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NUMEROS MUY NORMALES

La nocién de supernormalidad de un ntmero real fue definida por Zeev Rudnick de la
Universidad de Tel Aviv hace unos anos. Lo poco que se conoce sobre esta nocién no
estd publicado. Benjamin Weiss de la Universidad Hebrea dio el 16 de Junio de 2010 una
conferencia en el Instituto de Altos Estudios de Princeton titulada “Random-like behavior
in deterministic systems” donde describe la nocién de supernormalidad, a la que llama
“Poisson generic”. Weiss afirma que la mayoria de los niimeros reales son supernormales
y que la supernormalidad es mas fuerte que la nocién clésica de normalidad de Borel. Es
decir, que si un numero es supernormal, entonces es normal pero no al revés. También
afirma que el ejemplo méas famoso de un nimero normal, el niimero de Champernowne, no
es supernormal. Por tltimo, deja abierto el problema de dar una construccién explicita de
un nimero supernormal. En esta tesis damos la demostracion completa de que el niimero
binario de Champernowne no es supernormal.

Palabras claves: Normalidad, Supernormalidad, Champernowne, Poisson, Poisson-generic.



VERY NORMAL NUMBERS

The notion of supernormality was defined by Zeev Rudnick a few years ago. The few
things known about supernormality are not published. Benjamin Weiss from the Einstein
Institute of Math de Hebrew University gave on June 16th, 2010 a lecture on “Random-like
behavior in deterministic systems” where the notion of supernormal sequences is described
under the name of Poisson generic sequences. In this lecture, Weiss claims that almost
every real number is supernormal and that the notion of supernormality is stronger than
the classical notion of normaility. Weiss also states that the most famous example of a
normal number, the Champernowne number, is not supernormal. And finally he leaves
open the problem of giving an explicit construction of a supernormal number. In this thesis
we give the complete proof that the binary Champernowne number is not supernormal.

Keywords: Normality, Supernormality, Champernowne, Poisson, Poisson-generic.
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1. INTRODUCTION

This thesis was done with the joint direction of Verdnica Becher and Olivier Carton under
the Laboratoire International Associé SINFIN, Université Paris Diderot-CNRS/Universidad
de Buenos Aires-CONICET).

1.1 Normality

Flipping a coin is the most basic form of randomness that one can think of. Flip a coin
a large number of times and roughly half of them will come up heads and half of them
will come up tails. As successive flips are independent, when flipping a coin repeatedly,
after observing heads on one given flip, we have the same probability of observing heads
or tails in the next one. This means that, if we keep flipping the coin, all combinations of
heads and tails have the same chances of happening.

This is the idea captured by Emile Borel [5] when he gave the definition of normality,
a concept that formalizes the most basic form of randomness for real numbers. As a real
number can be interpreted as an integer, followed by a comma, followed by a possibly
infinite sequence of symbols we could say that normality is a concept that could apply for
both sequences and real numbers. Precisely, we say that an infinite sequence of symbols
of a given alphabet, for example zeros and ones, is normal if all the different blocks of
symbols of a given length occur with the same frequency. Since the sequence is infinite,
when we talk about the frequency of occurrence of a given block of symbols we are referring
to the asymptotic frequency of the block in the sequence. For a presentation on normal
numbers see the books [9] and [6]. For the work done on normal numbers from a computer
science perspective see [2].

Let b be an integer greater or equal to 2 that we call the base. If we represent a real
number in a given base, we have the integer part followed by a fractionary expansion,
which is a possibly infinite sequence of digits in base b.

Fixed a base b, the expansion of a real number « in base b is a sequence of digits
didads ... with every d; between 0 and b — 1, such that

o= LO&J 4+ 0,dydads . . .

where || is the integer part of .

Notation Let A be a finite set of symbols that we refer as the alphabet. We write A*
to denote the set of words of length & formed with symbols from A. The length of a finite
word w is denoted by |w|. The positions of finite and infinite words are numbered starting
at 1. To denote the symbol at position i of a word w, we write w[i], and to denote the
substring of w from position i to j, we use the notation wli...j]. Given two words w and
u, we denote |w|, as the number of occurrences of u in w, or what is to say:

|wly, = [{i:wli...i+ |u|]] =u}

For example, |aaaaalqq = 4.
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Definition 1. We say that an infinite sequence w formed of symbols of an alphabet A
where |A| = b is normal when for every block w it happens that:

. lw[l...Nll, 1

im ————— = —
Definition 2. We say that a real number is normal in base b if its expansion in base b
18 a normal sequence. A real number is absolutely normal if its expansion is normal for
every base.

Borel proved in [5] that almost all real numbers are absolutely normal. Years later he
conjectured that all the irrational algebraic numbers are absolutely normal. This problem
remains open. Even though absolutely normal numbers have been found [12; 13; 4; 8], the
solutions are not fully satisfactory if we take into account that it is not possible to prove
any other properties on these numbers other that their absolute normality. It is still an
open problem to prove that any of the mathematical constants such as 7 , e or /2 are
normal to some base.

However, the problem of giving a sequence that is normal to a given base has been
solved more successfully. There are several examples but the most famous and simple one
of such sequences is the Champernowne sequence [7] written in base 10:

0123...9101112...9899 100 101 102...

Note that spaces were added for reading convenience.

Champernowne proved this constant to be normal in base 10. The construction can
be done in any base, obtaining a number normal to that base. It is unknown whether
Champernowne numbers are normal to the bases that are multiplicatively independent to
the base used in the construction. There are many interesting generalizations of Cham-
pernowne’s construction, proved to be normal.

Theorem 1 ([7], see also [2]). Let A be an alphabet. Let X (n) be the concatenation of all
words of length n over A in lexicographic order. The infinite word X (1)X(2)... is normal
to alphabet A.

In the particular case of this work we use a binary alphabet A = {0,1} having X (n)
to be the concatenation of all words of length n over the alphabet with two symbols
A ={0,1} in lexicographic order.Then, for example:

X(2) = 00011011

Definition 3. We define champ as the concatenation of X(n) forn=1,2,....

The first symbols of champ sequence are:

champ =0100011011 000001010011 100101110111 0000 0001 ...

1.2 Supernormality

The notion of supernormality was defined by Zeev Rudnick a few years ago. Benjamin
Weiss from the Einstein Institute of Math from the Hebrew University gave on June 16th,
2010 a lecture on “Random-like behavior in deterministic systems” where the notion of
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supernormal sequences is described under the name of Poisson generic sequences [15].
There are no publications about this notion, what is known about it is not published.
However, in the conference, Weiss claims that almost every real number (in the sense of
Lebesgue measure) is supernormal and that the notion of supernormality is stronger than
the classical notion of Normality. This means that if a number is supernormal then it
is normal, but not the other way around. During the conference Weiss gives an outline
of the proof that supernormality implies normality and also states that the most famous
example of a normal sequence, the Champernowne sequence, is not supernormal. Finally,
he leaves open the problem of giving an explicit construction of a supernormal number.

In this thesis we prove that the champ sequence defined above is not supernormal.
This, together with the proof that supernormality implies normality, completes the proof
that supernormality is stronger than normality. Let’s start by giving a formal definition
of what a supernormal sequence is.

Let = be a sequence over a binary alphabet. Let Ag () be the frequency of occurrence
of words of length n that occur exactly k& times in the first [A2"| symbols of x:
_ #{w: |w| = n, |z[1...[A2"]]|, = k}
2n

A (@)

Definition 4 (Supernormality). Let A > 0 be a real number. A binary sequence x is
A—supernormal if for every non-negative integer k,
—AAk

lim A7, (z) = £

n—o0 ’ k!

~ Pois(\)

A binary sequence x is supernormal if, for every positive real A, x is A\—supernormal.

The idea behind normality is to look at increasing finite sample spaces of the sequence
and check that for each block, the frequency of appearance is the same as the one for each
of all the possible blocks. Supernormality doesn’t look at the frequency of occurrence a
block as normality does. We could say that Aﬁn(a:) is conducting some simple statistics
where for each block of length n we are counting how many times it occurs. Then, the
probability that a block occurs k times is the number of blocks that occur k£ times in the
first [A2"] symbols of the sequence divided by all the possible blocks. For a sequence
to be supernormal, we need these proportions to converge in distribution to a Poisson
distribution with parameter A\. The motivation for checking the first | \2" | symbols comes
from the fact that there are 2" possible words of length n, and as the \ parameter is
setting up how much of the sequence we read in order to conduct the statistics, and as it
may not be an integer, we need to take the integer part in order to consume an integer
number of symbols of the sequence.

The Poisson distribution is a discrete probability distribution that expresses the prob-
ability of a given number of events occurring in a fixed interval of space if these events
occur with a known constant rate and independently of the distance from the last event.

Let’s use as an illustrative example of what we are looking to when we check if a
sequence is supernormal, the finite sequence x = 10011110. Taking n = 3 and A = 1, the
words of length n that occur in x are:

100, 001, 011, 111, 111, 110

Now if we count the occurrences of every possible word of length 3 we have:
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Word | Count
000 0
001 1
010 0
011 1
100 1
101 0
110 1
111 2

And now we can see the frequency and the count of every possible k with their expected
value if the sequence were supernormal which is e™*\* /E! :

Count | Frequency | Expected Frequency
3 e 1 ~0.368

e 1 ~0.368

€~ ~0.183

&5 ~ 0.061

~ 0.015

el ~0.003

r ~ 0.0005

e~ 0.00007
8!

e~ ~0.000009

O | O O x| W N~ O

O O O O O O H| =
O O O O O| O ||l ool
®
&

Of course this is just a finite simple example, but for an infinite sequence to be super-
normal, we need these frequencies to converge to a Poisson distribution when n — oo.

As a more complex example we can analyze what happens in the champ sequence
defined above, which can also help us build an intuition on how to approach a proof the
lack of supernormality. The following figure shows for every k, taking A = 1 and n = 22,
the observed frequencies and the expected ones.

As it can be observed in Figurel.l, the amount of words of length n that do not appear
in the first 2" symbols of champ is much higher than the expected one for the sequence
to be l-supernormal. As we will observe later in the proof this is due to the fact that by
the way that champ is constructed. This experiment as well a supernormality check for
other famous normal sequences and a few pseudorandom number generators are available
at [11].
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Fig. 1.1: Observed and expected frequencies in champ for n = 22 and A = 1.



2. SUPERNORMALITY IS STRONGER THAN NORMALITY

2.1 Supernormality implies normality

Recall that given an infinite binary sequence x, and non-negative intergers k£ and n,

_ #{w : |w| =n,|z[1...[A2")|]|, = k}

A (@) &

The sequence z is supernormal if for every positive real A and for every non-negative
integer k,

. e ANk
Jim Ap(z) = —

Definition 5. For the simplicity of the proof we define ax(X\) as the probability mass
function of the Poisson distribution:

e M \E
ak(A) = i
We now observe a few useful facts:
Fact 1.
Y AR Y
Zak()\):e Zg—e et =1
k>0 k>0
Fact 2.

“a A AP
> kar() =e Z(kfm =Xy =2
k>0 k>1 k>0

Fact 3.
> Apal)=1
k>0

Fact 4.

Apn(@) =0 if k> A2"
Let’s also recall that a sequence x is normal if for every binary word w,

i Ll ol
n—00 n

Assume z is supernormal. Fix a positive €. Let kg be such that

% D kap(M) <

k>ko

NN

Let ng be such that for all 4, n such that 0 < i < kg, n > ng and

€N

A
Ad() @] <
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ko
kag(A) =\ — kag( 1—-
kzz() k kgo k ( 2)

We fix X\ equal to 1 for the simplicity of the proof, nonetheless the result is analogous
with any value. Consider the positions from 1 to 2" in x. We say that a position is blamed
if the word of length n starting at that position occurs more than kg times in z[1..(2")].

The number of blamed positions between 1 and 2" is

ZkAkn )2 < 2" — (Zkak 2k2)

We cover the positions from 1 to 2" with consecutive non-overlapping blocks of length n
such that no block starts at a blamed position. This means that a block may contain
blamed positions as long as they are not the first one. In the following example, the
symbol X represents a blamed position:

n n n n n n n

1 T 1
X X X X X XX X X X

Definition 6. Let Bad(n,w,e€) be the set of binary words of length n where the word w
differs from the expected frequency by normality more than ne. Thus,

Bad(n,w, ) = {v € {0,13" : |loly —n2 7| = en}

The cardinality of the set Bad(n, w, €) is less than 27+1e=<n/(6lw])  This follows from
is a classical result from probability theory called Bernstein’s inequality (see for example
[14, Lemma 2.2.9]. A detailed proof can be read from [2, Lemma 7.3.5]. Therefore, the
cardinality of the bad words of a given length n decreases exponentially in n.

Supernormality determines that some blocks of length n do not occur in z[1...2"],
and different blocks may have different number of occurrences. We now fix n, ¢ and w and
give an upper bound of the number of occurrences of w in z[1..2"]. To do so we consider
the following;:

1. Each blamed position can allocate at most one occurrence of w.

2. Each block in Bad(n,w,€) can occur in z[1..2"] at most kg times.

3. Each block in Bad(n,w,€) has at most n — |w| + 1 occurrences of w.

4. The sequence x[1..2"] can be splitted in at most 2" /n consecutive blocks of length n.

5. Each block of length n that starts at a position that is not blamed, and it is not a
bad block contains at most n2~1*! + en occurrences of w.
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6. In between two consecutive blocks of length n there are at most |w| — 1 occurrences
of w.

Thus,
|z[1..2"]|, <#blamed positions+
ko#(bad blocks)(n — |w| + 1)+
#(not bad blocks starting at non-blamed positions)(n2~*! 4 en)+
#(in between blocks)(Jw| — 1)
<2"e+
gt le=e*n/ (61wl (1 _ || 4+ 1)+
(2" /n)(n27 %l 4 en)+
2"/n)(lw| = 1)

Hence,

|z[1..2"]| 2 1
< e“n/(6lwl]) (p, _ — -
o <e+2e (n |w|—|—1)—|—2|w| +e+ (Jwl—1)/n
This inequality above holds for every for every e. By taking limit superior when n goes
to infinity we obtain

lim sup o < 27wl

n—0o0

|2[1..27]

To show that x is normal it remains to see that the wanted limit holds when we count
occurrences of any given word at initial segments of x of arbitrary length:

|x[1n]|w _ 27|w|

lim
n—00 n
To get the wanted result we apply the Hot Spot lemma, originally by Piatetski-Shapiro
and reconsidered later by Borwein and Bailey [1] who gave it this name. For the history
and references see [2, Theorem 7.4.1]. The Hot Spot lemma says that a binary sequence x
is normal if and only if there is a constant C such that for infinitely many lengths ¢ and
for every w in {0, 1},
1..N 1
lim sup M <C—
N—oo N 2lwl
We now determine that the constant C' exists and it is equal to 2. Fix N and let n be
such that 2"~! < N < 2". Then,

21N _ Jefl-2"

N - on—1
Then, using the bounds obtained above,
1.N 1.2
lim sup L[ I < limsup 7@[ 1]|w
N—o0 N n—o0 AL
1
<2—.
= T2l

Thus the constant C' is equal to 2. We conclude that = is normal to base 2.
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2.2 Normality does not imply supernormality

We aim to prove that normality does not imply supernormality. For this we prove that
the Champernowne sequence, proved to be normal in [7], fails to be supernormal. For this
we show that it is not 1-supernormal. Our strategy is similar to that used by Pirsic and
Stockinger in [10] where they proved that when x is the Champernowne sequence then
(2"z mod 1),>1 fails the Poissonian pair correlation. With a similar strategy Becher,
Carton and Mollo Cunningham [3] proved that when z is a sequence of nested perfect
necklaces, then (2"x mod 1),>1 fails the Poissonian pair correlation.

Let X(n) be the concatenation of all words of length n over the alphabet with two
symbols A = {0, 1} in lexicographic order. It is clear that X (n) has length n2". Then, for
example:

X(2)=00011011

Note that spaces were added for reading convenience.
Let champ be the concatenation of X (n) for n = 1,2,... Then the first symbols of the
champ sequence are:

champ =0100011011 000001010011 100101110111 0000 0001 ...

By the definition of A-supernormality, if we take A = 1, then we need to prove that
there is a non-negative integer k such that

. — n — -1
lim #{w: |w| =n,|z[1..2"]|, =k} e

n—00 2n K

In the sequel we use the following notation. Given a positive integer d we write k to
denote 2¢. Notice that if n > d + k + 1 then champ[1..2"] contains the whole block X (k).

Fact 5. For every n greater than or equal to 2 S5 120 < 2ntlos(m)+1,

Fact 6. The sequence X (k) occurs in champ[1..27*1] and the length of X (k) is more
than 247F.

Proof. 247k+1 = 244k and X (k) has length k2F = 292k = 2d+F O

We prove that champ is not supernormal by showing that the frequency of words of
length k£ + d + 1 that do not occur in the first 2#t9*+1 symbols of the champ sequence
is higher than the expected frequency if it were supernormal. To accomplish this, we
exhaustively count how many different words of length 2¥T4+1 are there within X (k) and
give an upper bound for the amount of different words that can appear in the first 25+d+1
symbols of the champ sequence.

Now, let’s see the words of length k + d + 1 that occur in X (k). In the following
analysis, u,v and w are consecutive words of length k in X (k). If a word x of length
k+d+1 occurs in X (k) it must be in one of these five cases, which are mutually exclusive:

e Case 1:
T =ULUL ... UE VIV ... VgU4i1

Thus, x occurs at a position p = &k mod 1 And x is the concatenation of a word u
of length k with d + 1 symbols of the next word in the lexicographic order.
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e Case 2:
r = Uk—d—1-..--U VIV2...VL

Thus, x is the suffix of length d+ 1 of a word of length k concatenated with the next
word of length &

e Case 3:
T = Un+1Up+2 .- Uk  V1V2...VUd4n+1

with n € {1,2,...,k—d—2}.

Thus, x is the concatenation of a proper suffix of a word of length k£ and a proper
prefix of the next word of length & .

e Case 4:
T =Uk—d—14+nUk—d+n --- Uk VIV2...Vp WIW2...Wd+1—n

with n € {1,2,...,d} Thus, = consist of a suffix of a word of length k followed by
the next word of length k, followed by a prefix of the next word of length k.

e Case 5:

Consider that x occurs at the end of X (k) or near the end of X (k) as follows. Either
there is no complete word of length k after x, or, if there are not two words of length
k after it. Notice that this case is excluded in the previous cases.

2.2.1 Case Analysis

The function next(w) : A™ — A™ is defined as follows. If w is a row of n many 1s then
next(w) is a row of n many 0Os. Else, next(w) is the word after w in lexicographic order.

Case 1
T =Uug... U VU2 ...0404+1
This case accounts for the aligned occurrence of a given word wu of length &k in X (k).
The remaining d + 1 symbols are taken from the next word v. As an example, some of
the words of length k 4+ d + 1 formed from X (k) taking k = 8,d = 3 are shown between
brackets:
(00000000 0000) 0001
(00000001 0000) 0010

(00000010 0000) 0011

(00001110 0000) 1111
(00001111 0001) 0000
(00010000 0001) 0001
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(11111110 1111) 1111

We make two observations. The first one is that as the words of length k& + d + 1 are
formed by a full word of length k followed by the first d + 1 symbols from the next word,
in almost every case the first d + 1 symbols are equal to the last d + 1. The only way for
this not to happen, is when the last £ — d — 1 symbols from the first word u are all 1s,
which means that the next word in lexicographic order v consists of next(viva...v441)
concatenated with next(vgiovgss ... vg).

The second important thing to notice is that as X (k) is the concatenation of all words of
length k, all words of length k& occur one time in an aligned position modulo k. This means
that u will be every possible word of length k once (except the last one in lexicographic
order).

These two observations determine two possible schemes for what a word x of case 1
may look like:

A B A
——
d+1 k—d—1
A 11...1 next(A)
~——
d+1 k—d—1

For the first scheme we have:

1
2d+1 2k7d71 —1) = 216 _

different words.
For the second scheme we subtract one to the cases due to the fact that the last word
of length &k in X (k) has its continuation outside X (k):

od+1 _ 1
different words.
Counting the whole case together we have 2F — 2_—12d +2-2¢ — 1 which is less than
2k — 2. 2% different words.
Case 2

r = Uk—d—1.--Ur V1V2...VL

This case accounts for the aligned occurence of a given word v of length k in X (k) plus
the remaining d + 1 symbols which are taken from the previous word. In this case every
single word of length k£ will take the place of v, except for the first one in lexicographic
order. As an example, some of the words of length k + d + 1 formed from X (k) taking
k = 8,d = 3 are shown between brackets:

0000 (0000 00000001)
0000 ( 0001 00000010)
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0000 (1111 10000000)
1000 (0000 10000001)

1111 (1110 11111111)

As in the previous case, as X (k) is the concatenation of all words of length k, all words
of length k occur one time in an aligned position modulo k. This means that the last k
symbols of x take every possible configuration. The other important thing to notice is
that as the first d + 1 symbols of & come from the word » which occupies exactly before
v in lexicographic order, then:

next(Ug—qg—1Ug—q- - - Uk) = Uy—d—1Vk—d - - - Vk

This determines only one possible scheme for what a word x of case 2 may look like:

A B next(A)
—— ——
d+1 k—d—1

This scheme gives us the following amount of different words that may occur:

different words which is less than 2 - 2% different words.

Case 3

T = Un41Un42 .. - Uk  VIV2...Vd4n+1

with n € {1,2,...,k—d—2}.

This case accounts for when the k+d+ 1 symbols are taken from two words of length k
and none of the words is complete. As an example, some of the words of length k& +d + 1
formed from X (k) taking k = 8,d = 3 are shown between brackets Some extra spaces are
added within u and v to make clear the scheme explained later. Taking n = 1.

0 (0000 000 0 0000) 001
0 (0000 001 0 0000) 010

0 (0001 110 0 0001) 111
0 (0001 111 0 0010) 000
0 (0010 000 0 0010) 001

1(1111101  11111) 110
0 (1111110  11111) 111
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Takingn=k—d—-2=3

000 (0000 O 000 0000
000 (0000 1 000 0001
000 (0001 O 000 0001
000 (0001 1 000 0010

a] — o =

)
)
)
)

111 (1110 1 111 1111) 0
111 (11110 1111111) 1

In this case, it also happens that as X (k) is the concatenation of all words of length &,
for each value of n, all words of length k take the u position once, except the last of the
words of length k in X (k).

It is important to notice that for a given value of n, the first n symbols of u are not be
considered to form x. This means that it can be interpreted that the symbols from w that
are considered are, the first d + 1 symbols after n which are called A and the remaining
k —d — 1 — n symbols which are be called B.

Now, if we divide the n + d + 1 symbols that are used from v to form z into the first
n symbols which are called C' and the remaining d + 1 symbols, it is possible to see that
these d + 1 symbols are always equal to the symbols from A except for the case where B
= 11...1 as they account for the same indexes of v and v and v comes immediately after
u in lexicographic order.

These leave two possible schemes for what a word x of case 3 may look like:

A B C A
~—— ——
d+1 k—d—1-n n
A 11...1 C next(A)
~—— — ~——
d+1 k—d—1-n n

Looking closely at the first scheme, it is possible to see, if we put together B and C
which have length k — d — 1 — n and n respectively, that we have the following scheme:

A B A
—— ——
d+1 k—d—1

which is exactly the same one as in case 1. This means that all the possible words that
can be formed following this scheme don’t yield any new words.
The same thing happens with the second scheme when concatenating 11...1 with C:

A 11...1C next(A)
~—— —_—
d+1 k—d—1

Which is a particular case of case 2.
This means that for case 3 there are no words that appear that should be taken into
account as new words.
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Case 4

L =Uk—d—14+nUk—d+n -- - Uk VIV2...Vp WIW2...Wd+1—n

with n € {1,2,...,d}

This case accounts for when the k& + d + 1 symbols are taken from three words of
length k. The k symbols of v are used and the remaining d + 1 symbols are taken from
both the previous and the following words u and w. As an example, some of the words of
length k + d + 1 formed from X (k) taking k = 8,d = 3 are shown between brackets Some
extra spaces are added within u and v to make clear the scheme that is explained later.

Taking n = 1.

0000000 (0O 000 0000 1 000) 00010
0000000 (1 000 0001 0 000) 00011
0011111 (O 001 11111 001) 10000
0011111 (1 010 0000 0 010) 00001
1111110 (1 111 11110 111) 11111
Taking n = 2.
000000 (00 00 0000 01 00) 000010
000000 (01 00 0000 10 00) 000011
001111 (01 00 1111 10 00) 111111
001111 (10 00 1111 11 01) 000000
001111 (11 01 0000 00 01) 000001
111111 (01 11 1111 10 11) 111111

In this case, it also happens that as X (k) is the concatenation of all words of length &,
for each value of n, all words of length k take the w position once, except the last of the
words of length & in X (k).

We call A the first n symbols of x which are taken from the end of v. The following
d + 1 — n symbols which are the first of v are called B and it happens that unless the
remaining symbols of v are all 1s, they are the same as the last d + 1 — n of x because
these symbols are the first d 4+ 1 —n from w. Now, we consider the remaining k —d—1+n
symbols from v as two blocks, one block C of length k—d—1 and the remaining n symbols
which are exctly next(A) as v is the next word in lexicographic order after u. This yields
the following two schemes:

A B C
~— —— N——
n d+1-n k—d+1

next(A) B
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11...10 B 11...1 next(A) next(B)
—_—— ~—— ——
n d+1-—n k—d+1

For the first scheme we have:

zd:(Qn _ 1) (2d+1—n) (2k—d—1)

n=1
d
2.2¢ 2k
2" — 1) () (o
n=1
d
2" — 1
k
2> o
n=1

For the second scheme we have:

d
2.24% "9
n=1
When putting them both together we get:

d_on _q d
k - d - k d
2 E o 2.2 E 27" <d2" 422

n=1 n=1

Case 5

We consider the last two words of X (k) as special cases. The last word of X (k) does not
apply to any of the cases since there are no words v and w inside X (k) to consider the
cases. Something similar occurs with the word previous to the last one and case 4. While
it is true that we do know which words come immediately after X (k), which are the first
words of size d + k + 2 in lexicographic order, as we are giving an upper bound, it is valid
to consider all of these as different words to all of the ones considered in the previous
cases. By doing this, we would have to consider d + k4 1 new words for the last word and
d words for the previous one. So this yields 2d + k£ 4+ 1 words to consider.

2.2.2 A bound for the number of words occurring in champ

If the champ sequence were supernormal then the expected frequency of words that appear
at least one time in the first 2" symbols would satisfy:

lim #{w : lw| = n, [champ[1..2"]|, > 0}

n—00 on

1—e !
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Now, by Fact 6 we know that X (k) accounts for half of the words of the first 2¢+5+1
symbols of champ. If we analyze what happens with words of length d + k + 1 using the
bounds we have for the occurrences of different words within X (k) and we assume that
the remaining 2%t* 4+ d + k — 1 symbols are all different, then

#{w: jw| =d+k+1,|champl[l ... 20T+, > 0}
od+k+1 <

lim sup
d—o00

. Case 1 + Case 2 + Case 4 + Case 5 + other half
lim sup =

d 9d+k+1
—00

ok _ 9. 9d 2.9k ok 1 9. 9d 2 1 9d+k
i sup )+ @2+ (@2 4220+ @drk+D) + ()
d—o00 2+k+1

ok _ 9 2.9k ok 2d + 2k + 1 ok
hmsup( k)4 (2-2%) + (d2" + k) + (2d + 2k + 1) + (k2%) _
d—o00 2]{}2k
) 3.2k p @k yo2d+k+1 1
lim sup + = =
d—o0 2k32k 2
. 3+d+ d N 1 N 1 +1 1
msup —+ —+-—+-—+ 5+ =-==
P o T ok T ok T ook Tokok T2 T 2

<1—¢!

Finally, if in the original sequence we consider that the n’s such that n = d + 2% + 1
are a subsequence of n =1,2,... then we can say that if

lim #{w : |w| = n, |champ]1...2"]|, > 0}

n—00 on

exists, then it is not 1 —e~!. This implies that Champernowne is not 1-supernormal which
means it is not supernormal.

Corollary 1. If x is a normal number it is not implied that x is supernormal.
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