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Abstract

A circle graph is the intersection graph of a family of chords on a circle.
There is no known characterization of circle graphs by forbidden induced
subgraphs that do not involve the notions of local equivalence or pivoting
operations. We characterize circle graphs by a list of minimal forbidden
induced subgraphs when the graph belongs to one of the following classes:
linear domino graphs, P4-tidy graphs, and tree-cographs. We also completely
characterize by minimal forbidden induced subgraphs the class of unit Helly
circle graphs, which are those circle graphs having a model whose chords have
all the same length, are pairwise different, and satisfy the Helly property.
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1. Introduction

All graphs in this work are undirected, without multiple edges and with-
out loops. Let G be a graph, with vertex set V (G) and edge set E(G).
Denote by G or co-G the complement of G. Let X ⊆ V (G). The subgraph
induced by X in G is denoted by G[X]. We define G−X to be G[V (G)\X].

An isolated vertex is a vertex with no neighbors, a pendant vertex is a ver-
tex with exactly one neighbor, and a universal vertex is a vertex adjacent to
every other vertex of the graph. The neighborhood of the vertex v is denoted
by NG(v). Two vertices v, w are false twins in G if they are nonadjacent and
NG(v) = NG(w), while they are true twins in G if they are false twins in G.
If H is a subgraph of G, we define NH(v) = NG(v) ∩ V (H).

Let A,B ⊆ V (G). We say that A is complete to B if every vertex of A is
adjacent to every vertex of B; and A is anticomplete to B if A is complete
to B in G. If S is any set, we denote the cardinality of S by |S|.

A class of graphs G is hereditary if every induced subgraph of every mem-
ber of G belongs to G. Given two graphs G and H, the graph G is H-free
if G contains no induced H. If H is a collection of graphs, G is said to be
H-free if G is H-free for each H ∈ H.

The set X ⊆ V (G) is a complete set (resp. stable set) of G if the elements
of X are pairwise adjacent (resp. nonadjacent). A clique of G is a complete
set that is maximal under inclusion.

A chord of a cycle (resp. path) is an edge joining two nonconsecutive
vertices of the cycle (resp. path). We denote the chordless path on n vertices
by Pn, the chordless cycle on n vertices by Cn, and the complete graph on n

vertices by Kn. K1 is called trivial and K3 is called the triangle. A star is
the complete bipartite graph K1,n for some n. For any graph G, we denote
by G+ the graph that arises from G by adding a universal vertex, and by G∗

the graph that arises from G by adding an isolated vertex.
Some small graphs to be referred in the sequel are depicted in Figure 1.
A graph G is a circle graph if it is the intersection graph of a family

L = {Cv}v∈V (G) of chords of a circle (i.e., for each v, w ∈ V (G), vw ∈ E(G)
if and only if v 6= w and Cv ∩Cw 6= ∅). L is called a circle model of G. Circle
graphs were introduced by Even and Itai in [12] to solve a problem of queues
and stacks posed by Knuth in [21].
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Figure 1: Some small graphs

Naji [25] characterized circle graphs in terms of the solvability of a system
of linear equations, yielding a polynomial-time recognition algorithm for this
class. Different polynomial-time recognition algorithms for circle graphs,
strongly based on the notion of split decomposition, were presented in the
literature. The best one has a quadratic time complexity and is due to
Spinrad [28].

The local complement of a graph G with respect to a vertex u ∈ V (G)
is the graph G ∗ u that arises from G by replacing the induced subgraph
G[NG(u)] by its complement. Two graphs G and H are locally equivalent if
and only if G arises from H by a finite sequence of local complementations.

Theorem 1. [4] The class of circle graphs is closed by local complementa-
tions.

Moreover, Bouchet gave the following characterization of circle graphs in
terms of forbidden induced subgraphs and local equivalence.

Theorem 2. [4] Let G be a graph. Then, G is a circle graph if and only if no
graph locally equivalent to G contains W5, W7, or BW3 as induced subgraph
(see Figure 2).

In [8] a superclass of circle graphs (denoted as Bouchet graphs) is defined.
A graph G is Bouchet if and only if no induced subgraph of G is locally
equivalent to W5, W7, or BW3. The list of 33 minimal forbidden induced
subgraphs for this class is obtained using a computer, closing under local
complementation the graphs W5, W7 and BW3. Clearly, the graphs of this
family are also minimal forbidden subgraphs for circle graphs. But this list
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Figure 2: Graphs W5, W7 and BW3

is not enough to characterize circle graphs completely. In the same work it
is shown that circle graphs are a proper subclass of Bouchet graphs.

Recently, Geelen and Oum [14] gave a new characterization of circle
graphs in terms of pivoting. The result of pivoting a graph G with respect
to an edge uv is the graph G × uv = G ∗ u ∗ v ∗ u (where ∗ stands for local
complementation). A graph G′ is pivot-equivalent to G if G′ arises from G by
a sequence of pivoting operations. They proved, with the aid of a computer,
that G is a circle graph if and only if each graph that is pivot-equivalent to
G contains none of 15 prescribed induced subgraphs.

In spite of the mentioned works, there are not known characterizations
of circle graphs only by forbidden induced subgraphs, i.e. not involving ad-
ditionally the notions of local equivalence or pivoting operations. In this
paper, we present some results in this direction, providing forbidden induced
subgraphs characterizations of circle graphs within different graph classes
(a similar approach in order to find partial characterizations of circular-arc
graphs by minimal forbidden induced subgraphs was developed by us in [2]).
In Section 2 we present the main result of this paper, namely, we characterize
circle graphs within linear domino graphs, in a constructive way. In Section 3,
the same task is done within two superclasses of cographs (namely, P4-tidy
graphs and tree-cographs), by using the forbidden induced subgraphs charac-
terization of permutation graphs. Finally, in the last section, we completely
characterize by minimal forbidden induced subgraphs the class of unit Helly
circle graphs, which are those circle graphs having a model whose chords have
all the same length, are pairwise different, and satisfy the Helly property.

For definitions and notions not introduced in this section and used through-
out the paper, the reader is referred to [5].

2. Linear domino graphs

A graph G is domino if all its vertices belong to at most two cliques.
If, in addition, each of its edges belongs to at most one clique, then G is a
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linear domino graph. Linear domino graphs coincide with {claw,diamond}-
free graphs [20]. Linear domino graphs have also a nice property related with
clique coverings [22].

In this section we will characterize circle graphs by minimal forbidden
induced subgraphs within the class of linear domino graphs, using a con-
structive way.

Let G1 and G2 be two graphs such that |V (Gi)| ≥ 3, for each i = 1, 2, and
assume that V (G1) ∩ V (G2) = ∅. Let vi be a distinguished vertex of Gi, for
each i = 1, 2. The split composition of G1 and G2 with respect to v1 and v2 is
the graph G1∗G2 whose vertex set is V (G1∗G2) = (V (G1)∪V (G2))\{v1, v2}
and whose edge set is E(G1 ∗ G2) = E(G1 − {v1}) ∪ E(G2 − {v2}) ∪ {uv :
u ∈ NG1

(v1) and v ∈ NG2
(v2)}. The vertices v1 and v2 are called the marker

vertices. We say that G has a split decomposition if there exist two graphs
G1 and G2 with |V (Gi)| ≥ 3, i = 1, 2, such that G = G1 ∗ G2 with respect
to some pair of marker vertices. If so, G1 and G2 are called the factors of
the split decomposition. Notice that G1 and G2 are induced subgraphs of
G. Those graphs that do not have a split decomposition are called prime
graphs. Notice that if any of the factors of a split decomposition admits a
split decomposition we can continue the process until every factor is prime,
a star or a complete graph. The resulting decomposition into prime graphs,
stars and complete graphs might not be unique. Nevertheless, in [7] it is
proved that if the number of factors is minimum then the decomposition is
unique (up to reordering of the factors). Bouchet proved that circle graphs
are closed under split composition.

Theorem 3. [3] Let G be a graph that has a split decomposition G = G1∗G2.
Then, G is a circle graph if and only if both G1 and G2 are circle graphs.

The operation of edge subdivision in a graph G consists on selecting an
edge uv of G and replacing it with the path uzv, where z is a new vertex.
As a consequence of Theorem 1, we can prove the following result.

Theorem 4. Let G be a graph. If G is not a circle graph, then any graph
H that arises from G by edge subdivisions is not a circle graph.

Proof. Suppose that H arises from G by edge subdivisions. So, H is be
obtained from G by replacing some edges of G by paths of length at least
two. It is easy to see that if local complementation is applied successively
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on each internal vertex of these paths, traversing one path at a time (in
any of the two possible directions each), the graph H ′ that arises from these
operations contains an induced G. Since G is not a circle graph and the class
is hereditary, H ′ is not a circle graph. Hence, by Theorem 1, H is not a circle
graph.�

A prism is a graph that consists of two disjoint triangles {a1, a2, a3} and
{b1, b2, b3} linked by three vertex disjoint paths P1, P2, P3 where Pi links ai

and bi for i = 1, 2, 3, and such that all the internal vertices of P1, P2 and P3

have degree 2. The graph C6 is a prism where P1, P2 and P3 have just one
edge each. This graph is locally equivalent to W5, so by Theorem 2, C6 is not
a circle graph. Besides, since every prism arises from C6 by edge subdivision,
Theorem 4 implies that prisms are not circle graphs.

The following theorem characterizes those linear domino graphs that are
circle graphs.

Theorem 5. Let G be a linear domino graph. Then, G is a circle graph if
and only if G contains no induced prisms.

Proof. The “only if” part follows immediately from Theorem 4 and the fact
that the class of circle graphs is hereditary. Suppose now that G is a linear
domino graph not containing induced prisms. We shall prove that G is a
circle graph. Consider the factors of a split decomposition of G into prime
graphs, stars and complete graphs. It is easy to see that stars and complete
graphs are circle graphs. Therefore, by Theorem 3, we may suppose that
G is a prime graph. Since a graph is a circle graph if and only if each of
its connected components is a circle graph, we can assume also that G is
connected. Since trees are circle graphs, we can suppose that G contains at
least one chordless cycle. Consider a chordless cycle of G of maximum length,
say C = v1v2 . . . vnv1, and let X ⊆ V (G) be the set of all the vertices having
at least one neighbor in C. We will prove that actually V (C) ∪ X = V (G)
and that G is a circle graph. We will split the proof into three cases: n = 3,
n = 4 or 5, and n ≥ 6. (From now on, all the operations between indexes
should be understood modulo n.)

Case 1: n = 3. In this case we will prove that G is isomorphic to C.
Suppose by the way of contradiction that G is not isomorphic to C and thus,
since G is connected, X 6= ∅. If v is a vertex in X, it necessarily has either
one or three neighbors on C, otherwise G would contain an induced diamond.
Besides, if v, w ∈ X with |NC(v)| = 1 (say NC(v) = {v1}) and |NC(w)| = 3,
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then they are not adjacent. Because, if they were adjacent, then v, w, v1, v2

would induce a diamond in G. On one hand, if v, w ∈ X and |NC(v)| =
|NC(w)| = 1, then they are adjacent if and only if NC(v) = NC(w). Indeed,
if NC(v) = NC(w) = {vi} and v and w were not adjacent, then the vertices
v, w, vi, vi+1 would induce a claw, a contradiction. Conversely, if NC(v) =
{vi}, NC(w) = {vi+1} and vw ∈ E(G), the set of vertices {v, w, vi, vi+1}
would induce a C4. This is a contradiction, because we are assuming that
C is a chordless cycle of maximum length. On the other hand, if v, w ∈ X

and |NC(v)| = |NC(w)| = 3, then v and w are adjacent because otherwise
v, w, v1, v2 would induce a diamond. As a consequence of these observations,
it follows that X = Q1 ∪Q2 ∪Q3 ∪Q where Q1, Q2, Q3, Q are complete sets,
Qi is complete to vi and anticomplete to V (C) \ {vi} for every i = 1, 2, 3,
Q is complete to V (C), and Q1, Q2, Q3, Q are pairwise anticomplete. We
will prove that Q1, Q2, Q3, Q (when they are non-empty) belong to different
connected components of G − V (C) because of the maximality of C. By
the way of contradiction, let P be a path in G − V (C) of minimum length
joining two vertices of X that belong to different sets of the partition X =
Q1∪Q2∪Q3∪Q. By construction, P has length at least 2 and has no internal
vertex in V (C) ∪ X. By symmetry, we just have to consider two cases: the
extremes of P are either wi ∈ Qi and wj ∈ Qj with i 6= j, or wi ∈ Qi

and w ∈ Q. In the former case, V (P ) ∪ {vi, vj} would induce a chordless
cycle of length at least five. In the latter case, V (P ) ∪ {vi} would induce a
chordless cycle of length at least four. Both contradictions prove that indeed
Q1, Q2, Q3, Q (if non-empty) belong to different connected components of
G − V (C) that will be denote by R1, R2, R3, R, respectively. Since G is a
prime graph, Qi = ∅ for all i = 1, 2, 3. Otherwise, V (Ri) ∪ {vi, vi+1} and
V (G) \ V (Ri) form a split decomposition of G, with vi+1 and vi as marker
vertices, respectively. For a similar reason, Q = ∅. Thus, V (G) = {v1, v2, v3}
and G is clearly a circle graph.

Case 2: n = 4 or 5. Since G is a linear domino graph, |NC(v)| = 2 for
every vertex v belonging to X and the two neighbors are consecutive in C. We
will prove that if v, w ∈ X, then vw ∈ E(G) if and only if NC(v) = NC(w).
Suppose that NC(v) 6= NC(w). On one hand, if NC(v) ∩ NC(w) = {z}
and vw ∈ E(G), then G[{v, w, y, z}] would be isomorphic to a diamond
for each y ∈ (NC(v) ∪ NC(w)) \ {z}, contradiction. On the other hand,
if NC(v) ∩ NC(w) = ∅ and vw ∈ E(G), then C ∪ {v, w} would induce a
prism in G, another contradiction. So, if NC(v) 6= NC(w), then v and w are
nonadjacent. Finally, if NC(v) = NC(w) = {y, z}, then v and w are adjacent,
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otherwise {v, w, y, z} would induce a diamond, a contradiction. Hence X =
Q1 ∪ · · · ∪ Qn, where each Qi is a complete set and NC(x) = {vi, vi+1} for
every x ∈ Qi. We will prove that the non-empty Qi’s belong to a different
connected component of G − V (C). By the way of contradiction, consider
path P in G − V (C) of minimum length joining two vertices wi ∈ Qi and
wj ∈ Qj with i 6= j. By symmetry, we just have to consider two cases:
j = i+1 and j = i+2. By construction, P has at least two edges and has no
internal vertex in V (C)∪X. In the first case, V (P )∪(V (C)\{vi+1}) induces
a cycle of length strictly greater than n. In the second case, V (P ) ∪ V (C)
induces a prism whose triangles are {wi, vi, vi+1} and {wi+2, vi+2, vi+3}. Both
contradictions prove that indeed each non-empty Qi belongs to a different
connected component Ri of G−V (C). Since G is prime, it follows that if Qi

is non-empty then |V (Ri)| = 1. Otherwise, let wi ∈ Qi. Then, V (Ri) ∪ {vi}
and (V (G) \ V (Ri))∪{wi} would be a split decomposition of G, with vi and
wi as marker vertices, respectively.

So, G consists of C and a (possibly empty) stable set X with at most one
vertex wi for each 1 = 1, . . . , n, whose only neighbors in G are vi and vi+1.
It is easy to build a circle model for G.

Case 3: n ≥ 6. First, notice that, since G is a linear domino graph,
every vertex v ∈ X satisfies either NC(v) = {vi, vi+1} or NC(v) = {vi, vi+1,

vi+k, vi+k+1} with 3 ≤ k ≤ n − 3. We will call the first kind of vertices
2-vertices and the second kind of vertices 4-vertices. It can be easily proved,
as above, that if v and w are 2-vertices, then v and w are adjacent if and only
if NC(v) = NC(w). Let us see that if v ∈ X is a 2-vertex and w ∈ X is a 4-
vertex, then v is adjacent to w if and only if NC(v) ⊆ NC(w). Let NC(w) =
{vi, vi+1, vi+k, vi+k+1}. Suppose first that vw ∈ E(G). Since w is not the
center of a claw, v should be adjacent to at least one vertex of each pair of
nonadjacent neighbors of w. Besides, since NC(v) consists of two consecutive
vertices of C, they should be either {vi, vi+1} or {vi+k, vi+k+1}. Conversely,
suppose that NC(v) ⊆ NC(w). Again, since NC(v) consists of two consecutive
vertices of C, then NC(v) should be either {vi, vi+1} or {vi+k, vi+k+1}. Since
G is diamond-free, v and w must be adjacent.

Let v and w be two 4-vertices. We assert that |NC(v)∩NC(w)| ∈ {0, 1, 2}
and that vw ∈ E(G) if and only if NC(v)∩NC(w) consists of two consecutive
vertices of C. If NC(v) ∩ NC(w) contains two nonadjacent vertices x and y,
then v and w should be nonadjacent, otherwise {x, y, v, w} would induce a
diamond in G. On the other hand, if NC(v) ∩ NC(w) contains two adjacent
vertices x and y, then v and w should be adjacent, otherwise {x, y, v, w}
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would induce a diamond in G. Therefore, v and w can share neither three
nor four neighbors, and the “if” of the second part of our assertion holds.
Conversely, suppose vw ∈ E(G). Since w is not the center of a claw, v should
be adjacent to at least one vertex of any pair of nonadjacent neighbors of w,
so NC(v)∩NC(w) contains two adjacent vertices. If NC(v)∩NC(w) contained
two nonadjacent vertices x and y, then {x, y, v, w} would induce a diamond
in G, so NC(v) ∩ NC(w) consists exactly of two consecutive vertices of C.

Therefore, X is a disjoint union of the sets of vertices Q1, · · · , Qn, Q,
where the vertices in Q are the 4-vertices and the vertices in Q1 ∪ · · · ∪ Qn

are the 2-vertices such that NC(x) = {vi, vi+1} for each x ∈ Qi. Each Qi is a
complete set and anticomplete to Qj if i 6= j. Since two 4-vertices share at
most two neighbors in C, in particular there are no two vertices in Q with the
same neighbors in C. Therefore, the set Q is a subset of {qi,j : 1 ≤ i < j ≤
n, i + 3 ≤ j ≤ n + i− 3}, where NC(qi,j) = {vi, vi+1, vj, vj+1}, qi,j is complete
to Qi and Qj and anticomplete to Qk for k 6= i, j, and qi,jqi′,j′ ∈ E(G)
if and only if |{i, j} ∩ {i′, j′}| = 1. Notice that no vertex qi,j of Q has a
neighbor z not in C ∪ X, otherwise {qi,j , vi, vj, z} would induce a claw in G,
a contradiction.

We will prove now that the non-empty Qi’s belong to different connected
components of G − (V (C) ∪ Q). By the way of contradiction, let P be a
path in G− (V (C)∪Q) of minimum length joining two vertices wi ∈ Qi and
wj ∈ Qj with i 6= j. By construction, P has length at least two and has
no internal vertices that belong to V (C) ∪ X. On one hand, if |NC(wi) ∩
NC(wj)| = 1, then G would contain a chordless cycle of length greater than
n, a contradiction. On the other hand, if NC(wi)∩NC(wj) = ∅, then G would
contain an induced prism, also a contradiction. So, indeed each of the non-
empty Qi’s belong to a different connected component Ri of G− (V (C)∪Q).
Since G is prime, it follows that if Qi were non-empty then |V (Ri)| = 1.
Otherwise, let wi ∈ Qi. Then V (Ri)∪{vi} and (V (G) \V (Ri))∪{wi} would
be a split decomposition of G, with vi and wi as marker vertices, respectively.

Consider now two nonadjacent 4-vertices v and w. Then, the edges of
C with either both endpoints in NC(v) (say v-edges) or both endpoints in
NC(w) (say w-edges) are exactly four. We will prove that traversing the edges
of C in clockwise order, v-edges and w-edges do not alternate, otherwise G

would contain an induced prism. Suppose by the way of contradiction that
the edges in clockwise order are e1, e2, e3, e4 where e1, e3 are v-edges and e2,
e4 are w-edges. Either e1 and e2, or e2 and e3 are nonconsecutive in C, since
e1 and e3 are at least two edges apart in C. Suppose without loss of generality
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that e1 and e2 are nonconsecutive in C. Let zi
1 and zi

2 be the endpoints of ei

in clockwise order. Then, by removing vertices z3
2 and z4

1 and the clockwise
path in C linking them from G[V (C) ∪ {v, w}], a prism arises: the triangles
are {z1

1 , z
1
2 , v} and {w, z2

1 , z
2
2}; w is linked with z1

1 via z4
2 and the path in C

joining z4
2 and z1

1 (they might be the same vertex); z1
2 and z2

1 are different
and linked by a path in C; z2

2 an v are linked via z3
1 and the path in C joining

z2
2 and z3

1 (they might be the same vertex).
Next, we will build a circle model for G. Draw a circle C and mark on C,

in clockwise order, the following points: cn, a1, fn,3, . . . , fn,n−3, bn, dn, c1,
a2, f1,4, . . . , f1,n−2, b1, d1, c2, a3, f2,5, . . . , f2,n−1, b2, d2, . . . , cn−1, an, fn−1,2,
. . . , fn−1,n−4, bn−1, dn−1. Finally, draw the chords aibi for i = 1, . . . , n, the
chord cidi for each i in {1, . . . , n} such that Qi is non-empty, and the chord
fi,jfj,i for each i, j in {1, . . . , n} such that qi,j ∈ Q.�

A theta is a graph arising from K2,3 by edge subdivision. Chudnovsky
and Kapadia [6] gave a polynomial-time algorithm that decides whether a
graph contains a theta or a prism as induced subgraphs. Since linear domino
graphs contain no induced theta, the characterization above and the existence
of polynomial-time algorithms for recognizing circle graphs imply alternative
polynomial-time algorithms to decide the existence of an induced theta or
prism restricted to linear domino graphs. Interestingly enough, the problem
of deciding whether a graph contains an induced prism is NP-complete in
general [23].

3. Superclasses of cographs

Cographs are the P4-free graphs. It is well-known that cographs are circle
graphs. Moreover, every nontrivial cograph is either disconnected or the join
of two smaller cographs. (This fact was discovered independently by several
authors since the 1970s; early references include [27].) We are interested in
the characterization of circle graphs within two superclasses of cographs: P4-
tidy graphs and tree-cographs. To this end, we will use a forbidden induced
subgraph characterization of the class of permutation graphs.

A graph is said to be a comparability graph if its edges can be transitively
oriented. In [13], a characterization of comparability graphs by means of a
list of forbidden induced subgraphs is given. A graph G is a permutation
graph if and only if G and G are comparability graphs [26]. Therefore,
the characterization of comparability graphs in [13] leads immediately to a
forbidden induced subgraph characterization of permutation graphs.
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Theorem 6. [13] A graph is a comparability graph if and only if it does not
contain as an induced subgraph any graph in Figure 3 and its complement
does not contain as an induced subgraph any graph in Figure 4.

Corollary 7. A graph G is a permutation graph if and only if G and G do
not contain as an induced subgraph any graph in Figures 3 and Figure 4.

Figure 3: Some minimal forbidden induced subgraphs for comparability graphs.

Figure 4: Some graphs whose complements are minimal forbidden induced subgraphs for
comparability graphs.

Let G1 and G2 be two graphs and assume that V (G1) ∩ V (G2) = ∅. The
disjoint union of G1 and G2 is the graph G1 ∪ G2 such that V (G1 ∪ G2) =
V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). We denote by G1 + G2
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the join graph of G1 and G2, where V (G1 + G2) = V (G1) ∪ V (G2) and
E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}.

Permutation graphs are exactly those circle graphs that have a circle
model admitting an equator, i.e. an additional chord meeting all the chords
of the model [16, p. 252]. Equivalently, G+ is a circle graph if and only if G

is a permutation graph. The following result is an immediate consequence.

Lemma 8. The join G = G1 + G2 is a circle graph if and only if both G1

and G2 are permutation graphs.

3.1. P4-tidy graphs

Let G be a graph and let A be a vertex set that induces a P4 in G. A
vertex v of G is said a partner of A if G[A∪{v}] contains at least two induced
P4’s. Finally, G is called P4-tidy if each vertex set A that induces a P4 in G

has at most one partner [15].
The class of P4-tidy graphs is an extension of the class of cographs and it

contains many other graph classes defined by bounding the number of P4’s
according to different criteria; e.g., P4-sparse graphs [17], P4-lite graphs [18],
and P4-extendible graphs [19].

A spider [17] is a graph whose vertex set can be partitioned into three sets
S, C, and R, where S = {s1, . . . , sk} (k ≥ 2) is a stable set; C = {c1, . . . , ck}
is a complete set; si is adjacent to cj if and only if i = j (a thin spider), or si

is adjacent to cj if and only if i 6= j (a thick spider); R is allowed to be empty
and if it is not, then all the vertices in R are adjacent to all the vertices in
C and nonadjacent to all the vertices in S. The triple (S,C,R) is called the
spider partition. Clearly, the complement of a thin spider is a thick spider,
and vice versa. A fat spider is obtained from a spider by adding a true or
false twin of a vertex v ∈ S ∪ C. The following theorem characterizes the
structure of P4-tidy graphs.

Theorem 9. [15] Let G be a P4-tidy graph with at least two vertices. Then,
exactly one of the following conditions holds:

1. G is disconnected.

2. G is disconnected.

3. G is isomorphic to P5, P5, C5, a spider, or a fat spider.
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Before giving the next characterization, we state the following lemma
whose proof is straightforward.

Lemma 10. Let G be a graph and let H be a graph obtained from G by
adding either a pendant vertex, or a true or false twin of a vertex. Then, H

is a circle graph if and only if G is a circle graph.

Bandelt and Mulder have shown in [1] that a graph is distance hereditary
if and only if it can be generated by the operations pendant vertex, true
twin and false twin from a single vertex. Consequently, Lemma 10 implies
that every distance-hereditary graph is a circle graph. This fact is already
mentioned in [5].

Theorem 11. Let G be a P4-tidy graph. Then, G is a circle graph if and only
if G contains no W5, net+, tent+, or tent-with-center as induced subgraph.

Proof. It is easy to see that net+, tent+, and tent-with-center are not circle
graphs. Since the class of circle graphs is hereditary, a circle graph contains
no induced net+, tent+, or tent-with-center.

Conversely, let G be a P4-tidy graph that is not a circle graph. Then, G

contains some induced graph H that is minimally not circle; i.e., H is not a
circle graph but all proper induced subgraphs of H are circle graphs. Because
of the minimality, H is connected. Suppose first that H is disconnected; i.e.,
H = H1 + H2 for some graphs H1 and H2. By Lemma 8, since H is not a
circle graph, H1 or H2 is not a permutation graph. By Corollary 7, H1 or H2

contains an induced C5, net, or tent. Thus, H = H1+H2 contains an induced
W5, net+, or tent+. By minimality, H = W5, net+, or tent+. Suppose, on the
contrary, that H is connected. By Theorem 9, since H is a P4-tidy graph,
either H is C5, P5, P5, a spider, or a fat spider. Since H is not a circle graph,
H is different from C5, P5, and P5. Thus, H is a spider or a fat spider. By
Lemma 10 and the minimality, H has no true or false twins, so H is not
a fat spider. We conclude that H is a spider. Let (S,C,R) be the spider
partition of H. By Lemma 10 and the minimality, H is necessarily a thick
spider with |S| ≥ 3. Since tent is a circle graph, either |S| ≥ 4 or R 6= ∅.
In both cases, H contains an induced tent-with-center and, by minimality,
H = tent-with-center.�
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3.2. Tree cographs

Tree-cographs [29] are another generalization of cographs. They are de-
fined recursively as follows: trees are tree-cographs; the disjoint union of
tree-cographs is a tree-cograph; and the complement of a tree-cograph is
also a tree-cograph. It is immediate from the definition that, if G is a tree-
cograph, then G or G is disconnected, or G or G is a tree.

Theorem 12. Let G be a tree-cograph. Then, G is a circle graph if and only
if G contains no induced (bipartite-claw)+ and no induced co-(bipartite-claw).

Proof. It is easy to see that bipartite-claw+ and co-(bipartite-claw) are not
circle graphs and thus a circle graph contains none of those graphs as induced
subgraph. Conversely, let G be a tree-cograph that is not a circle graph.
Therefore, there exists some connected component H of G that is not a circle
graph. Notice that H cannot be a tree because trees are circle graphs. Since
H is a tree-cograph and H is connected, H is disconnected or H is a tree.
Suppose first that H is disconnected. Then, H = H1 + H2 for some graphs
H1 and H2. By Lemma 8, we can assume without loss of generality that
H1 is not a permutation graph. Corollary 7 implies that H1 would contain
an induced bipartite-claw, and so H = H1 + H2 would contain an induced
(bipartite-claw)+. Finally, consider the case when H is a tree. Since H is not
a circle graph, in particular it is not a permutation graph. By Corollary 7,
H contains an induced co-(bipartite-claw).�

4. Unit Helly circle graphs

A graph G is a unit circle graph if it admits a circle model in which
all the chords have the same length. This class coincides with the class
of unit circular-arc graphs (i.e., the intersection graphs of a family of arcs
on a circle, all of the same length) [10]. Tucker gave a characterization by
minimal forbidden induced subgraphs for this class [30]. Recently, linear
and quadratic-time recognition algorithms for this class have been proposed
[24, 11].

The concept of Helly circle graph is due to Durán [10]. A graph belongs
to this class if it has a circle model whose chords are pairwise different and
satisfy the Helly property (i.e., every subset of pairwise intersecting chords
has a common point). In [10], it was conjectured that a circle graph is a Helly
circle graph if and only if it is diamond-free. This conjecture was recently
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settled affirmatively in [9], yielding a polynomial-time recognition algorithms
for Helly circle graphs.

In the theorem below we completely characterize unit Helly circle graphs.

Theorem 13. Let G be a graph. Then, the following assertions are equiva-
lent:

1. G is a unit Helly circle graph.

2. G contains no induced claw, paw, diamond, or C∗

n for any n ≥ 3.

3. G is a chordless cycle, a complete graph, or a disjoint union of chordless
paths.

Proof. Let us consider the case when G is triangle-free. Suppose first that 1
holds. Since G is a unit circle graph, G is a unit circular-arc graph. Thus, G

contains no induced claw or C∗

n for any n ≥ 4 [30]. This proves 1 ⇒ 2 (in the
case when G is triangle-free). Suppose now that 2 holds. If G has no cycles,
then each connected component of G is a claw-free tree, i.e., G is the disjoint
union of chordless paths. So, assume that G has some cycle. Since G is
triangle-free, the shortest cycle H of G is a chordless cycle of length at least
4. Since G contains no induced claw, triangle, or C∗

n for any n ≥ 4, G = H.
We conclude that 2 ⇒ 3. Finally, it is easy to build unit Helly circle models
of chordless cycles and of disjoint unions of chordless paths. Consequently,
3 ⇒ 1 also holds.

Let us now consider the case when G is not triangle-free. Suppose that 1
holds and let L = {Li}

n
i=1 be a unit Helly model of G on a circle C, where

n = |V (G)|. If two different chords L1 and L2 on C have the same length,
then L1 and L2 are diameters of C or both of them are tangent to a circle
C ′ concentric with C. Since G is not triangle-free, we can assume that L1,
L2, and L3 are three pairwise intersecting chords and, since L has the Helly
property, there is a point P ∈ L1∩L2∩L3. We claim that L1, L2, and L3 are
diameters of C. Otherwise, L1, L2, and L3 would be three different tangents
to a circle C ′ through P and this would lead to a contradiction, because it is
well-known that there are at most two different tangents to a circle passing
through a given point. Since all chords of L have all the same length, then
L is a family of diameters of C and, therefore, G is a complete graph. We
conclude that 1 ⇔ 3 because complete graphs are clearly unit Helly circle
graphs. Finally, given that G contains a triangle, it is straightforward that
G is a complete graph if and only if G contains no induced C∗

3 , paw, or
diamond. (Notice that C∗

3 , paw, and diamond are all the four-vertex graphs
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that contain the triangle as induced subgraph and that are not complete
graphs.) We conclude that 2 ⇔ 3 also holds.�

5. Further research

In [9] it is proved that Helly circle graphs are the circle graphs with no
induced diamond. Consequently, Theorem 5 implies that, given a claw-free
graph G, G is a Helly circle graph if and only if G does not contain any
induced prisms. We think the tools used throughout the proof of the theo-
rem might be either adapted or recycled in order to get Helly circle graphs
thoroughly characterized by means of a list of forbidden induced subgraphs,
without the assumption that the graph is a circle graph.
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