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Abstract

Many classes of graphs where the vertex coloring problem is polynomially solvable
are known, the most prominent being the class of perfect graphs. However, the
list-coloring problem is NP-complete for many subclasses of perfect graphs. In this
work we explore the complexity boundary between vertex coloring and list-coloring
on such subclasses of perfect graphs, where the former admits polynomial-time al-
gorithms but the latter is NP-complete. Our goal is to analyze the computational
complexity of coloring problems lying “between” (from a computational complex-
ity viewpoint) these two problems: precoloring extension, µ-coloring, and (γ, µ)-
coloring.
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1 Introduction

A coloring of a graph G = (V,E) is a function f : V → N such that f(v) 6=
f(w) whenever vw ∈ E. A k-coloring is a coloring f such that f(v) ≤ k

for every v ∈ V . The vertex coloring problem takes as input a graph G and
a natural number k, and consists in deciding whether G is k-colorable or
not. This well-known problem is a basic model for frequency assignment and
resource allocation problems.

In order to take into account particular constraints arising in practical settings,
more elaborate models of vertex coloring have been defined in the literature.
One of such generalized models is the list-coloring problem, which considers
a prespecified set of available colors for each vertex. Given a graph G and a
finite list L(v) ⊆ N for each vertex v ∈ V , the list-coloring problem asks for
a list-coloring of G, i.e., a coloring f such that f(v) ∈ L(v) for every v ∈ V .

Many classes of graphs where the vertex coloring problem is polynomially
solvable are known, the most prominent being the class of perfect graphs [4].
However, the list-coloring problem is NP-complete for general perfect graphs,
and is also NP-complete for many subclasses of perfect graphs, including split
graphs [9], interval graphs [1,12], and bipartite graphs [9]. In this work we
explore the complexity boundary between vertex coloring and list-coloring on
such subclasses of perfect graphs, where the former admits polynomial-time
algorithms but the latter is NP-complete. Our goal is to analyze the computa-
tional complexity of coloring problems lying “between” (from a computational
complexity viewpoint) these two problems.

We consider the following particular cases of the list-coloring problem. The
precoloring extension (PrExt) problem takes as input a graph G = (V,E), a
subset W ⊆ V , a coloring f ′ of W , and a natural number k, and consists in
deciding whether G admits a k-coloring f such that f(v) = f ′(v) for every
v ∈ W or not [1]. In other words, a prespecified vertex subset is colored
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beforehand, and our task is to extend this partial coloring to a valid k-coloring
of the whole graph.

Given a graph G and a function µ : V → N, G is µ-colorable if there exists a
coloring f of G such that f(v) ≤ µ(v) for every v ∈ V [2]. This model arises
in the context of classroom allocation to courses, where each course must be
assigned a classroom which is large enough so it fits the students taking the
course. We define here a new variation of this problem. Given a graph G and
functions γ, µ : V → N such that γ(v) ≤ µ(v) for every v ∈ V , we say that G

is (γ, µ)-colorable if there exists a coloring f of G such that γ(v) ≤ f(v) ≤ µ(v)
for every v ∈ V .

The classical vertex coloring problem is clearly a special case of µ-coloring
and precoloring extension, which in turn are special cases of (γ, µ)-coloring.
Furthermore, (γ, µ)-coloring is a particular case of list-coloring. These obser-
vations imply that all the problems in this hierarchy are polynomially solvable
in those graph classes where list-coloring is polynomial and, on the other hand,
all the problems are NP-complete in those graph classes where vertex coloring
is NP-complete. We are, therefore, interested in the computational complex-
ity of these problems over graph classes where vertex coloring is polynomially
solvable and list-coloring is NP-complete.

2 Known results

A graph is an interval graph if it is the intersection graph of a set of intervals
over the real line. A unit interval graph is the intersection graph of a set of
intervals of length one. Since interval graphs are perfect, vertex coloring over
interval and unit interval graphs is polynomially solvable. On the other hand,
precoloring extension over unit interval graphs is NP-complete [12], implying
that (γ, µ)-coloring and list-coloring are NP-complete over this class and over
interval graphs.

A split graph is a graph whose vertex set can be partitioned into a complete
graph K and an independent set I. A split graph is said to be complete if its
edge set includes all possible edges between K and I. It is trivial to color a split
graph in polynomial time, and it is a known result that precoloring extension
is also solvable in polynomial time on split graphs [7], whereas list-coloring is
known to be NP-complete even over complete split graphs [9].

A bipartite graph is a graph whose vertex set can be partitioned into two in-
dependent sets V1 and V2. A bipartite graph is said to be complete if its edge
set includes all possible edges between V1 and V2. Again, the vertex color-
ing problem over bipartite graphs is trivial, whereas precoloring extension [6]
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and µ-coloring [2] are known to be NP-complete over bipartite graphs, imply-
ing that (γ, µ)-coloring and list-coloring over this class are also NP-complete.
Moreover, list-coloring is NP-complete even over complete bipartite graphs [9].

For complements of bipartite graphs, precoloring extension can be solved in
polynomial time [7], but list-coloring is NP-complete [8]. The same happens
for cographs, graphs with no induced P4 [9,7].

The line graph of a graph is the intersection graph of its edges. The edge
coloring problem (equivalent to coloring the line graph) is NP-complete in
general [5], but it can be solved in polynomial-time for complete graphs and
bipartite graphs [10]. It is known that precoloring extension is NP-complete
on line graphs of complete bipartite graphs Kn,n [3], and list-coloring is NP-
complete on line graphs of complete graphs [11].

A good survey on variations of the coloring problem can be found in [13].

3 New results

In this section we introduce new results related to the computational com-
plexity of the previously mentioned coloring problems over the graph classes
described in Section 2 and related classes.

Theorem 1 The µ-coloring problem over interval graphs is NP-complete.

This result implies that (γ, µ)-coloring over interval graphs also is NP-complete.

Theorem 2 The (γ, µ)-coloring problem can be solved in polynomial time in

complete bipartite graphs and complete split graphs.

This result implies that µ-coloring and precoloring extension over complete
bipartite graphs and complete split graphs can be solved in polynomial time.
The algorithm for complete bipartite graphs relies on combinatorial argu-
ments, whereas for complete split graphs integer programming techniques are
employed.

Theorem 3 The µ-coloring problem over split graphs is NP-complete.

At this moment, this is the only class that we know where the computational
complexity of µ-coloring and precoloring extension is different, unless P = NP.

Considering these coloring variations applied to edge coloring, we have the
following results.
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Class coloring PrExt µ-col. (γ, µ)-col. list-col.

Complete bipartite P P P P NP-c

Bipartite P NP-c NP-c NP-c NP-c

Cographs P P P ? NP-c

Interval P NP-c NP-c NP-c NP-c

Unit interval P NP-c ? NP-c NP-c

Split P P NP-c NP-c NP-c

Complete split P P P P NP-c

Line of Kn,n P NP-c NP-c NP-c NP-c

Line of Kn P NP-c NP-c NP-c NP-c

Complement of bipartite P P ? ? NP-c

Table 1: Complexity table for coloring problems.

Theorem 4 The µ-coloring problem over line graphs of complete graphs and

complete bipartite graphs is NP-complete.

Theorem 5 The precoloring extension problem over line graphs of complete

graphs is NP-complete.

We summarize these results in Table 1. As this table shows, unless P = NP,
µ-coloring and precoloring extension are strictly more difficult than vertex col-
oring (due to interval and bipartite graphs). On the other hand, list-coloring is
strictly more difficult than (γ, µ)-coloring, due to complete split and complete
bipartite graphs, and (γ, µ)-coloring is strictly more difficult than precolor-
ing extension, due to split graphs. It remains as an open problem to know
if there exists any class of graphs such that (γ, µ)-coloring is NP-complete
and µ-coloring can be solved in polynomial time. Among the classes consid-
ered in this work, the candidate classes are cographs, unit interval and
complement of bipartite.

Finally, we present some general results.

Theorem 6 Let F be a family of graphs with minimum degree at least two.

Then list-coloring, (γ, µ)-coloring and precoloring extension are polynomially

equivalent in the class of F-free graphs.

Theorem 7 Let F be a family of graphs satisfying the following property:

for every graph G in F , no connected component of G is complete, and for

every vertex v of G, no connected component of G \ v is complete. Then list-

coloring, (γ, µ)-coloring, µ-coloring and precoloring extension are polynomially

equivalent in the class of F-free graphs.
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Please note that, since odd holes and antiholes satisfy the conditions of the
theorems above, these theorems are applicable for many subclasses of perfect
graphs.
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