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Theorem (Becher, Heiber, Slaman, 2014)

There is a computable absolutely normal Liouville number.
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Normal numbers

A base is an integer b greater than or equal to 2.

Definition (Borel, 1909)

A real x is simply normal to base b if in the expansion of x in base b, each digit
occurs with limiting frequency equal to 1/b.

A real x is normal to base b if x is simply normal to every base bj , for every
positive integer j .

A real x is absolutely normal if x is normal to every base.

Equivalently, x is normal to base b if every block of digits occurs in the expansion of x in base b

with limiting frequency equal to 1/bj , where j is the block length.
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Existence of absolutely normal numbers

In 1909 Borel proved that the set of absolutely normal numbers has Lebesgue
measure one. He asked for one example.

Constructions of absolutely normal numbers (1917-2013) accounted for no
other mathematical (geometric, algebraic, number theoretic) properties.
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Uniform distribution modulo one

Let {x} be the fractional part of a real x .

A sequence of reals (xj )j≥1 is uniformly distributed modulo one (u.d. mod 1),
if for every subinterval I of the unit interval,

lim
n→∞

#{j : 1 ≤ j ≤ n and {xj} ∈ I}
n

= |I |.
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Discrepancy

Discrepancy of finite sequence with respect to a fixed I is

D(I , ({xj} : 1 ≤ j ≤ n)) =
∣∣∣#{j : 1 ≤ j ≤ n and {xj} ∈ I}

n
− |I |

∣∣∣.
Discrepancy with respect to every subinterval in the unit interval:

D({xj} : 1 ≤ j ≤ n) = sup
I⊆[0,1]

D(I , (xj : 1 ≤ j ≤ n)).

Thus, (xj )j≥1 is u.d. mod 1 if lim
n→∞

D({xj} : 1 ≤ j ≤ n) = 0.

Observation
Discrepancy with respect to subintervals is continuous in the first argument.
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Normality as uniform distribution modulo one

Theorem (Wall 1949)

A real x is normal to base b if, and only if, (bj x)j≥0 is u.d. mod 1.

Thus, a real x is normal to base b exactly when lim
n→∞

D({bj x} : 0 ≤ j < n) = 0.

Observation
Let b be a base, let I be an interval. For all sufficiently large n, if x and y are
real numbers such that |x − y | < b−n.

D(I , {bj x} : 0 ≤ j < n) ≈ D(I , {bj y} : 0 ≤ j < n).

Thus, discrepancy of normality is continuous in the second argument.
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Construction of a computable absolutely normal number

Consider a computable (I )n≥1 of intervals In = [xn, xn + 2−an ) where an is a
positive integer and xn is dyadic rational with precision an, such that

I I1 = [0, 1) and for all n ≥ 1, In+1 ⊂ In,

I lim
n→∞

|In| = 0,

I for every base b, lim
n→∞

D({bj xn} : 0 ≤ j < 〈an; b〉) = 0, where 〈a; b〉
denotes da/ log2 be.

Thus, the dyadic rational xn+1 is obtained at step n + 1 by concatenating the
expansion of xn with a new block of digits.

For every base b ≤ n + 1, D({bj xn+1} : 〈an; b〉 ≤ j < 〈an+1; b〉) is small.

Then the real x =
⋂
i≥1

Ii = lim
n→∞

xn is well defined and, by continuity of

discrepancy, x is absolutely normal.
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Weyl’s criterion

A sequence is u.d. in the unit interval if for any Riemann integrable f ,∫ 1

0
f (x)dx is the limit of the average values of f in the points of the sequence.

Theorem (Weyl’s Criterion)

A sequence of reals (xj )j≥1 is u.d. mod 1 if and only if for every
complex-valued 1-periodic continuous function f ,

lim
n→∞

1

n

n∑
j=1

f (xj ) =

∫ 1

0

f (x)dx .

That is, if and only if, for every non-zero integer t,

lim
n→∞

1

n

n∑
j=1

e2π i t xj = 0.
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Normal numbers and Weyl’s criterion

Thus, a real x is normal to base b if and only if for every non-zero integer t,

lim
n→∞

1

n

n−1∑
j=0

e2π i t bj x = 0.

Lemma (application of Davenport, Erdős and LeVeque’s Theorem)

Let µ be a measure whose Fourier transform decays quickly. Let I be an
interval and b a base. If for every non-zero integer t,

∑
n≥1

1

n

∫
I

∣∣∣∣∣1n
n−1∑
j=0

e2πitbj x

∣∣∣∣∣
2

dµ(x) <∞

then for µ-almost all x in I ,

lim
n→∞

1

n

n−1∑
j=0

e2π i t bj x = 0.

Verónica Becher A computable absolutely normal Liouville number 10 / 20



Low discrepancy as finitely many bounded harmonic sums

Lemma (Becher, Slaman 2013)

For any positive real ε there is a finite set of positive integers T and a positive
real δ such that for any real x, any base b and for any n,

if for all t ∈ T ,
∣∣∣1
n

n−1∑
j=0

e2πitbj x
∣∣∣2 < δ then D({bj x} : 0 ≤ j < n) < ε.

Furthermore, such T and δ can be computed from ε.
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Back to the main result

Theorem (Becher, Heiber, Slaman, 2014)

There is a computable absolutely normal Liouville number.
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Liouville numbers

The set of Liouville numbers is{
x ∈ R \Q : ∀k ∈ N ∃p, q ∈ N

∣∣∣∣x − p

q

∣∣∣∣ < 1

qk

}
It is uncountable, with Lebesgue measure zero and Hausdorff dimension zero.
An example is Liouville’s constant,

∑
k≥1 10−k!.

In 2002 Bugeaud established the existence of absolutely normal Liouville numbers.
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Kaufman-Bluhm’s measure for Liouville numbers

Kaufman (1981) showed that the set of Liouville numbers supports a positive
measure whose Fourier transform vanishes at infinity. Bluhm (1998,2000) gave
a simpler account.

Their measure is the limit of sequence of measures µk , for k ∈ N.

Each µk is supported by the set of numbers that satisfy an instance of the
Liouville condition for exponent k.
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Kaufman-Bluhm’s measure for Liouville numbers

For every pair of integers m and k such that k ≥ 1, let

E(m, k) =
⋃

m ≤ q < 2m
prime q

{
x ∈ [0, 1] : ∃p 0 ≤ p ≤ q,

∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

qk

}

The Fourier transform of a real function f is f̂ (x) =

∫
R

f (t)e−2πixt dt.

Lemma (Bluhm 1998)

There is a family of C 2 functions gm,k , parametrized by m and k, such that

1. support(gm,k ) ⊆ E(m, k),

2. ĝm,k (0) = 1,

3. for every function Ψ in C 2 of compact support, for every k > 0 and δ > 0
there is M such that for every m ≥ M and for every x ∈ R,

| ̂(Ψgm,k )(x)−Ψ̂(x)| ≤ δ (1+|x |)−1/(2+k) log(e+|x |) log log(e+|x |).
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Our Bluhm-style measures

We define Bluhm-style measures νI ,m,k .

For I a subinterval of [0, 1] we define a function FI , a smooth version of the
characteristic function of I .

I gm,k is the sum of similarly smoothened intervals in E(m, k).

I νI ,m,k =

∫
FI gm,k .

Observe that support(νI ,m,k ) ⊆ support(gm,k ) ∩ I ⊆ E(m, k).
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How deep into the fractal

Recall 〈a; b〉 denotes da/ log2 be.

Lemma
Let I be a dyadic interval with length 2−a and let k be a positive integer.
Let b be a base and let t be a positive integer. Then, there is an integer M
such that for every m ≥ M and every positive integer `,

∫ ∣∣∣∣∣∣1`
〈a;b〉+`∑

j=〈a;b〉+1

e2πitbj x

∣∣∣∣∣∣
2

dνI ,m,k (x) <
100

`
.

Moreover, M is uniformly computable from I , k, b and t.

The proof uses Bluhm’s Lemma of quick decay.
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At least half of the measure goes to low discrepancy

Adapting Davenport, Erdős and LeVeque’s Theorem for νI ,m,k :

Lemma
Let B be a set of bases, I be a dyadic interval of length 2a and k a positive
integer. Let ε be a positive real number. Then, there are positive integers
M and L such that for every ≥ M,

νI ,m,k

(
{y ∈ I : ∀b ∈ B, ∀` ≥ L,D({bj y} : 〈a; b〉 ≤ j < 〈a + `; b〉) < ε}

)
≥ 1

2
.

Furthermore, L is uniformly computable from k, B and ε, and does not depend
on I ; M is uniformly computable from I , k, B and ε.
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A computable absolutely normal Liouville number

Consider a computable (I )n≥1 of dyadic intervals In = [xn, xn + 2−an ) such that

I I1 = [0, 1) and for all n ≥ 1, In+1 ⊂ In,

I lim
n→∞

|In| = 0,

I In meets the Liouville condition for exponent n.

I for every base b, lim
n→∞

D({bj xn} : 0 ≤ j < 〈an; b〉) = 0.

Thus, the dyadic rational xn+1 is obtained at step n + 1 by concatenating the
expansion of xn with a new block of digits.

For every base b ≤ n + 1, D({bj xn+1} : 〈an; b〉 ≤ j < 〈an+1; b〉) is small.

Then the real x =
⋂
i≥1

Ii = lim
n→∞

xn is well defined, it is a Liouville number, and,

by continuity of discrepancy, x is absolutely normal.

The End
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