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Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information
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Lady luck is fickle

Think of 0s and 1s.

A sequence is random if it can not be distinguished from
independent tosses of a fair coin.
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Lady luck is fickle

Would you believe that these have been obtained by independent tosses?

111111111111111111111111111111111111111111...

%

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!
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Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By an automaton ? Yes. But there are different kinds...
Turing machines, pushdown automata, finite state automata.

Turing machines yield the purest notion of randomness.

Finite state automata yield the most basic notion of randomness .

And there are intermediate notions.

R a NDomN ess ! Verónica Becher
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A definition of randomness

A sequence is random for XXXX if, essentially, its initial segments
can only be described explicitely

using an XXXX automaton.

XXXX = Turing machines, Martin-Löf 1966; Chaitin 1975

XXXX = Finite-state automata, Borel 1909; Schnorr and Stimm 1971; Dai,

Lathroup, Lutz and Mayordomo 2005
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Randomness for Turing machines (pure randomness)

A sequence is random for Turing machines if, essentially, its initial
segments can only be described explicitely using a Turing machine .
That is, its initial segments cannot be compressed with a Turing
machine.

Formally, a sequence is random if its initial segments have almost
maximal descriptive complexity .
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Descriptive / Kolmogorov / program-size complexity

Some long strings can be described using fewer symbols than their
length; this is used in data compression .

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...
For example, a string consisting of 2n many a’s can be encoded as
log n many symbols plus a constant:

input n; i=0; while (i<2n) {print a; i=i+1;}

R a NDomN ess ! Verónica Becher
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Descriptive / Kolmogorov / program-size complexity

Definition (Chaitin 1975)

Fix a universal Turing machine U with prefix-free domain .
The descriptive of a string s, K(s), is the length of the shortest
input in U that outputs s.

For every string s, K(s) ≤ |s|+ 2 log |s|+ constant.

R a NDomN ess ! Verónica Becher
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The definition of randomness

Definition (Chaitin 1975)

A sequence a1a2a3 . . . is random if ∃c ∀n K(a1a2 . . . an) > n− c.

R a NDomN ess ! Verónica Becher
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How do we know that the definition is right?

The definition of randomness was accepted when two different
formulations were shown to be equivalent.

This is similar to what happenned with the notion of algorithm in
1930s with Church-Turing thesis.
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An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)

A sequence is Martin-Löf random if it passes all computably
definable tests of non-randomness.

Technically, a sequence is Martin-Löf random if it belongs to no
computably definable null set.

Theorem (Schnorr 1975)

Chaitin’s and Martin-Löf’s definitionare equivalent.
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A sequence is Martin-Löf random if it passes all computably
definable tests of non-randomness.

Technically, a sequence is Martin-Löf random if it belongs to no
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Examples of random sequences

Have you ever experienced that your computer locked up (froze)?
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Ω-numbers

Theorem (Chaitin 1975)

The probability that a universal Turing machine with prefix-free
domain halts, is random.

Ω =
∑

U(p)halts

2−|p|,

Ω numbers: probabilities of other computer behaviours

(Becher,Chaitin 2001,2003; Becher,Grigorieff 2005,2009: Becher, Figueira, Grigorieff,
Miller 2006; Barmpalias 2016)
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Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than
thirteen words.

The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s

Incompleteness Theorem formalizing the expression ”m is the first number not

definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la

definibilidad y las limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.
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R a NDomN ess ! Verónica Becher



13 / 22

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than
thirteen words.

The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s
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Berry’s paradox

Though the formal analogue does not lead to a logical
contradiction, it yields a proof that descriptive complexity K is not
computable.

R a NDomN ess ! Verónica Becher
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Questions and answers about random sequences

Are almost all sequences random?

Yes. By Martin Löf’s definition, the set of random sequences
is the whole set minus the effectively defined universal null set.
Then, with probability 1 an arbitrary sequence belongs to the set
of random sequences.
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15 / 22

Questions and answers about random sequences

Are almost all sequences random?
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Questions and answers about random sequences

Is there a hierarchy of randomness?

Yes. there is a hierarchy of automata. For example, incompress-
ibility by Turing machines imples incompressibility by finite au-
tomata.

R a NDomN ess ! Verónica Becher
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Questions and answers about random sequences

Is the spell of good luck (or bad luck) necessarily short?

Yes (“Nothing lasts forever. . . ”).

Proof: Think of 0s and 1s. Suppose a random sequence starts
a1a2...an. If there is a run of 0’s longer than log n, then a1a2...an
is compressible. Randomness ensures that this will happen only
finitely many times.
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Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible
by a Turing machine! An initial segment of length n can be com-
pressed to 2 log n+constant. Hence, computable sequences are
not random.

R a NDomN ess ! Verónica Becher



18 / 22

Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible
by a Turing machine! An initial segment of length n can be com-
pressed to 2 log n+constant. Hence, computable sequences are
not random.

R a NDomN ess ! Verónica Becher



18 / 22

Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible
by a Turing machine! An initial segment of length n can be com-
pressed to 2 log n+constant. Hence, computable sequences are
not random.

R a NDomN ess ! Verónica Becher



19 / 22

Randomness Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/

http://www.random.org/
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Randomness ♥ Information

Descriptive complexity is formally identical to Shannon’s Information Theory
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Randomness ♥ Information

Definition (Shannon 1948)

Given a probability P of a discrete random variable X, the entropy

H(X) =
∑
x

P (x = X)(− logP (x = X))).

Definition (Chaitin 1975)

Given a universal Turing U machine with prefix-free domain.

K(s) = min{|t| : U(t) = s}, P (s) =
∑

t:U(t)=s

2−|t|.

Theorem (Chaitin 1975)

For every string s, K(s) ' d− logP (s)e.
Shannon’s entropy is formally equal to expected descriptive complexity:∑

s

P (s)(− logP (s)) '
∑
s

P (s)K(s).

R a NDomN ess ! Verónica Becher
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Randomness ♥ Language

A sequence is random (relative to some computing power) if,
essentially, the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can
describe its initial segments in the language , according to the
computing power.

Thus, randomness is a matter of language.

The End

R a NDomN ess ! Verónica Becher



22 / 22

Randomness ♥ Language

A sequence is random (relative to some computing power) if,
essentially, the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can
describe its initial segments in the language , according to the
computing power.

Thus, randomness is a matter of language.

The End

R a NDomN ess ! Verónica Becher



22 / 22

Randomness ♥ Language

A sequence is random (relative to some computing power) if,
essentially, the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can
describe its initial segments in the language , according to the
computing power.

Thus, randomness is a matter of language.

The End

R a NDomN ess ! Verónica Becher



22 / 22

Randomness ♥ Language

A sequence is random (relative to some computing power) if,
essentially, the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can
describe its initial segments in the language , according to the
computing power.

Thus, randomness is a matter of language.

The End

R a NDomN ess ! Verónica Becher



22 / 22

Randomness ♥ Language

A sequence is random (relative to some computing power) if,
essentially, the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can
describe its initial segments in the language , according to the
computing power.

Thus, randomness is a matter of language.

The End

R a NDomN ess ! Verónica Becher


