Alan Turing's algorithm for producing absolutely normal numbers

Verónica Becher

Universidad de Buenos Aires

Online Seminar in Diophantine Approximation and Related Topics October 2, 2025

A Note on Naul Nules of steps. When this fig to has been calculated and written down as on the things of white the the throation to appealed. Hence It wangle of a want who has ever him givingt propult show Now let K be the D.N of A. What does of do in the K th secti -rev a griving profession of the set test of the set of - of ording the control of the post of the of the order tree the verdict cannot be the other hand the verdict conn be 'S'. For if it were, then in the K in section of its motion of would be bound to compute the first $\mathcal{N}(K-1)+l^{-2}\mathcal{N}(K)$ rigures of the sequence computed by the machine with K as its D.N and to write down the - unadeposite of works moute the delifto have thought the fire (TI) - required to be completed by find by published but Light instructions for calculating the R(K) A would amount to "calculating the riret M(K) rigared computed by A and write down the M(K)th". method for included a dealer of and when the contrary both to what we have found in the last paragraph and to the verd

A MAR on World Marley the contract of the following and the contract of the contract Margh & how that I me will 2) and wought of a send who he was her printiff frequent who and the property of the state of the same hand out of the same of the same mile that would know I me the the o'd! The him shorty at the way be they be noticed to the whole they be resignation of the man to well to have day to get a comment ?) . It make to which the the sample of which you has was extractly with down or find all this way before to appet to the and dispete in what the way and want of the change up a link agent to surprise that the sant a spring of and and property by the the man to the plant the day to do weather book to be shoot and as one own . We as season, old, pictor or old to be here the three two materia o re-SACACOSALBOASA of the second of the second of the second

The same part to make the first the same of the same o

som is not to ppg this and the last the sandraft transmit allatoners and (a) por or or If not ami let in winder on of the which to segmen po 2 a com p p. p. f forme. Let po le and & the let the the franching of a second alf to the ten to an a laster of accounty. Not ply in against the and they will state to my by be deb the do in white land my con Mapa su prosent p 1/2, the from according to the page bout of reptotic year, cat have not was the state of the secret of the a second state of

The set i sent - would to week any thousand

The state of the

The property of the property o

I shall not give the proof of undelthings or \$\tilde{C}_{\text{top}}\$ tops a continue of the unitary of the state of the proof of the time of the unitary of the time of the other time of the other time the named of the time the named of the time for the time of time of the time of time of

If a separate a specifical let some a well for

" Wines of and the second of the contract of

 $((a,b)^{(n)})^{(n)}((a,b)^{(n)}(a,b)^{(n)}(a,b)^{(n)})^{(n)} \leftarrow (a,b)^{(n)}($

A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no example of a normal number has ever been given. I propose to show how normal numbers may be constructed and to prove that almost all numbers are normal constructively

Consider the R -figure integers in the scale of t (t,z).

If γ is any sequence of figures in that scale we denote by $N(t,\gamma)$, the number of these in which γ occurs exactly ω times. Then it can be proved without difficulty that

red without difficulty that
$$\frac{R}{E} = N(t, \gamma, \mu, R)$$

$$\frac{R}{E} = N(t, \gamma, \mu, R)$$

$$\frac{R}{R} = \frac{R - r + 1}{R} t - r$$

where $\ell(\gamma) = V$ is the length of the sequence γ : it is also possible prove that

- E"

A Note on Normal Numbers

although it is known that almost all numbers are normal 1) no example of a normal number has ever been given . I propose to shew how normal numbers may be constructed and to prove that almost all numbers are normal constructively

Consider the R -figure integers in the scale of C (\$52). If Y is any sequence of figures in that scale we denote by $N(t; Y, \sim, R)$ the number of thesein which V occurs exactly at times. Then it can

to prove without difficulty that
$$\frac{\sum_{i=1}^{R} A_i N(\ell_i p_i, R)}{\sum_{i=1}^{R} N(\ell_i p_i, R)} = \frac{R - r + I}{R} f^{-r}$$
where $N(\ell_i p_i, R)$ is the health of the secure V : 15 is also

where \$\langle(p) . r' is the length of the sequence \chi : it is also rait avery or bidiesec

$$\sum_{|n-R| \in P| \geq K} N(\ell, \chi, n, R) \le \ell^{-R} e^{-\frac{|n|^2 k^2}{4}} \sum_{per \in \mathcal{M}} \frac{k^2}{K} \le 3$$
Lat κ be a real number on $S(n, \ell, \chi, R)$ the number of occurrences

of V in the first & figures after the desired point in the expression of & in the scale of f . W is mid to be sevent if

$$R^{-2} S(x,t,y,R) \rightarrow t^{-r}$$
 as $R \rightarrow r$ too each y,t

where r. UV . Now consider sums of a finite number of open intervals with rational end points. These can be enumerafied constructively. No same a marticular constructive enumeration; let £, be the a-th

 $\left(\frac{a_n}{2},\frac{a_{n+1}}{a_n}\right)_{A_n}\text{whose intersection with } \sum_{A_n=1}^n\text{ is of positive measure ,}\\ \text{ and given } A_n\text{ we obtain } \frac{a_{n+1}}{a_{n+1}}\text{ as follows. For$

is given
$$A_{k_1}$$
 we obtain H_{k_2} are follows. But $A_{k_1} = \frac{2n_k + 1}{4^{k_1 + 2}} > 1$ A_{k_1, n_1}

$$E_{ij}(y_{ij}) + \left(\frac{1}{2}, \frac{y_{ij}}{2}\right) + \frac{1}{2}, \frac{y_{ij}}{2} + \frac{y_{ij}}{2}$$

In $E_{ij}(y_{ij}) + \left(\frac{2y_{ij}}{2}, \frac{y_{ij}}{2}\right) + \frac{1}{2}, \dots$

and let $P_{\rm in}$ be the smallest in for milth either $G_{\rm in,in} < K^{-2} \, 2^{-R_{\rm in}}$ or $b_{n,m} < K^{-1} J^{-2m}$ or both $A_{n,m} > \frac{2}{H(Hen+2)}$ and $b_{n,m} > \frac{2}{H(Hen+2)}$. There exists each on F_n^* for $a_{n,m}$ and $b_{n,m}^*$ decrease althor to 0 or to some positive number. In the case where $A_{n,p} \in \mathcal{H}^{2,p-d_{n}}$ we per many 2 mars 1 st ang 3 K 2 th test be 6 K 2 2 th so put Many . 2m, , and in the third case we put Many . 2m, or Man . 2m. +2 scourding so NA): 0 or 1. For each 4 the interval $\left(\frac{a_n}{2^k}, \frac{a_{n-2}}{2^{k-1}}\right)$ includes normal numbers in positive measure. The intersection of these intervals contains only one numberwhich must be normal.

Now consider the set \$\text{\$\tilde{N}(\dots)\$ occasisting of all possible intervals " au +1 le, the sun of all these intervals as we allow the first A figures or of to run through all possibilities. Then

$$m \mathcal{L}_{(N),\Lambda}^{i} \mathcal{H}(N, n+2) = m \mathcal{L}_{(N),\Lambda}^{i} \mathcal{H}(N, n)$$

$$= \sum_{n=1}^{\infty} m \mathcal{L}_{(N),\Lambda}^{i} \left(\mathcal{H}(N, n) - \mathcal{H}(N, n+2)\right)_{1} \left(\frac{2n}{2} - \frac{n+2}{2^{n}}\right)$$
Hose

not of intervals in the enumeration, then we have

Theorem 1 We can find a constructive 3 function c(N, n) of two integral variables, such that

$$\frac{\mathcal{E}_{\varepsilon(N_{i},n-2)} \in \mathcal{E}_{\varepsilon(N_{i},n)}}{n \in \mathcal{E}_{\varepsilon(N_{i},n)} > 2 - \frac{1}{N_{i}}} \text{ for each } \mathcal{H}_{i}, n.$$

and $E_{(R)}: \prod_{i \in \{R, n\}} E_{(R, n)}$ consists entirely of normal numbers for

Let
$$B(d, \gamma, \ell, R)$$
 be the set of numbers R , for which

Let
$$B(A, \gamma, t, R)$$
 be the set of unbers R_{j_1} for which $\left| S(A, t, \gamma, R) - R t^{-p} \right| \le \frac{R}{A t^{p}}$
(80 $\frac{C}{6p^{p}}$ (2)
0 by (1)

m B (0, 8, +, 9) > 2 - 2e - 9/402 Let $H(\Delta, T, L, R)$ be the set of those \times for which (2) holds Manager 25 8 6T und ((2) 5 L 1:0.

$$R(\Delta, T, L, R) + \frac{T}{T} \frac{1}{11} \frac{1}{12} B(\Delta, Y, L, R)$$

The number of feeters in the product is at most T^{L-1} so that
$$R(\Delta, T, L, R) \geq 2 - T^{L-2} C T^{\frac{L-2}{2}} B \Delta^{\frac{L}{2}} e^{-\frac{CT}{L-2}}$$

$$\begin{aligned} & \overrightarrow{P_{k}} : \ \overrightarrow{P_{k}} \left(\left[\begin{array}{c} k^{k} \right], \left[c^{\sqrt{k_{0}^{-k}}} \right], \left[\sqrt{k_{0}^{-k}} - 1 \right], k \right) \\ & \overrightarrow{P_{k}} : \ \overrightarrow{P_{k}} \left(\begin{array}{c} k \end{array} \right), \left[c^{\sqrt{k_{0}^{-k}}} \right], \left[\sqrt{k_{0}^{-k}} - 1 \right], k^{0} \end{aligned}$$

5 (K) + (K, 2-1) > 4 (K) 7(K) -2" K"> 5 K, -K" The set of all lessible numbers A/S A he therefore of measure on least 7- 7/4 .

By taking particular sequences of (e.g. ofa) pall as just obtain perticular normal numbers,

then if kypep we shall have as By > 1 - ke-1 k2 > 1 - 1/6-21 -C(H, A) (Hy reed) is to be defined as follows

C(H, N+2) to the interposation of an interval (A, 2), (05.4, 4.2) with B_{N+k+2} and $C(B_{N},\kappa)$, β_{k} being so chosen that the measure while (P_{n+k+1}) is $2 \cdot \frac{1}{R} \cdot \frac{1}{R}$ finite sum of intervals for each H, a . When we remove the boundary points we obtain a set of from $K_{C(H, m)}$ of measure $1 - \frac{r}{K} + \frac{r}{K + m}$ (K) Jero), the intervals of which hours is composed may be found by a machanical processing so the function $\ell(N,\alpha)$ is sequence of length P in themsels of P and if W, be such that fertilo > e and [vigh, > ++1 then for h > h, | S(At, Y, A) - At - + | < A [k] - 2 when A is in As

(by the definition of H_k). Hence $k^{\prime 2} S(s, f, y, k) \rightarrow t^{-r}$ as // tends to infinity ,i.e. & is normal.

Theorem 2

There is a rule whereby gives an integer H and appropriate of figures 0 and 1 (the \$ th figure in the sequence being 4 (7)) we can find a normal number Φ/H_1 . Win the interval (0,1) and in such a way that for fixed / these numbers form a set of measure at least I . R/K , and so that the first a figures of & determine N(K, S)

Turing's Note on Normal Numbers

- 1937 Alan M. Turing's writes the manuscript "A Note on Normal Numbers".
- 1992 The manuscript was included in the *Collected Works of Alan Turing*, volume *Pure Mathematics*, 1992, edited by J.L.Britton. An editorial note, page 264,
 - "[7] The proof of this theorem that is given is certainly inadequate. Indeed I suspect that the theorem is false. "
- 2007 The manuscript was reconstructed, corrected and completed Becher, Figueira, Picchi, *Theoretical Computer Science* 377: 126-138, 2007.

For a real number x, its expansion in an integer base $b \ge 2$ is a sequence of integers $a_1, a_2 \ldots$, where $0 \le a_n < b$ for every n, such that

$$x - \lfloor x \rfloor = \sum_{n \ge 1} a_n b^{-n} = 0.a_1 a_2 a_3 \dots$$

We require that $a_n < b-1$ infinitely often to ensure that every number has a unique representation.

Borel normal numbers

A real number is normal to an integer base $b \geq 2$ if in its base-b expansion all blocks of the same length occur with the same limit frequency.

0.010010001000010000100000... not normal to base 2.

A real number that is normal to every integer base is called absolutely normal, or just normal.

In 1909, Borel defined a number as simply normal to base b if in its base b-expansion every digit in $\{0,\dots b-1\}$ occurs with equal limit frequency. A number is normal to base b if is is normal to all the bases b^k , for $k\geq 1$. In 1922, Borel provided an alternative formulation of normality in terms of the equifrequency of blocks of digits. The equivalence of these definitions was proved by Niven and Zuckerman in 1951.

Borel (1909) proved that the set of normal numbers in the unit interval has Lebesgue measure 1, and he asked for an explicit example.

Turing's note on normal numbers

Turing's Theorem 1

Borel's theorem on the Lebesgue measure of normal numbers, constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.

Turing's Theorem 1

Theorem 1

We can find a constructive $^{3)}$ function c(K, u) of two integral variables, such that

and
$$E_{c(K,n+1)} \leq E_{c(K,n)}$$
 $E_{c(K,n+1)} \leq E_{c(K,n)}$
 $E_{c(K,n+1)} \leq E_{c(K,n)}$

for each K , K

and $f(\kappa) = \frac{11}{6.2} f_{c}(\kappa, \kappa)$ consists entirely of normal numbers for

Turing's Normal Numbers 10/37 **Verónica Becher**

Notation: $E_{\{(a_1,b_1),\dots(a_m,b_m)\}}=\bigcup_{i=1}^m(a_i,b_i)$, and μ is Lebesgue measure.

Theorem (Turing's Theorem 1)

There is a computable function c(k,n) of two integer variables with values in finite sets of pairs of rational numbers such that for each k and n

$$E_{c(k,n+1)} \subseteq E_{c(k,n)}, \qquad \mu E_{c(k,n)} > 1 - \frac{1}{k},$$

and

$$E(k) = \bigcap_{n} E_{c(k,n)}, \qquad \mu(E(k)) = 1 - \frac{1}{k}.$$

consists entirely of normal numbers.

The class of computable functions is the smallest class of functions $\mathbb{N} \to \mathbb{N}$ that contains the constant, the projections,the successor, and closed by composition, recursion and the unbounded minimization. Equivalently, it is the set of functions carried by a Turing machine.

The construction is uniform in the parameter k.

The construction prunes the unit interval, by steps.

step 0: $E_{c(k,0)}$ is the whole unit interval.

step n: $E_{c(k,n)}$ results from removing from $E_{c(k,n-1)}$ the points that are **not** candidates to be normal, according to the inspection of an initial segment of their expansions.

At the end, the construction discards

all rational numbers, because of their periodic structure.

all irrational numbers with an unbalanced expansion.

all normal numbers whose convergence to normality is too slow.

There are a few bad numbers

Let $b\geq 2$. In most sequences of sufficiently large length P every $w\in\{0,\dots b-1\}^\ell$ occurs approximately $Pb^{-\ell}$ times.

Lemma (extends Hardy & Wright 1938)

Let
$$b\geq 2$$
, $P\geq 1$, $\ell\geq 1$, $w\in \{1,\ldots b-1\}^\ell$ and ε such that $\frac{7}{P}\leq \varepsilon\leq \frac{1}{b^\ell}$,

$$\Big(\sum_{\substack{|i|=Pb-\ell|>2P\\\text{with exactly i occurrences of w}}\sup_{} b^P \ 2 \ b^{2\ell}e^{-\frac{b^\ell\varepsilon^2P}{6\ell}}.$$

 x_b is the expansion of x in base b, and $x_b \upharpoonright n$ is the first n digits of x_b . $|y|_w$ is the number of occurrences of block w in the finite sequence y.

A number x is normal to base b if $\forall \ell \geq 1 \ \forall w \in \{0, \dots b-1\}^{\ell}$,

$$\lim_{P \to \infty} \frac{|x_b \upharpoonright P|_w}{P} = b^{-\ell}$$

That is, $\forall \varepsilon > 0 \ \forall \ell \geq 1 \ \forall w \in \{0, \dots b-1\}^{\ell} \ \exists P_0 \ \forall P \geq P_0$

$$\left| \frac{x_b \upharpoonright P|_w}{P} - \frac{1}{b^\ell} \right| < \varepsilon$$

we can rewrite as

$$\left| |x_b \upharpoonright P|_w - \frac{P}{h^{\ell}} \right| < P\epsilon.$$

Thus, x is normal to base b if $\forall \varepsilon > 0 \ \forall \ell \geq 1 \ \forall w \{0, \dots b-1\}^{\ell} \ \exists P_0 \ \forall P \geq P_0$

$$x \notin Bad(\varepsilon, w, b, P) = \left\{ x \in (0, 1) : \left| |x_b \upharpoonright P|_w - \frac{P}{b^{\ell}} \right| \ge \varepsilon P \right\}$$

Notice $Bad(\varepsilon,w,b,P)$ is a finite union of intervals with rational endpoints.

Define:

where

$$B(P) = e^{\sqrt{\ln P}/4}$$
 (sublinear in P)
 $L(P) = \sqrt{\ln P}/4$ (sublogarithmic in P)

$$\varepsilon(P) = P^{-1/16}$$
 (sublinear in P decay to zero, technically largest)

By the previous lemma, there is P_0 such that for every $P \ge P_0$,

$$\mu A(P) \ge 1 - \frac{1}{P(P-1)}.$$

Let k_0 be such that $\mu A(k_0) \ge 1 - \frac{1}{k_0(k_0-1)}$. Define for every $k \ge k_0$,

$$E_{c(k,0)} = (0,1)$$
, and for $n \ge 1$,

$$E_{c(k,n)} = A(k+n) \cap E_{c(k,n-1)} \cap (\beta_n,1)$$
, where $(\beta_n,1)$ is such that

$$\mu E_{c(k,n)} = 1 - \frac{1}{k} + \frac{1}{k + n}.$$

Turing's Normal Numbers 15/37 Verónica Bechei

Proposition

Let $k \geq k_0$. Then, $\bigcap_{n \geq 1} E_{c(k,n)}$ consists entirely of normal numbers.

Proof.

Assume $x \in \bigcap_{n>0} E_{c(k,n)}$. Hence, $x \in \bigcap_{n>1} A(k+n)$, where

$$A(k+n) = \bigcap_{2 \leq b \leq B(k+n)} \bigcap_{1 \leq \ell \leq L(k+n)} \bigcap_{w \in \{0, \dots, b-1\}^{L(k+n)}} ((0,1) \backslash Bad(\varepsilon(k+n), w, b, k+n))$$

$$B(k+n)$$
 (sublinear in n)

$$L(k+n)$$
 (sublogarithmic in n)

$$\varepsilon(k+n)$$
 (sublinear in n decay to zero)

For every
$$\delta > 0, b \ge 2, \ell \ge 1$$
 exists n_0 such that $b < B(k + n_0), \ell < L(k + n_0)$ and $\delta > \varepsilon(k + n_0).$

So, for every
$$n \geq n_0$$
, every $w \in \{0, \dots b^{\ell}\}$,

$$x \notin Bad(\delta, w, b, k+n).$$

By construction, for every $k \ge k_0$ and n,

$$E_{c(k,n)}\subseteq E_{c(k,n-1)}, \qquad \mu E_{c(k,n)}>1-\frac{1}{k},$$

and

$$E(k) = \bigcap_{n} E_{c(k,n)}, \qquad \mu(E(k)) = 1 - \frac{1}{k}.$$

and consists entirely of normal numbers. The proof of Theorem 1 is complete.

Turing's Normal Numbers 17/37 **Verónica Becher**

Turing's Theorem 2

Theorem 2

There is a rule whereby given an integer \mathcal{K} infinite and a sequence of figures 0 and 1 (the \mathcal{P} th figure in the sequence being $\mathcal{N}(\mathcal{P})$) we can find a normal number $\mathcal{N}(\mathcal{M},\mathcal{N})$ in the interval (0,1) and in such a way that for fixed \mathcal{M} these numbers form a set of measure at least $1-\frac{2}{\mathcal{M}}$, and so that the first \mathcal{N} figures of \mathcal{N} determine $\mathcal{N}(\mathcal{M},\mathcal{N})$ to within $\mathcal{J}^{-\mathcal{N}}$.

Theorem (Turing's Theorem 2)

There is an algorithm that, given an integer k and an infinite sequence ν of zeros and ones, produces a normal number $\alpha(k,\nu)$ in the unit interval, expressed in base two.

In order to write down the first n digits of $\alpha(k,\nu)$ the algorithm requires at most the first n digits of ν .

For a fixed k these numbers $\alpha(k,\nu)$ form a set of measure at least 1-2/k.

A real number x is computable if there is a computable function $f:\mathbb{N}\to\mathbb{N}$ such that f(n) is the n-the digit in the expansion of x in some base. Equivalently, a real number is computable if there is a Turing machine, hence and algorithm, that outputs all of its digits, one after the other.

It works by steps.

Start with the unit interval, $I_0 = (0,1)$

At each step n, divide the current interval I_{n-1} in two halves, I_n^0 , I_n^1 and choose the half that includes normal numbers in large-enough measure,

$$\mu\big(E_{c(k,n)}\cap I_n^0\big)> \text{threshold ?} \qquad \mu\big(E_{c(k,n)}\cap I_n^1\big)> \text{threshold ?}$$

If both halves do, use the current bit of the oracle to decide I_n . (this will happen infinitely often)

The output $\alpha(k,\nu)$ is the trace of the left/right selection at each step.

Turing's Algorithm

With each integer μ we associate an interval of the form $\left(\frac{m_n}{2^n}, \frac{m_n+1}{2^n}\right)$ whose intersection with $\frac{1}{n}$ is of positive measure. and given $\frac{1}{n}$ we obtain $\frac{1}{n}$ as follows. Put $\frac{1}{n}$ $\frac{1}{n}$

and let V_h be the smallest m for which either $a_{n_i m} \leqslant K^{-1} 2^{-2n}$ or $b_{n_i m} \leqslant K^{-1} 2^{-2n}$ or both $a_{n_i m} \approx \frac{2}{K(K+n+1)}$ and $b_{n_i m} \approx \frac{2}{K(K+n+2)}$. There exists such an V_h for $a_{n_i m}$ and $b_{n_i m}$ decrease either to 0 or to some positive number. In the case where $a_{n_i m} \leqslant K^{-1} 2^{-2n}$ we put $m_{n+1} = 2m_{n_i n_i} 1 :$ if $a_{n_i m} \approx K^{-1} 2^{-2n}$ but $b_{n_i m} \leqslant K^{-1} 2^{-2n}$ we put $m_{n+1} = 2m_{n_i n_i} 1 :$ according as $a_{n_i m} \approx a_{n_i m} 1 :$ for each $a_{n_i m} \approx a_{n_i m} 1 :$ $a_{n_i m} \approx a_{n_i m} 1 :$ or $a_{n_i m} \approx a_{n_i m} 1 :$ includes normal numbers in positive measure. The intersection of these intervals contains only one numbers

which must be normal.

Turing's Normal Numbers

We need the sets $E_{d(k,n)}$ instead of $E_{c(k,n)}$.

They are defined in terms of $A(k2^{2n+1})$, instead of A(k+n), as follows.

Fix k_0 and define d(k,n) of two integer values in pairs of rational numbers such that for every $k \ge k_0$,

$$E_{d(k,0)} = (0,1),$$

$$E_{d(k,n)}=A(k2^{2n+1})\cap E_{d(k,n-1)}\cap (\beta_n,1), \text{ where } (\beta_n,1) \text{ is such that }$$

$$\mu E_{d(k,n)} = 1 - \frac{1}{k} + \frac{1}{k2^{2n+1}}.$$

Notice
$$\mu\left(\bigcap_{k \in \mathbb{Z}} E_{d(k,n)}\right) = 1 - \frac{1}{k}$$
.

Algorithm

```
Input. k > k_0, \nu \in \{0, 1\}^{\mathbb{N}}.
Output. The unique \alpha(k,\nu) \in \bigcap I_n.
Step 0: I_0 = (0,1).
Step n > 0:
Divide I_{n-1} in two halves: I_n^0 and I_n^1.
If \left(\mu\left(E_{d(k,n)}\cap I_n^0
ight)>rac{1}{k2^{2n}} and \mu\left(E_{d(k,n)}\cap I_n^1
ight)>rac{1}{k2^{2n}}
ight) then
I_n = I_n^{\nu(n)}.
Else if \left(\mu\left(E_{d(k,n)}\cap (I_n^0)\right)>\frac{1}{k2^{2n}}\right) then
I_n = I_n^0.
Otherwise I_n = I_n^1.
```

Proposition

For every
$$n \geq 0$$
, $\mu(E_{d(k,n)} \cap I_n) > \frac{1}{k2^{2n}}$.

Proof. By induction. IH $\mu(E_{d(k,n)} \cap I_n) > \frac{1}{k \cdot 2^{2n}}$.

Case n = 0. $E_{d(k,0)} = (0,1)$ and $\mu E_{d(k,0)} = 1$.

Case n > 0. The candidates at step n + 1 in I_n are exactly (the candidates at step n in I_n) minus (the candidates at step n that are not candidates step (n+1), in I_n):

$$E_{d(k,n+1)} \cap I_n = \left(E_{d(k,n)} \cap I_n \right) \setminus \left(\left(E_{d(k,n)} \setminus E_{d(k,n+1)} \right) \cap I_n \right)$$

Then,

$$\mu(E_{d(k,n+1)} \cap I_n) = \mu(E_{d(k,n)} \cap I_n) - \mu((E_{d(k,n)} \setminus E_{d(k,n+1)}) \cap I_n)$$

$$\geq \mu(E_{d(k,n)} \cap I_n) - \mu(E_{d(k,n)} \setminus E_{d(k,n+1)}).$$

Using IH and $\mu E_{d(k,n)}=1-rac{1}{\iota}+rac{1}{\iota \cdot 2^{2n+1}}$,

$$\mu(E_{d(k,n+1)} \cap I_n) > \frac{1}{k2^{2n}} - \left(\frac{1}{k2^{2n+1}} - \frac{1}{k2^{2n+3}}\right) > \boxed{\frac{2}{k2^{2(n+1)}}}$$

Since $I_n = I_{n+1}^0 \cup I_{n+1}^1$, it is impossible that both $\mu(E_{d(k,n+1)} \cap I_{n+1}^0)$ and $\mu(E_{d(k,n+1)} \cap I_{n+1}^1)$ be less than or equal to $1/k2^{2(n+1)}$.

Verónica Becher

At least one is greater.

Proposition

Let $k \geq k_0$. Then, $\bigcap_{n \geq 1} E_{d(k,n)}$ consists entirely of normal numbers.

Lemma (Piatetski-Shapiro 1957)

A real x is normal to an integer base $b \geq 2$, if and only if, there is a constant C such that for infinitely many lengths ℓ and for every $w \in \{0, \ldots b-1\}^{\ell}$,

$$\limsup_{P \to \infty} \frac{|x_b \upharpoonright P|_w}{P} < C \cdot b^{-\ell}.$$

Rediscovered by Borwein and Bailey 2008 calling it Hot Spot Lemma.

Proof of Proposition $\bigcap E_{d(k,n)}$ consists entirely of normal numbers

Let $P_n = k2^{2n+1}$. Then,

$$E_{d(k,n)} = A(P_n) \cap E_{d(k,n-1)} \cap (\beta_n, 1).$$

where

where
$$A(P_n) = \bigcap_{2 \leq b \leq B(P_n)} \bigcap_{1 \leq \ell \leq L(P_n)} \bigcap_{w \in \{0, \dots, b-1\}^{L(P_n)}} \Bigl((0,1) \backslash Bad(\varepsilon(P_n), w, b, P_n) \Bigr).$$

Then, if
$$x \in \bigcap_{n > 0} E_{d(k,n)}$$
 then $\forall n \geq 0, \left| \frac{|x_b \upharpoonright P_n|_w|}{P_n} - b^{-\ell} \right| \leq \varepsilon(P_n)$.

But we need it for all positions P, not just for all P_n .

Suppose $x \in \bigcap E_{d(k,n)}$. Let M be an arbitrary position. Let n be such

$$P_n \le M < P_{n+1}$$

Using $P_{n+1}/P_n=4$, and

$$\frac{|x_b \upharpoonright M|_w}{M} \le \frac{|x_b \upharpoonright P_{n+1}|_w}{P_n} < \frac{P_{n+1}}{P_n} \left(b^{-\ell} + \varepsilon(P_{n+1}) \right) = 4 \left(b^{-\ell} + \varepsilon(P_{n+1}) \right)$$

As n increases, P_n goes to ∞ and $\varepsilon(P_n)$ goes to 0. Then,

$$\limsup_{P} \frac{|x_b \upharpoonright P|_w}{P} < 4b^{-|w|}.$$

By Piatetski-Shapiro theorem x is normal to each base b.

Turing's Normal Numbers 29 / 37 Verónica Becher

Proposition

The number $\alpha(k,\nu)$ output by the algorithm is normal.

Proof.

Since $(I_n)_{n\geq 0}$ is a nested sequence of intervals and $\mu\Big(E_{d(k,n)}\cap I_n\Big)>0$, for every n, we obtain that

$$\bigcap_{n>0} I_n = \bigcap_{n>0} (E_{d(k,n)} \cap I_n).$$

Since already showed that $\tilde{E}(k)=\bigcap_{n\geq 0}E_{d(k,n)}$ consists just of normal numbers, then $\bigcap_{n\geq 0}(E_{d(k,n)}\cap I_n)$ contains a unique real number $\alpha(k,\nu)$ that is normal,.

Proposition

The set of real numbers produced by the algorithm by varying $\nu \in \{0,1\}^{\mathbb{N}}$ has measure at least 1-2/k.

Proof. For each $n \ge 1, m = 0, \dots 2^n - 1$. let $J_{n,m} = \left(\frac{m}{2^n}, \frac{m+1}{2^n}\right)$.

Define inductively the set M(k,n) consisting of all possible intervals $J_{n,m}$ as we allow the first n digits of ν to run through all possibilities. That is, having deleted those intervals that would be discarded by the algorithm up to step n-1.

Define
$$M: \mathbb{N} \times \mathbb{N} \to \mathcal{P}(0,1)$$
, $M(k,0) = (0,1)$, and for $n>0$,
$$M(k,n) = \bigcup_{\substack{J_{n,m} \subseteq M(k,n-1)\\ \mu(E_{d(k,n)} \cap J_{n,m}) > 1/k2^{2n}}} J_{n,m}$$

An interval $J_{n,m}$ is descarded at level n if it was possible at level n-1 but it is not possible at level n, (because it fails the threshold at level n).

Let
$$\widetilde{E}(k) = \bigcap_{n>0} E_{d(k,n)}$$
. For $m = 0, 1, ..., 2^n - 1$,

$$D_{n,m} = \widetilde{E}(k) \cap J_{n,m} \cap (M(k, n-1) \setminus M(k, n))$$

Thus,
$$\mu D_{n,m} \leq \frac{1}{k \cdot 2^{2n}}$$
.

Want
$$\mu\Big(\widetilde{E}(k)\cap\bigcap_{k=1}^{k}M(k,n)\Big)$$

Turing's Normal Numbers 32 / 37 **Verónica Beche**r

$$\widetilde{E}(k) \cap M(k,n) = \widetilde{E}(k) \cap M(k,n-1) \setminus \bigcup_{0 \le m < 2^n} D_{n,m}$$

$$= \widetilde{E}(k) \cap M(k,n-2) \setminus \left(\bigcup_{0 \le m < 2^{n-1}} D_{n-1,m} \cup \bigcup_{0 \le m < 2^n} D_{n,m}\right)$$

. . .

$$=\widetilde{E}(k)\cap M(k,0)\setminus \Big(\bigcup_{1\leq i\leq n}\bigcup_{0\leq j\leq n}D_{j,m}\Big)$$

Since
$$M(k,0)=(0,1), \ \mu \widetilde{E}(k)=1-\frac{1}{k}, \ \text{and} \ \mu D_{j,m}\leq \frac{1}{k2^{2j}},$$

$$\mu(\widetilde{E}(k)\cap M(k,n))=\mu(\widetilde{E}(k)\cap M(k,0))-\Big(\sum_{k}\sum_{j}\mu D_{j,m}\Big)$$

$$\geq \mu \widetilde{E}(k) - \left(\sum_{1 \leq j \leq n} \sum_{0 \leq m < 2^j} \frac{1}{k 2^{2j}}\right)$$

$$> \left(1 - \frac{1}{k}\right) - \frac{1}{k}$$

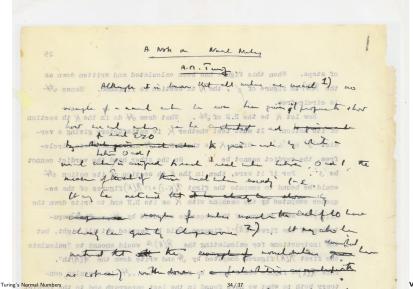
$$= 1 - \frac{2}{k}.$$

We conclude
$$\mu\Big(\widetilde{E}(k)\cap\bigcap M(k,n)\Big)\geq 1-\frac{2}{k}$$
.

The proof of Turing's Theorem 2 is now complete.

Turing's First Page of the Handwritten Manuscript

Not transcribed. His own appraisal of his work.



Turing's First Page of the Handwritten Manuscript

"No example of a normal number has ever been given."

Turing cites Champernowne's 0.123456789101112131415... as an example of a number that is normal to base ten.

"It may also be natural that an example of a normal number be demonstrated as such and written down. This note cannot, therefore, be considered as providing convenient examples of normal numbers" //

//"but rather, to counter [...] that the existence proof of normal numbers provides no example of them. The arguments in the note, in fact, follow the existence proof fairly closely."

He was aware of the algorithm's computational complexity.

Letter G.H.Hardy to Turing (AMT/D/5) Dear Turing,

Tim. Com. Came June 1 I have just once across you token (Mars 28). Which I seem to have ful aside for replacein and forgotten. I have a vague recollection that Dord says in one of his books that Cobegue had shown him a constration. Try leans son la thérie de la croisance (whing the appendus), or the furction both (bother when his desertion by a bright hope , has including one volume on aidtimetricle post , by himself) Also I seem to remember Vajue Hert, When Chemperame was Doing his shap. I had a hear, last and And rothing springanony anythere Now, of course, when I to write, I to you to . Dur of I have in his his I when , I may fret come . But my 'Tuling' is that (. made a proof shin here got provided your sinar

I have just came across your letter (March 28) which I seem to have put aside for reflection and forgotten.

I have a vague recollection that Borel says in one of his books that Lebesgue had shown him a construction. Try Leçons sur la théorie de la croissance (including the appendices), or the productivity book (written under his direction by a lot of people, but including one volume on arithmetical prosy, by himself).

satisfactory anywhere.

Now, of course, when I do write, I do so from London, where I have no books to refer to. But if I put it off till my return, I may forget again.

Sorry to be so unsatisfactory. But my 'feeling' is that Lebesgue made a proof

which never got published.

Yours sincerely,

Also I seem to remember vaguely that when Champernowne was doing his stuff I

had a hunt, but could not find nothing

G.H. Hardy

SUR CERTAINES DÉMONSTRATIONS D'EXISTENCE :

PAR M. H. LEBESGUE.

Dans une lettre, adressée à M. Borel, et qui accompagnait l'envoi de l'article précédent, M. Sierpinski se demandait si cet article devait être publié, s'il ne ferait pas double emploi avec une démonstration que j'avais indiquée à M. Borel et que celui-ci a signalée dans la deuxième édition de ses Leçons sur la théorie des fonctions (p. 198).

DÉMONSTRATION ÉLÉMENTAIRE DU THÉORÈME DE M. BOREL SUR LES NOMBRES ABSOLUMENT NORMAUX ET DÉTERMINATION EFFECTIVE D'UN TEL NOMBRE;

PAR M. W. SIERPINSKI.

On appelle, d'après M. Borel, simplement normal par rapport à la base q (1) tout nombre réel x dont la partie fractionnaire

independently, each gave a non-finitary based construction: Bulletin de la Société Mathématique de France 45, 1917, respectively in page s 127–132 and 132–144.

⁽¹⁾ E. Borel, Leçons sur la théorie des fonctions, p. 197, Paris, 1914.

Algorithms generating absolutely normal numbers

(Double) exponential time, Turing's algorithm, 1937

Exponential time, Weyl criterion and exponential sums Schmidt 1961/1962; Levin 1979

Nearly quadratic time algorithm
Becher, Heiber and Slaman 2013, Figueira and Nies 2013, Lutz and
Mayordomo 2013,
Nearly linear time algorithm
Lutz and Mayordomo, 2021

Polynomial time, with discrepancy smaller than that almost all numbers Aistleitner, Becher, Scheerer, Slaman 2017

Polynomial time, combining normality with continued fraction normality, a number and its reciprocal,normal numbers in Cantor sets,

Work to do

Give the polynomial counterparts of known exponential algorithms producing normal numbers: Liouville, prescribed irrationality exponent, Toeplitz numbers.

Turing, A. M. A Note on Normal Numbers. *Collected Works of Alan M. Turing, Pure Mathematics*, 1992, edited by J. L. Britton, 117-119. Notes of editor, 263–265. North Holland. Reprinted in *Alan Turing - his work and impact*, S B. Cooper and J. van Leeuwen editors, Elsevier, 2012.

Becher, V., Figueira, S. 2002. An example of a computable absolutely normal number. Theoretical

- Computer Science 270:947–958.

 Rechar V. Figueira S. Picchi P. 2007. Turing's unpublished algorithm for normal number
 - Becher, V., Figueira, S., Picchi, R. 2007. Turing's unpublished algorithm for normal numbers. Theoretical Computer Science 377:126–138.
 - Aistleitner, C, Becher, V., Scheerer, A.-M., Slaman, T. 2017. On the construction of absolutely normal numbers Acta Arith., 180 (4):333-346
- Becher, V., Heiber, P., Slaman, T., 2013. A polynomial-time algorithm for computing absolutely normal numbers, *Information and Computation*, 232:1-9
- Alvarez, N., and Becher, V. 2017. M. Levin's construction of absolutely normal numbers with very low discrepancy. Mathematics of Computation 86(308): 2927-2946.
- Borel, É. 1909. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27:247–271
- Champernowne, D. 1933. The Construction of Decimals in the Scale of Ten. *Journal of the London Mathematical Society* 8: 254-260, 1933.
- Hardy,G.H., Wright,E.M. 1938 fiirst edition. *An Introduction to the Theory of Numbers*. Oxford University Press.
- Lutz, J and Mayordomo E. 2021 Computing absolutely normal numbers in nearly linear time
- Information and Computation 104746, 2021
 Lebesgue, H. 1917. Sur certaines démonstrations d'existence. Bulletin de la Société Mathématique
- Sierpiński, W. 1917. Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d'un tel nombre. Bulletin de la Société Mathématique de France 45:127–132.
- Turing, A.M. 1936. On computable numbers, with an application to the Entscheidungsproblem.
 - Proceedings of the London Mathematical Society Series 2, 42:230–265.

de France 45:132-144