# Between coloring and list-coloring: $\mu$-coloring 

## Flavia Bonomo Mariano Cecowski

Departamento de Computación, Universidad de Buenos Aires, Argentina

## GRACO 2005

## Graph coloring

Coloring a graph consists of giving a "color" (usually a number) to each vertex in such a way that adjacent vertices receive different colors.

Formally, a coloring of a graph $G=(V, E)$ is a function $f: V \rightarrow \mathbb{N}$ such that $f(v) \neq f(w)$ if $v$ is adjacent to $w$.


## k-coloring

Given a graph $G=(V, E)$, a $k$-coloring of $G$ is a coloring $f$ for which $f(v) \leq k$ for every $v \in V$ (there are only $k$ available colors).

A graph $G$ is $k$-colorable if there is a $k$-coloring of $G$.


## List-coloring

Given a graph $G=(V, E)$ and a finite list $L(v) \subseteq \mathbb{N}$ of colors for each vertex $v \in V, G$ is list-colorable if there is a coloring $f$ for which $f(v) \in L(v)$ for each $v \in V$ (Vizing, 1976).


## $\mu$-coloring

Given a graph $G=(V, E)$ and a function $\mu: V \rightarrow \mathbb{N}$, a $\mu$-coloring of $G$ is a coloring $f$ for which $f(v) \leq \mu(v)$ for each $v \in V$.

A graph $G$ is $\mu$-colorable if there is a $\mu$-coloring of $G$.


## k-coloring, list-coloring, $\mu$-coloring

The $\mu$-coloring problem lies between $k$-coloring and list-coloring.


## $k$-coloring, list-coloring, $\mu$-coloring

The $\mu$-coloring problem lies between $k$-coloring and list-coloring.

- A trivial reduction from $k$-coloring to $\mu$-coloring can be done defining $\mu(v)=k$ for every $v$.



## $k$-coloring, list-coloring, $\mu$-coloring

The $\mu$-coloring problem lies between $k$-coloring and list-coloring.

- A trivial reduction from $k$-coloring to $\mu$-coloring can be done defining $\mu(v)=k$ for every $v$.
- The reduction from $\mu$-coloring to list-coloring can be done defining $L(v)=\{1, \ldots, \min \{\mu(v),|V(G)|\}\}$.


## $k$-coloring, list-coloring, $\mu$-coloring

The $\mu$-coloring problem lies between $k$-coloring and list-coloring.

- A trivial reduction from $k$-coloring to $\mu$-coloring can be done defining $\mu(v)=k$ for every $v$.
- The reduction from $\mu$-coloring to list-coloring can be done defining $L(v)=\{1, \ldots, \min \{\mu(v),|V(G)|\}\}$.

We show in this work that the betweenness is strict, that is, there is a class of graphs (bipartite graphs) for which $\mu$-coloring is NP-complete while coloring is in P, and there is another class of graphs (cographs) for which list-coloring is NP-complete while $\mu$-coloring is in P .

## Applications

A typical application of coloring and list-coloring is the assignment of resources to users with temporal restrictions (two users cannot use the same resource at the same time).

- A problem in which all the users can use all the resources can be modelled as a $k$-coloring problem, where $k$ is the number of resources and the graph represents the compatibility between users.



## Applications

A typical application of coloring and list-coloring is the assignment of resources to users with temporal restrictions (two users cannot use the same resource at the same time).

- A problem in which all the users can use all the resources can be modelled as a $k$-coloring problem, where $k$ is the number of resources and the graph represents the compatibility between users.
- A problem in which each user can use some of the resources can be modelled as a list-coloring problem.



## Applications

A typical application of coloring and list-coloring is the assignment of resources to users with temporal restrictions (two users cannot use the same resource at the same time).

- A problem in which all the users can use all the resources can be modelled as a $k$-coloring problem, where $k$ is the number of resources and the graph represents the compatibility between users.
- A problem in which each user can use some of the resources can be modelled as a list-coloring problem.
- A problem in which the resources have an order (best to worst) and each user can use any resource "good enough" for him can be modelled as a $\mu$-coloring problem.


## Perfect graphs

- The chromatic number of a graph $G$ is the minimum $k$ such that $G$ is $k$-colorable, and is denoted by $\chi(G)$. A complete of $G$ is a subset of vertices pairwise adjacent
clique is a complete not properly contained in any other.
It is easy to see that $\chi(G)$ is at least the cardinality of a
maximum clique of $G$, denoted by $\omega(G)$.


## Perfect graphs

- The chromatic number of a graph $G$ is the minimum $k$ such that $G$ is $k$-colorable, and is denoted by $\chi(G)$.
- A complete of $G$ is a subset of vertices pairwise adjacent. A clique is a complete not properly contained in any other.
maximum clique of $G$, denoted by $\omega(G)$.
A graph $G$ is perfect (Derge, 1960) when $\chi(H)=\omega(H)$ for every induced subgraph $H$ of $G$.


## Perfect graphs

- The chromatic number of a graph $G$ is the minimum $k$ such that $G$ is $k$-colorable, and is denoted by $\chi(G)$.
- A complete of $G$ is a subset of vertices pairwise adjacent. A clique is a complete not properly contained in any other.
- It is easy to see that $\chi(G)$ is at least the cardinality of a maximum clique of $G$, denoted by $\omega(G)$.


## Perfect graphs

- The chromatic number of a graph $G$ is the minimum $k$ such that $G$ is $k$-colorable, and is denoted by $\chi(G)$.
- A complete of $G$ is a subset of vertices pairwise adjacent. A clique is a complete not properly contained in any other.
- It is easy to see that $\chi(G)$ is at least the cardinality of a maximum clique of $G$, denoted by $\omega(G)$.
- A graph $G$ is perfect (Berge, 1960) when $\chi(H)=\omega(H)$ for every induced subgraph $H$ of $G$.


## Perfect graphs

Perfect graphs have very nice properties:

- They are a self-complementary class of graphs (Lovász, 1972).
- The $k$-coloring problem is solvable in polynomial time for perfect graphs (Grötschel, Lovász and Schrijver, 1981).
- They have been characterized by minimal forbidden subgraphs (Chudnovsky, Robertson, Seymour and Thomas, 2002).
- They can be recognized in polynomial time (Chudnovsky, Cornuéjols, Liu, Seymour and Vušković, 2003).


## M-perfect graphs

An alternative definition for perfect graphs is the following: " $G$ is perfect when for every induced subgraph $H$ of $G$ and for every $k$, $H$ is $k$-colorable if and only if every clique of $H$ is $k$-colorable".
$\qquad$
$\qquad$ $H$ is $\mu$-colorable M-perfect graphs are also perfect, because perfection is equivalent

## M-perfect graphs

An alternative definition for perfect graphs is the following: " $G$ is perfect when for every induced subgraph $H$ of $G$ and for every $k$, $H$ is $k$-colorable if and only if every clique of $H$ is $k$-colorable".

Analogously, we define $M$-perfect graphs as follows: a graph $G$ is M-perfect when for every induced subgraph $H$ of $G$ and for every function $\mu: V \rightarrow \mathbb{N}, H$ is $\mu$-colorable if and only if every clique of $H$ is $\mu$-colorable.

M-perfect graphs are also perfect, because perfection is equivalent to $M$-perfection with $\mu$ restricted to constant functions.

[^0]
## M-perfect graphs

An alternative definition for perfect graphs is the following: " $G$ is perfect when for every induced subgraph $H$ of $G$ and for every $k$, $H$ is $k$-colorable if and only if every clique of $H$ is $k$-colorable".

Analogously, we define $M$-perfect graphs as follows: a graph $G$ is M-perfect when for every induced subgraph $H$ of $G$ and for every function $\mu: V \rightarrow \mathbb{N}, H$ is $\mu$-colorable if and only if every clique of $H$ is $\mu$-colorable.

M-perfect graphs are also perfect, because perfection is equivalent to M-perfection with $\mu$ restricted to constant functions.

In order to characterize $M$-perfect graphs, we need some results on $\mu$-colorings and cliques.

## M-perfect graphs

An alternative definition for perfect graphs is the following: " $G$ is perfect when for every induced subgraph $H$ of $G$ and for every $k$, $H$ is $k$-colorable if and only if every clique of $H$ is $k$-colorable".

Analogously, we define $M$-perfect graphs as follows: a graph $G$ is M-perfect when for every induced subgraph $H$ of $G$ and for every function $\mu: V \rightarrow \mathbb{N}, H$ is $\mu$-colorable if and only if every clique of $H$ is $\mu$-colorable.

M-perfect graphs are also perfect, because perfection is equivalent to M-perfection with $\mu$ restricted to constant functions.

In order to characterize M-perfect graphs, we need some results on $\mu$-colorings and cliques.

## Minimal colorings on cographs

- We say that a coloring $f$ is minimal when for every vertex $v$, and every color $i<f(v)$, $v$ has a neighbor $w_{i}$ with color $f\left(w_{i}\right)=i$. Every $k$-coloring or $\mu$-coloring can be transformed into a minimal one.



## Minimal colorings on cographs

- We say that a coloring $f$ is minimal when for every vertex $v$, and every color $i<f(v)$, $v$ has a neighbor $w_{i}$ with color $f\left(w_{i}\right)=i$. Every $k$-coloring or $\mu$-coloring can be transformed into a minimal one.
- A cograph is a $P_{4}$-free graph (a graph with no induced $P_{4}$ ).


## Minimal colorings on cographs

- We say that a coloring $f$ is minimal when for every vertex $v$, and every color $i<f(v)$, $v$ has a neighbor $w_{i}$ with color $f\left(w_{i}\right)=i$. Every $k$-coloring or $\mu$-coloring can be transformed into a minimal one.
- A cograph is a $P_{4}$-free graph (a graph with no induced $P_{4}$ ).


## Theorem 1

Let $G$ be a cograph and $x$ a vertex of $G$. Let $f$ be a minimal coloring of $G-x$. If $f$ cannot be extended to $G$ coloring $x$ with a color at most $T$ then there is a complete in the neighborhood of $x$ of size $T$ using all the colors between 1 and $T$.

## Characterization

## Theorem 2

If $G$ is a graph, the following are equivalent:

1. $G$ is a cograph
2. $G$ is M-perfect
3. for every function $\mu: V \rightarrow \mathbb{N}, G$ is $\mu$-colorable if and only if every clique of $G$ is $\mu$-colorable.

## It follows from this equivalence that M -perfect graphs are a self-complementary class of graphs ( $G$ is M-perfect iff $\bar{G}$ is) and

 can be recognized in linear time (Corneil, Perl and Stewart, 1984)
## Characterization

## Theorem 2

If $G$ is a graph, the following are equivalent:

1. $G$ is a cograph
2. $G$ is M-perfect
3. for every function $\mu: V \rightarrow \mathbb{N}, G$ is $\mu$-colorable if and only if every clique of $G$ is $\mu$-colorable.

It follows from this equivalence that M -perfect graphs are a self-complementary class of graphs ( $G$ is M-perfect iff $\bar{G}$ is) and can be recognized in linear time (Corneil, Perl and Stewart, 1984).

## Sketch of proof

## Theorem 2

If $G$ is a graph, the following are equivalent:

1. $G$ is a cograph
2. $G$ is M-perfect
3. for every function $\mu: V \rightarrow \mathbb{N}, G$ is $\mu$-colorable if and only if every clique of $G$ is $\mu$-colorable.
( $3 \Leftrightarrow 2$ ) It is not difficult to prove.
$(2 \Rightarrow 1)$ Define $\mu$ as in the figure. Clearly, every clique is $\mu$-colorable, but the whole graph is not.

$(1 \Rightarrow 2)$ This proof is strongly based on Theorem 1 .

## Complexity issues: cographs

The greedy coloring algorithm consists of successively color the vertices with the least possible color in a given order.

## Complexity issues: cographs

The greedy coloring algorithm consists of successively color the vertices with the least possible color in a given order.

## Theorem 4

The greedy coloring algorithm applied to the vertices in non-decreasing order of $\mu$ gives a $\mu$-coloring for a cograph, when it is $\mu$-colorable.

A little improvement in the greedy algorithm allows us to find a non $\mu$-colorable clique when the graph is not $\mu$-colorable.

## Complexity issues: cographs

The greedy coloring algorithm consists of successively color the vertices with the least possible color in a given order.

## Theorem 4

The greedy coloring algorithm applied to the vertices in non-decreasing order of $\mu$ gives a $\mu$-coloring for a cograph, when it is $\mu$-colorable.

A little improvement in the greedy algorithm allows us to find a non $\mu$-colorable clique when the graph is not $\mu$-colorable.


## Complexity issues: cographs

The greedy coloring algorithm consists of successively color the vertices with the least possible color in a given order.

## Theorem 4

The greedy coloring algorithm applied to the vertices in non-decreasing order of $\mu$ gives a $\mu$-coloring for a cograph, when it is $\mu$-colorable.

A little improvement in the greedy algorithm allows us to find a non $\mu$-colorable clique when the graph is not $\mu$-colorable.

Jansen and Scheffler (1997) proved that list-coloring is NP-complete for cographs, hence $\mu$-coloring is "easier" than list-coloring, unless $\mathrm{P}=\mathrm{NP}$.

## Complexity issues: cographs

A nice corollary of this, is the following known fact (Chvátal, 1984).

## Corollary

The greedy coloring algorithm gives an optimal coloring for cographs, independently of the order of the vertices.

## Complexity issues: bipartite graphs

Hujter and Tuza (1993) proved that list-coloring is NP-complete for bipartite graphs. The same holds for $\mu$-coloring.

Theorem 4
The $\mu$-coloring problem is NP-complete for bipartite graphs.

## Complexity issues: bipartite graphs

Hujter and Tuza (1993) proved that list-coloring is NP-complete for bipartite graphs. The same holds for $\mu$-coloring.

Theorem 4
The $\mu$-coloring problem is NP-complete for bipartite graphs.

Coloring is trivially in P for bipartite graphs, hence $\mu$-coloring is "harder" than coloring, unless $\mathrm{P}=\mathrm{NP}$.

## Sketch of proof

## Theorem 4

$\mu$-coloring is NP-complete for bipartite graphs.
The reduction is from bipartite list-coloring.


## Bounds on the number of colors: cographs

As a corollary of Theorem 3, we have the following result.

## Corollary

Let $G$ be a cograph, and let $\mu$ be a function such that $G$ is $\mu$-colorable. Then $G$ can be $\mu$-colored using at most the first $\chi(G)$ colors.
$\qquad$ can prove some upper bounds

## Bounds on the number of colors: cographs

As a corollary of Theorem 3, we have the following result.

## Corollary

Let $G$ be a cograph, and let $\mu$ be a function such that $G$ is $\mu$-colorable. Then $G$ can be $\mu$-colored using at most the first $\chi(G)$ colors.

This does not happen for bipartite graphs, even for trees. But we can prove some upper bounds.

## Bounds on the number of colors: trees

## Theorem 5

Let $T$ be a tree, and let $\mu$ be a function such that $T$ is $\mu$-colorable. Then $T$ can be $\mu$-colored using at most the first $\log _{2}(|V(T)|)+1$ colors.

## Bounds on the number of colors: trees

## Theorem 5

Let $T$ be a tree, and let $\mu$ be a function such that $T$ is $\mu$-colorable. Then $T$ can be $\mu$-colored using at most the first $\log _{2}(|V(T)|)+1$ colors.

There is a family $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ of trees and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ of functions such that $T_{n}$ requires $n$ colors to be $\mu_{n}$-colored, and it has $2^{n-1}$ vertices.


## Bounds on the number of colors: bipartite graphs

Theorem 6
Let $B$ be a bipartite graph, and let $\mu$ be a function such that $B$ is $\mu$-colorable. Then $B$ can be $\mu$-colored using at most the first $\frac{(|V(B)|+2)}{2}$ colors.

## Bounds on the number of colors: bipartite graphs

## Theorem 6

Let $B$ be a bipartite graph, and let $\mu$ be a function such that $B$ is $\mu$-colorable. Then $B$ can be $\mu$-colored using at most the first $\frac{(|V(B)|+2)}{2}$ colors.

There is a family $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ of bipartite graphs and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ of functions such that $B_{n}$ requires $n$ colors to be $\mu_{n}$-colored, and it has $2 n-2$ vertices (if $n \geq 2$ ).


## Summary

- A new problem of coloring is defined, $\mu$-coloring, lying between $k$-coloring and list-coloring.
- It is proved that this betweenness is strict, unless $\mathrm{P}=\mathrm{NP}$.
- The concept of perfection is translated to $\mu$-colorings, giving a new characterization of cographs in terms of M -perfection.
- It is shown that M-perfect graphs share some nice properties with perfect graphs: a graph is M-perfect if and only if its complement is M-perfect, they have polynomial time recognition, they have a simple characterization by forbidden subgraphs, and the $\mu$-coloring problem can be solved polynomially on M-perfect graphs, as the $k$-coloring problem can be solved polynomially on perfect graphs.
- Bounds on the maximum number of colors needed to $\mu$-coloring a graph are shown for trees, bipartite graphs and cographs.


[^0]:    In order to characterize M-perfect graphs, we need some results on

