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Normal numbers

Normality is a basic form of randomness for real numbers. It asks that the
expansions of real numbers obey the Law of Large Numbers.

Definition

A base is an integer b greater than or equal to 2. For a real number x, the
expansion of x in base b is a sequence (ak)k≥1 of integers ak from
{0, 1, . . . , b− 1} such that

x = bxc+
∑
k≥1

ak
bk

= bxc+ 0.a1a2a3 . . .

where infinitely many of the ak are not equal to b− 1.
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Normal numbers

Definition (Borel, 1909)

A real number x is simply normal to base b if in the expansion of x in base b,
each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if x is simply normal to every base bk, for
every positive integer k.
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Normal numbers

Theorem (Borel 1922, Niven and Zuckerman 1951)

A real number x is normal to base b if, for every k ≥ 1, every block of k digits
occurs in the expansion of x in base b with limiting frequency 1/bk.
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Normality as uniform distribution modulo one

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 equidistributes modulo one
for Lebesgue measure.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

Rational numbers are normal to no base.
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Normal to a given base

Theorem (Champernowne, 1933)

0.12345678910111213141516171819202122232425 . . . is normal to base 10.

It is unknown if it is normal to bases that are not powers of 10.

base 2 base 6 base 10
Plots of the first 250000 digits of Champernowne’s number.
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Normal to all bases

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example.

Problem (Borel, 1909)

Are the usual mathematical constants, such as π, e, or
√

2, absolutely normal?
Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Constructions can not be just concatenation

Concatenation works if we consider just one base.
For two bases, concatenation in general fails.

For example,

base 10 base 3

x = (0.25)10 = (0.020202020202 . . .)3...
y = (0.0017)10 = (0.0000010201101100102 . . .)3
x+ y = (0.2517)10 = (0.0202101110122 . . .)3
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Normal to all bases
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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Normal to all bases

First ones by Lebesgue and independently Sierpiński in 1917 (not computable).
Several constructions 1917–2013, including Turing 1937, Schmidt 1961/2.

Recall that a real number is computable if there is an algorithm that computes
its expansion in some base (given n the algorithm computes the n-th digit).
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Normal to all bases
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Normal to all bases

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with just
above quadratic time-complexity.
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Normal to all bases

Output of algorithm Becher, Heiber and Slaman, 2013 programmed by Martin Epszteyn.

0.4031290542003809132371428380827059102765116777624189775110896366...

base 2 base 6 base10
Plots of the first 250000 digits of the output of our algorithm.

Also in 2013 polynomial-time algorithms by Lutz and Mayordomo and by Figueira and Nies.
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Normality to different bases

Definition

Two positive integers are multiplicatively dependent if one is a rational power
of the other. Then, 2 and 8 are dependent, but 2 and 6 are independent.

The positive integers that are not perfect powers, 2, 3, 5, 6, 7, 10, 11, . . ., are
pairwise multiplicatively independent.

Theorem (Maxfield 1953)

Let b1 and b2 multiplicatively dependent. For any real number x, x is normal
to base b1 if and only if x is normal to base b2.
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Normality to different bases

Theorem (Cassels, 1959)

Almost every real number in the middle third Cantor set is normal to every
base which is not a power of 3.

Theorem (Schmidt 1961/1962)

For any given set S of bases closed under multiplicative dependence, there are
real numbers normal to every base in S and not normal to any base in its
complement. Furthermore, there is a real x computable from S.

Becher and Slaman 2014 refuted simple normality answering to Brown, Moran and Pearce.
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An example with a closed formula

Bailey and Borwein (2012) proved that the Stoneham number α2,3,

α2,3 =
∑
k≥1

1

3k 23k

is normal to base 2 but not simply normal to base 6.

base 2 base 6 base 10
Plots of the first 250000 digits of Stoneham number α2,3.
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Arithmetical independence

Theorem (informal statement) (Becher and Slaman 2014)

The set of bases to which a real number can be normal is not tied to any
arithmetical properties other than multiplicative dependence.
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Arithmetical independence

Formally, this is a problem in descriptive set theory. Achim Ditzen conjectured
it in 1994 (after a question of A. Kechris). We confirmed it.

Theorem (Becher and Slaman 2014)

The set of real numbers that are normal to some base is complete at the fourth
level of the Borel Hierachy on subsets of real numbers.

The proof shows that the discrepancy functions (speed of convergence to
normality) on multiplicatively independent bases are pairwise independent.
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An old silent question

Made explicit by Yann Bugeaud in 2013

What are the necessary and sufficient conditions on a set of bases

so that there is a real number which is simply normal exactly

to the bases in such a set?
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Simple normality to different bases

Simple normality to base 8 implies simple normality to base 2, because 8 = 23.

Thus,

Simple normality to bk implies simple normality to b`, for each ` that divides k.

Simple normality to infinitely many powers of b implies normality to b (Long 1957)
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Necessary and sufficient conditions for simple normality

Theorem (Becher, Bugeaud and Slaman 2013)

Let f be any function from the set of integers that are not perfect powers to
sets of integers such that for each b,

I if for some k, bk is in f(b) then, for every ` that divides k, b` is in f(b);

I if f(b) is infinite then f(b) = {bk : k ≥ 1}.
Then, there is a real x simply normal to exactly the bases specified by f .
Moreover, the set of real numbers that satisfy this condition has full Hausdorff
dimension.

Also, the real x is computable from the function f .
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New normal numbers

Belief

If we consider appropriate measures, most elements of well structured sets are
absolutely normal, unless the sets have evident obstacles.
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Normality and Weyl’s criterion

A number x is normal to base b if (bkx)k≥0 is uniformly distributed modulo one.

A sequence of real numbers is uniformly distributed if and only if
for every Riemann-integrable (complex-valued) function f ,∫ 1

0

f(x)dx is the limit of the average values of f on the sequence.

By Weyl’s criterion, a real number x is normal to base b if and only if

lim
n→∞

1

n

n−1∑
k=0

e2πitb
kx = 0.
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Appropriate measures for normality

Lemma (direct application of Davenport, Erdős, LeVeque’s Theorem 1963)

Let µ be a measure, I an interval and b a base. If for every non-zero integer t,

∑
n≥1

1

n

∫
I

∣∣∣∣∣ 1n
n−1∑
k=0

e2πitb
kx

∣∣∣∣∣
2

dµ(x) <∞

then for µ-almost all x in interval I are normal to base b.
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Normal numbers and Diophantine approximations

Definition (Liouville 1855)

The irrationality exponent of a real number x, is the supremum of the set of

real numbers z for which the inequality 0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz
is satisfied by an

infinite number of integer pairs (p, q) with positive q.

I Liouville numbers are the numbers with infinite irrationality exponent.
Example, Liouville’s constant

∑
n≥1 10−n!.

I Almost all real numbers have irrationality exponent equal to 2.

I Every real greater than 2 is the irrationality exponent of some real.

I Irrational algebraic numbers have irrationality exponent equal to 2

(Thue - Siegel - Roth theorem 1955).

I Rational numbers have irrationality exponent equal to 1.
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Fractals, measures and approximations

I Jarńık (1929) and Besicovich (1934) defined a fractal for real numbers
with irrationality exponent equal to a given a greater than or equal to 2.

I Kaufman (1981) defined for each real number a greater than 2, a measure
on Jarńık ’s fractal whose Fourier transform decays quickly.

I Bluhm (2000) defined a measure supported by the Liouville numbers,
whose Fourier transform decays quickly.

I We adapted the measures, tailored for effective approximations.
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Normal Liouville numbers

Theorem (Bugeaud 2002)

There is an absolutely normal Liouville number.

Theorem (Becher, Heiber and Slaman 2014)

There is a computable absolutely normal Liouville number.
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Simple normality and irrationality exponents

Theorem (Becher, Bugeaud and Slaman, in progress 2014)

Let S be a set of bases satisfying the conditions for simple normality.

I There is a Liouville number x simply normal to exactly the bases in S.

I For every a greater than or equal to 2 there is a real x with irrationality
exponent equal to a and simply normal to exactly the bases in S.

Furthermore, x is computable from S and, for non- Liouville, also from a.
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Normality and finite automata

Fix an alphabet A. Consider finite automata that input and output infinite
sequences of symbols from A.

Definition

A sequence a1a2a3 . . . is compressible by an input-output finite automata if

lim inf
k→∞

#output symbols after reading a1 . . . ak
k

< 1
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Normality and finite automata

Theorem (Schnorr and Stimm 1971 + Dai, Lathrop, Lutz and Mayordomo 2004)

A real is normal to base b if, and only if, its expansion in base b is
incompressible by injective input-output finite automata.

A direct proof of the above theorem Becher and Heiber, 2012.
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Normality and finite automata

Theorem (Becher, Carton, Heiber 2013)

Non-deterministic bounded-to-one input-output finite automata, even if
augmented with a fixed number of counters, can not compress expansions of
normal numbers.

Theorem (Boasson 2012)

Non-deterministic pushdown input-output finite automata can compress
expansions of normal numbers.

Problem

Can deterministic pushdown input-output finite automata compress expansions
of normal numbers?
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Normality preservation and finite automata

Let a1a2a3 · · · be an infinite sequence. Consider the infinite sequence obtained
by selection of some elements

a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

Theorem (Agafonov 1968)

Prefix selection by a regular set of finite sequences preserves normality.

Theorem (Becher, Carton and Heiber 2013)

Suffix selection by a regular set of infinite sequences preserves normality.

Verónica Becher On normal numbers 32 / 33



Normality preservation and finite automata

Let a1a2a3 · · · be an infinite sequence. Consider the infinite sequence obtained
by selection of some elements

a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

Theorem (Agafonov 1968)

Prefix selection by a regular set of finite sequences preserves normality.

Theorem (Becher, Carton and Heiber 2013)

Suffix selection by a regular set of infinite sequences preserves normality.

Verónica Becher On normal numbers 32 / 33



Normality preservation and finite automata

Theorem (Becher, Carton and Heiber 2013)

Two sided selectors do not preserve normality.

Theorem (Merkle and Reimann 2006)

Neither deterministic one-counter sets nor linear sets preserve normality
(these are the sets recognized by pushdown finite automata with a unary stack
and by one-turn pushdown finite automata, respectively)

Problem

What is the least powerful selection that does not preserve normality?
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Normality and finite automata

Definition

A transducer is a tuple T = 〈Q,A,B, δ, q0〉, where

I Q is a finite set of states,

I A and B are the input and output alphabets, respectively,

I δ : Q×A→ B∗ ×Q is the transition function,

I q0 ∈ Q is the starting state.

If δ(p, a) = 〈v, q〉 we write p a|v−−→ q.
An infinite run is p0

a1|v1−−−→ p1
a2|v2−−−→ p2

a3|v3−−−→ p3 · · · is accepting if p0 = q0.

This is the Büchi acceptance condition where all states are accepting.
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Normality and finite automata

Definition

A sequence x = a1a2a3 · · · is compressible by a transducer if and only if its
accepting run q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · satisfies

lim inf
n→∞

|v1v2 · · · vn| log |B|
n log |A| < 1.
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Normality and finite automata

Let L ⊆ A∗. The infinite word obtained by prefix-selection by L is
ap(1)ap(2) · · · , where p(j) is the j-th in sorted {i : a1a2 · · · ai−1 ∈ L}.
Let X ⊆ Aω. The infinite word obtained by suffix-selection by X is
as(1)as(2) · · · , where s(j) is the j-th in sorted {i : ai+1ai+2 · · · ∈ X}.
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Borel hierarchy for subsets of the real numbers

Recall Borel hierarchy for subsets of the real numbers is the stratification of the
σ-algebra generated by the open sets with the usual interval topology.

I A set is Σ0
1 iff it is open.

I A set is Π0
1 iff it is closed.

I A set is Σ0
n+1 iff it is countable union of Π0

n sets.

I A set is Π0
n+1 iff it is a countable intersection of Σ0

n sets.

A set is is hard for a Borel class if every set in the class is reducible to it by a
continuous map.

A set is complete for a class if it is hard for this class and belongs to the class.
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Effective Borel hierarchy

Arithmetic hierarchy of formulas in the language of second-order arithmetic:

I formulas involve only quantification over integers.

I atomic formulas assert algebraic identities between integers or
membership of real numbers in intervals with rational endpoints.

I a formula is Π0
0 and Σ0

0 if all its quantifiers are bounded.

I a formula is Σ0
n+1 if it has the form ∃x θ where θ is Π0

n.

I a formula is Π0
n+1 if it has the form ∀x θ where θ is Σ0

n.

A set of real numbers is Σ0
n (respectively Π0

n) in the effective Borel hierarchy if
membership in that set is definable by a formula Σ0

n (respectively Π0
n).

Effective reductions are computable maps.
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Normality in the effective Borel hierarchy

A real number x is normal to base b if, and only if,

I for every k ≥ 1, x is simply normal to base bk,

I for every k ≥ 1, and for every block d of k digits,

lim
n→∞

#occ(a1a2....an, d)

n
=

1

bk

where a1a2a3 . . . is the expansion of x in base b. Thus,

∀k ∀d ∀ε ∃n ∀m ≥ n θ(a1a2..am, b)

where θ(a1a2..am, b) is computable in x.

This is ∀∃∀ formula with one free real x and one free integer b,
quantification only on the integers.
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Normality in the effective Borel Hierarchy

In the effective Borel hierarchy for susbets of real numbers,

I Normal to a fixed base b is Π0
3.

I Normal to all bases is also Π0
3.

I Normal to some base is Σ0
4.
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Normal to all bases is complete at the third level

Asked first by Kechris 1994.

Theorem (Ki and Linton 1994)

The set of real numbers that are normal to any fixed base is Π0
3-complete.

Theorem (Becher, Heiber, Slaman 2014)

The set of real numbers that are absolutely normal is Π0
3-complete.

Verónica Becher On normal numbers 33 / 33



Effective case implies the general case

I Every Σ0
n set is Σ0

n and every Π0
n set is Π0

n.

I For every Σ0
n set A there is a Σ0

n formula and a real parameter such that
membership in A is defined by that Σ0

n formula relative to that real
parameter.

Since computable maps are continuous, proofs of hardness in the effective
hierarchy yield proofs of hardness in general by relativization.
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