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A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no

example of a normal number has ever been given . I propose to shew
how normal numbers may be constructed and to prove that almost all
numbers are normal coﬁstructively

Consider the R -figure integers in the scale of € ( £2Z).
It X is any sequence of figures in that scale we denote by N({'}X,
the number of thesein which y occurs exactly 4. times, Then it can

be pboved without difficulty that
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where {[y) > ¥ is the lenght of the sequence X : it is also

2
possible )to prove that
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Turing’s Note on Normal Numbers

1937 Alan M. Turing's writes the manuscript " A Note on Normal Numbers".

1992 The manuscript was included in the Collected Works of Alan Turing,
volume Pure Mathematics, 1992, edited by J.L.Britton. An editorial note,
page 264,

"[7] The proof of this theorem that is given is certainly inadequate.
Indeed | suspect that the theorem is false. "

2007 The manuscript was reconstructed, corrected and completed
Becher, Figueira, Picchi, Theoretical Computer Science 377: 126-138, 2007.
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For a real number z, its expansion in an integer base b > 2 is a sequence
of integers a1, as ..., where 0 < a,, < b for every n, such that

x—|z| = Z an,b”" = 0.a1a00a3 . ..

n>1

We require that a,, < b — 1 infinitely often to ensure that every number
has a unique representation.
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Borel normal numbers

A real number is normal to an integer base b > 2 if in its base-b expansion
all blocks of the same length occur with the same limit frequency.

0.010010001000010000010000... not normal to base 2.

A real number that is normal to every integer base is called absolutely
normal, or just normal.

In 1909, Borel defined a number as simply normal to base b if in its base b-expansion every digit in
{0,...b— 1} occurs with equal limit frequency. A number is normal to base b if is is normal to all
the bases bk, for £ > 1. In 1922, Borel provided an alternative formulation of normality in terms
of the equifrequency of blocks of digits. The equivalence of these definitions was proved by Niven

and Zuckerman in 1951.
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Borel (1909) proved that the set of normal numbers in the unit interval
has Lebesgue measure 1, and he asked for an explicit example.
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Turing's note on normal numbers

Turing's Theorem 1

Borel’s theorem on the Lebesgue measure of normal numbers,
constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.
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Turing's Theorem 1

Theorem 1
We can find_a_c_ona_tru_cty{gz) function ¢ (K, u)of two integral
variables, such that

G ST o
Lc(li,;wz) 5 Lt(k,u)

- e RN
and mh ey T for each f,
L
and = o 4{ Il L‘c (H, ) consists entirely of normal numbers for

each H .
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Notation: Ef(a, b,),...(am.bm)} = U(ai,bi) , and p is Lebesgue measure.
i=1

Theorem (Turing's Theorem 1)
There is a computable function c(k,n) of two integer variables with

values in finite sets of pairs of rational numbers such that for each k and n

1
Betentn) € Eetemyy  #Eekmy > 1= 7

and
E(k) = Bekny,  m(EE) =1- T

consists entirely of normal numbers.

The class of computable functions is the smallest class of functions N — N that contains the
constant, the projections,the successor, and closed by composition, recursion and the unbounded
minimization. Equivalently, it is the set of functions carried by a Turing machine.
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Proof of Turing's Theorem 1

The construction is uniform in the parameter k.
The construction prunes the unit interval, by steps.

step 0: E. 1,0 is the whole unit interval.

step n: E.(,n) results from removing from E, 1) the points
that are not candidates to be normal, according to the
inspection of an initial segment of their expansions.

At the end, the construction discards

all rational numbers, because of their periodic structure.
all irrational numbers with an unbalanced expansion.

all normal numbers whose convergence to normality is too slow.
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There are a few bad numbers

Let b > 2. In most sequences of sufficiently large length P every
w e {0,...b— 1}6 occurs approximately Pb~¢ times.

Lemma (extends Hardy & Wright 1938)

1
LethZ,le,ézl,we{l,...b—l}g and € such that%ﬁsgﬁ,

ble?p

) <P 2 pe b

Z number of length-P sequences

with exactly i occurrences of w
li—Pb—¢|>cP
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xyp, is the expansion of = in base b, and xp [ n is the first n digits of xzy.
|yl is the number of occurrences of block w in the finite sequence y.

A number z is normal to base b if V¢ > 1 Vw € {0,...b— 1},

. |xb[P|w

=
pm e =h
That is, Ve >0 V0 > 1VYw € {0,...b—1}* APy VP > P,
Tp fP‘w 1
P b <e
we can rewrite as
P
|2y | Plw — W < Pe.

Thus, x is normal to base b if Ve > 0 V£ > 1 Vw{0,...b — l}e 3P, VP > P,

P
|$b[P|w7*

x & Bad(e,w,b, P) = {;1: €(0,1): 7

> 5P}

Notice Bad(e,w,b, P) is a finite union of intervals with rational endpoints.
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Define:
am=N N N (©O1\Bad(e(P), w,b,P))
2<b<B(P) 1<¢<L(P) wef0,....b—1}L(P)

where
B(P) = eV P/ (sublinear in P)
L(P) = \/ﬁ/4 (sublogarithmic in P)
e(P) = p~1/16 (sublinear in P decay to zero, technically largest)

By the previous lemma, there is Py such that for every P > P,

1
AP)>1 — ————.
Let ko be such that pA(ky) > 1 — m Define for every k > ko,

Ec(r0) = (0,1), and for n > 1,

Ec(eny = Ak +n) N Egn—1) N (Bn, 1), where (8,,1) is such that
1,1
k k+n

Turing's Normal Numbers 15 /37
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Proposition

Let k > kg. Then, ﬂ Ec(k,n) consists entirely of normal numbers.

n>1
Proof.
Assume x € m Ec(k,n). Hence, z € ﬂ A(k +n), where
n>0 n>1
A(k+n) = N N ((o, 1)\ Bad(e(k+n), w, b, k‘+n)>

2<b<B(k+n) 1<C<L(k+n) we{0,...,b—1}L0k+n)

B(k+n) (sublinear in n)
L(k+n) (sublogarithmic in n)
e(k+mn) (sublinear in n decay to zero)

For every § > 0,b > 2,£ > 1 exists ng such that
b < B(k—l—no), /< L(k +n0) and 6 > €(k‘+no).

So, for every n > ng, every w € {0, ... be},
x & Bad(d,w,b, k +n).

Thus, z is normal to each base b.
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By construction, for every k > kg and n,
1
Ec(k,n) c Ec(k,n—l)a ,UEc(k,n) >1- E7

and
BH) = (VB w(BR) =1 7.

and consists entirely of normal numbers.
The proof of Theorem 1 is complete. O
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Turing’'s Theorem 2

Theorem 2
infinite
There is a rule whereby given an integer K and ay/sequence
of figures O and 1 ( the ‘P th figure in the seguence being /l)[/j’) )
we can find a norgal number N(H,z&)in the interval (0,1) and in such
a way that for fixed //I these numbers form a set of measure at least
7 &/K , and so that tke first a figures of A? determine N[/a: qﬁ)

to within & © .
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Theorem (Turing's Theorem 2)

There is an algorithm that, given an integer k and an infinite sequence v
of zeros and ones, produces a normal number «(k,v) in the unit interval,
expressed in base two.

In order to write down the first n digits of a(k,v) the algorithm requires
at most the first n digits of v.

For a fixed k these numbers a(k,v) form a set of measure at
least 1 — 2/k.

A real number z is computable if there is a computable function f : N — N such that f(n) is the
n-the digit in the expansion of z in some base. Equivalently, a real number is computable if there

is a Turing machine, hence and algorithm, that outputs all of its digits, one after the other.
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Proof of Turing's Theorem 2

It works by steps.
Start with the unit interval, Iy = (0, 1)

At each step n, divide the current interval I,,_1 in two halves, Ig, I,IL and
choose the half that includes normal numbers in large-enough measure,

(1(Eeginy N I0) > threshold 2 p(E,(j,.) N I}) > threshold ?

If both halves do, use the current bit of the oracle to decide I,,.
(this will happen infinitely often)

The output a(k,v) is the trace of the left/right selection at each step.
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Turing's Algorithm

With each integer 4 we associate an interval of the form

“

/ e ML ) whose intersection with ﬁ,(/ is of positive measure .
_  2
and given m we obtain 141 - as follows, Put

s ZM Ly A \
m e a
c(/{ WAke ol 5=
L;‘ [ 2,47 m, o+
e c(/{{ 4O imwmn | )C "SL/ b
z =
k22
end let b} be the smallest s for which either 4, L_‘<
=1~ =dy -—
or b Il or both 4 - and b
“, m< “ AP/TLK‘?M*:L) //LM" h 47)
There exists such an ] for a, o and [’/. decrease elther to O
or to some positive number, In tle oase where Q V., ( K ,2 ’Z“v.e
~da
put ", * Quw, 41 : if a K but b { K
we put m, ., * lmk , and in the third case we put St = 21“,‘
or M, . ~Jdu,+1 according as A9(x): 0 or 1. For each £ the
1nterval( :, Mo 2 ) includes normal numbers in positive measure,
2 Ll

The intersection of these intervals contains only one number

which must be normal.
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Proof of Turing's Theorem 2

We need the sets Eq(j ) instead of E. ).
They are defined in terms of A(k22"*1), instead of A(k +n), as follows.

Fix ko and define d(k,n) of two integer values in pairs of rational
numbers such that for every k& > kg,

Eqr,0) = (0,1),

Eqkn) = A(k2P N Ea(kn—1) N (Bn, 1), where (3,,1) is such that

1 1
MEd(k,n) =1- E + W
. 1
Notice u( ﬂ Ed(km)) =1- =

n>0
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Proof of Turing's Theorem 2

Algorithm

Input. k> ko, v € {0, l}N
Output. The unique a(k,v) m I,.
n>1

Step 0: Iy = (0,1).

Stepn > 0:
Divide I,,_; in two halves: I° and I}.

I, =17™,

. 1
Else if (,u (Eage,my N (12)) > k22”> then
I,=1°

Otherwise I, = I.

1
If </¢ (Baemy N 1) > oo and p (Bage,my N 1) >

1
k22n

> then

Turing's Normal Numbers 23/37
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Proof of Turing's Theorem 2

Proposition

For everyn > 0, N'(Ed(k,n) N In) > m
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. . 1
Proof. By induction. IH P(Eq,ny N In) > T

Case n = 0. Ed(k,o) = (0, 1) and NEd(k,O) =1.

Case n > 0. The candidates at step n + 1 in I, are exactly

(the candidates at step n in I,, ) minus

(the candidates at step n that are not candidates step (n + 1), in I,,):

Bttty N In = (Bageny) V1) \ ((Baen) \ Eaens1)) N In)
Then,

1(Eaen+ty N In) = p(Eageny N In) — w( (Baen) \ Baent1)) N In)
> p(Bage,n) N In) = 1(Eagen) \ Eaen+1))-
1 1

1 1 1 2
M(Ed(k,nJrl) mIn) > ko2n <k22n+1 N k22n+3> > k922(n+1)

Since I,, = I, ., ULy, it is impossible that both u(Ey ni1) N Iy )
and ,U(Ed(k,n-i-l) N I}H_l) be less than or equal to 1/k22("+1).
At least one is greater. O
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Proof of Turing's Theorem 2

Proposition

Let k > kg. Then, ﬂ Eq(k,n) consists entirely of normal numbers.
n>1
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Lemma (Piatetski-Shapiro 1957)

A real x is normal to an integer base b > 2, if and only if, there is a
constant C' such that for infinitely many lengths ¢ and for every

we{0,...0— 1},

P
lim sup lzo I Plo <C-b "

P—oo

Rediscovered by Borwein and Bailey 2008 calling it Hot Spot Lemma.
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Proof of Proposition ﬂ Eq(k,n) consists entirely of normal numbers
n>0

Let P, = k22" *!. Then,

Eqk,n)y = A(Pn) N Egen—1) N (Bn, 1)

where
AP) = N N ((o, 1\ Bad(s(P,), w, b, Pn)).
2<b<B(Pn) 1<U<L(P,) we0,...,b—1}L(Pn)
Pn w —_
Then, if z € ﬂ Eq(,n) then Vn >0, M — b <e(Py).

n>0
But we need it for all positions P, not just for all P,.
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Suppose x € ﬂ Eq(k,n). Let M be an arbitrary position. Let n be such
n>0

Pn§M<Pn+1

Using Py+1/P, =4, and

|£L'b rM‘w < |$b FPn+1|w Pn+1

—t —r
M < Pn < Pn (b + E(Pn+1)) =4 (b + €(Pn+l))
As n increases, P, goes to co and €(P,) goes to 0. Then,
Ply
lim sup M < 4b~ vl
P—oo
By Piatetski-Shapiro theorem x is normal to each base b. O
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Proof of Turing's Theorem 2

Proposition

The number a(k,v) output by the algorithm is normal.

Proof.
Since (I,,)n>0 is a nested sequence of intervals and H(Ed(km) N In) > 0,

for every n, we obtain that

(1= (Bagm) N 1n).

n>0 n>0

Since already showed that E(k) = (,,~( Eak,n) consists just of normal
numbers, then (), <o (Ea(k,n) N In) contains a unique real number a(k, v)
that is normal,. O
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Proof of Turing's Theorem 2

Proposition

The set of real numbers produced by the algorithm by varying
v € {0,1}N has measure at least 1 — 2/k.
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on’ on

Define inductively the set M (k,n) consisting of all possible intervals J,, ,,, as

we allow the first n digits of v to run through all possibilities. That is, having
deleted those intervals that would be discarded by the algorithm up to step n — 1.

1
Proof. Foreachn>1,m =0,...2" — 1. let J,;, = (m m )

Define M : N x N — P(0, 1),
M(k,0) = (0,1), and for n > 0,

M(kv TL) = U Jn,m
Jnm C M(k,n — 1)
w(Bage,ny N Jn,m) > 1/k2°™

An interval J,, ., is descarded at level n if it was possible at level n — 1
but it is not possible at level n, (because it fails the threshold at level n).

Let E(k:) = ngO Eqepny. Form=0,1,...2" —1,
Dy = E(k) N Jpm O (M(k,n— 1)\ M(k,n))

1
Thus, uDy, m < T

Wantu( ﬂﬂMkn)
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E(k)NM(k,n) = E(k)n M(k,n—1)\ |J Dum

0<m<2n
= B(k) N M(k,n —2)\ ( U Duimu U Dn,m)
0<m<2n—1 0<m<2n

= B(k) N M(k,0) \ (U U D]m)

1<j<n OSm<2J

~ 1
Since M (k,0) = (0,1), pE(k) = 1 ]1 and jDjm < o,

(B (k) O Mk 0) = (B O M) = (D0 D aDjm)

1<j<n 0<m<2J

(X 3 )

1<j<n 0<m<2J

1 1
>@‘z)‘@
2
=1- %
We conclude M(E(k) N ﬂM(k,n)) >1- % O

The proof of Turing's Theorem 2 is now complete.
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Turing's First Page of the Handwritten Manuscript

Not transcribed. His own appraisal of his work.
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne's 0.123456789101112131415...
as an example of a number that is normal to base ten.

“It may also be natural that an example of a normal number be demonstrated
as such and written down. This note cannot, therefore,
be considered as providing convenient examples of normal numbers” //

// “but rather, to counter [...] that the existence proof of normal numbers
provides no example of them. The arguments in the note, in fact,

follow the existence proof fairly closely.”

He was aware of the algorithm's computational complexity.
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June 1
Letter G.H.Hardy to Turing (AMT/D/5) Dear Turing,

a: hes I have just came across your letter (March
SR 3 28) which I seem to have put aside for
b reflection and forgotten.
Sro
7)“‘ = I have a vague recollection that Borel

[ R (/M w),

}.AVr TP VI

07 Y e D W }A wre Do
Mts,  and %Tﬂw.

| <

: L N e O, g
[ q K, Aur (eium R .
o ;«,m&’, =Ty ,,'%’;','M Lk
44 e O™ mmm‘,) s
A ,/WmtmL b, Rithes Ve e s

L Crtiimee.

Auesn J‘b Ll ol b ‘:»DML
o;t el b ik m‘m.:(, /441 Pz ol
’\M:«u,{/k Al EE T R
Zﬁw" bt e, (Ramhorman, e, ).th
,, 1.) oy . / /:«) SRR T
o MU\».[ JVLMZ[M‘-.L/ ATM
Nges ravig ol il ity
?7 i e /MM T B e o,
L ¥ S R A Y S S oA
/ melf [ oy oyt %i o, S
TR S P T

Bl ,LWI [ R

| :
s b 4
4 = {% Py

i ﬂ‘.[‘,H-Mml/

says in one of his books that Lebesgue
had shown him a construction. Try Legons
sur la théorie de la croissance (including
the appendices), or the productivity book
(written under his direction by a lot

of people, but including one volume on
arithmetical prosy, by himself).

Also I seem to remember vaguely that
when Champernowne was doing his stuff I
had a hunt, but could not find nothing
satisfactory anywhere.

Now, of course, when I do write, I do so
from London, where I have no books to refer
to. But if I put it off till my returm, I
may forget again.

Sorry to be so unsatisfactory. But my
’feeling’ is that Lebesgue made a proof
which never got published.

Yours sincerely,

G.H. Hardy



SUR CERTAINES DEMONSTRATIONS D'EXISTENCE;

Pan M. H. Lesescue.

Dans une lettre, adressée & M. Borel, et qui accompagnait l'en-
voi de l'article précédent, M. Sierpinski se demandaitsi cet article
devait étre publié, s'il ne ferait pas double emploi avec une démons-
tration que j'avais indiquée & M. Borel et que celui-ci a signalée
dans la deuxitme édition de ses Legons sur la théorie des fonc-
tions (p. 198).

DEMONSTRATION ELEMENTAIRE DU THEOREME DE M. BOREL
SUR LES NOMBRES ABSOLUMENT NORMAUX ET DETERMINATION
EFFECTIVE D'UN TEL NOMBRE;

Pan M. W. Sienrinski.

On appelle, d’aprés M. Borel, simplement normal par rapport
 la base g (') tout nombre réel 2 dont la partie fractionnaire

(') E. Borer, Lecons sur la theéorie des fonctions, p. 1y7, Paris, 1914,
independently, each gave a non-finitary based construction:

Bulletin de la Société Mathématique de France 45, 1917,
respectively in page s 127-132 and 132-144.

Turing's Normal Numbers 37/37 Verénica Becher



Algorithms generating absolutely normal numbers

(Double) exponential time, Turing's algorithm, 1937

Exponential time, Weyl criterion and exponential sums
Schmidt 1961/1962; Levin 1979

Nearly quadratic time algorithm

Becher, Heiber and Slaman 2013, Figueira and Nies 2013, Lutz and
Mayordomo 2013,

Nearly linear time algorithm

Lutz and Mayordomo, 2021

Polynomial time, with discrepancy smaller than that almost all numbers
Aistleitner, Becher, Scheerer, Slaman 2017

Polynomial time, combining normality with continued fraction normality, a
number and its reciprocal,normal numbers in Cantor sets,

Work to do

Give the polynomial counterparts of known exponential algorithms producing
normal numbers: Liouville, prescribed irrationality exponent, Toeplitz numbers.



Turing, A. M. A Note on Normal Numbers. Collected Works of Alan M. Turing, Pure Mathematics,
1992, edited by J. L. Britton, 117-119. Notes of editor, 263-265. North Holland. Reprinted in
Alan Turing - his work and impact, S B. Cooper and J. van Leeuwen editors, Elsevier, 2012.

Becher,V., Figueira,S. 2002. An example of a computable absolutely normal number. Theoretical
Computer Science 270:947-958.

Becher,V., Figueira,S., Picchi,R. 2007. Turing’s unpublished algorithm for normal numbers.
Theoretical Computer Science 377:126-138.

Aistleitner, C, Becher, V., Scheerer, A.-M., Slaman,T. 2017. On the construction of absolutely
normal numbers Acta Arith., 180 (4):333-346

Becher,V., Heiber,P., Slaman,T., 2013. A polynomial-time algorithm for computing absolutely
normal numbers, Information and Computation, 232:1-9

Alvarez,N., and Becher, V. 2017. M. Levin's construction of absolutely normal numbers with very
low discrepancy, Mathematics of Computation 86(308): 2927-2946.

Borel, E. 1909. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del
Circolo Matematico di Palermo 27:247-271.

Champernowne, D. 1933. The Construction of Decimals in the Scale of Ten. Journal of the London
Mathematical Society 8: 254-260, 1933.

Hardy,G.H., Wright,E.M. 1938 fiirst edition. An Introduction to the Theory of Numbers. Oxford
University Press.

Lutz, J and Mayordomo E. 2021 Computing absolutely normal numbers in nearly linear time
Information and Computation 104746, 2021

Lebesgue, H. 1917. Sur certaines démonstrations d’existence. Bulletin de la Société Mathématique
de France 45:132-144.

Sierpiriski, W. 1917. Démonstration élémentaire du théoréeme de M. Borel sur les nombres
absolument normaux et détermination effective d'un tel nombre. Bulletin de la Société
Mathématique de France 45:127-132.

Turing,A.M. 1936. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society Series 2, 42:230-265.



