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The classes allocation problem

Let us suppose the following problem: we have to assign
classrooms to the courses of a semester. But, for example, if
Algebra is on Monday from 14 to 17 and Graph Theory is on
Monday from 16 to 19, then they cannot be assigned the same
classroom.
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Model for the problem

For each day of the week, we can place the schedule of
courses as segments on a line, then two courses cannot share
classroom when the segments have non-empty intersection.

Now, we can think the classrooms as colors, so we have to
give a color to each segment in such a way that no
intersecting segments receive the same color.

Finally, the number k of available classrooms is fixed (and
usually less than the number of courses).
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Interval graphs

A graph is an interval graph if it is the intersection graph of a
set of intervals over the real line. A unit interval graph is the
intersection graph of a set of intervals of length one.
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The k-coloring problem

A coloring of a graph G = (V ,E ) is a function f : V → N
such that f (v) 6= f (w) whenever vw ∈ E .

A k-coloring is a coloring f such that f (v) ≤ k for every
v ∈ V .

The vertex coloring problem, or k-coloring problem, takes as
input a graph G and a natural number k , and consists in
deciding whether G is k-colorable or not.

k=3 k=3
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Solving k-coloring on interval graphs
For solving k-coloring on interval graphs, it is enough to apply a
greedy algorithm in the order of the start point of the intervals.
That is, taking the vertices by order of starting, give the minimum
color not used by a colored neighbor.

If an interval I cannot be colored with a color at most k , then it
has k colored neighbors I1, . . . , Ik using colors 1, . . . , k,
respectively. Since all of them start before I and intersect I, the
all pass through the starting point of I. So, there is a clique of
size k + 1 in the graph.
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Perfect graphs

In the previous algorithm, we get that the graph is not
k-colorable when we find a clique of size at least k + 1.

That happens because interval graphs are perfect.

An alternative definition for perfect graphs is the following:
“G is perfect when for every induced subgraph H of G and for
every k , H is k-colorable if and only if every clique of H is
k-colorable”.
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The classes allocation problem with capacities

Suppose now a more realistic situation: each classroom has a
certain capacity and the courses have different numbers of
students.

If we order the classrooms by capacity (decreasing), then the most
popular course maybe needs the classrooms 1, 2 or 3, while a
boring non-mandatory course can use classrooms 1, 2, . . . , 12.

This situation leads to define the µ-coloring problem.
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The µ-coloring problem

Given a graph G and a function µ : V → N, G is µ-colorable
if there exists a coloring f of G such that f (v) ≤ µ(v) for
every v ∈ V .
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Goals

The first goal was to solve µ-coloring on interval graphs. But, in
the meantime, we begin to study the problem in general. In
particular, the notion of perfectness for µ-coloring.
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M-perfect graphs

Analogously to the alternative definition of perfect graphs, we
define M-perfect graphs as follows:

A graph G is M-perfect when for every induced subgraph H of G
and for every function µ : V → N, H is µ-colorable if and only if
every clique of H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions. An
example of a perfect graph being not M-perfect is the following.
Define µ as in the figure. Clearly, every clique is µ-colorable, but
the whole graph is not.

12 21

F. Bonomo, M. Cecowski, G. Durán and J. Marenco On variations of the coloring problem



Graph coloring problems
Complexity issues

Review

k-coloring
µ-coloring
List-coloring

M-perfect graphs

Analogously to the alternative definition of perfect graphs, we
define M-perfect graphs as follows:

A graph G is M-perfect when for every induced subgraph H of G
and for every function µ : V → N, H is µ-colorable if and only if
every clique of H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions. An
example of a perfect graph being not M-perfect is the following.
Define µ as in the figure. Clearly, every clique is µ-colorable, but
the whole graph is not.

12 21

F. Bonomo, M. Cecowski, G. Durán and J. Marenco On variations of the coloring problem



Graph coloring problems
Complexity issues

Review

k-coloring
µ-coloring
List-coloring

M-perfect graphs
The greedy coloring algorithm consists of successively color the
vertices with the least possible color in a given order.

Theorem (Chvátal, 1984)

The greedy coloring algorithm gives an optimal coloring for
cographs, independently of the order of the vertices.

Corollary 1

The greedy coloring algorithm applied to the vertices in
non-decreasing order of µ gives a µ-coloring for a cograph, when it
is µ-colorable.

Corollary 2

A graph is M-perfect if and only if it is P4-free, that is, a cograph.
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Common properties between M-perfect graphs and perfect
graphs

Self-complementary class.

Can be recognized in polynomial time.

The corresponding coloring problem (µ-coloring, resp.
k-coloring) can be solved in polynomial time.
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The list-coloring problem
In order to take into account particular constraints arising in
practical settings, more elaborate models of vertex coloring have
been defined in the literature. One of such generalized models is
the list-coloring problem, which considers a prespecified set of
available colors for each vertex.

Given a graph G and a finite list L(v) ⊆ N for each vertex
v ∈ V , the list-coloring problem asks for a list-coloring of G ,
i.e., a coloring f such that f (v) ∈ L(v) for every v ∈ V .
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The list-coloring problem

The list-coloring problem is NP-complete for perfect graphs,
and is also NP-complete for many subclasses of perfect
graphs, including cographs, split graphs, interval graphs, and
bipartite graphs.

Trees and complete graphs are two classes of graphs where
the list-coloring problem can be solved in polynomial time. In
the first case it can be solved using dynamic programming
techniques [Jansen-Scheffler, 1997]. In the second case, the
problem can be reduced to the maximum matching problem in
bipartite graphs.

In this case, a definition of perfection similar to that for
µ-coloring, leads only to disjoint unions of complete graphs.
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Relation between the problems

The µ-coloring problem particular case of list-coloring, where for
each vertex v ∈ V (G ), the list L(v) = {i ∈ N : 1 ≤ i ≤ µ(v)}.

In turn, the k-coloring problem is a particular case of µ-coloring,
where for each vertex v ∈ V (G ), it holds µ(v) = k .

So, we can think those as polynomial reductions from k-coloring to
µ-coloring and from µ-coloring to list-coloring that do not change
the input graph.

Therefore, for any class of graphs G, if list-coloring is polynomially
solvable in G then so is µ-coloring; if µ-coloring is polynomially
solvable in G then so is k-coloring; if k-coloring is NP-complete in
G, so is µ-coloring and if µ-coloring is NP-complete in G, so is
list-coloring.
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Interesting classes

Class coloring list-col.
Complete bipartite P NP-c [Jansen-Scheffler, 1997]
Bipartite P NP-c [Hujter-Tuza, 1993]
Cographs P NP-c [Hujter-Tuza, Jansen-Scheffler, 1996]
Distance-hereditary P NP-c
Unit interval P NP-c [Marx, 2004]
Interval P NP-c
Complete split P NP-c [Jansen-Scheffler, 1997]
Split P NP-c
Line of Kn,n P NP-c [Colbourn, 1984]
Line of Kn P NP-c [Kubale, 1992]
Complement of bipartite P NP-c [Jansen, 1997]

“NP-c”: NP-complete problem, “P”: polynomial problem.

We were interested in studying the computational complexity of

µ-coloring over different subclasses of graphs (most of them subclasses of

perfect graphs) where vertex coloring is polynomially solvable and

list-coloring is NP-complete or unknown.
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µ-coloring on bipartite graphs

Theorem

µ-coloring is NP-complete for bipartite graphs.

The reduction is from bipartite list-coloring.
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Bounds on the number of colors: cographs

Also as a corollary of Chvátal’s Theorem, we have the following
result.

Corollary

Let G be a cograph, and let µ be a function such that G is
µ-colorable. Then G can be µ-colored using at most the first
χ(G ) colors.

This does not happen for bipartite graphs, even for trees. But
some upper bounds can be proved.
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Bounds on the number of colors: trees

Theorem 5

Let T be a tree, and let µ be a function such that T is
µ-colorable. Then T can be µ-colored using at most the first
log2(|V (T )|) + 1 colors.

There is a family {Tn}n∈N of trees and {µn}n∈N of functions such that
Tn requires n colors to be µn-colored, and it has 2n−1 vertices.

T1 T2 T3 T4
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Bounds on the number of colors: bipartite graphs

Theorem

Let B be a bipartite graph, and let µ be a function such that B is
µ-colorable. Then B can be µ-colored using at most the first
(|V (B)|+2)

2 colors.

There is a family {Bn}n∈N of bipartite graphs and {µn}n∈N of functions
such that Bn requires n colors to be µn-colored, and it has 2n− 2 vertices
(if n ≥ 2).

B1 B2 B3 B4 B5
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µ-coloring on interval graphs

Theorem

The µ-coloring problem over interval graphs is NP-complete.

Its proof is based on the NP-completeness of the coloring problem
on circular-arc graphs [Garey-Johnson-Miller-Papadimitriou, 1980].
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Qualche dubbio fino a qua ?
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The precoloring extension problem
Another particular case of list-coloring is the following.

The precoloring extension (PrExt) problem takes as input a
graph G = (V ,E ), a subset W ⊆ V , a coloring f ′ of W , and
a natural number k , and consists in deciding whether G
admits a k-coloring f such that f (v) = f ′(v) for every v ∈W
or not [Biro-Hujter-Tuza, 1992].

In other words, a prespecified vertex subset is colored beforehand,
and our task is to extend this partial coloring to a valid k-coloring
of the whole graph.
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The precoloring extension problem

The precoloring extension problem is also a particular case of
list-coloring and a generalization of k-coloring. But there is not
direct relation with µ-coloring (of course there are reductions
among both problems because they are both NP-complete, but
these reductions change the input graph).

It is NP-complete on unit interval graphs [Marx, 2004], bipartite
graphs [Hujter-Tuza, 1993] and line graphs of complete bipartite
graphs Kn,n [Colbourn, 1984].

It is solvable in polynomial time on split graphs [Hujter-Tuza,
1996], complements of bipartite graphs [Hujter-Tuza, 1996] and
cographs [Hujter-Tuza, Jansen-Scheffler, 1996].
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Precoloring extension on split graphs

A split graph is a graph whose vertex set can be partitioned into a
complete graph K and a stable set S . A split graph is said to be
complete if its edge set includes all possible edges between K and
S .

It is not difficult to solve the precoloring extension problem on split
graphs, and it can be done in polynomial time. Instead, µ-coloring
is NP-complete on this class.
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µ-coloring is NP-complete for split graphs

Proof: It is used a reduction from the dominating set problem on
split graphs, which is NP-complete (A. Bertossi, 1984).

An instance of the dominating set problem on split graphs is given
by a split graph G and an integer k ≥ 1, and consists in deciding if
there exists a subset D of V (G ), with |D| ≤ k, and such that
every vertex of V (G ) either belongs to D or has a neighbor in D.
Such a set is called a dominating set.

k=3

dominating set
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Let G be a split graph and k ≥ 0; V (G ) = K ∪ I , K is a complete
and I is a stable set. We may assume G with no isolated vertices
and k ≤ |K |.

We will construct a split graph G ′ and a function
µ : V (G ′)→ N such that G ′ is µ-colorable if and only if G
admits a dominating set of cardinality at most k:

V (G ′) = K ∪ I
K is a complete and I is a stable set in G ′

for v ∈ K and w ∈ I , vw ∈ E (G ′) iff vw 6∈ E (G )
µ(v) = |K | for v ∈ K and µ(w) = k for w ∈ I .

instance of split dominating set instance of split µ-coloring
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Suppose first that G admits a dominating set D with |D| ≤ k .
Since G has no isolated vertices, G admits such a set D ⊆ K .

dominating set

µ-coloring

Let us define a µ-coloring of G ′ as follows:

color the vertices of D using different colors from 1 to |D|
color the remaining vertices of K using different colors from
|D|+ 1 to |K |
for each vertex w in I , choose w ′ in D such that ww ′ ∈ E (G )
and color w with the color used by w ′.
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Suppose now that G ′ is µ-colorable, and let c : V (G ′)→ N
be a µ-coloring of G ′. Since µ(v) = |K | for every v ∈ K and
K is complete in G ′, it follows that c(K ) = {1, . . . , |K |}.

µ-coloring

dominating set

Since k ≤ |K |, for each vertex w ∈ I there is a vertex w ′ ∈ K
such that c(w) = c(w ′) ≤ k. Then ww ′ 6∈ E (G ′), so
ww ′ ∈ E (G ). Thus the set {v ∈ K : c(v) ≤ k} is a
dominating set of G of size k .

2
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Split graphs

At this moment, this is the only class that we know where the
computational complexity of µ-coloring and precoloring extension
is different, unless P = NP.
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Line graphs

Considering these coloring variations applied to edge coloring, we
have the following results.

Theorem

The µ-coloring problem over line graphs of complete graphs and
complete bipartite graphs is NP-complete.

Theorem

The precoloring extension problem over line graphs of complete
graphs is NP-complete.

All these proofs are based on the NP-completeness of precoloring
extension on line graphs of complete bipartite graphs.
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Qualche dubbio fino a qua ?
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The (γ, µ)-coloring problem

Given a graph G and functions γ, µ : V → N such that
γ(v) ≤ µ(v) for every v ∈ V , we say that G is
(γ, µ)-colorable if there exists a coloring f of G such that
γ(v) ≤ f (v) ≤ µ(v) for every v ∈ V .

Note that, given a list-coloring instance, then it can be viewed
as a (γ, µ)-coloring instance by reordering the colors when the
vertex-color incidence matrix given by the lists satisfies the
consecutive 1’s property. It can be decided in polynomial time.
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Hierarchy of coloring problems

The classical vertex coloring problem is
clearly a special case of µ-coloring and
precoloring extension, which in turn are
special cases of (γ, µ)-coloring.

Furthermore, (γ, µ)-coloring is a particular
case of list-coloring.

These observations imply that all the
problems in this hierarchy are polynomially
solvable in those graph classes where
list-coloring is polynomial and, on the other
hand, all the problems are NP-complete in
those graph classes where vertex coloring is
NP-complete.

list-coloring

k-coloring

(γ,µ)-coloring

PrExt µ-coloring

<<

<

<

<
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Table of complexities by now

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P ? NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P ? ? ? NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c ? NP-c NP-c
Complete split P P P ? NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.
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Applications

This model is applicable to situations of resource assignment with
incompatibilities, where each user has minimum quality
requirements but bounded money to spend on it.
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(γ, µ)-coloring is polynomial for complete bipartite graphs

Proof: The following is a combinatorial algorithm that solves
(γ, µ)-coloring in polynomial time for complete bipartite graphs.

Let G = (V ,E ) be a complete bipartite graph, with bipartition
V1 ∪ V2, and let γ, µ : V → N such that γ(v) ≤ µ(v) for every
v ∈ V .

We have to consider two cases:

(i) There exists a vertex v such that γ(v) = µ(v).

(ii) For every vertex v , γ(v) < µ(v).

(1,3)

(1,3)

(1,1)

(2,3)

(3,3)

(2,3)

(2,2)(1,3)

21 3
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,3)

(1,3)

(1,1)

(2,3)

(3,3)

(2,3)

(2,2)(1,3)

21 3

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,3)

(1,3)

(1,1)

(2,3)

(3,3)

(2,3)

(2,2)(1,3)

21 3

Example 2:
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

(2,2)

(2,2)

(2,2)(1,2)

1 2

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

(2,2)

(2,2)

(2,2)(1,2)

1 2

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

(2,2)

(2,2)

(2,2)(1,2)

1 2

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

()

(2,2)

(2,2)(1,2)

1

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

()

(2,2)

(2,2)(1,2)

1

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

()

(2,2)

(2,2)(1,2)

1

Example 2:

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,2)

(1,3)

(1,1)

(2,3)

()

(2,2)

(2,2)(1,2)

1

Example 2:

(1,2)

(2,4)

(1,1)

(2,3)

(3,4)

(2,3)

(2,4)(1,3)

2 3 4
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Case (ii):

If for every vertex v , γ(v) < µ(v), then every vertex has
among its possible colors at least an odd color and an even
color.

So the graph is (γ, µ)-colorable, we can color the vertices of
V1 with odd colors and the vertices of V2 with even colors.

(1,2)

(2,4)

(1,1)

(2,3)

(3,4)

(2,3)

(2,4)(1,3)

2 3 4

2
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Case (ii):

If for every vertex v , γ(v) < µ(v), then every vertex has
among its possible colors at least an odd color and an even
color.

So the graph is (γ, µ)-colorable, we can color the vertices of
V1 with odd colors and the vertices of V2 with even colors.

(1,2)

(2,4)

(1,1)

(2,3)

(3,4)

(2,3)

(2,4)(1,3)

2 3 4

2

F. Bonomo, M. Cecowski, G. Durán and J. Marenco On variations of the coloring problem



Graph coloring problems
Complexity issues

Review

Choosability
µ- and (γ, µ)-coloring

Case (ii):

If for every vertex v , γ(v) < µ(v), then every vertex has
among its possible colors at least an odd color and an even
color.

So the graph is (γ, µ)-colorable, we can color the vertices of
V1 with odd colors and the vertices of V2 with even colors.

(1,2)

(1,4)

(1,1)

(1,3)

(3,4)

(2,3)

(2,4)(1,3)

21 3 4
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Choosability

Case (ii) of the previous algorithm can be generalized: if for each
vertex v of G we have that µ(v)− γ(v) + 1 ≥ χ(G ), then the
graph is (γ, µ)-colorable.

Just take a coloring c of G with χ(G ) colors, and then for each
vertex v of G , assign to it a color c ′(v) such that
γ(v) ≤ c ′(v) ≤ µ(v) and c ′(v) ≡ c(v) mod χ(G ). 2

For list-coloring, a graph G is said t-choosable if for any list
assignment such that |L(v)| ≥ t for every v in G , G is
list-colorable.

A famous conjecture says that if G is claw-free, then G is
χ(G )-choosable. It is open even for line graphs.
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Choosability

Case (ii) of the previous algorithm can be generalized: if for each
vertex v of G we have that µ(v)− γ(v) + 1 ≥ χ(G ), then the
graph is (γ, µ)-colorable.

Just take a coloring c of G with χ(G ) colors, and then for each
vertex v of G , assign to it a color c ′(v) such that
γ(v) ≤ c ′(v) ≤ µ(v) and c ′(v) ≡ c(v) mod χ(G ). 2

For list-coloring, a graph G is said t-choosable if for any list
assignment such that |L(v)| ≥ t for every v in G , G is
list-colorable.

A famous conjecture says that if G is claw-free, then G is
χ(G )-choosable. It is open even for line graphs.
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Choosability

Case (ii) of the previous algorithm can be generalized: if for each
vertex v of G we have that µ(v)− γ(v) + 1 ≥ χ(G ), then the
graph is (γ, µ)-colorable.

Just take a coloring c of G with χ(G ) colors, and then for each
vertex v of G , assign to it a color c ′(v) such that
γ(v) ≤ c ′(v) ≤ µ(v) and c ′(v) ≡ c(v) mod χ(G ). 2

For list-coloring, a graph G is said t-choosable if for any list
assignment such that |L(v)| ≥ t for every v in G , G is
list-colorable.

A famous conjecture says that if G is claw-free, then G is
χ(G )-choosable. It is open even for line graphs.
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Choosability
Some advances on this conjecture are done:

Theorem (Gavlin, 1995)

If G is the line graph of a bipartite graph, then G is
χ(G )-choosable.

Theorem (Gravier and Maffray, 1998)

If α(G ) ≤ 2, then G is χ(G )-choosable.

Theorem (Gravier and Maffray, 2004)

If G is a claw-free perfect 3-colorable graph, then G is 3-choosable.

The last proof is based on the decomposition of claw-free perfect
graphs by Chvátal and Sbihi.
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Choosability

Inductively, we can prove this upper bound for the choice number
ch(G ) of a graph G .

ch(G ) ≤ max
H⊆G

δ(H) + 1

Let c = maxH⊆G δ(H) + 1. Suppose that every vertex of G has a
list of size c. Let v ∈ G with d(v) = δ(G ) < c . Since
c ≥ maxH⊆G−v δ(H) + 1, by inductive hypothesis G − v is
c-choosable, so there exists a coloring for this list assignment.
Since d(v) < c , v has a free color in its list, so the coloring can be
extended to G . 2
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Choosability

Inductively, we can prove this upper bound for the choice number
ch(G ) of a graph G .

ch(G ) ≤ max
H⊆G

δ(H) + 1

Let c = maxH⊆G δ(H) + 1. Suppose that every vertex of G has a
list of size c. Let v ∈ G with d(v) = δ(G ) < c . Since
c ≥ maxH⊆G−v δ(H) + 1, by inductive hypothesis G − v is
c-choosable, so there exists a coloring for this list assignment.
Since d(v) < c , v has a free color in its list, so the coloring can be
extended to G . 2
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Choosability
Using the previous upper bound, it is easy to prove that planar
graphs are 6-choosable, since every planar graph H has a vertex of
degree at most 5, that is, δ(H) ≤ 5. So, for a planar graph G ,

ch(G ) ≤ max
H⊆G

δ(H) + 1 ≤ 6

Nevertheless, a better bound is known.

Theorem (Thomassen, 1994)

If G is a planar graph, then G is 5-choosable.

The 5-colorability of planar graphs is a corollary of this theorem,
but its proof is very different, since it is not easy to “interchange”
colors in a list-coloring context. Instead, the possibility of having
vertices with different list sizes is exploited in order to strength the
statement and prove it by induction.
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Choosability
Using the previous upper bound, it is easy to prove that planar
graphs are 6-choosable, since every planar graph H has a vertex of
degree at most 5, that is, δ(H) ≤ 5. So, for a planar graph G ,

ch(G ) ≤ max
H⊆G

δ(H) + 1 ≤ 6

Nevertheless, a better bound is known.

Theorem (Thomassen, 1994)

If G is a planar graph, then G is 5-choosable.

The 5-colorability of planar graphs is a corollary of this theorem,
but its proof is very different, since it is not easy to “interchange”
colors in a list-coloring context. Instead, the possibility of having
vertices with different list sizes is exploited in order to strength the
statement and prove it by induction.
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Choosability
Thomassen proves by induction the following stronger result.

Theorem

Let G be a planar graph. Suppose that every inner face of G is
triangular, and its outer face is bounded by a cycle v1 . . . vkv1.
Suppose that L(v1) = {1}, L(v2) = {2}, |L(vi )| ≥ 3 for
i = 3, . . . , k and |L(w)| ≥ 5 for every other w in G . Then G is
list-colorable with this list assignment.

G
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Qualche dubbio fino a qua ?
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(γ, µ)-coloring on complete split graphs

Theorem

The (γ, µ)-coloring problem in complete split graphs can be solved
in polynomial time.

Let G = (V ,E ) be a complete split graph with partition V = K ∪ I ,
where K is a complete graph and I is a stable set. For 0 < j ≤ i ≤ µmax,
let Li,j = |{v ∈ K : j ≤ γ(v) and µ(v) ≤ i}|.

We reduce the problem of finding a (γ, µ)-coloring of G to a linear
programming feasibility problem.

For j = 1, . . . , µmax, we define the integer variable xj to be the number of
colors from the set {1, . . . , j} assigned to vertices of K and, based on this
definition, we consider the following linear program.
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(γ, µ)-coloring on complete split graphs

x0 = 0 (1)

xj+1 − xj ≥ 0 ∀ j ∈ {0, . . . , µmax − 1} (2)

xj+1 − xj ≤ 1 ∀ j ∈ {0, . . . , µmax − 1} (3)

xi − xj−1 ≥ Li,j ∀ i , j : 0 < j ≤ i ≤ µmax (4)

xµ(v) − xγ(v)−1 ≤ µ(v)− γ(v) ∀ v ∈ I (5)

Li,j = |{v ∈ K : j ≤ γ(v) and µ(v) ≤ i}| and xj is the number of colors
from the set {1, . . . , j} assigned to vertices of K .

The constraint matrix is totally unimodular and some things can be
assumed which make it of polynomial size.

It can be proved that this model solves the problem, using Hall’s

condition for maximum matchings on bipartite graphs.
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General results

Since all the problems are NP-complete in the general case, there
are also polynomial-time reductions from list-coloring to
precoloring extension and µ-coloring. An example is shown in the
figure, where we can see a list-coloring instance and its
corresponding precoloring extension and µ-coloring instances.
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1

4
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1<
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These reductions involve changes in the graph, but are closed
within some graph classes. This fact allows us to prove the
following general results.
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General results

Theorem

Let F be a family of graphs with minimum degree at least two. Then
list-coloring, (γ, µ)-coloring and precoloring extension are polynomially
equivalent in the class of F-free graphs.

Theorem

Let F be a family of graphs satisfying the following property: for every
graph G in F , no connected component of G is complete, and for every
cutpoint v of G , no connected component of G \ v is complete. Then
list-coloring, (γ, µ)-coloring, µ-coloring and precoloring extension are
polynomially equivalent in the class of F-free graphs.

Note: for the proof of the second theorem, it is used the first theorem
and then the second reduction but from (γ, µ)-coloring to µ-coloring, so
an old vertex and its new neighbors form a complete.
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Distance-hereditary graphs

Theorem

The (γ, µ)-coloring, precoloring extension and µ-coloring problems
are NP-complete on distance-hereditary graphs.

Distance-hereditary graphs are equivalent to {house, domino, gem,
{Cn}n≥5}-free. So, this result is a direct corollary of the previous
general theorem and the NP-completeness of list-coloring on
cographs.

house domino gem
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Reduction from µ-coloring to k-coloring
There is a reduction also from list-coloring (and, in particular,
µ-coloring) to k-coloring: let (G , L) be an instance of list-coloring,
{1, . . . , k} =

⋃
v∈G L(v). Build a graph G ′ by adding a complete

graph with vertices w1, . . . ,wk and making a vertex v of G
adjacent to wi iff i 6∈ L(v). Then, G ′ will be k-colorable iff G
admits an L-coloring.

2

1,42,3

1,3 k=4

3

2

1

4

If the graph obtained by this reduction is perfect or belongs to
some class where k-coloring is polynomial, then we can solve the
list-coloring instance in polynomial time.
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some class where k-coloring is polynomial, then we can solve the
list-coloring instance in polynomial time.
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µ-perfect graphs
For example, these instances of list-coloring an µ-coloring lead to
imperfect graphs.
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2
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We can call a graph L-perfect or µ-perfect if the instance (G , L) or
(G , µ), respectively, leads to a perfect graph.

Surprisingly, a graph is µ-perfect for every µ if and only if it is a
cograph, or, equivalently, an M-perfect graph!

Also for list-coloring, a graph is L-perfect for every L if and only if
it is the disjoint union of complete graphs.
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imperfect graphs.
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µ-perfect graphs
For example, these instances of list-coloring an µ-coloring lead to
imperfect graphs.
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We can call a graph L-perfect or µ-perfect if the instance (G , L) or
(G , µ), respectively, leads to a perfect graph.

Surprisingly, a graph is µ-perfect for every µ if and only if it is a
cograph, or, equivalently, an M-perfect graph!

Also for list-coloring, a graph is L-perfect for every L if and only if
it is the disjoint union of complete graphs.
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Review: complexity table for coloring problems

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c ? NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c
Block and cacti P P P P P

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.

As this table shows, unless P = NP, µ-coloring and precoloring extension
are strictly more difficult than vertex coloring, list-coloring is strictly more
difficult than (γ, µ)-coloring and (γ, µ)-coloring is strictly more difficult
than precoloring extension.
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Review: complexity table for coloring problems

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c ? NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c
Block and cacti P P P P P

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.

As this table shows, unless P = NP, µ-coloring and precoloring extension
are strictly more difficult than vertex coloring, list-coloring is strictly more
difficult than (γ, µ)-coloring and (γ, µ)-coloring is strictly more difficult
than precoloring extension.
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Review: complexity table for coloring problems

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c ? NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c
Block and cacti P P P P P

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.

It remains as an open problem to know if there exists any class of graphs
such that (γ, µ)-coloring is NP-complete and µ-coloring can be solved in
polynomial time. Among the classes considered in this work, the
candidate classes are cographs, unit interval and complement of bipartite.
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Review: complexity table for coloring problems

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c ? NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c
Block and cacti P P P P P

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.

For split graphs, precoloring extension can be solved in polynomial time,
whereas µ-coloring is NP-complete. It remains as an open problem to
find a class of graphs where the converse holds. Among the classes
considered in this work, the candidate class is unit interval.
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Review: hierarchy of coloring problems

list-coloring

k-coloring

(γ,µ)-coloring

PrExt µ-coloring

<<

<

< <

<<
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