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Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France

Abstract
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1. Introduction

A classic coloring of a graph G is an assignment of colors (or natural
numbers) to the vertices of G such that any two adjacent vertices are as-
signed different colors. The smallest number t such that G admits a coloring
with t colors (a t-coloring) is called the chromatic number of G and is de-
noted by χ(G). Several generalizations of the coloring problem have been
introduced in the literature, in particular, cases in which each vertex is as-
signed not only a color but a set of colors, under different restrictions. One
of these variations is the k-tuple coloring introduced independently by Stahl
[11] and Bollobás and Thomason [3]. A k-tuple coloring of a graph G is an
assignment of k colors to each vertex in such a way that adjacent vertices are
assigned distinct colors. The k-tuple coloring problem consists into finding
the minimum number of colors in a k-tuple coloring of a graph G, which we
denote by χk(G).

The cartesian product G�H of two graphs G and H has vertex set
V (G) × V (H), two vertices being joined by an edge whenever they have
one coordinate equal and the other adjacent. This product is commutative
and associative up to isomorphism. There is a simple formula expressing
the chromatic number of a cartesian product in terms of its factors:

χ(G�H) = max{χ(G), χ(H)}. (1)

The identity (1) admits a simple proof first given by Sabidussi [10].
The Kneser graph K(m,n) has as vertices all n-element subsets of the

set [m] = {1, . . . ,m} and an edge between two subsets if and only if they
are disjoint. We will assume in the rest of this work that m ≥ 2n, otherwise
K(m,n) has no edges. The Kneser graph K(5, 2) is the well known Petersen
Graph. Lovász [9] showed that χ(K(m,n)) = m− 2n+ 2. The value of the
k-tuple chromatic number of the Kneser graph is the subject of an almost
40-year-old conjecture of Stahl [11] which asserts that: if k = qn− r where
q ≥ 0 and 0 ≤ r < n, then χk(K(m,n)) = qm − 2r. Stahl’s conjecture has
been confirmed for some values of k, n and m [11, 12].

An homomorphism from a graph G into a graph H, denoted by G→ H,
is an edge-preserving map from V (G) to V (H). It is well known that an
ordinary graph coloring of a graph G with m colors is an homomorphism
from G into the complete graph Km. Similarly, an n-tuple coloring of a
graph G with m colors is an homomorphism from G into the Kneser graph
K(m,n). A graph G is said hom-idempotent if there is an homomorphism
G�G→ G. We denote by G 6→ H if there exists no homomorphism from G
to H. The clique number of a graph G, denoted by ω(G), is the maximum

2



size of a clique in G (i.e., a complete subgraph of G). Clearly, for any graphs
G and H, we have that χ(G) ≥ ω(G) (and so, χk(G) ≥ χk(Kω(G)) = kω(G))
and, if there is an homomorphism from G to H then, χ(G) ≤ χ(H) and,
moreover, χk(G) ≤ χk(H).

In this paper, we show that the analogous of equality (1) for k-tuple color-
ings of graphs does not hold in general. In fact, we show that for some values
of k ≥ 2, there are Kneser graphsK(m,n) for which χk(K(m,n)�K(m,n)) >
χk(K(m,n)). Surprisingly, there exist some Kneser graphs K(m,n) for
which the difference χk(K(m,n)�K(m,n))−χk(K(m,n)) can be as large as
desired, even when k = 2. We also show that there are families of graphs for
which equality (1) holds for k-tuple colorings of graphs for any k ≥ 1. As far
as we know, our results are the first ones concerning the k-tuple chromatic
number of cartesian product of graphs.

2. Cartesian products of Kneser graphs

We start this section with some upper and lower bounds for the k-tuple
chromatic number of Kneser graphs.

Lemma 2.1. Let G be a graph and let k > 0. Then, χk(G�G) ≤ kχ(G).

Proof. Clearly, χk(G�G) ≤ kχ(G�G). However, by equality (1) we know
that χ(G�G) = χ(G), and thus the lemma holds.

Notice that there are cases where χk(G�G) = kχ(G) (see Theorem 3.1).
Moreover, it is not difficult to verify that χ2(C5�C5) < 2χ(C5). In fact,
χ2(C5�C5) = 5 and χ(C5) = 3.

Corollary 2.2. χk(K(m,n)�K(m,n)) ≤ kχ(K(m,n)) = k(m− 2n+ 2).

We can obtain a trivial lower bound for the k-tuple chromatic number
of the graph K(m,n)�K(m,n) in terms of the clique number of K(m,n).
In fact, notice that ω(K(m,n)�K(m,n)) = ω(K(m,n)) = bmn c. Thus, we
have that χk(K(m,n)�K(m,n)) ≥ kω(K(m,n)) = kbmn c. In Lemma 2.13,
we compute a better lower bound for χk(K(m,n)�K(m,n)).

Larose et al. [8] showed that no connected Kneser graph K(m,n) is
hom-idempotent, that is, for any m > 2n, there is no homomorphism from
K(m,n)�K(m,n) to K(m,n).

Lemma 2.3 ([8]). Let m > 2n. Then, K(m,n)�K(m,n) 6→ K(m,n).

Concerning the k-tuple chromatic number of some Kneser graphs, Stahl
[11] showed the following results.
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Lemma 2.4 ([11]). If 1 ≤ k ≤ n, then χk(K(m,n)) = m− 2(n− k).

Lemma 2.5 ([11]). χk(K(2n+ 1, n)) = 2k + 1 + bk−1n c, for k > 0.

Lemma 2.6 ([11]). χrn(K(m,n)) = rm, for r > 0 and m ≥ 2n.

By using Lemma 2.6 we have the following result.

Lemma 2.7. Let m > 2n. Then, χn(K(m,n)�K(m,n)) > χn(K(m,n)).

Proof. By Lemma 2.6 when r = 1, we have that χn(K(m,n)) = m. If
χn(K(m,n)�K(m,n)) = m, then there exists an homomorphism from the
graph K(m,n)�K(m,n) to K(m,n) which contradicts Lemma 2.3.

By Lemma 2.4, Lemma 2.7 and by using Corollary 2.2, we have that,

Corollary 2.8. Let n ≥ 2. Then, 2n+2 ≤ χn(K(2n+1, n)�K(2n+1, n)) ≤
3n. In particular, when n = 2, we have that χ2(K(5, 2)�K(5, 2)) = 6.

In the case k = 2 we have by Lemma 2.7, Lemma 2.4 and by Corollary
2.2, the following result.

Corollary 2.9. Let q > 0. Then, q+ 4 ≤ χ2(K(2n+ q, n)�K(2n+ q, n)) ≤
2q + 4.

By Corollary 2.9, notice that in the case when k = n = 2 and q ≥ 1,
we must have that χ2(K(q + 4, 2)�K(q + 4, 2)) > q + 4, otherwise there is
a contradiction with Lemma 2.3. This provides a gap of one unity between
the 2-tuple chromatic number of the graph K(q+ 4, 2)�K(q+ 4, 2) and the
graph K(q + 4, 2) when q = 1. Moreover, such a gap increase for q > 1 as
we will see in Theorem 2.16. In the following, we will prove that, for some
Kneser graphs, such a gap can be as large as desired. In order to do this,
we need the following technical tools.

A stable set S ⊆ V is a subset of pairwise non adjacent vertices of G.
The stability number of G, denoted by α(G), is the largest cardinality of a
stable set in G. Let m ≥ 2n. An element i ∈ [m] is called a center of a
stable set S of the Kneser graph K(m,n) if it lies in each n-set in S.

Lemma 2.10 (Erdős-Ko-Rado [5]). If m > 2n, then α(K(m,n)) =
(
m−1
n−1
)
.

A stable set of K(m,n) with size
(
m−1
n−1
)

has a center i, for some i ∈ [m].

Lemma 2.11 (Hilton-Milner [7]). If m ≥ 2n, then the maximum size of a
stable set in K(m,n) with no center is equal to 1 +

(
m−1
n−1
)
−
(
m−n−1
n−1

)
.
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A graph G = (V,E) is vertex transitive if its automorphism group acts
transitively on V , that is, for any pair of distinct vertices of G there is an
automorphism mapping one to the other one. It is well known that Kneser
graphs are vertex transitive graphs.

Lemma 2.12 (No-Homomorphism Lemma, Albertson-Collins [1]). Let G,H
be graphs such that H is vertex transitive and G→ H. Then,

α(G)/|V (G)| ≥ α(H)/|V (H)|.

Lemma 2.13. Let m > 2n. Then, χk(K(m,n)�K(m,n)) ≥ k (mn)
2

α(K(m,n)�K(m,n)) .

Proof. Let t = χk(K(m,n)�K(m,n)). Then, K(m,n)�K(m,n)→ K(t, k)

and from the No-Homomorphism Lemma, α(K(m,n)�K(m,n))
|V (K(m,n)�K(m,n))| ≥

α(K(t,k))
|V (K(t,k))| .

The result follows from the fact that α(K(t,k))
|V (K(t,k))| = k

t .

Notice that previous lower bound for χk(K(m,n)�K(m,n)) improves
the one of kbmn c obtained at the beginning of this section. In fact, Vizing
[13] has shown that, for any two graphs G and H, α(G)α(H)+min{|V (G)|−
α(H), |V (H)|−α(G)} ≤ α(G�H) ≤ min{α(G)|V (H)|, α(H)|V (G)|}. There-
fore, by using Vizing’s upper bound [13] and Lemma 2.10, we have that

k
(mn)

2

α(K(m,n)�K(m,n)) ≥ k
(mn)

2

α(K(m,n)(mn)
= kmn ≥ kb

m
n c.

An edge-coloring of a graph G = (V,E) is an assignment of colors to the
edges of G such that any two incident edges are assigned different colors.
The smallest number t such that G admits an edge-coloring with t colors is
called the chromatic index of G and is denoted by χ′(G). It is well known
that the chromatic index of a complete graph Kn on n vertices is equal to
n − 1 if n is even and n if n is odd (see [2]). Besides, in the case n even
each color class i (i.e. the subset of pairwise non incident edges colored with
color i) has size n

2 and if n is odd each color class has size n−1
2 . Therefore,

using this fact, we obtain the following result.

Lemma 2.14. Let m ≥ 5. If m is even then the set of vertices of the Kneser
graph K(m, 2) can be partitioned into m− 1 disjoint cliques, each one with
size m

2 and if m is odd then the set of vertices of the Kneser graph K(m, 2)
can be partitioned into m disjoint cliques, each one with size m−1

2 .

Proof. Notice that there is a natural bijection between the vertex set of
K(m, 2) and the edge set of the complete graph Km with vertex set [m]:
each vertex {i, j} in K(m, 2) is mapped to the edge {i, j} in Km. Now, if m

5



is even there is a (m− 1)-edge coloring of Km where each color class is a set
of pairwise non incident edges with size m

2 and if m is odd there is a m-edge
coloring of Km where each color class is a set of pairwise non incident edges
with size m−1

2 . Notice that two edges e, e′ ∈ Km are non incident edges if
and only if e ∩ e′ = ∅. Therefore, a color class of the edge-coloring of Km

represents a clique of K(m, 2).

Now, we are able to obtain an upper bound for the stability number of
the graph K(m, 2)�K(m, 2) as follows.

Lemma 2.15. Let m ≥ 5. Then,

• α(K(m, 2)�K(m, 2)) ≤ m(m−1)
8 (3m− 2) if m is even and,

• α(K(m, 2)�K(m, 2)) ≤ m(m−1)
8 (3m− 1) if m is odd.

Proof. Let m even. First, recall that a stable set X in K(m, 2) has size
at most m − 1 if X has center (see Lemma 2.10) and |X| ≤ 1 + (m −
1) − (m − 2 − 1) = 3 if X has no center (see Lemma 2.11). Besides,
observe that the vertex set of K(m, 2) can be partitioned in m − 1 sets
S1, . . . , Sm−1 such that each Si induces a complete subgraph graph Km

2
in

K(m, 2), for i = 1, . . . ,m− 1 (see Lemma 2.14). Consider the subgraph Hi

of K(m, 2)�K(m, 2) induced by Si × V (K(m, 2)) for i = 1, . . . ,m− 1. Let
I be a stable set in K(m, 2)�K(m, 2) and Ii = I ∩Hi for i = 1, . . . ,m− 1.
Then, for each v ∈ Si, I

v
i = Ii ∩ ({v} × V (K(m, 2))) is a stable set in

K(m, 2)�K(m, 2) for each i = 1, . . . ,m − 1. Finally, for each v ∈ Si, with
1 ≤ i ≤ m− 1, let Ivi,2 be the stable set in K(m, 2) such that Ivi = {v}× Ivi,2.

Now, for a fixed i ∈ {1, . . . ,m−1}, assume w.l.o.g. that r (r ≤ m
2 ) stable

sets I1i,2, . . . , I
r
i,2 of K(m, 2) have distinct center j1, . . . , jr, respectively (the

case when two of these stable sets have the same center can be easily reduced
to this case). Let W be the set of subsets with size two of {j1, . . . , jr}.
Therefore, for all v ∈ {1, . . . , r}, Ivi − ({v} ×W ) has size at most m − 1 −
(r−1) = m−r since each center jv belongs to r−1 elements in W . Besides,
each element of W belongs to exactly one set Ivi,2 for v ∈ {1, . . . , r}, since
Si induces a complete subgraph in K(m, 2) and {1, . . . , r} ⊆ Si. Then,

|I1i ∪ . . . ∪ Iri | ≤ (
∑r

v=1 |Ivi − {v} ×W |) + |W | ≤ r(m − r) + r(r−1)
2 . Next,

each remaining stable set (if exist) Ir+1
i,2 , . . . , I

m
2
i,2 has no center, then |Idi | ≤ 3

for all d ∈ {r+1, . . . , m2 }. Thus, |Ii| ≤ r(m−r)+ r(r−1)
2 +3(m2 −r) = − r2

2 +
r(m− 7

2)+ 3
2m. Since the last expression is non decreasing for r ∈ {1, . . . , m2 },

we have that
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|Ii| ≤ −
m2

8
+
m

2
(m− 7

2
) + 3

m

2
=
m

2
(
3

4
m− 1

2
)

Therefore, |Ii| ≤ m
2 (34m −

1
2) for every i = 1, . . . ,m − 1. Since |I| =∑m−1

i=1 |Ii|, it follows that |I| ≤ m(m−1)
2 (34m−

1
2) and thus,

α(K(m, 2)�K(m, 2)) ≤ m(m− 1)

8
(3m− 2)

We analyze now the case for m odd, with a similar reasoning. First,
recall that a stable set X in K(m, 2) has size at most m − 1 if X has
center (see Lemma 2.10) and |X| ≤ 1 + (m − 1) − (m − 2 − 1) = 3 if X
has no center (see Lemma 2.11). Besides, observe that the vertex set of
K(m, 2) can be partitioned in m sets S1, . . . , Sm such that each Si induces
a complete subgraph Km−1

2
in K(m, 2), for i = 1, . . . ,m (see Lemma 2.14).

Consider the subgraph Hi of K(m, 2)�K(m, 2) induced by Si×V (K(m, 2))
for i = 1, . . . ,m. Let I be a stable set in K(m, 2)�K(m, 2) and Ii = I ∩Hi

for i = 1, . . . ,m. Then, for each v ∈ Si, I
v
i = Ii ∩ ({v} × V (K(m, 2))) is

a stable set in K(m, 2)�K(m, 2) for each i = 1, . . . ,m. Finally, for each
v ∈ Si, with 1 ≤ i ≤ m, let Ivi,2 be the stable set in K(m, 2) such that
Ivi = {v} × Ivi,2.

Now, for a fixed i ∈ {1, . . . ,m}, assume w.l.o.g. that r (r ≤ m−1
2 ) stable

sets I1i,2, . . . , I
r
i,2 of K(m, 2) have distinct center j1, . . . , jr, respectively (the

case when two of these stable sets have the same center can be easily reduced
to this case). Let W be the set of subsets with size two of {j1, . . . , jr}.
Therefore, for all v ∈ {1, . . . , r}, Ivi − ({v} ×W ) has size at most m − 1 −
(r−1) = m−r since each center jv belongs to r−1 elements in W . Besides,
each element of W belongs to exactly one set Ivi for v ∈ {1, . . . , r}, since
Si induces a complete subgraph in K(m, 2) and {1, . . . , r} ⊆ Si. Then,

|I1i ∪ . . . ∪ Iri | ≤ (
∑r

v=1 |Ivi − {v} ×W |) + |W | ≤ r(m− r) + r(r−1)
2 .

Next, each remaining stable set (if exist) Ir+1
i,2 , . . . , I

m−1
2

i,2 has no center,

then |Idi | ≤ 3 for all d ∈ {r + 1, . . . , m−12 }. Thus, |Ii| ≤ r(m− r) + r(r−1)
2 +

3(m−12 − r) = − r2

2 + r(m− 7
2) + 3

2(m− 1). Since the last expression is non
decreasing for r ∈ {0, . . . , m−12 }, we have that

|Ii| ≤ −
(m− 1)2

8
+
m− 1

2
(m− 7

2
) +

3

2
(m− 1) =

m− 1

2
(
3

4
m− 1

4
)

Therefore, |Ii| ≤ m−1
2 (34m−

1
4) for every i = 1, . . . ,m. Since |I| =

∑m
i=1 |Ii|,
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it follows that |I| ≤ m(m−1)
2 (34m−

1
4) and thus,

α(K(m, 2)�K(m, 2)) ≤ m(m− 1)

8
(3m− 1)

From Lemmas 2.13 and 2.15 we have the following result.

Theorem 2.16. Let m ≥ 5. Then,

• χk(K(m, 2)�K(m, 2)) ≥ 2km(m−1)
3m−2 if m is even and,

• χk(K(m, 2)�K(m, 2)) ≥ 2km(m−1)
3m−1 if m is odd.

In the particular case when m = 2q+ 4, with q > 0, and k = 2, we have,
by Lemma 2.6 and Theorem 2.16, the following result that shows that the
difference χ2(K(2q + 4, 2)�K(2q + 4, 2))− χ2(K(2q + 4, 2)) can be as large
as desired.

Corollary 2.17. For any integer q > 0 and for k = 2, we have that,

χ2(K(2q+4, 2)�K(2q+4, 2)) ≥ 2q+

⌈
2

3
q

⌉
+5 = χ2(K(2q+4, 2))+

⌈
2

3
q

⌉
+1.

From Lemmas 2.5 and 2.6, Corollary 2.2, and Theorem 2.16, we obtain
the results that we summarize in Table 1.

Finally, by applying some known homomorphisms between Kneser graphs,
we obtain the following result.

Theorem 2.18. Let k > n and let t = χk(K(m,n)�K(m,n)), where m >
2n. Then, either t > m+ 2(k − n) or t < m+ (k − n).

Proof. Suppose that m+(k−n) ≤ t ≤ m+2(k−n). Therefore, there exists
an homomorphism K(m,n)�K(m,n) → K(t, k). Now, Stahl [11] showed
that there is an homomorphism K(m,n)→ K(m−2, n−1) whenever n > 1
and m ≥ 2n. Moreover, it is easy to see that there is an homomorphism
K(m,n)→ K(m−1, n−1). By applying the former homomorphism t−(m+
(k− n)) times to the graph K(t, k) we obtain an homomorphism K(t, k)→
K(2(m+k−n)−t, 2k+m−n−t). Finally, by applying 2k+m−t−2n times
the latter homomorphism to the graph K(2(m+ k− n)− t, 2k+m− n− t)
we obtain an homomorphism K(2(m+k−n)−t, 2k+m−n−t)→ K(m,n).
Therefore, by homomorphism composition, K(m,n)�K(m,n) → K(m,n)
which contradicts Lemma 2.3.
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G k χk(G) [11] χk(G�G) =

K(5, 2)

2 5 6
3 8 9
4 10 12
5 13 15
6 15 18
7 18 20− 21

K(6, 2)

2 6 8
3 ? 12
4 12 15− 16
5 ? 19− 20
6 18 23− 24

K(7, 2)
2 7 9− 10
3 ? 13− 15
4 14 17− 20

K(8, 2)
2 8 11− 12
3 ? 16− 18
4 16 21− 24

Table 1: Summary of results

3. Cases where χk(G�H) = max{χk(G), χk(H)}

Theorem 3.1. Let G and H be graphs such that χ(G) ≤ χ(H) = ω(H).
Then, χk(G�H) = max{χk(G), χk(H)} = χk(H) = kω(H).

Proof. Let t = ω(H) and let {h1, . . . , ht} be the vertex set of a maximum
clique Kt in H with size t. Clearly, χk(G) ≤ χk(H) = χk(Kt). Let ρ be
a k-tuple coloring of H with χk(H) colors. By equality (1), there exists a
t-coloring f of G�H. Therefore, the assignment of the k-set ρ(hf((a,b))) to
each vertex (a, b) in G�H defines a k-tuple coloring of G�H with χk(Kt)
colors.

Notice that if G and H are both bipartite, then χk(G�H) = χk(G) =
χk(H). In the case when G is not a bipartite graph, we have the following
results.

An automorphism σ of a graph G is called a shift of G if {u, σ(u)} ∈ E(G)
for each u ∈ V (G) [8]. In other words, a shift of G maps every vertex to one
of its neighbors.

Theorem 3.2. Let G be a non bipartite graph having a shift σ ∈ AUT (G),
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and let H be a bipartite graph. Then, χk(G�H) = max{χk(G), χk(H)} =
χk(G).

Proof. Let A ∪ B be a bipartition of the vertex set of H. Let f be a k-
tuple coloring of G with χk(G) colors. Clearly, χk(G) ≥ χk(H). We define
a k-tuple coloring ρ of G�H with χk(G) colors as follows: for any vertex
(u, v) of G�H with u ∈ G and v ∈ H, define ρ((u, v)) = f(u) if v ∈ A, and
ρ((u, v)) = f(σ(u)) if v ∈ B.

We may also deduce the following direct result.

Theorem 3.3. Let G be an hom-idempotent graph and let H be a subgraph
of G. Thus, χk(G�H) = max{χk(G), χk(H)} = χk(G).

Let A be a group and S a subset of A that is closed under inverses and
does not contain the identity. The Cayley graph Cay(A,S) is the graph
whose vertex set is A, two vertices u, v being joined by an edge if u−1v ∈ S.
If a−1Sa = S for all a ∈ A, then Cay(A,S) is called a normal Cayley graph.

Lemma 3.4 ([6]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on Abelian groups are normal, and thus
hom-idempotent. In particular, the circulant graphs are Cayley graphs on
cyclic groups (i.e., cycles, powers of cycles, complements of powers of cycles,
complete graphs, etc). By Theorem 3.3 and Lemma 3.4 we have the following
result.

Theorem 3.5. Let Cay(A,S) be a normal Cayley graph and let Cay(A′, S′)
be a subgraph of Cay(A,S), with A′ ⊆ A and S′ ⊆ S. Then,
χk(Cay(A,S)�Cay(A′, S′)) = max{χk(Cay(A,S)), χk(Cay(A′, S′))}.

Definition 3.6. Let G be a graph with a shift σ. We define the order of σ
as the minimum integer i such that σi is equal to the identity permutation.

Theorem 3.7. Let G be a graph with a shift σ of minimum odd order 2s+1
and let C2t+1 be a cycle graph, where t ≥ s. Then,
χk(G�C2t+1) = max{χk(G), χk(C2t+1)}.

Proof. Let {0, . . . , 2t} be the vertex set of C2t+1, where for 0 ≤ i ≤ 2t, {i, i+1
mod (2t + 1)} ∈ E(C2t+1). Let Gi be the ith copy of G in G�C2t+1, that
is, for each 0 ≤ i ≤ 2t, Gi = {(g, i) : g ∈ G}. Let f be a k-tuple coloring of
G with χk(G) colors. We define a k-tuple coloring of G�C2t+1 with χk(G)
colors as follows: let σ0 denotes the identity permutation of the vertices
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in G. Now, for 0 ≤ i ≤ 2s, assign to each vertex (u, i) ∈ Gi the k-tuple
f(σi(u)). For 2s+ 1 ≤ j ≤ 2t, assign to each vertex (u, j) ∈ Gj the k-tuple
f(u) if j is odd, otherwise, assign to (u, j) the k-tuple f(σ1(u)). It is not
difficult to see that this is in fact a proper k-tuple coloring of G�C2t+1.
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