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Abstract

The study of cohesive subgroups is a relevant aspect of social network analysis.
Cohesive subgroups are studied using different relaxations of the definition of clique
in a graph, one of them generating the maximum edge subgraph problem. Given
a graph and an integer k, this problem consists in finding a k-vertex subset such
that the number of edges within the subset is maximum. This problem is NP-
hard, and in this work we start an integer programming approach by studying the
polytope associated to a straigthforward integer programming formulation. We
present several families of facet-inducing valid inequalities for this polytope, and we
discuss the separation problem associated to restrictions of some of these families.
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1 Introduction

Social network analysis (SNA) is an important tool to study the relationships
and flows between people, organizations, and other entities. Social networks
are represented using graphs, where vertices represent the entities and edges
represent one or more specific types of interdependency between them. An
important aspect in SNA is the detection and analysis of cohesive subgroups,
which are subsets of actors among whom there are relatively strong, direct,
intense, frequent, or positive ties [8]. Cohesive subgroups are studied using
different relaxations of the definition of clique. Quasi-cliques are one of the
most popular relaxations, a quasi-clique being a subgraph with a pre-specified
edge density. The detection of quasi-cliques is crucial in [7] for studying the
network of bilateral investment treaties. In this case, quasi-cliques are used
both in the analisys of cohesive subgroups and as an instrument to evaluate
differences in the topology of random graphs.

There are two main approaches to study quasi-cliques: (a) given a specified
edge density γ ∈ [0, 1], find the largest vertex set which is γ-dense and, (b)
given a size k, find the densest set of k vertices. The second approach is
known in the graph and optimization literature as the maximum edge subgraph
problem (MESP) or dense/densest/heaviest k-subgraph problem. Formally,
given a graph G = (V,E) and an integer k, the MESP consists in finding a
vertex subset A ⊆ V with |A| = k and such that |E(A)| is maximum, where
E(A) = {ij ∈ E : i ∈ A and j ∈ A}. The maximum clique problem clearly
reduces to the MESP, hence the latter is NP -hard [2].

Approximation algorithms for the MESP have been presented in [1,4,5,6],
and [3] introduces several integer programming formulations for this problem.
In this work we are interested in the straigthforward formulation referred as
MIP1 in [3], and we present an initial study of the associated polytope.

2 Integer programming formulation

Let G = (V,E) be a graph. For every i ∈ V , we introduce the binary vertex
variable xi such that xi = 1 if and only if the vertex i belongs to the k-subset
A ⊆ V defining the feasible solution. For every ij ∈ E, we introduce the
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binary edge variable zij such that zij = 0 if ij 6∈ E(A). Since the edges
are undirected, we consider zij and zji as the same variable. Under these
definitions, the maximum edge subgraph problem can be formulated as follows:

max
∑
ij∈E

zij∑
i∈V

xi = k (1)

zij ≤ xi (2)∀ ij ∈ E
zij ≤ xj (3)∀ ij ∈ E
xi ∈ {0, 1} (4)∀ i ∈ V
zij ∈ {0, 1} (5)∀ ij ∈ E

Note that the constraints (5) can be relaxed to being free variables for
ij ∈ E, as these variables take integer values in any optimal solution. We
define P (G, k) ⊆ R|V |+|E| to be the convex hull of the vectors (x, z) ∈ R|V |+|E|

satisfying constraints (1)-(5).

Theorem 2.1 dim(P (G, k)) = |V |+ |E| − 1.

3 Valid inequalities

For i ∈ V , we define N(i) = {j ∈ V : ij ∈ E} to be the neighborhood of the
vertex i, and we call δ(i) = {ij : ij ∈ E} to the set of edges incident to i. For
i ∈ V , we define ∑

j∈N(i)

zij ≤ (k − 1)xi (6)

to be the neighborhood inequality associated with the vertex i.

Theorem 3.1 The neighborhood inequality (6) is valid for P (G, k). If |N(i)| ≥
k and |V | ≥ k + 2, then (6) defines a facet of this polytope.

Note that the family of neighborhood inequalities is composed by |V | in-
equalities only, hence these inequalities can be added to the initial integer
programming formulation in a practical environment.

For i ∈ V and A ⊆ V \{i} with |A| = k − 2, we define∑
j∈A

xj +
∑

j∈N(i)\A

zij ≤ (k − 2) + xi (7)

to be the extended neighborhood inequality associated with the vertex i and
the set A.



Theorem 3.2 The extended neighborhood inequality (7) is valid for P (G, k).
Moreover, if |N(i)\A| ≥ 2 and |V | ≥ k + 2, then (7) is facet-inducing for
P (G, k).

It is interesting to observe that inequalities (6) and (7) can be generalized
into a single family. To this end, for i ∈ V and A ⊆ V \{i} with |A| ≤ k − 2,
we define ∑

j∈A

xj +
∑

j∈N(i)\A

zij ≤ |A|+ (k − |A| − 1)xi (8)

to be the generalized neighborhood inequality associated with the vertex i and
the set A.

Theorem 3.3 The generalized neighborhood inequality (8) is valid for P (G, k).
Moreover, if |N(i)\A| ≥ k − |A| and |V | ≥ k + 2, then (8) is facet-inducing
for P (G, k).

Note that the generalized neighborhood inequalities restricted to A ⊆ N(i)
can be separated in polynomial time: fix a vertex i ∈ V and, for every
j ∈ N(i), add j to A if and only if xj > zij. If the resulting inequality is
not violated, then no generalized neighborhood inequality associated with the
vertex i and having A ⊆ N(i) is violated.

For B ⊆ E and i ∈ V , we define δB(i) = δ(i) ∩ B to be the set of edges
incident to i in the edge set B. Let T = (VT , ET ) ⊆ G be a spanning tree on
k − 1 vertices. Let pr ∈ E such that p, r ∈ V \VT . We define

zpr +
∑

ij∈ET

zij ≤ 1 +
∑
i∈VT

(|δT (i)| − 1)xi (9)

to be the disjoint edge inequality associated with the tree T , and the edge pr.

Theorem 3.4 The disjoint edge inequality (9) is valid for P (G, k). Further-
more, if |V | > 2k−2− l, where l is the number of leaves of T , then (9) induces
a facet of P (G, k).

Note that the disjoint edge inequalities restricted to the case where T
is a star can be separated in polynomial time: for every vertex i ∈ V and
every edge pr ∈ E with pr 6∈ δ(i), consider the vertices in N(i)\{p, r} in
non-increasing order of xj − zij, insert into A the first k − 2 vertices in such
ordering, and determine whether the disjoint edge inequality associated with
the vertex i, the set A, and the edge pr is violated or not.

Let A ⊆ V be a vertex subset and let B ⊆ E(V \A) be a nonempty



maximal matching of E(V \ A). In this setting, we define∑
i∈A

xi +
∑
ij∈B

zij ≤
|A|+ k − 1

2
(10)

to be the matching inequality associated with the set A and the matching B.
Let V (B) ⊆ V be the set of endpoints from the edges of B.

Theorem 3.5 The matching inequality (10) is valid for P (G, k). In addition,
if |A| ≤ k and |A|+ k is odd, then (10) is facet-defining as long as A ∪ V (B)
is strictly contained in V or |A|+ 2|B| ≥ k + 3.

Theorem 3.6 The matching inequalities can be separated in O(|V |3) time if
k is odd, and can be separated in O(|V |4) time if k is even.

Let A ⊂ V be a vertex subset with |A| < k, and let T = (VT , ET ) ⊆ G\A
be a spanning tree on k − |A|+ 1 vertices. We define∑

i∈A

xi +
∑

ij∈ET

zij ≤ |A|+
∑
i∈VT

(|δT (i)| − 1)xi (11)

to be the tree inequality associated with the set A and the tree T . Notice that
if A = ∅, the inequality still holds.

Theorem 3.7 The tree inequality (11) is valid for P (G, k). Furthermore, if
|V | > 2k − 2 − l, where l is the number of leaves of T , then (11) induces a
facet of this polytope if and only if T is not a star.

Notice that if T is a star, then the tree inequality is dominated by (8).
A special case of (11) arises when T is a path and A = ∅. In this case, the
inequality (11) holds for every path of length at least k and is facet-defining
for all paths of length ` such that k ≤ ` ≤ 2k − 2.

Let A ⊆ V be a vertex subset such that |V \A| = k − 1 and let T ⊆ E(A)
be an acyclic edge subset. We define

1 +
∑
ij∈T

zij ≤
∑
i∈A

xi (12)

to be the forest inequality associated with the vertex set A and the edge set
T .

Theorem 3.8 The forest inequality (12) is valid for P (G, k). In addition, if
for every ij ∈ E(A)\T there exists a path in T from i to j of length at most
k − 1, then (12) is facet-defining.



4 Concluding remarks

In this work we have presented an initial polyhedral study of the maximum
edge subgraph problem, by introducing seven families of valid inequalities.
These results show that the associated polytope admits interesting facets aris-
ing from simple combinatorial structures, and we conjecture that many of
the families introduced in this work can be further generalized. We plan to
extend these polyhedral results and to further analyze the complexity of the
associated separation problems, in order to identify the NP-complete cases
and develop and test suitable separation heuristics.
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