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Sobre la extensión de la secuencia de Bruijn lexicográficamente máxima

a alfabetos más grandes

Resumen. Una secuencia de Bruijn de orden n en k śımbolos es una secuencia en la que

cada palabra de longitud n ocurre exactamente una vez. Se sabe que para cada secuencia

circular de Bruijn v de orden n en k śımbolos hay otra secuencia circular de Bruijn w

de orden n pero en k + 1 śımbolos tal que v es una subsecuencia de w. En esta tesis

nos dedicamos a la secuencia de Bruijn lexicográficamente máxima, a la que llamamos

dual-Ford. El nombre se debe a que la secuencia de Bruijn lexicográficamente mı́nima es

conocida como la secuencia de Ford. Demostramos que la secuencia dual-Ford de un orden

dado y un alfabeto dado es un sufijo de la secuencia dual-Ford del mismo orden en un

alfabeto con un śımbolo más. Dado que hay un algoritmo óptimo en tiempo (lineal relativo

al tamaño de la salida) para generar las secuencias Ford y las duales-Ford, el resultado

que presentamos determina un algoritmo óptimo en tiempo para generar la extension de

una en la otra.

Palabras claves: secuencias de Bruijn, secuencia Ford, ciclos Eulerianos.





On the extension of the lexicographically greatest de Bruijn sequence

to larger alphabets

Abtract. It is known that for each circular sequence of Bruijn v of order n in k symbols

there is another circular sequence of Bruijn w of order n but in k + 1 symbols such that v

is a subsequence of w. In this thesis we focus on the lexicographically greatest de Bruijn,

which we call dual-Ford. The name follows because the Bruijn lexicographically least de

Bruijn sequence is known as the Ford sequence. In this work we show that the dual-Ford

sequence of a given order and on a given alphabet is a suffix of the dual-Ford sequence of

the same order on an alphabet with an additional symbol. Since there is a time-optimal

(linear relative to the size of the output) algorithm that generates the Ford and the dual-

Ford sequences, our result yields a time-optimal algorithm to generate the extension of

one to the other.

Keywords: de Bruijn sequences, Ford sequences, Eulerian cycles.
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1. THE PROBLEM

The original intent of this thesis was to provide an efficient algorithm to extend a de Bruijn

sequence of order n on an alphabet of size k to one of the same order on an alphabet of size

k + 1. In the process of attaining this goal, we found a curious result for the specific case

of the lexicographically greatest de Bruijn sequence, the Ford sequence, which is dual to

the lexicographically least de Bruijn sequence, the well-known Ford sequence. We found

that Fordk,n is a suffix of the Fordk+1,n. This thesis consists of the statement and proof of

this theorem, along with a corollary employing this result to provide an algorithm whose

time complexity is asymptotically optimal that given Fordk,n produces Fordk+1,n.

Throughout this thesis we’ll extend an alphabet by adding a lexicographically greatest

symbol; adding a lexicographically least symbol instead yields the dual result for the Ford

sequence.
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2. PRIMARY DEFINITIONS

2.1 Generalities on words

An alphabet is a finite set and its elements are called symbols. For example, the binary

alphabet {0, 1}. A word on an alphabet Σ is a sequence of symbols belonging to Σ. For

example 0110 is a word on the alphabet Σ = {0, 1}. The length of a word w is denoted

with |w|. We write wi to indicate the symbol at position i of w. For an alphabet Σ and a

positive interger n, Σn is the set of words on Σ of length n. For example, for Σ = {0, 1},

Σ2 = {00, 01, 10, 11}. Without loss of generality it shall be assumed that alphabets of size

k consist of the symbols {0, . . . , k − 1}.

A word v is said to be a subsequence of another word w if there is a sequence of

increasing positions in w, i1, i2, . . . in such that v is equal to wi1wi2 . . . win A substring v of

a given string w is a subsequence that is contiguous in the original word w. For example,

11 is a subsequence and 10 is a substring of 1010.

Given two words u, v, respectively on the two alphabets Σ and ∆, the concatenation

of u and v, noted uv, is a word on Σ ∪ ∆ consisting of u followed by v. Thus, 0123 is

the concatenation of 01 and 23. Given a word or a symbol (seen as a word of length one)

a and some length n, an is the result of concatenating a with itself n many times. For

instance, (011)2 is 011011.

Necklaces are the equivalence classes of words under rotation. A necklace may be

represented by any of its members. The notation

[0110]

denotes the equivalence class containing 0110, 1100, 1001 and 0011.

2.2 Graphs

The following is standard material in graph theory, which can be read from any of these

monographs [10, 8, 9]. A Hamiltonian cycle of a graph is a cycle in which each vertex

of the graph occurs exactly once. An Eulerian cycle is a cycle in which each edge of the

graph occurs exactly once. A graph that admits an Eulerian cycle is called Eulerian. An

undirected graph is connected if there is a path between every pair of vertices. A directed
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4 2. Primary definitions

graph is strongly connected if there is a directed path between every pair of vertices. A

directed graph is regular if each vertex has the same number of incoming and outgoing

edges as all other vertices. Given a directed graph G, its line graph is a directed graph

whose vertices are the edges of G and whose edges correspond to the directed paths of

length two of G.

2.3 de Bruijn necklaces and de Bruijn graphs

The de Bruijn necklaces receive their name due to the work of Nicolaas Gover de Bruijn [2].

However they have been discovered by several authors, possibly the first was Camille Flye

Sainte-Marie [11]. See [3] for a fine presentation and history.

A necklace is de Bruijn of order n on an alphabet Σ of size k if every word on Σ

of length n appears exactly once as a substring (possibly wrapping around). One such

necklace of order 2 for alphabet size 3 is

[021122010]

since it contains every word of length 2 over the alphabet {0, 1, 2} exactly once.

The de Bruijn graph of order n for an alphabet size k, noted Gk,n, is a directed, labeled

graph such that the vertices correspond to the words of length n on Σ, with an edge from

u to v with label b ∈ Σ if u = a1, a2, . . . an and v = a2, . . . , an, b. More formally,

Gk,n = (V,E) for all V = Σn and

E = {(u, v) ∈ V 2| ∃ a, b ∈ Σ, w ∈ Σn−1/u = aw ∧ v = wb}

The line graph of the de Bruijn graph of order n on an alphabet Σ of size k is the de

Bruijn graph of order n + 1 on Σ.

The edges of Gk,n can be labeled with sequences of length n + 1, such that the edge

(w, v) is labeled with w1v = wvn. Then, each possible sequence of length n+1 in k symbols

appears in exactly one edge of Gk,n. Moreover, the line graph of Gk,n is exactly Gk,n+1.

The label of a path v1, . . . , vt in Gk,n is the sequence that contains as substrings exactly

the sequences v1, . . . , vt, in that order. Taking a path of length t in Gk,n and consider the

set of t− 1 traversed edges, it is easy to see that they form a path that has the same label

in Gk,n+1. In the same way, the labels of a cycle yield a necklace.

The label of a Hamiltonian cycle in Gk,n is a de Bruijn necklace of order n on an

alphabet of size k, and the label of an Eulerian cycle in Gk,n is a de Bruijn necklace of
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order n + 1 on an alphabet of size k, as an Eulerian cycle in Gk,n is a Hamiltonian cycle

in Gk,n+1.

By choosing a vertex as the starting point of the cycle, a specific sequence of the

necklace is obtained. Given k, n ∈ N, note that the n-length path leading to the starting

vertex is visited at the end of the cycle. Since the concatenation of the labels of this path

correspond to the label of the vertex, the label of the starting vertex is a suffix of the

resulting sequence. For example, for where k = 2, n = 3, picking 000 as the starting point

of the de Bruijn necklace

[11100010]

the resulting sequence is

10111000.

The number of de Bruijn necklaces of order n in an alphabet of size k is

k!k
n−1

kn

Thus, among these many necklaces there is a lexicographically least and a lexicographically

greatest.

Given a directed graph G = (V,E), an in-arborescence rooted at v ∈ V is a subgraph

of G such that there exists exactly one path from every vertex in V to v. Hence, an

in-arborescence rooted at v ∈ V it is a directed spanning tree in which every vertex points

to the root v.

2.4 The BEST Theorem

In graph theory, the BEST theorem gives a formula for the number of Eulerian cycles

in directed graphs. The name is an acronym of the names of people who discovered it:

de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, see [10, 9]. Though the theorem

concerns only the amount of Eulerian cycles in directed graphs, its proof demonstrates an

even stronger result which shall be presently stated as a corollary.

Corollary (BEST Theorem). Let G = (V,E) be a directed, Eulerian graph. Let e1 =

(s, s̃) be an arbitrary starting edge, to be called the special edge. There exists a bijection

between in-arborescences T converging to s and sets W (T ) of Eulerian cycles starting with

the edge e1. Each set W (T ) is of size

d :=
∏
v∈V

(d−(v)− 1)!,
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where d−(v) is the out-degree of v.

The mapping from an Eulerian cycle to an in-arborescence is as follows. Given an

Eulerian cycle W , order its edges starting with the special edge e1. For each vertex v 6= s,

let e(v) be the last edge leaving v (the one with the greatest index in the ordering). Then

the subgraph

T (W ) :=
(
V, {e(v) | v 6= s}

)
is W ’s corresponding in-arborescence.

The mapping from an in-arborescence to a set of Eulerian cycle is as follows. Let T

be an in-arborescence converging to s. For every vertex u ∈ V , label the d−(u) edges

leaving u,

1. Among all edges (s, v) leaving s, the special edge e1 = (s, s̃) is labelled with the

number 1.

2. For all v diferent from s, the tree-edge (v, v′) ∈ E(G) is labelled with the greatest

number (which is d−(v)).

Otherwise, the numbering is arbitrary. Construct a cycle W by starting in (s, s̃) and, at

every vertex, taking the edge with the smallest number that has not yet been taken. Each

different ordering (following the two conditions) results in a different cycle, and there are

d :=
∏
v∈V

(d−(v)− 1)!

cycles for each in-arborescence.

2.5 The Ford sequence and its dual Ford

Given two words u, v; u is lexicographically less than v if and only if u is a strict prefix of

v or, for the first index i for which u and v differ, ui < vi.

Given k, n ∈ N, the lexicographically least de Bruijn sequence of order n on an alphabet

of size k is called the Fordk,n, while the lexicographically greatest is called the Fordk,n. In

Figure 2.5 some examples are given.

There is a greedy algorithm, optimal in time computational complexity, to produce the

Ford and Ford sequences. Given k, n ∈ N, the Eulerian cycle in Gk,n obtained by starting

at the lexicographically least vertex and always taking the available edge with the greatest

lexicographic label yields the Fordk,n+1 sequence. Starting at the lexicographically greatest
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Ford2,2 = 0011

Ford2,2 = 1100

Ford2,3 = 00010111

Ford2,3 = 11101000

Ford3,2 = 001021122

Ford3,2 = 221201100

Ford3,3 = 000100201101202102211121222

Ford3,3 = 222122021121020120011101000

Fig. 2.1: Ford and Ford sequences for k = 2, 3 and n = 2, 3.

1: Algorithm P(in: k ∈ N, n ∈ N)

out: Fordk,n+1, the lexicographically greatest de Bruijn sequence of order n + 1 in k

symbols

2: Gk,n ← the de Bruijn graph of order k, n with labeled edges

3: result← emptyWord

4: // Start with the lexicographically least vertex in Gk,n

5: currentV ertex← 0n

6: while currentV ertex has edges not yet taken in result do

7: nextEdge← the greatest edge not yet taken in result

8: append nextEdge’s label to result

9: currentV ertex← nextEdge’s destination vertex

10: return result



8 2. Primary definitions

vertex and always taking the available edge with the least lexicographic label yields the

Fordk,n+1 sequence. The algorithm P presented above produces the Fordk,n+1 sequence.

A beautiful result characterizes the Ford sequence of order n on an alphabet Σ as the

concatenation of the Lyndon words (in lexicographic order) on Σ whose lengths divide n.

A Lyndon word is a non-empty string that is strictly smaller in lexicographic order than

all of its rotations. For example, for alphabet Σ = {0, 1} the concatenation of the Lyndon

words whose length divides four is

0 0001 0011 01 0111 1

This construction, together with the efficient generation of Lyndon words, provides an

efficient method for constructing a particular de Bruijn sequence [7, 5].



3. ON THE EXTENSION OF THE LEXICOGRAPHICALLY

GREATEST DE BRUIJN SEQUENCE TO LARGER ALPHABETS

Theorem 1. The Ford sequence of any given order in an alphabet of a given size is a

suffix of the Ford sequence of the same orden in an alphabet with one more symbol.

Corollary. There is a time-optimal algorithm such that for any choice of positive integers

k and n it extends the sequence Fordk,n to the sequence Fordk+1,n.

3.1 Proof of Theorem 1

The Ford sequence of order n + 1 for alphabet size k, Fordk,n+1, can be obtained by the

greedy algorithm P presented in the previous section, which starts at the lexicographically

least vertex in Gk,n, 0n, and always takes the edge with the greatest available label. We

first argue that this procedure computes a de Bruijn sequence. Then it is immediate to

see that that the resulting sequence is the lexicographically greatest de Bruijn sequence.

An in-arborescence, henceforth termed A, pointed at the root 0n can be constructed as

follows. Select, for every vertex, the last edge taken by P (namely, the lexicographically

least, 0). Therefore the selected edges are of the form

au→ u0

for a ∈ Σ, u ∈ Σn−1.

Thus, there are kn−1 selected edges because, except for 0n, for each of the kn vertices

a single edge is selected. Also note that there is a path from every vertex a1a2...an (with

ai ∈ Σ) to the root, namely the edges

a1a2 . . . an → a2 . . . an0

a2 . . . an0→ a3 . . . an00

and so on.

From these two observations follows that the construction is indeed an in-arborescence,

as depicted in Figure 3.1

The special edge first leaving 0n is chosen to have the lexicographically greatest label,

namely

0n → 0n−1(k − 1)

9



10 3. On the extension of the lexicographically greatest de Bruijn sequence to larger alphabets

000

100 200

010 110 210 020 120 220

001 101 201 011 111 211 021 121 221 002 102 202 012 112 212 022 122 222

Fig. 3.1: In-arborescence A for the graph G3,3.

and this is exactly the first edge selected by P.

As stated in the corollary of the BEST theorem, the in-arborescence A can be mapped

to a set of Eulerian cycles on Gk,n. By fixing the order of the edges that are not in

the arborescence to be the descending lexicographic one (and thus the one followed by

algorithm P), the in-arborescence A can be mapped to a single Eulerian cycle. Since at

every point in the construction the edge taken is the greatest available, this Eulerian cycle

is then the lexicographically greatest, namely the one given by the Fordk,n+1 sequence.

Now we show that the the sequence Fordk−1,n+1 is a suffix of Fordk,n+1. Let C be the

cycle in Gk,n given by Fordk−1,n+1 and let E(C) be the set of edges of C. Consider now

the subgraph of Gk,n

R :=
(
V (Gk,n), E(Gk,n) \ E(C)

)
which is the graph with the vertices of Gk,n and the edges Gk,n that are not in the cycle

given by Fordk−1,n+1, as depicted in Figure 3.1. Every vertex v in C has a single incoming

and outgoing edge in R, respectively the edges

(k − 1)v1 . . . vn−1 → v1 . . . vn

v1 . . . vn → v2 . . . vn(k − 1)

Note that the remaining outgoing edge is the lexicographically greatest amongst all

edges leaving v in Gk,n.

Now an algorithm is given to produce Fordk,n+1. Consider the algorithm P applied

to the graph R. This shall henceforth be called the algorithm PR. We define an in-

arborescence named AR, with the same root 0n as in A.

Some of the edges in Fordk,n+1 are also in Fordk−1,n+1, namely those that correspond

to edges between vertices having no symbol k − 1. For every such vertex v, the branch in
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A with v as root will be taken and attached in AR to the erstwhile leaf v2 . . . vn(k − 1).

This means that the new edge in AR for the vertex is

v → v2 . . . vn(k − 1)

The arborescence invariant is not breached through this procedure since these erstwhile

leaves end with k− 1, therefore the last edge in their path to the root in the arborescence

is

(k − 1)0n−1 → 0n

and so they will not belong to the same branch as any vertex in Fordk−1,n.

000

200

020 120 220

002 102 202 012 112 212 022 122 222

100 010 110

210

021 121 221

201 211

001 101 011 111

Fig. 3.2: In-arborescence AR for the graph G3,3. The colored edges in Figure 3.1 are replaced here

by the edges of the same color.

Note that R is strongly connected since it is regular and its underlying graph is

connected [1], as every vertex has a path to the root of AR. Thus, it is Eulerian.

Since PR follows at every step the same choices as P, the only way they may differ

before PR depletes the edges of R is if it gets stuck doing so, and so Fordk,n+1 would be

forced to take an edge in Fordz,n+1.
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This is absurd however because algorithm PR follows the in-arborescence AR and by

the corollary of the BEST theorem, this determines an Eulerian cycle in R. Thus it is

concluded that Fordk,n+1 is comprised of the lexicographically greatest label of all the

cycles in R followed by Fordk−1,n+1.

3.2 Proof of Corollary

We shall show the algorithm P to be optimal (linear relative to the size of the output)

in time complexity. The de Bruijn graph can be left implicit and computed as needed

in constant time. Each run of the loop computes a character of the output sequence; by

keeping an array for the kn vertices in the graph, the greatest edge not yet taken for a

given vertex can be known in constant time. Thus, each run of the loop takes constant

time, resulting in an optimal time complexity of O(kn+1), the size of the output sequence.

By Theorem 1 the Ford sequence of order n on an alphabet of size k is a suffix of the

Ford sequence of order n on an alphabet of size k+1. Thus, the time-optimal algorithm P

can be used to extend the Fordk,n to Fordk+1,n.

An asymptotically equivalent alternative is to employ Algorithm PR and then append

the Fordk,n.
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