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Borel normal numbers

Let b be an integer greater than or equal to 2.

A real number is normal to base b if in its base-b expansion every block
of digits occurs with the same limiting frequency as every other block of
the same length.

Equivalently, a real number x is normal to base b if the fractional parts of
x, bx, b2x, . . . are uniformly distributed in the unit interval, Wall 1949.

Instead of expansions of numbers we talk about sequences of
digits/symbols that are normal to a b-alphabet.
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Modifying normal numbers

I Selection of subsequences
Wall 1949, Agafonov 1968, Kamae and Weiss 1975

I Sums with rational number
Volkonoff 1979, Aistleitner 2017

I Transformations by finite state tranducers
Carton and Orduna 2020

I Insertion in positions in a set of density zero
Becher and Figueira 2002, Aistleitner 2017

I Removal of one digit yields normality to shrinked alphabet
Vandehey 2017
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The question

Given a normal sequence, how can we insert symbols so that the
expanded sequence is normal to the enlarged alphabet?
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Example of insertion

Theorem (Champernowne 1933)

The concatenation of all blocks in length-lexicographic order is normal

0 1 00 01 10 11 000 001 010 011 100 101 110 111 0000 0001 ...

If we enlarge the alphabet with one greater symbol,

0 1N00 01N10 11 000 001N010 011N100 101N110 111 0000 0001 ...

0 1 2 00 01 02 10 11 12 20 21 22 000 001 002 010 011 012 020 021 022 100 101 102 110
111 112 120 121 122 200 201 202 210 211 212 220 221 222 0000 0001...
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Observation

Consider the concatenation in lexicographic order of all blocks of length n.
Viewed circularly, each block of length n occurs exactly n times at positions
with different modulo n.

positions
n=2 12 34 56 78

00 01 10 11
00 01 10 11 00 occurs twice, at positions different modulo 2

00 01 10 11
00 01 10 11 01 occurs twice, at positions different modulo 2
00 01 10 11
00 01 10 11 10 occurs twice, at positions different modulo 2
00 01 10 11
00 01 10 11 11 occurs twice, at positions different modulo 2
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Observation

Consider the concatenation in lexicographic order of all blocks of length n.
Viewed circularly, each block of length n occurs exactly n times at positions
with different modulo n.

n = 3 000 001 010 011 100 101 110 111 000 occurs three times,
000 001 010 011 100 101 110 111 at positions different modulo 3
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111 001 occurs three times
000 001 010 011 100 101 110 111 at positions different modulo 3
000 001 010 011 100 101 110 111
. . .

...

Neither Barbier (1887) nor Champernowne (1933) noticed this.
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Observation

Not every permutation of the blocks of length n has the property,

00 10 11 01
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Perfect necklaces

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)

A necklace over a b-alphabet is (n, k)-perfect if each block of length n
occurs k many times at positions different modulo k, for any convention
of the starting point.

The (n, k)-perfect necklaces have length kbn.

De Bruijn sequences are exactly the (n, 1)-perfect necklaces.
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Arithmetic progressions yield perfect necklaces

Identify the blocks of length n over the b-alphabet with the set of
non-negative integers modulo bn according to representation in base b.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

Let r coprime with b. The concatenation of blocks corresponding to the
arithmetic sequence 0, r, 2r, ..., (bn − 1)r yields an (n, n)-perfect necklace.

With r = 1 we have the lexicographically ordered (n, n)-perfect necklace.
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Arithmetic progressions yield perfect necklaces

Lemma
Let σ : {0, ..b− 1}n → {0, ..b− 1}n be such that for any block v of length n,
{σj(v) : j = 0, ..., bn − 1} is the set of all blocks of length n.
The necklace [σ0(v)σ1(v) . . . σb

n−1(v)] is (n, n)-perfect if and only if
for every ` = 0, 1, . . . n− 1 for every block x of length ` and
for every block y of length n− `, there is a unique block w of length n
such that w(n− ` . . . n− 1) = x and (σ(w))(0 . . . n− `− 1) = y.

For every block of length n splitted in two parts, there is exactly one matching
(a tail of a block and the head of next block).
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Astute graphs
Fix a b-alphabet. The astute graph G(b, n, k) is directed, with kbn vertices.

Vertices: pairs (w,m), w is length n block, m is integer between 0 and k − 1.

Edges: (w,m)→ (w′,m′) if w(2..n) = w′(1..n− 1) and (m+ 1) mod k = m′.

This is G(2, 2, 2)
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Astute graphs

Observation

G(b, n, k) is Eulerian because it is strongly regular and strongly connected

Observation

G(b, n, 1) is the de Bruijn graph of blocks of length n over b-alphabet.
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Eulerian cycles in astute graphs

Each Eulerian cycle in G(b, n− 1, k) gives one (n, k)-perfect necklace.

Each (n, k)-perfect necklace can be from various Eulerian cycles in G(b, n− 1, k).

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)

The number of (n, k)-perfect necklaces over a b-alphabet is

1

k

∑
db,k|j|k

e(j)ϕ(k/j)

where

db,k =
∏
pαi
i , such that {pi} is the set of primes that divide both b and k,

and αi is the exponent of pi in the factorization of k,

e(j) = (b!)jb
n−1

b−n is the number of Eulerian cycles in G(b, n− 1, j)

ϕ is Euler’s totient function
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Normal sequences and perfect necklaces

Theorem (proved first by Ugalde 2000 for de Bruijn)

The concatenation of (n, k)-perfect necklaces over a b-alphabet, for
(n, k) linearly increasing, is normal to the b-alphabet.

The proof is a direct application of Piatetski-Shapiro (1951) theorem.
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First result on insertion

Start with the concatenation of (n, k)-perfect necklaces over b-alphabet.
Insert in each (n, k)-perfect necklace over b-alphabet to obtain
(n, k)-perfect necklaces over (b+ 1)-alphabet.
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Insertion in perfect necklaces

Theorem (Becher and Cortés 2020)

For every (n, k)-perfect necklace v over a b-alphabet there is an
(n, k)-perfect necklace w over (b+ 1)-alphabet such that v is a
subsequence of w.

Moreover, for each such v there is w satisfying that for any n+ 2b− 1
consecutive symbols there is at least one occurrence of the new symbol.
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The small gap condition

Every consecutive n+ 2b− 1 positions should have the new symbol.

For b = 2 and n = 2 every 5 positions should have the new symbol.

Insertion without the small gap condition

v = 00 01N10 11N

w = 00 01 0︸ ︷︷ ︸
5 positions

2 10 11 1︸ ︷︷ ︸
5 positions

2 20 21 22

Insertion with the small gap condition

v = 00N01N10 1N1

w = 00︸︷︷︸
4 pos

2 0 01︸︷︷︸
3 pos

22 21 10 1︸ ︷︷ ︸
4 pos

2 0
∼

2 11︸︷︷︸
4 pos
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Proof of theorem on insertion in perfect necklaces

Given (n+ 1, k)-perfect necklace over b-alphabet,
pick an Eulerian cycle in G(b, n, k).

I G(b, n, k) is a subgraph of G(b+ 1, n, k)

I The augmenting graph G(b+ 1, n, k) \G(b, n, k) is Eulerian

I Every Eulerian cycle is the union of disjoint cycles.

I Without the small gap condition:
Use Euler-Hierholzer’s algorithm for joining cycles

With the small gap condition:
Partition the augmenting graph in kbn disjoint cycles, solve a
matching problem and join cycles.

The resulting Eulerian cycle in G(b+ 1, n, k) is an (n+ 1, k)-perfect
necklace on (b+ 1)-alphabet with the wanted properties.
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Augmenting graph

The augmenting graph A(b+ 1, n, k) has exactly all the vertices of
G(b+ 1, n, k) and all the edges of G(b+ 1, n, k) \G(b, n, k).

Picture for k = 1, de Bruijn case.
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Petals

Partition the augmenting graph in kbn disjoint cycles, called petals,
such that in each of them there is one vertex in G(b, n, k).
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The small gap condition

Consider an (n+ 1, k)-perfect necklace and a starting position.

Pick corresponding Eulerian cycle in G(b, n, k), with edges e1, . . . ekbn+1 .
Divide it in kbn consecutive sections, each consisting of b edges.
Identify each section with the b target vertices in it.
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A matching problem

The astute graph G(b, n, k) has kbn vertices.
An Eulerian cycle in G(b, n, k) has kbn sections with b vertices each.

We need to choose one vertex in each section, and they are all different.
We pose it as a matching problem.

By Hall’s marriage theorem there is a perfect matching.
Find it computing the maximum flow in a network,Edmonds-Karp algorithm �
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Second result on insertion

Theorem (Zylber 2017)

For every sequence x normal to a b-alphabet there exists a sequence y
normal to (b+ 1)-alphabet such that retract(y) = x, where retract( .)
removes the occurrences of the symbol ′b′.
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Proof idea

Given a sequence over b-alphabet, insert ′b′ in the positions prescribed by
the concatenation of lexicographically ordered (n, n)-perfect necklaces
over (b+ 1)-alphabet, n non-decreasing

perfect 00 01 02 10 11 12 20 21 22
wildcards ?? ?? ?2 ?? ?? ?2 2? 2? 22

arbitrary a1a2 a3a4 a5a6 a7a8 a9a10 a11a12
insertion a1a2 a3a4 a52 a6a7 a8a9 a10 2 2a11 2a12 22

We need to control the number of blocks before insertion and after insertion
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Discrete discrepancy on aligned occurrences

We count aligned occurrences of blocks (occurrences at positions that
are multiple of the block length, hence non-overlapping).

∆b,`(u) = max
block v of lenght `

∣∣∣∣number of aligned occurrence of v in u

b|u|/`c
− 1

b`

∣∣∣∣ .
As proved by Pillai (1940), a sequence a1a2 . . . is normal to b-alphabet if
for every length `

lim
n→∞

∆b,`(a1 . . . a`n) = 0
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Insertion and discrete discrepancy

Lemma (crucial)

For every n, there is cn such that for every finite u over b-alphabet

if ∆b,`n(u) < ε

then ∆b+1,n(en(u)) < cnε

where

`n is the number of non-b symbols in (n, n)-perfect necklace on (b+ 1)-alphabet.

en(u) inserts b’s in u according to ordered (n, n)-perfect necklace on (b+ 1)-alphabet
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Construction

It uses (2n, 2n)-perfect necklaces in the (b+ 1)-alphabet.
Given sequence x normal to b-alphabet,

I Determine t1, t2, t3 . . . to partition x in

u1, u2, u3, . . .

so that for every n, ∆b,`2n (un) is small and |un| = tn`2n , where

`2n is number of non-b’s in (2n, 2n)-perfect necklace on (b+ 1)-alphabet

I By the crucial Lemma

∆b+1,2n(e2n(un)) is small

I Discrete discrepancy ∆b+1,P also controls ∆b+1,p when p divides P .

I The sequence y = e21(u1)e22(u2)e23(u3) . . . is normal to (b+ 1)-alphabet:

In each e(u) we controlled the number of aligned occurrences of blocks.

In the concatenation we bound the number of non-aligned occurrences.

We conclude applying Piatetski-Shapiro (1951) theorem. �
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Open problems

I What are other forms of insertion transfering normality from
b-alphabet to (b+ 1)-alphabet?

I Discrepancy analysis for different forms of insertion

Compare discrepancy (bnx mod 1)n≥0 and ((b+ 1)ny mod 1)n≥0
where y results from insertion in x.

Fukuyama and Hiroshima in 2012 gave metric discrepancy results for
subsequences of (bnx mod 1)n≥0,
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