–132 and 132–144.
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Algorithms generating absolutely normal numbers

(Double) exponential time, Turing’s algorithm, 1937

Exponential time, Weyl criterion and exponential sums
Schmidt 1961/1962; Levin 1979

Nearly quadratic time algorithm
Becher, Heiber and Slaman 2013, Figueira and Nies 2013, Lutz and
Mayordomo 2013,
Nearly linear time algorithm
Lutz and Mayordomo, 2021

Polynomial time, with discrepancy smaller than that almost all numbers
Aistleitner, Becher, Scheerer, Slaman 2017

Polynomial time, combining normality with continued fraction normality, a
number and its reciprocal,normal numbers in Cantor sets,

Work to do
Give the polynomial counterparts of known exponential algorithms producing

normal numbers: Liouville, prescribed irrationality exponent, Toeplitz numbers.
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