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Abstract. A method is proposed that uses operations research techniques to optimize the 

routes of waste collection vehicles servicing dumpster or skip-type containers. The waste 

collection problem is reduced to the classic travelling salesman problem, which is then 

solved using the Concorde solver program. A case study applying the method to the 

collection system in the southern zone of Buenos Aires is also presented. In addition to the 

typical minimum distance criterion, the optimization problem incorporates the objective of 



reducing vehicle wear and tear as measured by the physics concept of mechanical work. 

The solution approach, employing graph theory and mathematical programming tools, is 

fully described and the data correction process is also discussed. The application of the 

proposed method minimized the distance travelled by each collection vehicle in the areas 

studied, with actual reductions ranging from 10% to 40% of the existing routes. The 

shortened distances led in turn to substantial decreases in work done and therefore in 

vehicle wear and tear. Extrapolation of the results to the entire southern zone of Buenos 

Aires indicates potential savings for the civic authorities of more than US$200,000 per year 

in addition to the qualitative impacts of less traffic disruption, less vehicle driver fatigue and 

less pollution.   

 

Keywords: Environment, Mathematical programming, Waste collection, Vehicle routing, 

TSP. 

1. Introduction. 

 

Designing efficient urban waste collection systems has become a priority for local 

governments of major cities around the world due to concerns regarding pollution, public 

health and the environment as well as the budgetary impacts of the systems' transport, 

operating and labour costs. In this article we propose a method that uses operations 

research techniques to optimize the routes of waste collection vehicles servicing dumpster 

or skip-type containers. The waste collection problem is reduced to the classic travelling 

salesman problem, which is then solved using the Concorde solver program. A case study 

applying the method to the collection system in the southern zone of Buenos Aires 

(Argentina) is also presented. 

 



There are three principal types of waste collection: residential, commercial and industrial 

(Golden, Assad and Wasil, 2002). Residential collection serves private homes; a single 

garbage truck is capable of servicing from 100 to 1,000 such residences per day. Though 

frequencies will vary from city to city, daily pickup is not unusual. Commercial collection, 

on the other hand, provides garbage removal for customers such as shopping centres, 

restaurants and office buildings, which may be assigned a pickup time window. Each 

commercial route can service between 60 and 400 customers daily with two or three visits 

to a transfer station or disposal site. Finally, industrial collection services factories, building 

sites and other major construction projects. What distinguishes it from commercial 

collection is that industrial waste containers tend to be four or five times bigger and often 

only one can be emptied per pickup. This poses a vehicle routing problem that is very 

different from the situation facing commercial collection services. The objectives of waste 

collection routing problems vary considerably, typical examples being to minimize the 

number of vehicles, minimize the distance covered, identify compact routes or minimize 

vehicle wear and tear. 

 

A considerable literature exists on waste collection optimization. Liebman (1975) covers 

the entire range of problems on the subject, including simulation and optimization models 

for the installation of transfer, treatment and disposal facilities and for collection vehicle 

routing and human resource planning. Male and Liebman (1978) set out one of the first 

algorithms designed to simultaneously generate the zoning and vehicle routing for a 

garbage collection system. 

 

A survey of works on waste collection vehicle routing may be found in (Kim, Kim and 

Sahoo, 2006). Eisenstein and Iyer (1997) present a “dynamic scheduling algorithm” that 

generates dynamic schedules for maximizing the service level in Chicago’s collection 



system. Chang, Lu and Wei (1997) propose an integer programming method integrated 

with a geographical information system for the city of Kaohsiung (Taiwan). Given the 

complexity inherent in garbage collection vehicle routing, some approaches have resorted 

to heuristic procedures, examples of which are Mourao and Almeida (2000) for Lisbon 

(Portugal) and Yeomans, Huang and Yoogalingam (2003) for the Canadian city of 

Hamilton. Finally, Arribas, Blazquez and Lamas (2010) develop a method combining 

heuristics with integer linear programming techniques that was successfully applied in 

Santiago, Chile.  

 

A new residential waste collection system currently being implemented in Buenos Aires 

will require local residents to deposit their garbage into dumpster or skip-type containers 

located throughout the city. Each container has a capacity of 1,000 litres. The idea is to 

replace the old system of individual household waste receptacles with one that affords 

greater environmental protection and collection efficiency. 

 

For organizational purposes Buenos Aires is divided into 6 waste collection zones as 

shown in Figure 1. The shaded areas are the parts of each zone where the new system is 

already in operation. Responsibility for managing collection in Zones 1 through 4 and Zone 

6 has been assigned to individual private operators while in Zone 5, covering the city's 

southern district, the same duties are handled by the city government's urban sanitation 

authority known as the “Ente de Higiene Urbano” (EHU).  

 

 

(Figure 1 here) 

 

 



The precise locations of the containers are specified in advance. Those serviced by the 

EHU, which will be the exclusive focus of the present article, are grouped into 4 subzones. 

Each of the 4 is assigned a single collection vehicle, thus excluding zone definition from 

the scope of our investigation. The trucks make two identical trips daily, one in the morning 

and another in the evening. A trip begins when a vehicle starts out from the EHU in the 

direction of the first container in its subzone. After servicing all of its assigned containers it 

then heads to the transfer station to dump the collected waste before returning to the 

depot. Emptying a container and cleaning up in the immediate vicinity takes about 3 

minutes. On the morning trip the trucks depart the EHU at 7 am and return at 

approximately 3 pm while on the evening trip they set out at 6 pm. The 4 subzones have 

47, 133, 134 and 161 containers respectively, for a total of 375. The new system is slated 

for expansion in the short term to 20 subzones with 2,000 to 2,500 containers. 

 

Each collection vehicle can hold 15,000 kg of waste. In the morning round each vehicle 

collects between 10,000 kg and 15,000 kg, whereas in the afternoon trip each one picks 

up from 2,500 kg to 5,000 kg. Every 10 days a truck follows behind the collection vehicles 

and cleans the containers as they are emptied. At the transfer station the garbage is 

compacted before being transported by larger vehicles to the final disposal site located in 

the greater urban area. 

 

The purpose of this study is to improve the routes currently followed by the collection 

vehicles while maintaining the above-described general pattern in which each truck starts 

out from the EHU, empties all the containers in its assigned subzone, dumps the waste at 

the transfer station and returns to the EHU. The two objectives of this improvement are, in 

order of importance, the minimization of distance travelled and the reduction of vehicle 

wear. Since carrying large loads puts considerable strain on various parts of the vehicles, 



reducing their distance travelled while heavily loaded would bring substantial benefits to 

the system operator. 

 

As regards labour costs, this route optimization has no effect, given that the waste 

collection workers are paid a fixed amount per shift. Shorter distances would presumably 

lessen driver fatigue, however, as well as diminishing vehicle wear, and would also mean 

less pollution and disruption of city traffic. The quantifiable economic savings are due to 

the reduction in fuel consumption, lower vehicle maintenance costs and longer vehicle 

service lives. 

 

It should be noted that with the data currently available, travel times along the streets 

covered by the vehicles cannot be accurately estimated. For this reason, total distance 

travelled rather than travel time was chosen as the principal objective. 

 

To quantify vehicle wear the concept of mechanical work is borrowed from physics. It is 

measured for a given route segment as the product of the distance travelled and the force 

exerted. The unit of this metric in the International System of Units is the Joule (J), formally 

defined as the force of one Newton acting to move an object through a distance of one 

metre. Thus, the work done by a vehicle over any segment between two consecutive 

containers is the distance separating them multiplied by the load carried, and the total 

work for the entire route is just the sum of the work done on each segment. To the best of 

our knowledge, no existing studies in the literature on the optimization of waste collection 

include the reduction of work done by the collection vehicles as a criterion. 

 

This paper describes how computational tools were applied to effectively solve the 

optimization problem of the waste collection vehicles in the four EHU subzones using 



integer linear programming techniques. The computational tools and the correction and 

interpretation of the data are also discussed. As will be seen in Section 4, the proposed 

optimization process generated routes that were highly efficient in terms of the objectives 

adopted, with reductions of distance travelled and work done by the trucks of 10% to 45% 

compared to the existing routes. 

 

The remainder of this article is organized as follows. Section 2 defines a natural 

representation of the map of the southern zone of Buenos Aires City with graph theory 

techniques. Section 3 shows how the waste collection problem can be reduced to the 

classic travelling salesman problem and briefly outlines the implementation of a software 

tool that carries out map processing tasks, calculates optimal routes and displays the 

results. Section 4 then presents these results, Section 5 sets out a sensitivity analysis of 

the impact of adding new waste collection vehicles to each city subzone, and finally, the 

article closes with Section 6 containing our conclusions and some indications for 

extensions of the work reported here. 

 

2. A graph-theoretic representation of the Buenos Aires southern zone map  

 

This section describes the data that was available to us and defines in detail how the map 

of the southern zone of Buenos Aires was represented by a graph. The representation is 

the heart of the entire implementation, laying the basis for the tasks of calculating vehicle 

routes and distances, validating the processed information and eliminating incorrect data. 

 

Note first of all that the basic unit of the map is the city block, used here in the sense of a 

section of street between two consecutive cross streets. As in many cities, address 



numbers within a single block in Buenos Aires generally increase over an interval of 100, 

with odd numbers on one side and even on the other. Since the streets of the city tend to 

follow a grid pattern, adjacent blocks in parallel streets have the same address interval. 

This enables the location of any block along the length of a street to be identified in terms 

of its “100-block” number, hereafter denoted simply as the block number. 

 

The map used was provided by the Buenos Aires city government in the form of a 

shapefile, one of the standard computer file formats for representing maps and 

geographical information. The file is a database that for every city block stores the 

locations of its corners, the name of the street, the initial and final block addresses, the 

traffic direction (one way or two way), and the positions of any traffic signals. Notation for 

this and the following section is included in Table 1.  

 

(Table 1 here) 

 

The traffic signal data contain a point indicating the approximate location of each traffic 

light. If two streets intersect at point p and the intersection thus formed has a traffic signal, 

there will also be a point in the database near p representing it. Since the presence of 

traffic signals is an important factor in determining possible routes, the optimization 

process must be able to find these locations. The process does this for a given intersection 

by searching for a point in the database whose distance from the intersection is less than a 

certain value D. After testing with various values it was found that traffic lights were 

correctly detected by setting D=3.5 metres. 

 

2.1 Construction of the graph and calculation of travel distances 



 

In what follows, a natural representation of the city map is described as a graph that allows 

vehicle distances travelled to be calculated. Since the calculations must take into account 

the city blocks’ traffic directions, a digraph (a graph in which the arcs are directed) is 

employed. The nodes in the digraph represent the ends of each block and the container 

locations, which for our purposes are the significant vehicle positions. 

 

If a vehicle is at an intersection, the two possible blocks it may be in (in one or the other of 

the two streets) are identified on the map as different positions. In a two-way street the 

position will depend on which side of the street it is on. Thus, vehicle position is defined in 

terms of the street and block number, the traffic direction and the exact position within the 

block. For example, a position might be specified as 700-block Rivadavia, even number 

side, 20 metres from the start or end of the block. Two nodes representing two positions 

have a directed arc joining them if a vehicle can travel directly from one node to the other. 

This means that a path in the graph represents a valid travel segment for a vehicle. The 

weight of an arc is the distance in metres between the positions representing its node 

ends. 

 

An intersection of two two-way streets will have 8 positions, one for each direction of each 

the four blocks touching the intersection. If there are no prohibited turns, these points will 

connect and a vehicle can turn in either direction. However, Buenos Aires traffic 

regulations forbid left turns at intersections with a traffic light. This case is illustrated in 

Figure 2, indicating the permitted turns for a vehicle in Rivadavia Av. arriving at Boyacá St. 

Note that the 8 points in the figure are the 8 positions of the intersection; what varies is the 

block and/or traffic direction. 

 



(Figure 2 here) 

 

 

We now formally define a digraph G = (V, A) that models the valid travel segments. Let C 

= {c1=(s1, p1),..., cn=(sn, pn)} be the set of city blocks where si  {increasing, decreasing, 

two-way} and pi = (q(i1),..., q(it(i))) is the vector of geographic points of block ci for i = 1,..., 

n. Points q(i1) and q(it(i)) are the intersection corners and points q(i2),...,q(it(i)-1) indicate the 

container locations in the block. The points for each block are ordered in the direction of 

increasing block numbers. If the direction is increasing a vehicle can travel from q(i1) to 

q(i2), from q(i2) to q(i3) and so on to q(it(i)). In the decreasing direction it can travel from 

q(it(i)) to q(it(i)-1), from q(it(i)-1) to q(it(i)-2) and so on to q(i1). On a two-way street the vehicle 

can travel in either direction. 

 

Now let Qi = {q(i1),..., q(it(i))} be the set of points in block ci (i.e., the vector pi considered as 

a set) and define Mi is the permitted traffic direction for block ci as follows: Mi = {increasing} 

if si = increasing; Mi = {decreasing} if si = decreasing; Mi = {increasing, decreasing} if si = 

two-way. 

 

For each block ci the set of graph nodes is Vi = {ci}  Qi  Mi. The nodes are given by the 

various significant vehicle positions in the block as a function of the geographical points 

and the block traffic directions. In G the set of nodes is V = Ui=1
n Vi. 

 

Two nodes (ci, q(ik), m) and (cj, q(jl), m') are said to be consecutive if and only if i = j, m = 

m'; m = increasing  l = k+1 and m = decreasing  l = k-1. Also, a node (ci, q(ik), m)  V 

is said to be an exit end of block ci = (si, pi) with pi = (q(i1),..., q(it(i))) if and only if m = 



increasing  k = t(i) and m = decreasing  k = 1. Finally, a node (ci, q(ik), m)  V is an 

entry point of block ci if it is a corner and not an exit end. 

 

Given the nodes v1 = (ci, q(ik), m)  V and v2 = (cj, q(jl), m')  V, a turn is said to exist from 

v1 to v2 if q(ik) = q(jl), v1 is an exit end of ci and v2 is an entry point to cj. To define the angle 

of the turn, we begin by letting v1' = (ci, q(ix), m)  V and v2' = (cj, q(jy), m')  V such that v1' 

and v1 are consecutive and v2 and v2' are also consecutive. The turn angle is then the 

angle between the half-line with origin q(ik) and direction q(ix) to q(ik) and the half-line with 

origin q(ik) passing through q(jy). The angle is considered to range over the interval (-,] 

so that left turns are positive angles and right turns are negative ones. 

 

To constrain arcs representing prohibited turns, we first define R as the set of exit points of 

blocks with traffic signals. Given two nodes v1 = (ci, q(ik), m)  V and v2 = (cj, q(jl), m')  V, 

there is a prohibited turn from v1 to v2 if a turn from v1 to v2 is physically possible, q(ik)  R 

and the turn angle is greater than /4. Given two nodes v1  V and v2  V, there is a 

permitted turn from v1 to v2 if a turn from v1 to v2 is physically possible and there is no 

prohibited turn from v1 to v2. 

 

The arcs are now defined as the paths between two nodes such that either the second 

node is consecutive to the first one within the same block, or the turn from the first node to 

the second one is permitted, that is, A = {(v1, v2)  V  V: v1 and v2 are consecutive, or a 

turn is permitted from v1 to v2} 

 



Since the arcs indicate all permitted movements by a vehicle, applying a shortest path 

algorithm to the graph will generate a shortest valid trip that can be taken from one 

position to another within the city. 

 

2.2 Location of containers 

 

Included in the databases supplied by the city were four lists of current container locations, 

one for each subzone. The locations are listed in the order in which they are currently 

serviced by the collection vehicles and are indicated in Figure 3. 

 

With this information, the length of the current routes can be calculated in order to 

compare them with the results obtained from our optimization method. Even if we do not 

know whether the path taken between any given consecutive pair of containers is the 

shortest possible one, we assume it is and then calculate lower bounds for the 

corresponding values of distance and work. Analogously, it can be also assumed that the 

paths between the EHU and the first container, the last container and the transfer station, 

and the transfer station and the EHU are also the shortest possible ones. 

 

 

(Figure 3 here) 

 

  

The locations indicated on the container lists were not fully standardized. Various locations 

were specified in terms of some nearby institution instead of a map reference while in 



other cases multiple variations of the same street name were used. These defects had to 

be rectified manually in the database before the information could be processed. 

 

The lists were thus corrected so that all the container locations were given either by street 

name and block number or by intersecting streets. Once this task was completed, each 

location was translated into a map position (street and block number, traffic direction, 

point) in order to generate nodes representing the containers in the graph of the city. 

 

In the case of a location denoted by street name and block number, the map position was 

defined by identifying the street and the block whose address interval [initial block address, 

final block address] contained that location. If the block was two way, the location was 

assigned either the traffic direction of increasing block numbers or the other direction, 

depending on whether the block address numbers were odd or even. 

 

In the case of locations specified in terms of intersecting streets, the blocks at the 

intersection point were first identified. In the simplest instance there would be four such 

blocks, two in each street, of which one had to be chosen to define the container position. 

The criterion employed on the location lists is that the first street named is the one in which 

the container is actually found. Its precise position would then be in the block before the 

intersecting street, considering the vehicle circulation direction. If the first-named street is 

two way, the side of the street in which the container is located was defined arbitrarily. 

 

As with any database of real-world phenomena, some of the map data were incorrect. The 

traffic directions for many of the streets in the four collection zones were verified, 

particularly those figuring in the optimal routes generated by the optimization process. This 

was done simply by comparing the data with other digital maps and aerial photos so that 



the database directions could be validated. These manual corrections helped ensure the 

map information actually used was as accurate as possible. 

 

3. Solution strategy 

 

Since the first objective of our optimization process was to minimize the distance travelled 

by each vehicle, the most natural option was to transform the vehicle route design problem 

into a travelling salesman problem (TSP). The TSP consists in finding the shortest 

Hamiltonian circuit (a trail that visits each node of a graph or digraph exactly once and 

returns to the starting node). In terms of computational complexity, the problem is NP-hard 

(Garey and Johnson, 1979), that is, there is no known polynomial-time algorithm to solve 

it. 

 

Our second objective was to reduce the total work done by the vehicles as an 

approximation of wear and tear. Since the type of graph used here generally has multiple 

optimal solutions for the TSP, the strategy adopted was to find a set of optimal solutions – 

about 200 for each instance proved to be a suitable number as regards run times and 

solution quality – and then select the one with the lowest work value. For this approach to 

succeed, the implementation had to be able to solve the TSP to optimality and in a non-

deterministic way. The Concorde solver program (Applegate et al., 2006) was chosen for 

the purpose. 

 

The remainder of this section will describe the generation of the graph and the TSP 

solution. Section 3.1 discusses the construction of an instance of the shortest Hamiltonian 

path problem between two given nodes that models our problem; Section 3.2 derives the 



shortest vehicle paths between each pair of nodes in the digraph containing the 

containers, the EHU and the transfer station; and Section 3.3 explains the use of the 

Concorde software for solving the TSP on non-directed graphs. The problem must first be 

transformed into a symmetric TSP, however. This process is the subject of Section 3.4 and 

Section 3.5. Finally, Section 3.6 briefly outlines the implementation of a software tool that 

carries out map-processing tasks, calculates optimal routes and displays the results. For 

the notation used in this section, see Table 1.  

 

3.1 Construction of Hamiltonian path instance 

 

To model the waste vehicle problem we construct a weighted digraph in which the 

containers are represented by nodes. The weight of an arc from node A to node B is 

defined as the distance of the shortest vehicle path from container A to container B (see 

Section 3.2). The digraph also contains the EHU and the transfer station. An arc is added 

from the EHU to each container and from each container to the transfer station. The 

weights of these arcs are also defined as the distance of the shortest path from one 

element to another. The digraph is denoted G1 = (V1, A1) and w1 : A1  R is the distance 

function that associates each arc with its corresponding path distance. An example of such 

a digraph is depicted in Figure 4. 

 

(Figure 4 here) 

 

 



Now it is attempted to find a shortest Hamiltonian path in the digraph that starts from the 

node representing the EHU, visits all the container nodes and ends at the transfer station 

node. 

 

3.2 Shortest path algorithm 

 

Once the digraph associated with the city map has been defined, A* (Hart, Nilsson and 

Raphael, 1968), a variant of Dijkstra's Algorithm (Dijkstra, 1959), is applied to obtain a 

shortest vehicle path between each pair of nodes in the digraph containing the containers, 

the EHU and the transfer station. The problem with the original Dijkstra's Algorithm is that 

during execution, the set of nodes waiting to be analyzed expands into a shape similar to a 

rhombus with the origin point as its centre. This means that the greater is the distance 

between the nodes to be analyzed, the less efficient will be the algorithm. For example, to 

calculate a shortest path between two points that turns out to be 10 km, Dijkstra's 

Algorithm will calculate the shortest paths to all points located at a distance less than 10 

km from the origin. For our city digraph, executing this calculation in a SmallTalk 

implementation on a machine with an Intel Dual Core 1.60 GHz processor took more than 

an hour. 

 

The A* variant sidesteps this problem by using a different method of choosing the next 

node to be analyzed. Instead of just considering the distance from the origin, the heuristic 

also takes into account the distance to the destination. To ensure the method functions 

properly it exploits the property that the path distance is always greater than or equal to 

the Euclidean distance between the two points. Thus, at an intermediate point on the path 

to which the shortest path has already been calculated, the algorithm deduces that the 



distance of the shortest path from the origin to the destination is greater than or equal to 

the sum of the path distance from the origin to the intermediate point plus the Euclidean 

distance. 

 

The suitability of A* for the present application is clearly demonstrated by the fact that 

when this variant was used to calculate the 10 km example given above on the same 

computer, execution time fell drastically from more than 60 minutes to a mere 280 

milliseconds. 

 

3.3 Application of the Concorde solver 

 

Concorde is a computer program written by David Applegate, Robert Bixby, Vašek Chvátal 

and William Cook at the Georgia Institute of Technology in the United States. It generates 

exact solutions for instances of the TSP using integer linear programming in conjunction 

with an LP solver such as QSOpt, an open source package developed by the same 

authors. According to its developers, Concorde can solve instances of up to 1,000 

elements efficiently (Applegate et al., 2006). One instance of our problem with 98 nodes 

was solved by Concorde in two-tenths of a second while another containing 326 nodes 

was solved in 2 seconds. The program was run on a computer with an Intel Dual Core 

1.60 GHz processor. 

 

The program can also solve the TSP using the Chained Lin-Kernighan (Martin, Otto and 

Felten, 1996) heuristic, which is very efficient and provides optimal or near-optimal results 

for small instances. For our 98-node example it produced an optimal circuit in less than 

one second, an execution time similar to that for the exact algorithm. Finally, since 



Concorde relies on randomness, the optimal solutions it generates will be different each 

time it is run. 

 

3.4 Transformation of a Hamiltonian directed path into a Hamiltonian non-directed 

circuit 

In Section 3.1 our problem was modelled as a shortest directed Hamiltonian path problem. 

Concorde, however, solves the TSP, which consists in finding a shortest non-directed 

Hamiltonian circuit, and takes as input the distance matrix of a complete graph. To solve 

the problem, the directed Hamiltonian path model is translated into a non-directed 

Hamiltonian circuit model. This will be done in two steps: first, the directed path is 

transformed into a directed circuit, and second, the directed circuit is transformed into a 

non-directed one. 

 

We begin by calculating a shortest directed Hamiltonian path as a function of a shorter 

directed Hamiltonian circuit. In that circuit the EHU node must be located after the transfer 

station node. In other words, starting from the EHU node the circuit has to pass through all 

of the container nodes and then the transfer station node before returning to the EHU 

node. Since the digraph must be complete, G2=(V2, A2) is built from G1 setting V2 = V1 and 

A2 = V2  V2. A weight function w2 : A2  R  {+} is defined as follows: w2((v1, v2)) = 

w1((v1, v2)) if (v1, v2)  A1; w2((v1, v2)) = + if (v1, v2)  A1, unless v1=Transfer Station and 

v2=EHU. In that last case, w2((v1, v2)) = 0. 

 

Thus, if there is no arc between any two nodes in G1, an arc of infinite or zero weight is 

added to G2 thereby making G2 complete. Every Hamiltonian path in G1 that starts at the 



EHU node and ends at the transfer station node will therefore generate a Hamiltonian 

circuit in G2 of finite distance, and vice versa. 

 

3.5 Transformation of a digraph into a non-directed graph 

 

The second step is to reduce the problem of finding a shortest Hamiltonian circuit in a 

digraph to one of identifying a shortest Hamiltonian circuit in a non-directed graph (Kumar 

and Li, 1996). The graph G3=(V3, A3) is defined with a fictitious node and a real node for 

each node in G2. In formal terms, we assume that V2 = {v1,...,vp} and let F = {f1,...,fp} so that 

node fi is the fictitious node associated with vi. We then define V3 = V2  F and A3 = V3  

V3. Let M be a sufficiently large number and let the weight function associated with the 

edges be w3 : A3  R  {+}, as follows: w3((x, y)) = + if x  V and y  V; w3((x, y)) = + 

if x  F and y  F; w3((x, y)) = -M if x = vi and y = fi, for some i; w3((x, y)) = w2(vi, vj) if x = vi 

and y = fj and i  j, for some i. 

 

Figure 5 presents an example of the definition of a non-directed graph G3 based on a 

digraph G2 with M=10,000. G3 has 3 real nodes and 3 fictitious nodes. The edges between 

the real nodes have a value of +, which implies they will not be used by the shortest 

paths. The same holds for the edges between the fictitious nodes. A shortest path in this 

graph will always alternate between fictitious and real nodes. Moreover, since the edges 

between a real node and its corresponding fictitious one have a value of -M, the shortest 

paths will always use them. Since a shortest path will not contain arcs with infinite weight 

but will contain those with a negative weight, a real node will always be followed in a 

shortest path by its fictitious one. 

 



 

(Figure 5) 

 

 

The weight of the edges between a real node vi and a fictitious one fj with i  j is the weight 

of the arc between vi and vj in G2. This implies that the set of edges incident to the real 

node vi in G3 represents the exit arcs incident to vi in G2. Reciprocally, the set of edges 

incident to the fictitious node fj in G3 represents the entry arcs incident to vj in G2. Thus, a 

path (fi1, vi1, fi2, vi2,..., fik, vik) in G3 is interpreted as a path (vi1, vi2,..., vik) in G2. An example 

of the foregoing is given in Figure 6. 

 

 

(Figure 6) 

 

 

The procedures described in this section have taken us from a digraph G1 for which we set 

out to calculate a shortest Hamiltonian path, to a complete digraph G2 whose shortest 

Hamiltonian circuit enabled us to calculate the shortest Hamiltonian path in G1. Then, by 

calculating the shortest Hamiltonian circuit of a complete non-directed graph G3, the 

shortest Hamiltonian circuit in G2 is easily obtained. In this manner the problem is reduced 

to the travelling salesman problem in a complete non-directed graph and the Concorde 

package can now be applied to efficiently obtain a solution. 

 

 

3.6 Description of the implementation  



 

A program was designed in the SmallTalk programming language to execute the map 

processing tasks, calculate optimal routes and display the results. The VisualWorks 

NonCommercial, 7.4.1 implementation, available for the Microsoft Windows XP/Vista and 

GNU-Linux operating systems, was employed for the job. 

 

The VisualWorks system contains a set of objects, classes and methods that were used to 

model the city map, the digraph of the containers and the algorithms for calculating the 

shortest paths and routes. It also has interfaces with the map database in PostgreSQL, the 

Concorde solver and the Takenoko graphical display package. The graphical interface of 

the computer application is shown in Figure 7. 

 

 

(Figure 7) 

 

 

To process the information, calculate the shortest routes and display them the system 

performs the following tasks: 

 

1) Read the database of the city map. 

2) Store the locations of the containers on each current route. 

3) Execute the following steps for each of the 4 subzones: 

a) Calculate the shortest vehicle path between each pair of elements: EHU, containers 

and transfer station. 

b) Calculate the distance and work done for each current route. 

c) Construct digraph G1 using the distances between the elements. 



d) Construct digraph G2 based on G1 as defined in Section 3.4. 

e) Construct complete graph G3 based on G2 as defined in Section 3.5. 

f) Execute Concorde with the G3 distance matrix. 

g) Interpret the results to construct a shortest route.  

4) Also, for each route the system can do the following: 

a) Calculate the distance. 

b) Calculate the work done. 

c) Generate a list indicating the order of the containers. 

d) Generate a list of the blocks travelled by the vehicle. 

e) Display an image of the map showing the route path. 

f) Display an animation of the vehicle route on the map. 

 

4. Results and discussion 

In this section the results are reported for the four instances of the problem corresponding 

to the four subzones, which as noted have 47, 133, 134 and 161 containers, respectively. 

The distances and work done for the routes currently used by the EHU are then compared 

to those of the shortest routes generated by our optimizations. For calculation purposes it 

is assumed that each container has an average weight of 100 kg, as suggested by EHU 

personnel. 

 

Multiple runs of Concorde were executed for each instance, generating multiple shortest 

paths due to the program's use of randomness. The solutions with the lowest work values 

were retained as the definitive ones. The actual results are given in Table 2, showing for 

each subzone the distance (in meters) and work (in Joules) for the current EHU route and 

the corresponding shortest route solution (only the least work results are displayed). As 



can be seen, the shortest routes improve significantly on the existing ones in both distance 

and work. 

 

 

(Table 2 here) 

 

More specifically, the results show a decrease in total distance per day of about 120 km 

(60 km per trip), which together with the lower amount of work done by the vehicles 

translates into an annual saving in fuel consumption of some US$20,000. Given the city 

authorities’ short-term goal of increasing the number of containers sixfold, an annual fuel 

cost reduction of approximately US$120,000 can be projected for the near future. The 

shorter distances also impact positively on vehicle maintenance and service lives. Based 

on the percentage decrease in work done, the drop in maintenance expense per vehicle 

can be estimated at US$3,000 while the prorated annual cost reduction due to extended 

service lives would be about US$1,500 per vehicle. Given that the number of vehicles 

should increase to 20 once all of the planned containers have been added, the estimated 

global annual savings due to the decrease in work expended is US$90,000. Together with 

the cut in fuel consumption, the City thus stands to save a total of more than US$200,000 

per year.  

 

Also evident from Table 2 is a very large gap between the degrees of improvement in 

subzones 1 and 4 owing to their different levels of complexity. The containers in Subzone 

1 number less than one-third of those in Subzone 4 and are distributed among only 7 

different streets. In such conditions, identifying a route approximating the shortest one is 

relatively intuitive. By contrast, Subzone 4 includes a densely packed area of containers, 



rendering the intuitive approach quite impossible in practical terms. Not surprisingly, then, 

the shortest route found through optimization resulted in a large improvement of 33.64%. 

 

(Table 3 here) 

 

To find optimal alternatives for each route, Concorde’s TSP algorithm, which uses 

randomness, was run 200 times. For the simplest subzone, 4 different optima were found 

with values for work of 5.50x108, 5.39 x108, 5.38 x108 and 5.51 x108 Joules respectively. 

For the other subzones, however, many optimal alternatives were generated. As an 

example, for Subzone 2 there were 190 alternatives, meaning that only 10 solutions were 

repeats. Though all of the solutions cover the same distance, the varying order in which 

the containers are serviced means the amount of work done will differ. Thus, among the 

various minimum distance routes we chose the one involving the least work. Table 3 

summarizes a number of characteristics for the optimal solutions of each subzone, 

indicating the minimum, maximum and average work as well as the standard deviation 

(which gives an idea of the variation between iterations) and the execution times. 

 

In a given solution run, the greatest amount of time was devoted to the calculation of the 

shortest path between each pair of elements.  For example, in Subzone 4, the one with the 

most containers, the first TSP solution required 28 minutes, but once the shortest paths 

between the element pairs were computed, the remaining time to solution averaged just 

2.49 seconds. If a container is added or moved, only 162 new paths would have to be 

calculated, which takes approximately 24 seconds; the exact time depends on the new 

container position. The time needed to calculate the shortest paths does not depend solely 

on the number of paths but also on their length. The more dispersed are the containers, 

the longer are the paths and, therefore, also the solution times. 



 

These results justify the conclusion that the proposed optimization method for the waste 

collection problem was successful given the significant reductions obtained in both total 

distance and work done. If information on the traffic speeds in the streets were 

incorporated into the method, a similar improvement in route times could presumably be 

achieved. 

 

5. Sensitivity analysis 

 

In this section the impact of using more than one waste collection vehicle (presumably a 

smaller model) in each of the four original subzones is studied. To this end a new heuristic 

is implemented that divides these areas into a smaller subzones and assigns a single 

vehicle to each one. For example, to divide Subzone 2, which has 133 containers, into two 

new subzones of 67 and 66 containers, respectively, the heuristic would decide how to 

partition the containers between the subzones and then determine the corresponding 

values of distance and work. 

 

In general terms, the heuristic assigns N vehicles to C containers via the following 

procedure. A TSP solution is first generated for all C containers. Then, based on the order 

specified by this solution, the container list is divided into two: the first C/N containers and 

the remaining ones. The first C/N containers constitute a new subzone and the original 

algorithm is executed on it to find the route of minimum work and distance. This procedure 

is repeated recursively with the remaining containers and N–1 vehicles, thus creating 

additional new subzones. The base case for each iteration is the newly created subzone in 



which a single vehicle is used for the corresponding container list. The subzone’s optimal 

route is then calculated using the original algorithm.  

 

This subzone partition heuristic was applied to each of the 4 original subzones. Since the  

shortest paths between all the pairs of containers for these subzones were already 

calculated the execution times were relatively short, ranging between 1 second and 7 

minutes. To assign 3 vehicles to the original Subzone 2 (133 containers), for example, the 

optimal route is first found to determine the ordered container list. The first third of the list 

is then used to define a new subzone and calculate its route of minimum distance and 

work. This procedure is repeated with the remaining containers and 2 vehicles to generate 

the second and third new subzones, and the best routes are calculated for each.  

 
(Table 4 here) 
 
 

The effects of adding vehicles in this manner to the original subzones are shown in Table 

4. In the case of Subzone 1, as well as the original case of 1 vehicle serving all 47 

containers we obtained values for a partition into 2 subzones with 24 and 23 containers 

each. The table indicates the distance travelled and work expended in the new subzones 

and also gives the combined totals. As can be seen, the combined distance increased by 

12 km over the single-vehicle solution. This was due to the fact that in addition to the 

distances covered to service the containers, this total includes the distances from the EHU 

to the respective subzones, from the subzones to the transfer station and from there back 

to the EHU. For each vehicle added these trip segments increase the total distance. The 

work done decreased considerably, however, from 5.385 x 108 to 4.489 x 108 joules. The 

reason for this drop is that each container emptied adds to the total load carried, and 



therefore the work done, over the rest of the route. Thus, if the priority is to reduce the 

amount of work rather than total distance travelled, more vehicles should be added.  

 
The same behaviour is found for Subzone 2, where using 1, 2, 3, 30 and 133 vehicles was 

tested. The last of these cases implies a single vehicle for each container and gives the 

optimal result in terms of work done but with, of course, an extremely large increase in 

distance. The impacts using different numbers of smaller vehicles in subzones 3 and 4 are 

also set out in the table. 

 
Note that since total work for an original subzone falls as vehicles are added, there will be 

less wear and tear on the vehicles. But the addition of these smaller trucks also involves 

acquisition costs and impacts on city traffic. Since the EHU authorities requested that we 

optimize the distance travelled, the original approach (a single vehicle for each of the 4 

subzones) generated the best solutions. The heuristic just described could nevertheless 

be employed to analyze the use of smaller vehicles for related services such as special 

waste collection or container cleaning. It may also prove useful for defining new zones 

once the City’s plans for additional containers have been implemented. 

 

6. Conclusions and future research 

 

The application of our optimization method resulted in significant improvement of the 

current waste vehicle routes. Route distances were reduced by up to 39% and work done, 

though not the variable being optimized, was cut by as much as 43%. This latter result was 

due in part to the fact that distance is one of the constituent factors of work, but also to the 

analysis of the various TSP solutions. Extrapolation of these outcomes to the entire 

southern zone of Buenos Aires indicates potential savings of more than US$200,000 



annually in addition to less traffic disruption, less vehicle driver fatigue and less air 

pollution. 

 

Much of this study consisted in modelling the graph and implementing the shortest path 

algorithm, taking into account all of the relevant details for producing routes on the city 

map. The graphical interface for creating images and animations was a key part of the 

implementation given that it enabled the information to be visualized in various forms, an 

essential capability when working with large amounts of information. Both the graphical 

interface and the data layer were abstracted into objects in the system so that if other 

technologies are used, the parts that have to be modified will be very localized. 

 

A possible extension of this study would be to develop a program that calculates routes in 

real time. The program could then be used to recalculate the routes in response to 

eventualities such as street closures, traffic congestion or demonstrations. The efficiency 

of the proposed algorithms allows for such an implementation. Also, a GPS module could 

be included that would input the waste vehicle locations at any given moment to the 

program. Drivers equipped with mobile devices could then be notified of the next container 

location to be serviced. These additions would give the system the scalability required to 

accommodate new containers and vehicles. 

 

To reduce vehicle wear even further, the optimization of total work done along a route 

could be formulated as the main objective of the problem. One approach to this would be 

to design heuristics that search for alternative routes using the optimal TSP solution as a 

starting point. Another possibility would be to employ column-generating algorithms to 

solve the work optimization problem (Lavigne et al., 1997). 

 



The container waste collection project launched by the Buenos Aires City Government will 

add containers gradually over a period of years until every block in the city has at least 

one. This means that new zones and routes will have to be added to the model, a task that 

will raise the interesting problem of how to define the zone assigned to each vehicle. The 

solution might be to use the sum of the distances of the shortest routes as a way of 

validating the zone definition. 

 

If information on the average traffic speeds in each block were added to the city map 

database, the time required to travel the length of a block could be determined. The 

program could then be used to calculate a shortest time route. The implementation of the 

A* algorithm would have to be modified to use a different lower bound function such as the 

Euclidean distance multiplied by the average traffic speed. 

 

Finally, above and beyond its specific results this study has demonstrated that operations 

research can be highly useful in implementing a system for the efficient organization of the 

waste collection service of this city. 
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Figures 

 

 

Figure 1. Waste collection zones in Buenos Aires. Scale 1:120,000 (1cm = 1.2km). 



 

 

 

Figure 2. Turn arcs, Rivadavia Av. at Boyacá St. with traffic signal. 

 

 



 

Figure 3. Current container locations by subzone. Scale 1:40,000 (1cm = 400m).  

 

 

 

Figure 4. G1. Example of a graph including the Ente de Higiene Urbano (EHU), five 

containers C1, ... , C5 and the transfer station.  

 

 



 

Figure 5. Model digraph G2 with a non-directed graph G3. Example of the transformation 

defined in Section 3.4.  

 

 

Figure 6. Cycle in the non-directed graph G3 given by the transformation defined in Section 

3.4. Length of the black path with fictitious arcs (arcs with one endpoint white and the other 

black): -3M + 11; length of the black path without fictitious arcs: 11.  

 



 

Figure 7. Graphical interface of the computer application. Scale 1:5,000 (1cm = 50m). 

 

Symbol  Meaning  
p  point in the map 

D  
threshold distance to associate traffic 
signals to street intersections (in meters) 

G = (V,A) digraph modelling the city 
C = {c1=(s1, p1),..., cn=(sn, pn)}  city blocks 
si  {increasing, decreasing, two-way}  possible street directions 



pi = (q(i1),..., q(it(i)))  
vector of geographic points of block ci for 
i = 1,..., n 

q(i1) and q(it(i)) intersection corners  
q(i2),...,q(it(i)-1)  container locations in the block 

Qi = {q(i1),..., q(it(i))}  
set of points in block ci (the vector pi 
considered as a set) 

Mi  
set of permitted traffic directions for the 
block ci  

Vi = {ci}  Qi  Mi set of graph nodes for the block ci  
V = Ui=1

n Vi set of nodes of graph G 

R 
set of exit points of blocks with traffic 
signals 

A = {(v1, v2)  V  V: v1 and v2 are 
consecutive, or a turn is permitted from v1 to 
v2} set of arcs of graph G 

G1 = (V1, A1)  
weighted digraph representing the city, 
the EHU and the transfer station 

w1 : A1  R  
distance function associated to the arcs 
of G1 (in meters) 

G2=(V2, A2), V2 = V1, A2 = V2  V2 
complete weighted digraph defining an 
instance of Hamiltonian circuit 

w2 : A2  R  {+}  weight function for G2  

G3=(V3, A3),  V3 = V2  F and A3 = V3  V3 

complete weighted non-directed graph 
defining an instance of Hamiltonian 
circuit 

V2 = {v1,...,vp}, F = {f1,...,fp} 
node fi is the fictitious node associated 
with vi 

M  
large number (greater than the sum of all 
the finite weights in G2) 

w3 : A3  R  {+} weight function for G3 
 

Table 1. Notation for sections 2 and 3.  

 

    
Current 

route   
Shortest 

route   
Percent 

improvement   

  Containers  
Distance 

(Km)  
Work (J) 

(x109) 
Distance 

(Km) 
Work (J) 

(x109) Distance Work  
1 47 27.010 0.61 24.126 0.54 10.68% 11.43% 
2 133 68.102 4.77 41.752 2.95 38.69% 38.07% 
3 134 52.270 4.28 39.762 2.84 23.93% 33.64% 



4 161 61.692 5.44 40.841 3.11 33.80% 42.79% 
 

Table 2. Results for the four subzones. 

 

  Subzone 1 2 3 4 
  Containers 47 133 134 161 
  Optima found 4 190 180 172 

Actual 0.61 4.77 4.28 5.44 
Minimum 0.54 2.95 2.84 3.11 
Maximum 0.55 3.21 3.11 3.37 
Mean 0.54 3.13 2.93 3.21 
Standard Deviation  0.01 0.96 0.86 0.68 

 
Work (J) (x 109) 

 

Percent improvement 11.43% 38.07% 33.64% 42.79% 
Initial iteration (min) 9.23 28.72 29.14 28.42 
200 iterations (mln) 0.55 5.60 4.98 8.31 Execution time 
Mean of iterations (sec) 0.16 1.68 1.49 2.49 

  

Table 3. Selected characteristics of the 200 TSP iteration solutions. The execution time for 

the initial iteration includes the time consumed in calculating the minimum paths between 

each node pair. The execution time for the 200 iterations does not include the initial 

iteration time. 

 

Subzone #Vehicles #Containers #Tours Distance (Km) Work (J) (x 108) Ex.Time (s) 
1 47 4 24.13 5.385  36.47 

24 2 20.10 2.295    
23 1 20.33 2.194    

1 
2 

Total   40.43 4.489  37.88 
1 133 191 41.75 29.47  383.40 

67 19 24.48 8.72    
66 4 32.26 10.89    2 

Total   56.74 19.61  121.65 
45 22 20.04 4.81    
44 1 24.55 6.18    
44 4 28.07 4.97    

3 

Total   72.66 15.96  126.33 
30 Total   489.43 9.05  103.32 

2 

133 Total   2067.79 8.33  1.04 
1 134 178 39.76 28.41 391.47 

67 10 29.03 11.9    
67 1 28.92 8.61    2 

Total   57.94 20.51  413.89 
45 18 26.47 6.54    
45 21 27.17 6.5    

3 

3 

44 1 22.47 4.51   



  Total   76.11 17.55  182.03 
1 161 163 40.84 31.01  433.67 

81 49 29.70 12.22    
80 9 27.86 10.49    2 

Total   57.56 22.71  176.02 
54 4 25.00 67.36    
54 33 26.35 68.89    
53 3 24.63 61.39    

4 

3 

Total   75.97 197.64  150.70 
 

Table 4. Sensitivity analysis for the addition of vehicles in each subzone. The execution 

times refer to the 200 iterations and do not include the time consumed in calculating the 

minimum paths between node pairs, which are obtained previously. 

 


