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We obtain a characterization of the property of Borel normality on real numbers, by
transferring to the world of functions computable by finite automata the classical theorem of
numerical analysis establishing that every non-decreasing real valued function is almost every-
where differentiable. We consider functions mapping infinite sequences to infinite sequences
and a notion of differentiability that, on the class of non-decreasing real valued functions,
coincides with standard differentiability.

Theorem. The following are equivalent, for a real xin[0, 1]:

(1) x is normal to base b.

(2) Every non-decreasing function computable by a finite automaton mapping infinite se-
quences to infinite sequences is differentiable at the expansion of x in base b.

(3) Every non-decreasing function computable by a finite automaton in base b mapping real
numbers to real numbers is differentiable at x.

The proof of the Theorem relies in the characterization of normal sequences as those
incompressible by lossless finite-state compressors. This result that follows from [7, 5, 6], a
direct and elementary proof can be read in [1]. An adaptation is needed to deal with the
non-decreasing condition.

The statement of the above theorem was motivated by the pleasing recent result of Brattka,
Miller and Nies [2] that shows the counterpart result in the world of functions computable
by Turing machines: a real number r in the unit interval is computably random if and only
if every nondecreasing computable function from the unit interval to the real numbers is
differentiable at r. However, the techniques in their proof are completeley different from the
technique we use in the context of finite automata. We just give here the definitions needed
to give a precise meaning to the Theorem.

For a real number r we consider the unique expansion in base b of the form r = bxc +∑∞
n=1 anb

−n where the integers 0 ≤ an < b, and an < b − 1 infinitely many times. This last
condition over an ensures a unique representation of every rational number. Let us recall that
Borel’s original definition of normality in [3] is equivalent to the following simpler one [4].

Definition. A real number r is simply normal to a given base b if each digit in {0, 1, .., (b−1)}
occurs with the same limiting frequency 1/b in the expansion of r in base b. A number is
normal to base b if it is simply normal to the each base bi, for very positive integer i.
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For a finite set of symbols A we write A∗ and Aω to denote, respectively, the set of finite
and infinite sequences of symbols in A, We consider finite automata endowed with an output
function (often called finite transducers).

Definition. (1) A finite automaton is a 4-uple C = 〈Q, q0, δ, o〉, where Q is a finite set of
states, q0 ∈ Q is the initial state, δ : Q×A → Q is the transition function and o : Q×A → A∗
is the output function. A finite automaton processes the input symbols according to the
current state q. When a symbol a ∈ A is read, the automaton moves to state δ(q, a) and
outputs o(q, a). The extension of δ and o to process strings are δ∗ : Q × A∗ → Q and
o∗ : Q × A∗ → A∗ such that, for a ∈ A, s ∈ A∗ and λ the empty string, δ∗(q, λ) = q,
δ∗(q, as) = δ∗(δ(q, a), s), and o∗(q, λ) = λ, o∗(q, as) = o(q, a)o∗(δ(q, a), s). The extension of o
to infinite sequences o∗ : Q×Aω → Aω is o∗(q, x) = limk→∞ o(q, x[1..k]).

(2) The function fC : Aω → Aω computed by C = 〈Q, q0, δ, o〉 is fC(x) = o∗(q0, x).
(3) A function f : Aω → Aω is computable by a finite automaton when f = fC for

some finite automaton C. A function f : Aω → R is computable by a finite automaton
when f = conv(fC) for some finite automaton C, where conv : Aω → R is the usual map
conv(x) =

∑
i≥1 t

−ix[i], with t the cardinality of A.

The following example shows that the obvious definition of differentiability is not appro-
priate for our purposes.

Example. Let I = 〈q, q, π1, π2〉 where π1 and π2 are respectively the projections func-
tions of the first and second argument. So, the function fI : {0, 1}ω → R is the iden-
tify function mapped to the unit interval. The obvious definition of differentiability would
yield limk→∞ 2−k(conv(π∗2(q, x[1..k − 1]1)) − conv(π∗2(q, x[1..k − 1]0))) = 1. Now, let C =
〈{q, r0, r1}, q, δ, o〉 such that for a, b ∈ 2, δ(q, b) = rb, δ(rb, a) = q, o(q, b) = λ, o(rb, a) = ba.
It is easy to check that fC : {0, 1}ω → R is also the identify function mapped to the unit
interval. However, limk→∞ 2−k(conv(o∗(q, x[1..k − 1]0)) − conv(o∗(q, x[1..k − 1]0))) does not
exist for any x.

Definition. The differential of a non-decreasing function f : Aω → R at x is
Df(x) = lim

k→∞
µ(f(Tx[1..k]))/µ(Tx[1..k]),

where t is the cardinality of A, Ts = {sx : x ∈ Aω} is the cone defined by the string s, and
f(Ts) = {f(sx) : x ∈ Aω}. We say that f is differentiable at x if Df(x) exists.

Proposition. Let f : Aω → R be non-decreasing. Then, for every x is

Df (x) = lim
k→∞

t−k(f(x[1..k]1ω)− f(x[1..k]0ω)).
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