
Theoretical Computer Science 600 (2015) 59–69
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Complexity of the cluster deletion problem on subclasses

of chordal graphs ✩

Flavia Bonomo a, Guillermo Durán b,c, Mario Valencia-Pabon d,∗,1

a CONICET and Dep. de Computación, FCEN, Universidad de Buenos Aires, Argentina
b CONICET and Dep. de Matemática and Instituto de Cálculo, FCEN, Universidad de Buenos Aires, Argentina
c Dep. de Ingeniería Industrial, FCFM, Universidad de Chile, Santiago, Chile
d Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 October 2014
Received in revised form 30 June 2015
Accepted 1 July 2015
Available online 7 July 2015
Communicated by V.Th. Paschos

Keywords:
Block graphs
Cliques
Edge-deletion
Cluster deletion
Interval graphs
Split graphs
Submodular functions
Chordal graphs
Cographs
NP-completeness

We consider the following vertex-partition problem on graphs, known as the CLUSTER
DELETION (CD) problem: given a graph with real nonnegative edge weights, partition
the vertices into clusters (in this case, cliques) to minimize the total weight of edges
outside the clusters. The decision version of this optimization problem is known to be
NP-complete even for unweighted graphs and has been studied extensively. We investigate
the complexity of the decision CD problem for the family of chordal graphs, showing that
it is NP-complete for weighted split graphs, weighted interval graphs and unweighted
chordal graphs. We also prove that the problem is NP-complete for weighted cographs.
Some polynomial-time solvable cases of the optimization problem are also identified, in
particular CD for unweighted split graphs, unweighted proper interval graphs and weighted
block graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an important task in the data analysis process. It can be viewed as a data modeling technique that provides
an attractive mechanism for automatically finding the hidden structure of large data sets. The input to the problem is typi-
cally a set of elements and pairwise similarity values between elements. The goal is to partition these elements into subsets
called clusters such that two meta-criteria are satisfied: homogeneity – elements in a given cluster are highly similar to each
other; and separation – elements from different clusters have low similarity to each other. In the graph theoretic approach
to clustering, one builds from the raw data a similarity graph whose vertices correspond to elements and there is an edge
between two vertices if and only if the similarity of their corresponding elements exceeds a predefined threshold [13,14].
Cluster graphs have been used in a variety of applications whenever clustering of objects is studied or when consistent data

✩ Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), UBACyT Grant 20020130100808BA, CONICET PIP
112-200901-00178 and 112-201201-00450CO and ANPCyT PICT 2012-1324 (Argentina), FONDECYT Grant 1140787 and Millennium Science Institute
“Complex Engineering Systems” (Chile).

* Corresponding author.
E-mail addresses: fbonomo@dc.uba.ar (F. Bonomo), gduran@dm.uba.ar (G. Durán), valencia@lipn.univ-paris13.fr (M. Valencia-Pabon).

1 Currently “en délégation” at the INRIA Nancy-Grand Est.
http://dx.doi.org/10.1016/j.tcs.2015.07.001
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:fbonomo@dc.uba.ar
mailto:gduran@dm.uba.ar
mailto:valencia@lipn.univ-paris13.fr
http://dx.doi.org/10.1016/j.tcs.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.07.001&domain=pdf

60 F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69
is sought among noisy or error-prone data [1,5]. Ideally, the resulting graph would be a cluster graph, that is, a graph in
which every connected component is a clique (i.e., a complete subgraph). In practice, it is only close to being such, since
similarity data is experimental and therefore error-prone.

The cluster deletion problem consists in finding the minimum number of edges that must be removed from an input graph
to make the resulting graph a cluster graph. In its decision version, the cluster deletion problem has a non-negative integer
parameter W and asks if one can remove a set of at most W edges from the input graph such that the resulting graph is a
cluster graph. There exist several results for the cluster deletion problem (see for example [3,17,22] and references therein).
The cluster deletion problem is known to be NP-complete [22] for general graphs. Moreover, Shamir et al. [22] showed that it
remains NP-hard when imposing that the input graph should be clustered into exactly d ≥ 3 components. They also showed
that when the input graph is clustered into exactly 2 components, the problem is polynomial-time solvable. Komusiewicz
et al. [17] proved that cluster deletion is hard for C4-free graphs with maximum degree 4 and gave an O (n1.5 log2 n) time
algorithm for solving cluster deletion on graphs with maximum degree 3, where n is the number of vertices of the graph.

Based on results obtained by Demaine et al. [7] for a variant of a clustering problem, Dessmark et al. [8] provided a
polynomial O (log n)-approximation algorithm for the edge-weighted version of the cluster deletion problem. In this version,
the edges of the graph have an associated weight and the aim is to minimize the sum of the weights of the removed edges.
Considering it as a decision problem, the aim is to determine, for some input parameter W , if there is a set of edges with a
total weight of at most W such that removing it from the input graph will make the resulting graph a cluster graph. Note
that if we allow the weight function to be negative on some edges, we can reduce any clustering problem to a clustering
problem whose input graph is a weighted complete graph by assigning a negative weight with a large enough absolute
value to the edges that are missing in the original graph. Thus, the problem with arbitrary weights is NP-complete for any
graph class admitting arbitrarily large cliques. We will assume throughout that all of the weight functions are nonnegative.

Dessmark et al. [8] also showed that for the unweighted version of cluster deletion on general graphs, the greedy al-
gorithm that finds iteratively maximum cliques gives a 2-approximation algorithm to the optimal cluster deletion. The
complexity of such an algorithm reflects the complexity of iteratively finding maximum cliques, so it is a polynomial-time
approximation algorithm for certain graph classes. Recently, Gao et al. [11] showed that the greedy algorithm that finds
iteratively maximum cliques gives an optimal solution for the class of graphs known as cographs. This implies that the
cluster deletion problem is polynomial-time solvable on unweighted cographs. With a different approach based on modular
decomposition, it is proved in [4] that the unweighted cluster deletion problem is polynomial-time solvable on a sub-
class of P4-sparse graphs that strictly includes P4-reducible graphs (which are, in turn, a superclass of cographs). Gao et
al. [11] also showed that the cluster deletion problem is NP-hard on (C5, P5)-free graphs, on (2K2, 3K1)-free graphs and
on (C5, P5, bull, 4-pan, fork, co-gem, co-4-pan)-free graphs. For weighted graphs, the cluster deletion problem can be solved
in polynomial time on the class of triangle-free graphs given that it is equivalent to maximum weighted matching [9]. The
cluster deletion and other clustering problems have been studied extensively in the context of fixed-parameter tractability
(FPT) ([6,18] and references therein). Many of the recently-developed FPT algorithms rely on being able to solve cluster
deletion in polynomial-time on restricted graph structures [3].

A heuristic for solving clustering problems consists in modifying a given input graph into another graph having some
nice algorithmic properties and then solving the clustering problem for the modified graph. For example, to solve a genetic
clustering problem, Kaba et al. [16] transform any input graph into a chordal graph via minimal triangulations of the former
one. Once the input graph has been so transformed, they exploit the algorithmic properties of chordal graphs to obtain
good solutions to their clustering problem. If solving a clustering problem for a specific graph family F is computationally
hard, however, the heuristic which first transforms the input graph into a graph in F and then solves the problem on
the resulting graph may not be a good approach. Therefore, it is important to know how to solve a clustering problem on
specific graph families before using the above-described heuristic for general input clustering graphs.

Some known results are summarized in Table 1; those obtained in the present work are shown in bold face. We conclude
this introduction with some definitions.

Let G = (V , E) be a graph. For each vertex v ∈ V , we denote as N(v) = {u : vu ∈ E} the set of neighbors of v in G .
Two vertices v and w are called true twins if N(v) ∪ {v} = N(w) ∪ {w}. A graph G is said to be weighted if there is a
nonnegative weight function w : E → R+ associated with it. For the algorithms involving weighted graphs we will assume
that the weights are rational (or belong to any ordered field in which we can perform the field operations and the order
comparisons algorithmically). An unweighted graph is a graph in which each edge has a weight equal to 1. We say that a
set F of edges of a given graph has a uniform weight if all the edges in F have the same weight.

Let H and G be graphs. If G contains no induced subgraph isomorphic to H then G is an H-free graph. Let Pk (resp. Ck)
denote a path (resp. cycle) on k vertices. Let Km,n = (A ∪ B, E) denote the complete bipartite graph, where A (resp. B) is an
independent set of size m (resp. n) and E is the set of all the edges with an endpoint in A and an endpoint in B . We refer
to [23] for standard definitions and results in graph theory. A graph is chordal if and only if it does not contain a cycle of
length at least four as an induced subgraph. Given a vertex partition S = C1, . . . , Ck of a graph G , we call the weight of S ,
denoted w(S), the sum of the weights of all edges e = uv such that u ∈ Ci , v ∈ C j , with i �= j. An edge is called external with
respect to the partition S if its endpoints belong to distinct sets of S , and internal otherwise. The cluster deletion problem
for an (un)weighted graph G can be redefined as the problem of finding a clique partition of G with minimum weight. We
will assume throughout that all NP-completeness results concern the decision version of the cluster deletion problem.

F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69 61
Table 1
A summary of some of the known complexity results, with those obtained in the
present work shown in bold face. Question marks denote open problems.

Class Cluster
deletion

Weighted cluster
deletion

General NP-c [22] NP-c [22]
Complete split P [11] NP-c (Theorem 5.2)
3-Split P (Theorem 2.4) NP-c (Theorem 2.1)
Split P (Theorem 2.4) NP-c (Theorem 2.1)
P5-free chordal NP-c (Theorem 3.2) NP-c (Theorem 3.2)
Block P (Theorem 4.2) P (Theorem 4.2)
Interval ? NP-c (Corollary 5.3)
Proper interval P (Theorem 5.6) ?
Paths of cliques P (Theorem 5.1) P (Theorem 5.1)
Cographs P [11] NP-c (Corollary 5.7)
P4-reducible P [4] NP-c (Corollary 5.7)
� = 3 P [17] ?
C4-free with � = 4 NP-c [17] NP-c [17]
(C5, P5)-free NP-c [11] NP-c [11]
(2K2,3K1)-free NP-c [11] NP-c [11]
(C5, P5, bull, 4-pan, fork,
co-gem, co-4-pan)-free

NP-c [11] NP-c [11]

2. Split graphs

A graph G = (V , E) is a split graph if and only if there is a partition of the vertex set V of G into a clique K and an
independent set I . Another necessary and sufficient condition for a graph G to be a split graph is that G and its complement
G be chordal graphs (see [10]). If each vertex of the independent set is adjacent to exactly p vertices of the clique K with
p ≥ 1, then G is called a p-split graph.

In this section, we prove the NP-completeness of the weighted cluster deletion problem for split graphs by a reduction
from the exact cover by 3-sets problem (X3C problem for short). The formal definition of the X3C problem can be stated as
follows:

Instance: A set X with 3q elements and a collection C of 3-element subsets of X .

Question: Does C contain an exact cover for X? In other words, is there a subset C ′ ⊆ C such that every element of X
occurs in exactly one member of C ′?

The X3C problem is known to be NP-complete [12]. We may further assume that the union of the subsets in C covers X ,
otherwise the answer is trivially no.

Theorem 2.1 (NP-completeness on weighted 3-split graphs). The cluster deletion problem is NP-complete for weighted 3-split graphs,
even if the weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and the independent set is
uniform.

Proof. It is easily seen that the cluster deletion problem is in NP, since we can readily verify in polynomial time whether a
vertex partition of a graph is a clique partition and whether its weight is less than a given value W . Let X = {x1, . . . , x3q}
and C = {c1, . . . , cm} be an instance of the X3C problem, where each element ci ∈ C is a 3-element subset of X with
m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C with size q such that each element in X belongs to exactly
one of the elements in C ′ . We will construct a weighted split graph G = (K X ∪ IC , E), where K X induces a clique with 3q
vertices and IC induces an independent set with m vertices. For each element xi ∈ X there is a vertex xi in K X and for each
3-subset c j ∈ C there is a vertex c j ∈ IC . The edge set E is defined in such a way that K X induces a complete graph, IC is an
independent set, and xi in K X is adjacent to c j in IC if and only if xi is an element of X that belongs to the set c j in C . We
will call E X the set of edges with both endpoints in K X and EC the set of edges with an endpoint in K X and an endpoint
in IC . The weight of each edge in E X is equal to 1 and the weight of each edge in EC is equal to 3q. Clearly, G is a split
graph and can be obtained in polynomial time from the instance (X, C). Let W = (3q

2

) − 3q + 9q(m − q). We will show that
there exists a subset C ′ ⊆ C , with |C ′| = q exactly covering X if and only if G admits a clique partition where the sum of
the weights of the external edges is at most W . In other words, there exists a solution for the X3C problem if and only if
there exists a solution for the cluster deletion problem for G with a weight of at most W .

Assume first that there exists C ′ ⊆ C , with C ′ = {c′
1, . . . , c

′
q} such that c′

i ∩ c′
j = ∅ whenever i �= j, and

⋃
c′

j∈C ′ c′
j = X . The

clique partition for G can be constructed as follows: for each c′
j ∈ C ′ , choose the clique of G formed by the corresponding

vertex c′ in IC and its neighbors in K X . Each of the remaining m − q vertices in IC forms a clique of size one (a singleton).
j

62 F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69
The sum of the edge weights outside those cliques is exactly equal to W . The weight of the clique partition is equal to
(3q

2

)

(the weight of all the edges in K X) minus 3q (each one of the q cliques with size four has a triangle in K X) plus 9q(m − q)

(the 3(m − q) edges of weight 3q joining the m − q singletons and their neighbors in K X are external with respect to the
partition).

Now assume conversely that G has a clique partition with a weight of at most W . We must prove that there exists
C ′ ⊆ C with |C ′| = q such that C ′ is an exact cover for X . We begin by analyzing the structure of the optimal solutions of
the optimization version of the cluster deletion problem for G .

Claim 2.2. Let S be a clique partition of G that is an optimal solution for the cluster deletion problem in G in its optimization version.
Then no clique in S is formed only by vertices in K X .

Note first of all that it is not possible to have two cliques A1, A2 ∈ S formed only by vertices in K X . If the case were
otherwise we could define the clique partition S ′ = S \ {A1, A2} ∪ {A1 ∪ A2}, but then clearly w(S) − w(S ′) = |A1|.|A2| ≥ 1,
which contradicts the optimality of S . Thus, every clique of S contains at most one vertex of IC , so there are m cliques
(possibly singletons) each containing a vertex of IC . Let S = A1, B1, . . . , Bm be the clique partition of G and let w(S) be the
weight of S . Assume that clique A1 is formed only by vertices in K X and each clique B j , 1 ≤ j ≤ m, contains the vertex c j
of IC and zero, one, two or three vertices in K X .

Let c j be in IC . We consider the following cases:

• |B j| < 3 and there is a neighbor y of c j in A1. Let S ′ be the clique partition S ′ = S \ {A1, B j} ∪ {A1 \ {y}, B j ∪ {y}}. It
is readily seen that w(S ′) = w(S) − (3q + 2) + (|A1| − 1) = w(S) + |A1| − 3q − 3. However, |A1| ≤ 3q − 2. Therefore,
w(S ′) < w(S), which contradicts the optimality of S .

• Similarly to the previous case, |B j| = 2 (resp. |B j| = 1) and there is a neighbor y of c j in A1. Let S ′ be the clique
partition S ′ = S \ {A1, B j} ∪ {A1 \ {y}, B j ∪ {y}}. Observe that w(S ′) = w(S) + |A1| − 3q − 2 < w(S) (resp. w(S ′) =
w(S) + |A1| − 3q − 1 < w(S)), which is a contradiction to the optimality of S .

Since S is an optimal solution, it follows that no vertex in IC is adjacent to a vertex in A1. But by construction, this
implies that X is not covered by C , which contradicts our assumption about the instances of X3C. This ends the proof of
this claim. ♦

By the above claim, there must be an optimal solution S for the cluster deletion problem of G (optimization version) of
the form S = B1, . . . , Bm , where each clique B j contains exactly one vertex c j of IC , for 1 ≤ j ≤ m. Let ti be the number of
cliques of S with i vertices in K X , for i = 0, . . . , 3.

Claim 2.3. t3 > 0.

Suppose that t3 = 0. If t2 �= 0, then there is a clique B j = {c j, x j1 , x j2 } in S . By construction, c j has another neighbor
y ∈ K X . If y ∈ Bi with |Bi | = 3 (resp. |Bi| = 2), we then obtain another clique partition S ′ = S \ {Bi, B j} ∪ {Bi \ {y}, B j ∪ {y}}
such that w(S ′) = w(S) − (3q + 2) + 3q + 1 = w(S) − 1 < w(S) (resp. w(S) − (3q + 2) + 3q = w(S) − 2 < w(S)), which
contradicts the optimality of S . If t3 = t2 = 0, then there exist B j, Bi, Bs ∈ S such that B j = {c j, x j1 }, Bi = {ci, x j2 } and
Bs = {cs, x j3 }, where x j1 , x j2 and x j3 are the three neighbors of c j in K X . We then obtain another clique partition S ′ =
S \ {B j, Bi, Bs} ∪{B j ∪{x j2 , x j3 }, Bi \ {x j2 }, Bs \ {x j3 }} such that w(S ′) = w(S) − (6q + 3) + 6q = w(S) − 3 < w(S), which again
contradicts the optimality of S . Therefore, t3 > 0, which ends the proof of this claim. ♦

The weight w(S) of S can be written as w(S) = (3q
2

) − (3t3 + t2) + (t2 + 2t1 + 3t0)3q. Moreover, m = t3 + t2 + t1 + t0
and 3q = 3t3 + 2t2 + t1. Therefore, 3(m − q) = t2 + 2t1 + 3t0 and 3t3 + t2 = 3q − t2 − t1. Then, since 3q ≥ 3t3 + t2 it follows
that W ≤ w(S), with equality if and only if t2 = t1 = 0 and t3 = q. Indeed, recall that W = (3q

2

) − 3q + 9q(m − q) and thus,
if W = w(S) then 3t3 + 2t2 + t1 = 3q = 3t3 + t2, which implies that t2 = −t1. Since t2, t1 ≥ 0 it must be the case that
t2 = t1 = 0, which forces t3 to be equal to q. So if G admits a clique partition S with weight W , then there is a solution to
the X3C problem. This ends the proof of the theorem. �

For the unweighted case, we will show that the problem can be easily solved on split graphs.

Theorem 2.4 (Polynomiality on unweighted split graphs). The cluster deletion problem is polynomial-time solvable for unweighted
split graphs. Indeed, if (K , I) is a split partition of a graph G such that K is a maximal clique of G, then {K } ∪{{v} : v ∈ I} is an optimal
solution unless there is a vertex v1 in I adjacent to all but one vertex w in K and that vertex w has a neighbor v2 in I . In that case, an
optimal solution is {{v1} ∪ (K − {w}), {w, v2}} ∪ {{v} : v ∈ I, v �= v1, v2}.

Proof. Let G be a split graph and (K , I) be a split partition of G such that K is a maximal clique of G . Note that the
cluster deletion problem can be seen as the problem consisting in maximizing the number of internal edges in a clique
partition S . In order to break ties, we maximize the number of internal edges joining vertices of K in G . We will refer to
S0 = {K } ∪ {{v} : v ∈ I} as the standard partition.

F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69 63
It is clear that no optimal solution has two different cliques strictly contained in K . So, every possibly optimal partition
that is not the standard one contains at least one clique with a nonempty intersection with both K and I .

Suppose that we have an optimal solution S with respect to the above criterion that is strictly better than S0. If S
contains a clique A � K such that |A| = a ≥ 1 and a clique B containing one vertex of I and b ≥ 1 vertices of K , then
S ′ = S \ {A, B} ∪ {A ∪ (B ∩ K), B ∩ I} is another clique partition which compared to S contains ab new internal edges that
join two vertices of K in G but no longer contains b edges that join vertices of K with vertices in I . Thus, it is either strictly
better than S or preferable to it by the tie-breaking rule, thereby contradicting the optimality of S . Therefore, since as stated
above clique B exists, we may assume that every clique of S contains a vertex of I .

Suppose now that S contains a clique A with |A ∩ K | = a ≥ 2 and a clique B with |B ∩ K | = b ≥ 2. Then S ′ = S \ {A, B} ∪
{(A ∩ K) ∪ (B ∩ K), A ∩ I, B ∩ I} is another clique partition which compared to S contains ab new internal edges that join
two vertices of K in G but no longer contains a + b edges that join vertices of K with vertices of I . Since a, b ≥ 2, S ′ is
either strictly better than S or preferable to it by the tie-breaking rule, thus contradicting the optimality of S .

Finally suppose that there are three cliques A, B, C containing a vertex in I and a, b, c ≥ 1 vertices in K , respectively.
Then S ′ = S \ {A, B, C} ∪ {(A ∩ K) ∪ (B ∩ K) ∪ (C ∩ K), A ∩ I, B ∩ I, C ∩ I} is another clique partition which compared to S
contains ab + ac + bc new internal edges that join two vertices of K in G but no longer contains a + b + c edges that join
vertices of K with vertices of I . Since ab ≥ a, bc ≥ b, and ca ≥ c, then S ′ is either strictly better than S or preferable to it
by the tie-breaking rule, thereby contradicting the optimality of S .

We conclude that S contains exactly two cliques A, B such that |A ∩ I| = |B ∩ I| = 1, |A ∩ K | ≥ 1 and |B ∩ K | = 1. So, there
is a vertex v1 in I adjacent to all but one vertex w in K which has a neighbor v2 in I , and S = {{v1} ∪ (K −{w}), {w, v2}} ∪
{{v} : v ∈ I, v �= v1, v2}. �
3. Chordal graphs

Chordal graphs are a class of graphs that have been extensively studied thanks to their peculiar clique-based structure,
which lends itself to efficient solutions of algorithmic problems [2].

To prove the main result of this section, we first demonstrate a simple general lemma.

Lemma 3.1 (True twins). Let G be graph and v, z be true twins in G. Then, for every optimal solution of the unweighted cluster deletion
problem, v and z belong to the same clique of the partition.

Proof. Suppose, on the contrary, that there is an optimal clique partition S such that v belongs to a clique C1 and z belongs
to a different clique C2. Without loss of generality, we may assume that |C1| ≤ |C2|. But then S ′ = S \{C1, C2} ∪{C1 \{v}, C2 ∪
{v}} is another clique partition such that w(S ′) < w(S), which is a contradiction. �
Theorem 3.2 (NP-completeness on unweighted chordal graphs). The cluster deletion problem is NP-complete for unweighted P5-free
chordal graphs.

Proof. This proof is based on the proof of Theorem 2.1. The reduction is again from the X3C problem. Let X = {x1, . . . , x3q}
and C = {c1, . . . , cm} be an instance of the X3C problem, where each element ci ∈ C is a 3-element subset of X , with
m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C of size q such that each element in X belongs to exactly one
of the elements in C ′ . We construct a graph G = (V , E) whose vertex set V is formed by m + 1 disjoint cliques of size 3q,
namely K X , Kc1 , . . . , Kcm , such that the vertices of K X correspond to the elements of X , the clique Kci corresponds to the
element ci of C , for i = 1, . . . , m, and vertex x j in K X is adjacent to all the vertices of Kci if and only if the element x j of X
belongs to the set ci of C . Clearly, this construction can be done in polynomial time from the instance (X, C). Now, since for
each 1 ≤ i ≤ m, all the 3q vertices of the clique Kci are true twins, by Lemma 3.1 they must belong to the same clique in an
optimal partition S for the optimization version of the cluster deletion problem. Therefore, we can contract each clique Kci ,
with 1 ≤ i ≤ m, into a single vertex ci and replace each subset of 3q edges between Kci and the vertex x j ∈ K X by a single
edge with weight 3q, for each x j in ci . Hence, we obtain the weighted split graph constructed in the proof of Theorem 2.1.
This shows (a) that graph G is a P5-free chordal graph since split graphs also are and the true twins contraction neither
eliminates chordless cycles nor induces paths on five vertices; and (b) that the problem is indeed NP-complete. �
4. Block graphs

A graph G is a block graph if it is a connected graph and every block (i.e. maximal 2-connected component) is a clique.
Block graphs form a subclass of chordal graphs.

The first result in this section concerns weighted 1-split graphs, a special subclass of block graphs. First, we will show
how to use submodular function minimization in order to solve the cluster deletion problem on 1-split graphs. Then we
will explain how to reduce the problem on weighted block graphs to the problem on weighted 1-split graphs.

Given a finite nonempty set V of cardinality n, a function f defined on all the subsets of V is called submodular if
it satisfies f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y), for every X, Y ⊆ V . In [15] and [21], the authors present combinatorial

64 F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69
polynomial-time algorithms for finding a minimizer of a general submodular function provided an oracle for evaluating the
function value is available. The number of oracle calls is bounded by a polynomial in the size of the underlying set.

Theorem 4.1 (Polynomiality on weighted 1-split graphs). The cluster deletion problem is polynomial-time solvable for weighted 1-split
graphs.

Proof. Let G be a 1-split graph with split partition (K , I). Consider an optimal solution S of the cluster deletion problem.
Clearly, S contains at most one clique composed only of vertices of K , otherwise a new partition obtained by replacing two
such cliques by their union would contradict the solution’s optimality. If this clique exists, denote it by K1. All other cliques
in S are either isolated vertices of I or cliques of size 2 with one vertex in K and one vertex in I . Also, if {u, v} ∈ S with
u ∈ K , v ∈ I , then necessarily w(uv) ≥ w(uw), for all w ∈ N(v) ∩ I , since minimizing the weight of the external edges of the
clique partition is equivalent to maximizing the weight of the internal ones. We can then preprocess the graph, identifying
a subset of vertices of I that will be singletons in the solution and leaving a graph with vertex partition (K , I ′) in which
each vertex v of K has at most one neighbor u in I ′ (one of the neighbors of v maximizing the weight of the edge vu).
Moreover, by definition of 1-split graph, each vertex of I has at most one neighbor in K .

If the subset K0 of vertices of K having no neighbors in I ′ is nonempty, it will be part of the clique K1 in the solution.
We name the set K \ K0 as {v1, . . . , vr} and their respective neighbors in I ′ as {u1, . . . , ur}. A candidate solution must be
{{vi, ui}}i /∈R ∪ {K1 ∪ {vi : i ∈ R}} ∪ {{ui}}i∈R , where R is a subset of {1, . . . , r} and is totally determined by that subset R .

The subset R is not necessarily a proper subset of {1, . . . , r} and may be empty. In what follows we will prove that
the function f that assigns to R the weight difference between the candidate solution associated with R and the solution
associated with the empty set is submodular, and thus the set R that minimizes that function can be found in polynomial
time.

The function f can be computed in polynomial time for a subset R , and is defined as

f (R) =
∑

i∈R

w(viui) −
∑

i, j∈R

w(vi v j) −
∑

i∈R,z∈K0

w(vi z)

Let R, T ⊆ {1, . . . , r}. We will show that f (R) + f (T) ≥ f (R ∪ T) + f (R ∩ T) provided that the weights of the edges
joining two vertices of K are nonnegative, which holds under our assumptions. It is easily seen that

∑

i∈R

w(viui) +
∑

i∈T

w(viui) =
∑

i∈R∪T

w(viui) +
∑

i∈R∩T

w(viui)

and that
∑

i∈R,z∈K0

w(vi z) +
∑

i∈T ,z∈K0

w(vi z) =
∑

i∈R∪T ,z∈K0

w(vi z) +
∑

i∈R∩T ,z∈K0

w(vi z).

We therefore have to show that
∑

i, j∈R

w(vi v j) +
∑

i, j∈T

w(vi v j) ≤
∑

i, j∈R∪T

w(vi v j) +
∑

i, j∈R∩T

w(vi v j).

The inequality holds because
∑

i, j∈R∪T

w(vi v j) +
∑

i, j∈R∩T

w(vi v j) −
∑

i, j∈R

w(vi v j) −
∑

i, j∈T

w(vi v j) =
∑

i∈R\T , j∈T \R

w(vi v j) ≥ 0. �

If the weight of the internal edges is 1, the algorithm is very simple. We denote the vertices in K \ K0 as {v1, . . . , vr}
and their respective neighbors in I as {u1, . . . , ur}, in such a way that w(v1u1) ≤ · · · ≤ w(vr ur). Then the only sets that are
candidates for minimizing f are the empty set and the sets {1, . . . , j}, for 1 ≤ j ≤ r.

Based on the solution of cluster deletion for weighted 1-split graphs, we now solve the problem for weighted block
graphs.

Theorem 4.2 (Polynomiality on weighted block graphs). The cluster deletion problem is polynomial-time solvable for weighted block
graphs.

Proof. Let G = (V , E) be a weighted block graph. An end-block of a graph is a block containing exactly one cut-vertex. It is
known that every connected graph that is not 2-connected has an end-block. Inductively, the blocks of G can be enumerated
as B1, . . . , Br in such a way that Bi is an end-block of the graph induced by Bi ∪ Bi+1 ∪· · ·∪ Br . We will process the blocks in
that order by solving a subproblem at each iteration and thus reduce the graph to a simpler one. Then we will reconstruct
the solution for the original graph based on the solution of each subproblem and the recursive solution of the reduced
graph.

F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69 65
Given the order in which the blocks were chosen, when we process block Bi for i < r it will have exactly one cut-vertex
v joining it with the non-processed blocks. The graph G0 will be G and we will create a graph Gi (i ≥ 1) from Gi−1 by
replacing the connected component of Gi−1 \ {v} that contains Bi \ {v} with a vertex u adjacent to v . We will then assign
a suitable weight to edge vu. Inductively, this means that when block Bi is processed, the connected component H of
Gi−1 \ {v} that contains Bi \ {v} is a 1-split graph, and so is the graph induced by V (H) ∪ {v}. We will define w(uv) =∑

y∈H,v y∈E w(v y) + w(S H) − w(S H∪{v}), where S H∪{v} and S H are optimal solutions for the cluster deletion problem on the
1-split graph induced by V (H) ∪ {v} and H , respectively. If the weight w(uv) is negative we do not create the edge since
no optimal solution will use it (i.e., no optimal solution will have a clique containing both v and vertices of H). Note that
we can find S H∪{v} and S H by Theorem 4.1.

Claim 4.3. Let Si be an optimal solution of the cluster deletion problem for Gi. If {u, v} ∈ Si , then Si \ {{u, v}} ∪ S H∪{v} is an optimal
solution for Gi−1 . If {u, v} /∈ Si , then Si \ {{u}} ∪ S H is an optimal solution for Gi−1.

Let Si−1 be an optimal solution of the cluster deletion problem for Gi−1. Let S1
i−1 be the subset of cliques of Si−1

containing vertices of H and S2
i−1 = Si−1 \ S1

i−1. Then v either does or does not belong to a clique in S1
i−1. Since v is a

cut-vertex of Gi−1 it is clear that under the first alternative S1
i−1 is an optimal solution for the cluster deletion problem on

the graph induced by V (H) ∪ {v} while under the second, S1
i−1 is an optimal solution for the cluster deletion problem on

graph H . Also, under the first alternative S2
i−1 ∪ {v, u} will be a feasible solution for Gi with weight w(Si−1) − w(S H∪{v})

while under the second, S2
i−1 ∪ {u} will be a feasible solution for Gi with weight w(Si−1) − w(S H) − ∑

y∈H,v y∈E w(v y) +
w(uv) = w(Si−1) − w(S H∪{v}). Therefore, if Si is an optimal solution of the cluster deletion problem for Gi , then w(Si) ≤
w(Si−1) − w(S H∪{v}), which implies that w(Si) + w(S H∪{v}) ≤ w(Si−1).

We now prove that the weight of the solutions proposed for Gi−1 under each alternative is exactly w(Si) + w(S H∪{v}),
making them both optimal.

If {u, v} ∈ Si , it is easily seen that w(Si \ {{u, v}} ∪ S H∪{v}) = w(Si) + w(S H∪{v}). If {u, v} /∈ Si , then, when considering
Si \ {{u}} ∪ S H in Gi−1, we do not have to delete the edge uv but do have to delete every edge joining v with vertices in H
so that w(Si \ {{u}} ∪ S H) = w(Si) − w(uv) + ∑

y∈H,v y∈E w(v y) + w(S H) = w(Si) + w(S H∪{v}). This ends the proof of this
claim. ♦

When block Br is processed, the graph Gr−1 is a 1-split graph so we can also apply the algorithm of Theorem 4.1 in order
to obtain an optimal partition for Gr−1. Claim 4.3 describes an optimal partition of Gi−1 in terms of an optimal partition
of Gi . Applying this claim iteratively for i = r − 1, . . . , 1, we construct an optimal solution for the graph G0 = G . �

Notice that if the graph G is unweighted, the 1-split graphs in which we need to solve the subproblems have a weight
of 1 on every internal edge. In this case, as we noted before Theorem 4.2, the algorithm is very simple.

5. Interval graphs

Another interesting subclass of chordal graphs is the class of interval graphs. A graph G is an interval graph if G is the
intersection graph of a finite family of intervals of the real line, and it is a proper interval graph if it admits an intersection
model in which no interval properly contains another. A unit interval graph is the intersection graph of a finite family of
intervals of the real line, all of the same length. Proper interval graphs and unit interval graphs are equivalent classes and
are also equivalent to the class of claw-free interval graphs [20] (the claw is the complete bipartite graph K1,3).

A restricted subclass of unit interval graphs is the class of paths of cliques. A graph is a path of cliques if after contracting
true twins into a single vertex, the resulting graph is a single path. In other words, its vertex set can be partitioned into
sets A1, . . . , An in such a way that any pair of vertices v , w such that v ∈ Ai and w ∈ A j is adjacent if and only if either
i = j or i = j + 1 or i = j − 1. Paths of cliques are also known in the literature as line graphs of multipaths.

In a clustering context, if the measured data arrive during a time-line as a sequence of sets and it is desired to cluster
the data on the basis of both a similarity function, defined by intrinsic properties of the data, and closeness in time, defined
as arriving either in the same set or in consecutive sets, these paths of cliques will arise.

In what follows, we prove a result using an approach similar to that used for Theorem 4.1. We begin by defining an
initial solution, then represent every solution by a subset of a set, and finally show that the function that assigns to every
subset the weight difference between its associated solution and the initial one is submodular.

Theorem 5.1 (Polynomiality on weighted paths of cliques). The cluster deletion problem is polynomial-time solvable for weighted paths
of cliques.

Proof. Let A1, . . . , An be the vertex set partition of a path of cliques G = (V , E). Without loss of generality, we may assume
that n is even, if necessary adding a set An+1 with only one vertex adjacent to every vertex in An with edges of zero weight.
Let n = 2r and define the initial solution as the cliques A2k−1 ∪ A2k for 1 ≤ k ≤ r. Every vertex of Ai , for 1 < i < n, has two
possibilities: to be either part of a clique contained in Ai−1 ∪ Ai or part of a clique contained in Ai ∪ Ai+1. Hence, any

66 F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69
solution is completely defined by the subset S of V \ (A1 ∪ An) that is moved from the initial solution to a clique contained
in A2 j ∪ A2 j+1, for some integer 1 ≤ j ≤ r − 1. We define f (S) for a subset S of V \ (A1 ∪ An) as the difference between the
weight of the solution associated with S and the weight of the initial solution. The optimal solution will be given by the
subset S that minimizes the function f . We now show that S is a submodular function, implying that a minimizer can be
found in strongly polynomial time.

The function f can be expressed as f (S) = ∑
1≤k≤r f k(S), where

f k(S) =
∑

v∈S∩A2k
u∈A2k−1

w(vu) +
∑

v∈S∩A2k−1
u∈A2k

w(vu) +
∑

v∈S∩A2k−1
u∈A2k−1\S

w(vu) +
∑

v∈S∩A2k
u∈A2k\S

w(vu) −
∑

v∈S∩A2k
u∈S∩A2k+1

w(vu)

−
∑

v∈S∩A2k−1
u∈S∩A2k

w(vu).

To simplify this expression we let A2r+1 = ∅. Note that the last term in the sum prevents double counting by the first two
terms.

For each value of k, define f k
1 (S), . . . , f k

6 (S) as the six terms of f k(S). It can easily be seen that for i = 1, 2 and S, T
subsets of V \ (A1 ∪ An), it holds f k

i (S) + f k
i (T) = f k

i (S ∪ T) + f k
i (S ∩ T). We will prove that for i = 3, . . . , 6, f k

i (S) + f k
i (T) ≥

f k
i (S ∪ T) + f k

i (S ∩ T).
For S, T subsets of V \ (A1 ∪ An), and by decomposing S as (S \ T) ∪ (S ∩ T) (resp. T as (T \ S) ∪ (S ∩ T)); V \ S as

(T \ S) ∪ (V \ (S ∪ T)) (resp. V \ T as (S \ T) ∪ (V \ (S ∪ T))); S ∪ T as (S \ T) ∪ (T \ S) ∪ (S ∩ T); and V \ (S ∩ T) as
(T \ S) ∪ (S \ T) ∪ (V \ (S ∪ T)), it can be seen that

f k
3 (S) + f k

3 (T) − f k
3 (S ∪ T) − f k

3 (S ∩ T) = 2
∑

v∈(S\T)∩A2k−1
u∈(T \S)∩A2k−1

w(vu) ≥ 0

because the weights are nonnegative, so f k
3 is submodular. The proof for f k

4 is identical.
Recall that f k

5 (S) = −
∑

v∈S∩A2k,u∈S∩A2k+1
w(vu). By using again the decomposition S as (S \ T) ∪ (S ∩ T) (resp. T as

(T \ S) ∪ (S ∩ T)); and S ∪ T as (S \ T) ∪ (T \ S) ∪ (S ∩ T), it can be seen that

f k
5 (S) + f k

5 (T) − f k
5 (S ∪ T) − f k

5 (S ∩ T) =
∑

v∈(S\T)∩A2k
u∈(T \S)∩A2k+1

w(vu) +
∑

v∈(T \S)∩A2k
u∈(S\T)∩A2k+1

w(vu) ≥ 0

because the weights are nonnegative, so f k
5 is submodular. The proof for f k

6 is identical. Finally, the sum of submodular
functions is submodular, and this completes the proof. �

A split graph is called complete if each vertex of the independent set is adjacent to all the vertices of the clique. By
modifying the proof of Theorem 2.1 slightly, we can prove the following.

Theorem 5.2 (NP-completeness on weighted complete split graphs). The cluster deletion problem is NP-complete for weighted complete
split graphs even if the weight of all the internal edges of the clique is 1.

Proof. We again use a reduction of the X3C problem. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the X3C
problem where each element ci ∈ C is a 3-element subset of X , with m ≥ q ≥ 1. We want to know if there exists a subset
C ′ ⊆ C with size q such that each element in X belongs to exactly one of the elements in C ′ . We construct an edge-weighted
complete split graph G = (K X ∪ IC , E), where K X induces a clique with 3q vertices, IC induces an independent set with m
vertices, and each vertex of C is adjacent to every vertex in K X . To each element xi ∈ X we associate a vertex xi in K X , and
to each 3-subset c j ∈ C we associate a vertex c j ∈ IC . The weight of the edges with both endpoints in K X is 1 and the weight
of an edge xic j with xi in K X and c j in IC is β = (3q

2

)+3m(q −1) +1 if the element xi of X belongs to the set c j of C , and 1
otherwise. Clearly, its construction can be done in polynomial time from (X, C). Let W = (3q

2

) − 3q + 3(m − q)β + 3m(q − 1).
We will show that there exists a subset C ′ ⊆ C , with |C ′| = q, exactly covering X if and only if G admits a clique partition
where the sum of the weights of the edges outside the cliques is at most W . In other words, there exists a solution for the
X3C problem if and only if there exists a clique partition of G with a weight of at most W .

Assume first that there exists C ′ ⊆ C , with C ′ = {c′
1, . . . , c

′
q} such that c′

i ∩ c′
j = ∅ whenever i �= j, and

⋃
c′

j∈C ′ c′
j = X . We

construct a clique partition of G as follows: for each c′
j ∈ C ′ , with c′

j = {x j1 , x j2 , x j3 }, choose the clique {c′
j, x j1 , x j2 , x j3 } in G .

Each one of the remaining m − q vertices in IC forms a clique of size 1. It is easily seen that the sum of the edge weights
outside those cliques is exactly equal to W .

Now assume conversely that G admits a clique partition with a weight of at most W . We will prove that there exists
C ′ ⊆ C , with |C ′| = q, such that C ′ is an exact cover for X . To do this, we first analyze the structure of such a partition. Note

F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69 67
that β is greater than the number of edges of weight 1 in G , so a solution with weight W has as its external edges exactly
3(m − q) edges of weight β . It cannot have less than 3(m − q) external edges of weight β because each K X vertex belongs
to a clique of the partition with at most one vertex of IC . So, every vertex of K X belongs to a clique with exactly one vertex
of IC , and is joined to that vertex by an edge of weight β . This means that all the edges of weight 1 and one endpoint in
IC are external edges and that each clique of the partition contains at most three vertices of K X . By the value of W we can
see that each clique should contain exactly three vertices of K X , and this solution, following the general lines of the proof
of Theorem 2.1, is a solution of the X3C instance, thus ending the proof of the present theorem. �

Complete split graphs are also interval graphs but not (in general) unit interval graphs. Indeed, if the size of the inde-
pendent set is at least 3 and the clique is nonempty, we obtain a claw (the complete bipartite graph K1,3), that is not a unit
interval graph. We therefore have the following corollary.

Corollary 5.3 (NP-completeness on weighted interval graphs). The cluster deletion problem is NP-complete for weighted interval
graphs.

Turning now to the case of unweighted unit interval graphs, we will show that the cluster deletion problem is
polynomial-time solvable. But first we must state some known results and prove a lemma describing the structure of an
optimal solution.

Theorem 5.4. (See Roberts, 1969 [20].) A graph G is a unit interval graph if and only if its vertices can be linearly ordered such that,
for each clique M of G, the vertices contained in M are consecutive.

Such an ordering is called a canonical ordering of the vertices.

Lemma 5.5 (Consecutiveness for unweighted unit interval graphs). Let G be an unweighted unit interval graph and v1, . . . , vn be a
canonical ordering of the vertices of G. Then there is an optimal solution of the cluster deletion problem for G such that each clique of
the solution consists of consecutive vertices in that ordering.

Proof. Let us define, for each clique B of an optimal solution S , m(B) = max{ j : v j ∈ B}. Now let B1, . . . , Bk be the cliques
of the solution such that m(Bi) ≤ m(Bi+1), for i = 1, . . . , k − 1. Suppose that not all the cliques consist of consecutive
vertices, and let i be a minimum such that either i < m(B1) and vi /∈ B1, or m(B j−1) < i < m(B j) but vi /∈ B j , for some j.
Let j′ be such that vi ∈ B j′ . Then, by the choice of i, all the vertices of B j′ have subindex greater than i and j′ > j so
that m(B j′) > m(B j). Since vi is adjacent to vm(B j′) and G is a proper interval graph with canonical ordering v1, . . . , vn ,
the vertices vi, . . . , vm(B j′) form a clique, and in particular, B j′ ∪ {vm(B j)} is a clique and vi is adjacent to vm(B j) . So,
independently of i being greater or less than the minimum index of a vertex in B j , B j ∪ {vi} is a clique. Then, either
|B j| ≥ |B ′

j | and S \ {B j, B j′ } ∪ {B j ∪ {vi}, B j′ \ {vi}} is a clique partition whose weight is less than w(S), or |B j | < |B ′
j | and

S \ {B j, B j′ } ∪ {B j \ {vm(B j)}, B j′ ∪ {vm(B j)}} is a clique partition whose weight is less than w(S), which in both cases are
contradictions. �
Theorem 5.6 (Polynomiality on unweighted unit interval graphs). The cluster deletion problem can be solved in polynomial time on
unweighted unit interval graphs.

Proof. Using Lemma 5.5, we can easily develop a dynamic programming algorithm. For i = 0, 1, . . . , n, let f (i) be the value
of an optimal cluster deletion solution for the subgraph of G induced by v1, . . . , vi . Then f (0) = f (1) = 0 and, for i > 1,
f (i) is the minimum, over all j such that {v j, . . . , vi} is a clique (i.e., either j = i or v j vi ∈ E(G)) of f (j − 1) plus the
amount of vertices joining {v1, . . . , v j−1} with {v j, . . . , vi} (which is 0 if j = 1). By keeping the number j that yields the
minimum f (i), we can also reconstruct the partition itself. �

A very similar approach is used in [19] to solve the cluster editing problem on unit interval graphs, where edge insertions
and deletions can be performed in order to obtain a cluster graph.

General interval graphs do not have the same clique structure as unit interval graphs and for weighted unit interval
graphs, Lemma 5.5 does not hold. An example of this is the graph P 2

6 , whose vertices are v1, . . . , v6 and vi is adjacent
to v j if and only if 1 ≤ |i − j| ≤ 2. It is easily seen that the only possible canonical orderings for P 2

6 are v1, . . . , v6 or
v6, v5, . . . , v1. Let w be defined on the edges of P 2

6 such that w(v2 v4) = w(v3 v5) = 100 and w(e) = 1 for every other
edge e. Any solution to the cluster deletion problem that does not contain {v2, v4} and {v3, v5} as cliques has a weight of
at least 100 so the optimal solution is to have {v2, v4}, {v3, v5} and isolated vertices with a weight of 7.

The example shows that the idea behind Theorem 5.6 cannot be generalized in a straightforward manner. Therefore,
the computational complexity of the cluster deletion problem on unweighted interval graphs and on weighted unit interval
graphs remains unknown.

68 F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69
Complete split graphs are also cographs (i.e., P4-free graphs). The cluster deletion problem on unweighted cographs was
solved in polynomial time by Gao et al. in [11]. As a corollary of Theorem 5.2, we have the following complexity result for
the weighted case.

Corollary 5.7 (NP-completeness on weighted cographs). The cluster deletion problem is NP-complete for weighted cographs.

6. Further results and open problems

In Theorem 2.1 we showed that the cluster deletion problem is NP-complete for weighted 3-split graphs even if the
weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and the independent set
is uniform. We have seen also in Theorem 4.1 that the cluster deletion problem is polynomial-time solvable for weighted
1-split graphs. As for 2-split graphs, we will now show that under the conditions of Theorem 2.1 (the weight of all the
internal edges of the clique is 1 and the weight of the edges between the clique and the independent set is uniform), the
problem is polynomial-time solvable.

Theorem 6.1 (Polynomiality on restricted weighted 2-split graphs). The cluster deletion problem is polynomial-time solvable for
weighted 2-split graphs if the weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and
the independent set is uniform.

Proof. Let G be a 2-split graph with split partition (K , I) and β be the weight of the edges between K and I . Let us create
a graph G ′ with vertex set K ′ , where K ′ is the subset of vertices of K that have at least one neighbor in I , such that two
vertices are adjacent in G ′ if they have a common neighbor in I in the graph G . Minimizing the sum of the weights of
the external edges of a clique partition of G is equivalent to maximizing the sum of the weights of the internal edges of
the partition. Let S be an optimal solution to the cluster deletion problem in G . There are four possible classes of cliques
in S: those containing one vertex of I and two vertices of K , those containing one vertex of I and one vertex of K , those
that consist of a single vertex of I , and those completely included in K , and by optimality there is at most one clique
that is completely included in K . Suppose S contains a cliques composed of one vertex of I and two vertices of K , and
b cliques composed of one vertex of I and one vertex of K . Then the sum of the weights of the internal edges of S is
a(2β + 1) + bβ + c(c − 1)/2 (∗), where 0 ≤ a ≤ ν(G ′) (ν(G ′) is the value of a maximum matching of G ′), 0 ≤ b ≤ |K ′| − 2a,
and c = |K | − 2a − b. It is easily seen that in an optimal solution, either a = ν(G ′) or b = 0. In the first case, after the
substitution a = ν(G ′), the coefficient of b in the expression (∗) is positive, so the maximum is attained either by b = 0 or
by b = |K ′| − 2ν(G ′). In the second case, after the substitution b = 0, the coefficient of a in the expression (∗) is positive, so
the maximum is attained either by a = 0 or by a = ν(G ′). The problem is therefore reduced to solving maximum matching
in G ′ and then computing the value of (∗) for the three possible optimal solutions a = 0, b = 0; a = ν(G ′), b = 0; and
a = ν(G ′), b = |K ′| − 2ν(G ′). �

We leave as an open problem the determination of the computational complexity of the cluster deletion problem in
general weighted 2-split graphs, or in 2-split graphs when the weight of all the internal edges of the clique is 1 but the
weights of the edges between the clique and the independent set is arbitrary and not necessarily uniform.

Acknowledgements

The authors are indebted to the anonymous referees for their insightful comments, corrections, and observations that
helped to improve this paper. We also want to thank Kenneth Rivkin for his many useful suggestions.

References

[1] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Mach. Learn. 56 (1–3) (2004) 89–113, Extended abstract appeared in FOCS 2002, pp. 238–247.
[2] J.R.S. Blair, B. Peyton, An introduction to chordal graphs and clique trees, in: Graph Theory and Sparse Matrix Computation, in: The IMA Volumes in

Mathematics and Its Applications, vol. 56, 1993, pp. 1–29.
[3] S. Böcker, P. Damaschke, Even faster parametrized cluster deletion and cluster editing, Inform. Process. Lett. 111 (2011) 717–721.
[4] F. Bonomo, G. Durán, A. Napoli, M. Valencia-Pabon, A one-to-one correspondence between potential solutions of the cluster deletion problem and the

minimum sum coloring problem, and its application to P4-sparse graphs, Inform. Process. Lett. 115 (2015) 600–603.
[5] M. Charikar, V. Guruswami, A. Wirth, Clustering with qualitative information, in: Proc. of 44th Annu. IEEE Symp. Foundations of Computer Science,

FOCS 2003, 2003, pp. 524–533.
[6] P. Damaschke, O. Mogren, Editing simple graphs, J. Graph Algorithms Appl. 18 (4) (2014) 557–576.
[7] E.D. Demaine, D. Emanuel, A. Fiat, N. Immorlica, Correlation clustering in general weighted graphs, Theoret. Comput. Sci. 361 (2006) 172–187.
[8] A. Dessmark, A. Lingas, E.M. Lundell, M. Persson, J. Jansson, On the approximability of maximum and minimum edge clique partitions problems,

Internat. J. Found. Comput. Sci. 18 (2) (2007) 217–226.
[9] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Natl. Bur. Stand., B Math. Math. Phys. 69B (1965) 125–130.

[10] S. Földes, P.L. Hammer, Split graphs, in: Proc. of 8th South-Eastern Conference on Combinatorics, Graph Theory and Computing, in: Congressus Nume-
rantium, vol. 19, 1977, pp. 311–315.

[11] Y. Gao, D.R. Hare, J. Nastos, The cluster deletion problem for cographs, Discrete Math. 313 (2013) 2763–2771.

http://refhub.elsevier.com/S0304-3975(15)00580-0/bib42616E73616C3034s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib422D502D63686F7264616Cs1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib422D502D63686F7264616Cs1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib426F636B65723131s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib422D442D4E2D562D636C7573746572s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib422D442D4E2D562D636C7573746572s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib43686172696B61723033s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib43686172696B61723033s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib444D3134s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib44656D61696E653036s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib446573736D61726B3037s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib446573736D61726B3037s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib65646D6F6E6473776D61746368s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib46483737s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib46483737s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib47616F3133s1

F. Bonomo et al. / Theoretical Computer Science 600 (2015) 59–69 69
[12] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, San Francisco, 1979.
[13] P. Hansen, B. Jaumard, Cluster analysis and mathematical programming, Math. Program. 79 (1997) 191–215.
[14] J. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[15] S. Iwata, L. Fleischer, S. Fujishige, A combinatorial strongly polynomial algorithm for minimizing submodular functions, J. ACM 48 (2001) 761–777.
[16] B. Kaba, N. Pinet, G. Lelandais, A. Sigayret, A. Berry, Clustering gene expression data using graph separators, In Silico Biol. 7 (4–5) (2007) 433–452.
[17] C. Komusiewicz, J. Uhlmann, Cluster editing with locally bounded modifications, Discrete Appl. Math. 160 (15) (2012) 2259–2270.
[18] I. Kovac, I. Seleceniova, M. Steinova, On the clique editing problem, in: Proc. of MFCS 2014, in: LNCS, vol. 8635, 2014, pp. 469–480.
[19] B. Mannaa, Cluster editing problem for points on the real line: a polynomial time algorithm, Inform. Process. Lett. 1610 (2010) 961–965.
[20] F.S. Roberts, Indifference graphs, in: F. Harary (Ed.), Proof Techniques in Graph Theory, Academic Press, 1969, pp. 139–146.
[21] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time, J. Combin. Theory Ser. B 80 (2000) 346–355.
[22] R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems, Discrete Appl. Math. 144 (1–2) (2004) 173–182.
[23] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

http://refhub.elsevier.com/S0304-3975(15)00580-0/bib474A3739s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib48616E3937s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib4861723735s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib492D462D462D7375626D6F64s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib4B6162613037s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib4B6F6D757369657769637A3132s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib4B53533134s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib4D616E61613130s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib526F622D756967s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib5363682D7375626D6F64s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib5368616D69723034s1
http://refhub.elsevier.com/S0304-3975(15)00580-0/bib77657374s1

	Complexity of the cluster deletion problem on subclasses of chordal graphs
	1 Introduction
	2 Split graphs
	3 Chordal graphs
	4 Block graphs
	5 Interval graphs
	6 Further results and open problems
	Acknowledgements
	References

