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We consider the following vertex-partition problem on graphs, known as the CLUSTER 
DELETION (CD) problem: given a graph with real nonnegative edge weights, partition 
the vertices into clusters (in this case, cliques) to minimize the total weight of edges 
outside the clusters. The decision version of this optimization problem is known to be 
NP-complete even for unweighted graphs and has been studied extensively. We investigate 
the complexity of the decision CD problem for the family of chordal graphs, showing that 
it is NP-complete for weighted split graphs, weighted interval graphs and unweighted 
chordal graphs. We also prove that the problem is NP-complete for weighted cographs. 
Some polynomial-time solvable cases of the optimization problem are also identified, in 
particular CD for unweighted split graphs, unweighted proper interval graphs and weighted 
block graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an important task in the data analysis process. It can be viewed as a data modeling technique that provides 
an attractive mechanism for automatically finding the hidden structure of large data sets. The input to the problem is typi-
cally a set of elements and pairwise similarity values between elements. The goal is to partition these elements into subsets 
called clusters such that two meta-criteria are satisfied: homogeneity – elements in a given cluster are highly similar to each 
other; and separation – elements from different clusters have low similarity to each other. In the graph theoretic approach 
to clustering, one builds from the raw data a similarity graph whose vertices correspond to elements and there is an edge 
between two vertices if and only if the similarity of their corresponding elements exceeds a predefined threshold [13,14]. 
Cluster graphs have been used in a variety of applications whenever clustering of objects is studied or when consistent data 
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is sought among noisy or error-prone data [1,5]. Ideally, the resulting graph would be a cluster graph, that is, a graph in 
which every connected component is a clique (i.e., a complete subgraph). In practice, it is only close to being such, since 
similarity data is experimental and therefore error-prone.

The cluster deletion problem consists in finding the minimum number of edges that must be removed from an input graph 
to make the resulting graph a cluster graph. In its decision version, the cluster deletion problem has a non-negative integer 
parameter W and asks if one can remove a set of at most W edges from the input graph such that the resulting graph is a 
cluster graph. There exist several results for the cluster deletion problem (see for example [3,17,22] and references therein). 
The cluster deletion problem is known to be NP-complete [22] for general graphs. Moreover, Shamir et al. [22] showed that it 
remains NP-hard when imposing that the input graph should be clustered into exactly d ≥ 3 components. They also showed 
that when the input graph is clustered into exactly 2 components, the problem is polynomial-time solvable. Komusiewicz 
et al. [17] proved that cluster deletion is hard for C4-free graphs with maximum degree 4 and gave an O (n1.5 log2 n) time 
algorithm for solving cluster deletion on graphs with maximum degree 3, where n is the number of vertices of the graph.

Based on results obtained by Demaine et al. [7] for a variant of a clustering problem, Dessmark et al. [8] provided a 
polynomial O (log n)-approximation algorithm for the edge-weighted version of the cluster deletion problem. In this version, 
the edges of the graph have an associated weight and the aim is to minimize the sum of the weights of the removed edges. 
Considering it as a decision problem, the aim is to determine, for some input parameter W , if there is a set of edges with a 
total weight of at most W such that removing it from the input graph will make the resulting graph a cluster graph. Note 
that if we allow the weight function to be negative on some edges, we can reduce any clustering problem to a clustering 
problem whose input graph is a weighted complete graph by assigning a negative weight with a large enough absolute 
value to the edges that are missing in the original graph. Thus, the problem with arbitrary weights is NP-complete for any 
graph class admitting arbitrarily large cliques. We will assume throughout that all of the weight functions are nonnegative.

Dessmark et al. [8] also showed that for the unweighted version of cluster deletion on general graphs, the greedy al-
gorithm that finds iteratively maximum cliques gives a 2-approximation algorithm to the optimal cluster deletion. The 
complexity of such an algorithm reflects the complexity of iteratively finding maximum cliques, so it is a polynomial-time 
approximation algorithm for certain graph classes. Recently, Gao et al. [11] showed that the greedy algorithm that finds 
iteratively maximum cliques gives an optimal solution for the class of graphs known as cographs. This implies that the 
cluster deletion problem is polynomial-time solvable on unweighted cographs. With a different approach based on modular 
decomposition, it is proved in [4] that the unweighted cluster deletion problem is polynomial-time solvable on a sub-
class of P4-sparse graphs that strictly includes P4-reducible graphs (which are, in turn, a superclass of cographs). Gao et 
al. [11] also showed that the cluster deletion problem is NP-hard on (C5, P5)-free graphs, on (2K2, 3K1)-free graphs and 
on (C5, P5, bull, 4-pan, fork, co-gem, co-4-pan)-free graphs. For weighted graphs, the cluster deletion problem can be solved 
in polynomial time on the class of triangle-free graphs given that it is equivalent to maximum weighted matching [9]. The 
cluster deletion and other clustering problems have been studied extensively in the context of fixed-parameter tractability 
(FPT) ([6,18] and references therein). Many of the recently-developed FPT algorithms rely on being able to solve cluster 
deletion in polynomial-time on restricted graph structures [3].

A heuristic for solving clustering problems consists in modifying a given input graph into another graph having some 
nice algorithmic properties and then solving the clustering problem for the modified graph. For example, to solve a genetic 
clustering problem, Kaba et al. [16] transform any input graph into a chordal graph via minimal triangulations of the former 
one. Once the input graph has been so transformed, they exploit the algorithmic properties of chordal graphs to obtain 
good solutions to their clustering problem. If solving a clustering problem for a specific graph family F is computationally 
hard, however, the heuristic which first transforms the input graph into a graph in F and then solves the problem on 
the resulting graph may not be a good approach. Therefore, it is important to know how to solve a clustering problem on 
specific graph families before using the above-described heuristic for general input clustering graphs.

Some known results are summarized in Table 1; those obtained in the present work are shown in bold face. We conclude 
this introduction with some definitions.

Let G = (V , E) be a graph. For each vertex v ∈ V , we denote as N(v) = {u : vu ∈ E} the set of neighbors of v in G . 
Two vertices v and w are called true twins if N(v) ∪ {v} = N(w) ∪ {w}. A graph G is said to be weighted if there is a 
nonnegative weight function w : E → R+ associated with it. For the algorithms involving weighted graphs we will assume 
that the weights are rational (or belong to any ordered field in which we can perform the field operations and the order 
comparisons algorithmically). An unweighted graph is a graph in which each edge has a weight equal to 1. We say that a 
set F of edges of a given graph has a uniform weight if all the edges in F have the same weight.

Let H and G be graphs. If G contains no induced subgraph isomorphic to H then G is an H-free graph. Let Pk (resp. Ck) 
denote a path (resp. cycle) on k vertices. Let Km,n = (A ∪ B, E) denote the complete bipartite graph, where A (resp. B) is an 
independent set of size m (resp. n) and E is the set of all the edges with an endpoint in A and an endpoint in B . We refer 
to [23] for standard definitions and results in graph theory. A graph is chordal if and only if it does not contain a cycle of 
length at least four as an induced subgraph. Given a vertex partition S = C1, . . . , Ck of a graph G , we call the weight of S , 
denoted w(S), the sum of the weights of all edges e = uv such that u ∈ Ci , v ∈ C j , with i �= j. An edge is called external with 
respect to the partition S if its endpoints belong to distinct sets of S , and internal otherwise. The cluster deletion problem 
for an (un)weighted graph G can be redefined as the problem of finding a clique partition of G with minimum weight. We 
will assume throughout that all NP-completeness results concern the decision version of the cluster deletion problem.
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Table 1
A summary of some of the known complexity results, with those obtained in the 
present work shown in bold face. Question marks denote open problems.

Class Cluster 
deletion

Weighted cluster 
deletion

General NP-c [22] NP-c [22]
Complete split P [11] NP-c (Theorem 5.2)
3-Split P (Theorem 2.4) NP-c (Theorem 2.1)
Split P (Theorem 2.4) NP-c (Theorem 2.1)
P5-free chordal NP-c (Theorem 3.2) NP-c (Theorem 3.2)
Block P (Theorem 4.2) P (Theorem 4.2)
Interval ? NP-c (Corollary 5.3)
Proper interval P (Theorem 5.6) ?
Paths of cliques P (Theorem 5.1) P (Theorem 5.1)
Cographs P [11] NP-c (Corollary 5.7)
P4-reducible P [4] NP-c (Corollary 5.7)
� = 3 P [17] ?
C4-free with � = 4 NP-c [17] NP-c [17]
(C5, P5)-free NP-c [11] NP-c [11]
(2K2,3K1)-free NP-c [11] NP-c [11]
(C5, P5, bull, 4-pan, fork, 
co-gem, co-4-pan)-free

NP-c [11] NP-c [11]

2. Split graphs

A graph G = (V , E) is a split graph if and only if there is a partition of the vertex set V of G into a clique K and an 
independent set I . Another necessary and sufficient condition for a graph G to be a split graph is that G and its complement 
G be chordal graphs (see [10]). If each vertex of the independent set is adjacent to exactly p vertices of the clique K with 
p ≥ 1, then G is called a p-split graph.

In this section, we prove the NP-completeness of the weighted cluster deletion problem for split graphs by a reduction 
from the exact cover by 3-sets problem (X3C problem for short). The formal definition of the X3C problem can be stated as 
follows:

Instance: A set X with 3q elements and a collection C of 3-element subsets of X .

Question: Does C contain an exact cover for X? In other words, is there a subset C ′ ⊆ C such that every element of X
occurs in exactly one member of C ′?

The X3C problem is known to be NP-complete [12]. We may further assume that the union of the subsets in C covers X , 
otherwise the answer is trivially no.

Theorem 2.1 (NP-completeness on weighted 3-split graphs). The cluster deletion problem is NP-complete for weighted 3-split graphs, 
even if the weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and the independent set is 
uniform.

Proof. It is easily seen that the cluster deletion problem is in NP, since we can readily verify in polynomial time whether a 
vertex partition of a graph is a clique partition and whether its weight is less than a given value W . Let X = {x1, . . . , x3q}
and C = {c1, . . . , cm} be an instance of the X3C problem, where each element ci ∈ C is a 3-element subset of X with 
m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C with size q such that each element in X belongs to exactly 
one of the elements in C ′ . We will construct a weighted split graph G = (K X ∪ IC , E), where K X induces a clique with 3q
vertices and IC induces an independent set with m vertices. For each element xi ∈ X there is a vertex xi in K X and for each 
3-subset c j ∈ C there is a vertex c j ∈ IC . The edge set E is defined in such a way that K X induces a complete graph, IC is an 
independent set, and xi in K X is adjacent to c j in IC if and only if xi is an element of X that belongs to the set c j in C . We 
will call E X the set of edges with both endpoints in K X and EC the set of edges with an endpoint in K X and an endpoint 
in IC . The weight of each edge in E X is equal to 1 and the weight of each edge in EC is equal to 3q. Clearly, G is a split 
graph and can be obtained in polynomial time from the instance (X, C). Let W = (3q

2

) − 3q + 9q(m − q). We will show that 
there exists a subset C ′ ⊆ C , with |C ′| = q exactly covering X if and only if G admits a clique partition where the sum of 
the weights of the external edges is at most W . In other words, there exists a solution for the X3C problem if and only if 
there exists a solution for the cluster deletion problem for G with a weight of at most W .

Assume first that there exists C ′ ⊆ C , with C ′ = {c′
1, . . . , c

′
q} such that c′

i ∩ c′
j = ∅ whenever i �= j, and 

⋃
c′

j∈C ′ c′
j = X . The 

clique partition for G can be constructed as follows: for each c′
j ∈ C ′ , choose the clique of G formed by the corresponding 

vertex c′ in IC and its neighbors in K X . Each of the remaining m − q vertices in IC forms a clique of size one (a singleton). 
j
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The sum of the edge weights outside those cliques is exactly equal to W . The weight of the clique partition is equal to 
(3q

2

)

(the weight of all the edges in K X ) minus 3q (each one of the q cliques with size four has a triangle in K X ) plus 9q(m − q)

(the 3(m − q) edges of weight 3q joining the m − q singletons and their neighbors in K X are external with respect to the 
partition).

Now assume conversely that G has a clique partition with a weight of at most W . We must prove that there exists 
C ′ ⊆ C with |C ′| = q such that C ′ is an exact cover for X . We begin by analyzing the structure of the optimal solutions of 
the optimization version of the cluster deletion problem for G .

Claim 2.2. Let S be a clique partition of G that is an optimal solution for the cluster deletion problem in G in its optimization version. 
Then no clique in S is formed only by vertices in K X .

Note first of all that it is not possible to have two cliques A1, A2 ∈ S formed only by vertices in K X . If the case were 
otherwise we could define the clique partition S ′ = S \ {A1, A2} ∪ {A1 ∪ A2}, but then clearly w(S) − w(S ′) = |A1|.|A2| ≥ 1, 
which contradicts the optimality of S . Thus, every clique of S contains at most one vertex of IC , so there are m cliques 
(possibly singletons) each containing a vertex of IC . Let S = A1, B1, . . . , Bm be the clique partition of G and let w(S) be the 
weight of S . Assume that clique A1 is formed only by vertices in K X and each clique B j , 1 ≤ j ≤ m, contains the vertex c j
of IC and zero, one, two or three vertices in K X .

Let c j be in IC . We consider the following cases:

• |B j| < 3 and there is a neighbor y of c j in A1. Let S ′ be the clique partition S ′ = S \ {A1, B j} ∪ {A1 \ {y}, B j ∪ {y}}. It 
is readily seen that w(S ′) = w(S) − (3q + 2) + (|A1| − 1) = w(S) + |A1| − 3q − 3. However, |A1| ≤ 3q − 2. Therefore, 
w(S ′) < w(S), which contradicts the optimality of S .

• Similarly to the previous case, |B j| = 2 (resp. |B j| = 1) and there is a neighbor y of c j in A1. Let S ′ be the clique 
partition S ′ = S \ {A1, B j} ∪ {A1 \ {y}, B j ∪ {y}}. Observe that w(S ′) = w(S) + |A1| − 3q − 2 < w(S) (resp. w(S ′) =
w(S) + |A1| − 3q − 1 < w(S)), which is a contradiction to the optimality of S .

Since S is an optimal solution, it follows that no vertex in IC is adjacent to a vertex in A1. But by construction, this 
implies that X is not covered by C , which contradicts our assumption about the instances of X3C. This ends the proof of 
this claim. ♦

By the above claim, there must be an optimal solution S for the cluster deletion problem of G (optimization version) of 
the form S = B1, . . . , Bm , where each clique B j contains exactly one vertex c j of IC , for 1 ≤ j ≤ m. Let ti be the number of 
cliques of S with i vertices in K X , for i = 0, . . . , 3.

Claim 2.3. t3 > 0.

Suppose that t3 = 0. If t2 �= 0, then there is a clique B j = {c j, x j1 , x j2 } in S . By construction, c j has another neighbor 
y ∈ K X . If y ∈ Bi with |Bi | = 3 (resp. |Bi| = 2), we then obtain another clique partition S ′ = S \ {Bi, B j} ∪ {Bi \ {y}, B j ∪ {y}}
such that w(S ′) = w(S) − (3q + 2) + 3q + 1 = w(S) − 1 < w(S) (resp. w(S) − (3q + 2) + 3q = w(S) − 2 < w(S)), which 
contradicts the optimality of S . If t3 = t2 = 0, then there exist B j, Bi, Bs ∈ S such that B j = {c j, x j1 }, Bi = {ci, x j2 } and 
Bs = {cs, x j3 }, where x j1 , x j2 and x j3 are the three neighbors of c j in K X . We then obtain another clique partition S ′ =
S \ {B j, Bi, Bs} ∪{B j ∪{x j2 , x j3 }, Bi \ {x j2 }, Bs \ {x j3 }} such that w(S ′) = w(S) − (6q + 3) + 6q = w(S) − 3 < w(S), which again 
contradicts the optimality of S . Therefore, t3 > 0, which ends the proof of this claim. ♦

The weight w(S) of S can be written as w(S) = (3q
2

) − (3t3 + t2) + (t2 + 2t1 + 3t0)3q. Moreover, m = t3 + t2 + t1 + t0
and 3q = 3t3 + 2t2 + t1. Therefore, 3(m − q) = t2 + 2t1 + 3t0 and 3t3 + t2 = 3q − t2 − t1. Then, since 3q ≥ 3t3 + t2 it follows 
that W ≤ w(S), with equality if and only if t2 = t1 = 0 and t3 = q. Indeed, recall that W = (3q

2

) − 3q + 9q(m − q) and thus, 
if W = w(S) then 3t3 + 2t2 + t1 = 3q = 3t3 + t2, which implies that t2 = −t1. Since t2, t1 ≥ 0 it must be the case that 
t2 = t1 = 0, which forces t3 to be equal to q. So if G admits a clique partition S with weight W , then there is a solution to 
the X3C problem. This ends the proof of the theorem. �

For the unweighted case, we will show that the problem can be easily solved on split graphs.

Theorem 2.4 (Polynomiality on unweighted split graphs). The cluster deletion problem is polynomial-time solvable for unweighted 
split graphs. Indeed, if (K , I) is a split partition of a graph G such that K is a maximal clique of G, then {K } ∪{{v} : v ∈ I} is an optimal 
solution unless there is a vertex v1 in I adjacent to all but one vertex w in K and that vertex w has a neighbor v2 in I . In that case, an 
optimal solution is {{v1} ∪ (K − {w}), {w, v2}} ∪ {{v} : v ∈ I, v �= v1, v2}.

Proof. Let G be a split graph and (K , I) be a split partition of G such that K is a maximal clique of G . Note that the 
cluster deletion problem can be seen as the problem consisting in maximizing the number of internal edges in a clique 
partition S . In order to break ties, we maximize the number of internal edges joining vertices of K in G . We will refer to 
S0 = {K } ∪ {{v} : v ∈ I} as the standard partition.
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It is clear that no optimal solution has two different cliques strictly contained in K . So, every possibly optimal partition 
that is not the standard one contains at least one clique with a nonempty intersection with both K and I .

Suppose that we have an optimal solution S with respect to the above criterion that is strictly better than S0. If S
contains a clique A � K such that |A| = a ≥ 1 and a clique B containing one vertex of I and b ≥ 1 vertices of K , then 
S ′ = S \ {A, B} ∪ {A ∪ (B ∩ K ), B ∩ I} is another clique partition which compared to S contains ab new internal edges that 
join two vertices of K in G but no longer contains b edges that join vertices of K with vertices in I . Thus, it is either strictly 
better than S or preferable to it by the tie-breaking rule, thereby contradicting the optimality of S . Therefore, since as stated 
above clique B exists, we may assume that every clique of S contains a vertex of I .

Suppose now that S contains a clique A with |A ∩ K | = a ≥ 2 and a clique B with |B ∩ K | = b ≥ 2. Then S ′ = S \ {A, B} ∪
{(A ∩ K ) ∪ (B ∩ K ), A ∩ I, B ∩ I} is another clique partition which compared to S contains ab new internal edges that join 
two vertices of K in G but no longer contains a + b edges that join vertices of K with vertices of I . Since a, b ≥ 2, S ′ is 
either strictly better than S or preferable to it by the tie-breaking rule, thus contradicting the optimality of S .

Finally suppose that there are three cliques A, B, C containing a vertex in I and a, b, c ≥ 1 vertices in K , respectively. 
Then S ′ = S \ {A, B, C} ∪ {(A ∩ K ) ∪ (B ∩ K ) ∪ (C ∩ K ), A ∩ I, B ∩ I, C ∩ I} is another clique partition which compared to S
contains ab + ac + bc new internal edges that join two vertices of K in G but no longer contains a + b + c edges that join 
vertices of K with vertices of I . Since ab ≥ a, bc ≥ b, and ca ≥ c, then S ′ is either strictly better than S or preferable to it 
by the tie-breaking rule, thereby contradicting the optimality of S .

We conclude that S contains exactly two cliques A, B such that |A ∩ I| = |B ∩ I| = 1, |A ∩ K | ≥ 1 and |B ∩ K | = 1. So, there 
is a vertex v1 in I adjacent to all but one vertex w in K which has a neighbor v2 in I , and S = {{v1} ∪ (K −{w}), {w, v2}} ∪
{{v} : v ∈ I, v �= v1, v2}. �
3. Chordal graphs

Chordal graphs are a class of graphs that have been extensively studied thanks to their peculiar clique-based structure, 
which lends itself to efficient solutions of algorithmic problems [2].

To prove the main result of this section, we first demonstrate a simple general lemma.

Lemma 3.1 (True twins). Let G be graph and v, z be true twins in G. Then, for every optimal solution of the unweighted cluster deletion 
problem, v and z belong to the same clique of the partition.

Proof. Suppose, on the contrary, that there is an optimal clique partition S such that v belongs to a clique C1 and z belongs 
to a different clique C2. Without loss of generality, we may assume that |C1| ≤ |C2|. But then S ′ = S \{C1, C2} ∪{C1 \{v}, C2 ∪
{v}} is another clique partition such that w(S ′) < w(S), which is a contradiction. �
Theorem 3.2 (NP-completeness on unweighted chordal graphs). The cluster deletion problem is NP-complete for unweighted P5-free 
chordal graphs.

Proof. This proof is based on the proof of Theorem 2.1. The reduction is again from the X3C problem. Let X = {x1, . . . , x3q}
and C = {c1, . . . , cm} be an instance of the X3C problem, where each element ci ∈ C is a 3-element subset of X , with 
m ≥ q ≥ 1. We want to know if there exists a subset C ′ ⊆ C of size q such that each element in X belongs to exactly one 
of the elements in C ′ . We construct a graph G = (V , E) whose vertex set V is formed by m + 1 disjoint cliques of size 3q, 
namely K X , Kc1 , . . . , Kcm , such that the vertices of K X correspond to the elements of X , the clique Kci corresponds to the 
element ci of C , for i = 1, . . . , m, and vertex x j in K X is adjacent to all the vertices of Kci if and only if the element x j of X
belongs to the set ci of C . Clearly, this construction can be done in polynomial time from the instance (X, C). Now, since for 
each 1 ≤ i ≤ m, all the 3q vertices of the clique Kci are true twins, by Lemma 3.1 they must belong to the same clique in an 
optimal partition S for the optimization version of the cluster deletion problem. Therefore, we can contract each clique Kci , 
with 1 ≤ i ≤ m, into a single vertex ci and replace each subset of 3q edges between Kci and the vertex x j ∈ K X by a single 
edge with weight 3q, for each x j in ci . Hence, we obtain the weighted split graph constructed in the proof of Theorem 2.1. 
This shows (a) that graph G is a P5-free chordal graph since split graphs also are and the true twins contraction neither 
eliminates chordless cycles nor induces paths on five vertices; and (b) that the problem is indeed NP-complete. �
4. Block graphs

A graph G is a block graph if it is a connected graph and every block (i.e. maximal 2-connected component) is a clique. 
Block graphs form a subclass of chordal graphs.

The first result in this section concerns weighted 1-split graphs, a special subclass of block graphs. First, we will show 
how to use submodular function minimization in order to solve the cluster deletion problem on 1-split graphs. Then we 
will explain how to reduce the problem on weighted block graphs to the problem on weighted 1-split graphs.

Given a finite nonempty set V of cardinality n, a function f defined on all the subsets of V is called submodular if 
it satisfies f (X) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ), for every X, Y ⊆ V . In [15] and [21], the authors present combinatorial 
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polynomial-time algorithms for finding a minimizer of a general submodular function provided an oracle for evaluating the 
function value is available. The number of oracle calls is bounded by a polynomial in the size of the underlying set.

Theorem 4.1 (Polynomiality on weighted 1-split graphs). The cluster deletion problem is polynomial-time solvable for weighted 1-split 
graphs.

Proof. Let G be a 1-split graph with split partition (K , I). Consider an optimal solution S of the cluster deletion problem. 
Clearly, S contains at most one clique composed only of vertices of K , otherwise a new partition obtained by replacing two 
such cliques by their union would contradict the solution’s optimality. If this clique exists, denote it by K1. All other cliques 
in S are either isolated vertices of I or cliques of size 2 with one vertex in K and one vertex in I . Also, if {u, v} ∈ S with 
u ∈ K , v ∈ I , then necessarily w(uv) ≥ w(uw), for all w ∈ N(v) ∩ I , since minimizing the weight of the external edges of the 
clique partition is equivalent to maximizing the weight of the internal ones. We can then preprocess the graph, identifying 
a subset of vertices of I that will be singletons in the solution and leaving a graph with vertex partition (K , I ′) in which 
each vertex v of K has at most one neighbor u in I ′ (one of the neighbors of v maximizing the weight of the edge vu). 
Moreover, by definition of 1-split graph, each vertex of I has at most one neighbor in K .

If the subset K0 of vertices of K having no neighbors in I ′ is nonempty, it will be part of the clique K1 in the solution. 
We name the set K \ K0 as {v1, . . . , vr} and their respective neighbors in I ′ as {u1, . . . , ur}. A candidate solution must be 
{{vi, ui}}i /∈R ∪ {K1 ∪ {vi : i ∈ R}} ∪ {{ui}}i∈R , where R is a subset of {1, . . . , r} and is totally determined by that subset R .

The subset R is not necessarily a proper subset of {1, . . . , r} and may be empty. In what follows we will prove that 
the function f that assigns to R the weight difference between the candidate solution associated with R and the solution 
associated with the empty set is submodular, and thus the set R that minimizes that function can be found in polynomial 
time.

The function f can be computed in polynomial time for a subset R , and is defined as

f (R) =
∑

i∈R

w(viui) −
∑

i, j∈R

w(vi v j) −
∑

i∈R,z∈K0

w(vi z)

Let R, T ⊆ {1, . . . , r}. We will show that f (R) + f (T ) ≥ f (R ∪ T ) + f (R ∩ T ) provided that the weights of the edges 
joining two vertices of K are nonnegative, which holds under our assumptions. It is easily seen that

∑

i∈R

w(viui) +
∑

i∈T

w(viui) =
∑

i∈R∪T

w(viui) +
∑

i∈R∩T

w(viui)

and that
∑

i∈R,z∈K0

w(vi z) +
∑

i∈T ,z∈K0

w(vi z) =
∑

i∈R∪T ,z∈K0

w(vi z) +
∑

i∈R∩T ,z∈K0

w(vi z).

We therefore have to show that
∑

i, j∈R

w(vi v j) +
∑

i, j∈T

w(vi v j) ≤
∑

i, j∈R∪T

w(vi v j) +
∑

i, j∈R∩T

w(vi v j).

The inequality holds because
∑

i, j∈R∪T

w(vi v j) +
∑

i, j∈R∩T

w(vi v j) −
∑

i, j∈R

w(vi v j) −
∑

i, j∈T

w(vi v j) =
∑

i∈R\T , j∈T \R

w(vi v j) ≥ 0. �

If the weight of the internal edges is 1, the algorithm is very simple. We denote the vertices in K \ K0 as {v1, . . . , vr}
and their respective neighbors in I as {u1, . . . , ur}, in such a way that w(v1u1) ≤ · · · ≤ w(vr ur). Then the only sets that are 
candidates for minimizing f are the empty set and the sets {1, . . . , j}, for 1 ≤ j ≤ r.

Based on the solution of cluster deletion for weighted 1-split graphs, we now solve the problem for weighted block 
graphs.

Theorem 4.2 (Polynomiality on weighted block graphs). The cluster deletion problem is polynomial-time solvable for weighted block 
graphs.

Proof. Let G = (V , E) be a weighted block graph. An end-block of a graph is a block containing exactly one cut-vertex. It is 
known that every connected graph that is not 2-connected has an end-block. Inductively, the blocks of G can be enumerated 
as B1, . . . , Br in such a way that Bi is an end-block of the graph induced by Bi ∪ Bi+1 ∪· · ·∪ Br . We will process the blocks in 
that order by solving a subproblem at each iteration and thus reduce the graph to a simpler one. Then we will reconstruct 
the solution for the original graph based on the solution of each subproblem and the recursive solution of the reduced 
graph.
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Given the order in which the blocks were chosen, when we process block Bi for i < r it will have exactly one cut-vertex 
v joining it with the non-processed blocks. The graph G0 will be G and we will create a graph Gi (i ≥ 1) from Gi−1 by 
replacing the connected component of Gi−1 \ {v} that contains Bi \ {v} with a vertex u adjacent to v . We will then assign 
a suitable weight to edge vu. Inductively, this means that when block Bi is processed, the connected component H of 
Gi−1 \ {v} that contains Bi \ {v} is a 1-split graph, and so is the graph induced by V (H) ∪ {v}. We will define w(uv) =∑

y∈H,v y∈E w(v y) + w(S H ) − w(S H∪{v}), where S H∪{v} and S H are optimal solutions for the cluster deletion problem on the 
1-split graph induced by V (H) ∪ {v} and H , respectively. If the weight w(uv) is negative we do not create the edge since 
no optimal solution will use it (i.e., no optimal solution will have a clique containing both v and vertices of H). Note that 
we can find S H∪{v} and S H by Theorem 4.1.

Claim 4.3. Let Si be an optimal solution of the cluster deletion problem for Gi. If {u, v} ∈ Si , then Si \ {{u, v}} ∪ S H∪{v} is an optimal 
solution for Gi−1 . If {u, v} /∈ Si , then Si \ {{u}} ∪ S H is an optimal solution for Gi−1.

Let Si−1 be an optimal solution of the cluster deletion problem for Gi−1. Let S1
i−1 be the subset of cliques of Si−1

containing vertices of H and S2
i−1 = Si−1 \ S1

i−1. Then v either does or does not belong to a clique in S1
i−1. Since v is a 

cut-vertex of Gi−1 it is clear that under the first alternative S1
i−1 is an optimal solution for the cluster deletion problem on 

the graph induced by V (H) ∪ {v} while under the second, S1
i−1 is an optimal solution for the cluster deletion problem on 

graph H . Also, under the first alternative S2
i−1 ∪ {v, u} will be a feasible solution for Gi with weight w(Si−1) − w(S H∪{v})

while under the second, S2
i−1 ∪ {u} will be a feasible solution for Gi with weight w(Si−1) − w(S H ) − ∑

y∈H,v y∈E w(v y) +
w(uv) = w(Si−1) − w(S H∪{v}). Therefore, if Si is an optimal solution of the cluster deletion problem for Gi , then w(Si) ≤
w(Si−1) − w(S H∪{v}), which implies that w(Si) + w(S H∪{v}) ≤ w(Si−1).

We now prove that the weight of the solutions proposed for Gi−1 under each alternative is exactly w(Si) + w(S H∪{v}), 
making them both optimal.

If {u, v} ∈ Si , it is easily seen that w(Si \ {{u, v}} ∪ S H∪{v}) = w(Si) + w(S H∪{v}). If {u, v} /∈ Si , then, when considering 
Si \ {{u}} ∪ S H in Gi−1, we do not have to delete the edge uv but do have to delete every edge joining v with vertices in H
so that w(Si \ {{u}} ∪ S H ) = w(Si) − w(uv) + ∑

y∈H,v y∈E w(v y) + w(S H ) = w(Si) + w(S H∪{v}). This ends the proof of this 
claim. ♦

When block Br is processed, the graph Gr−1 is a 1-split graph so we can also apply the algorithm of Theorem 4.1 in order 
to obtain an optimal partition for Gr−1. Claim 4.3 describes an optimal partition of Gi−1 in terms of an optimal partition 
of Gi . Applying this claim iteratively for i = r − 1, . . . , 1, we construct an optimal solution for the graph G0 = G . �

Notice that if the graph G is unweighted, the 1-split graphs in which we need to solve the subproblems have a weight 
of 1 on every internal edge. In this case, as we noted before Theorem 4.2, the algorithm is very simple.

5. Interval graphs

Another interesting subclass of chordal graphs is the class of interval graphs. A graph G is an interval graph if G is the 
intersection graph of a finite family of intervals of the real line, and it is a proper interval graph if it admits an intersection 
model in which no interval properly contains another. A unit interval graph is the intersection graph of a finite family of 
intervals of the real line, all of the same length. Proper interval graphs and unit interval graphs are equivalent classes and 
are also equivalent to the class of claw-free interval graphs [20] (the claw is the complete bipartite graph K1,3).

A restricted subclass of unit interval graphs is the class of paths of cliques. A graph is a path of cliques if after contracting 
true twins into a single vertex, the resulting graph is a single path. In other words, its vertex set can be partitioned into 
sets A1, . . . , An in such a way that any pair of vertices v , w such that v ∈ Ai and w ∈ A j is adjacent if and only if either 
i = j or i = j + 1 or i = j − 1. Paths of cliques are also known in the literature as line graphs of multipaths.

In a clustering context, if the measured data arrive during a time-line as a sequence of sets and it is desired to cluster 
the data on the basis of both a similarity function, defined by intrinsic properties of the data, and closeness in time, defined 
as arriving either in the same set or in consecutive sets, these paths of cliques will arise.

In what follows, we prove a result using an approach similar to that used for Theorem 4.1. We begin by defining an 
initial solution, then represent every solution by a subset of a set, and finally show that the function that assigns to every 
subset the weight difference between its associated solution and the initial one is submodular.

Theorem 5.1 (Polynomiality on weighted paths of cliques). The cluster deletion problem is polynomial-time solvable for weighted paths 
of cliques.

Proof. Let A1, . . . , An be the vertex set partition of a path of cliques G = (V , E). Without loss of generality, we may assume 
that n is even, if necessary adding a set An+1 with only one vertex adjacent to every vertex in An with edges of zero weight. 
Let n = 2r and define the initial solution as the cliques A2k−1 ∪ A2k for 1 ≤ k ≤ r. Every vertex of Ai , for 1 < i < n, has two 
possibilities: to be either part of a clique contained in Ai−1 ∪ Ai or part of a clique contained in Ai ∪ Ai+1. Hence, any 
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solution is completely defined by the subset S of V \ (A1 ∪ An) that is moved from the initial solution to a clique contained 
in A2 j ∪ A2 j+1, for some integer 1 ≤ j ≤ r − 1. We define f (S) for a subset S of V \ (A1 ∪ An) as the difference between the 
weight of the solution associated with S and the weight of the initial solution. The optimal solution will be given by the 
subset S that minimizes the function f . We now show that S is a submodular function, implying that a minimizer can be 
found in strongly polynomial time.

The function f can be expressed as f (S) = ∑
1≤k≤r f k(S), where

f k(S) =
∑

v∈S∩A2k
u∈A2k−1

w(vu) +
∑

v∈S∩A2k−1
u∈A2k

w(vu) +
∑

v∈S∩A2k−1
u∈A2k−1\S

w(vu) +
∑

v∈S∩A2k
u∈A2k\S

w(vu) −
∑

v∈S∩A2k
u∈S∩A2k+1

w(vu)

−
∑

v∈S∩A2k−1
u∈S∩A2k

w(vu).

To simplify this expression we let A2r+1 = ∅. Note that the last term in the sum prevents double counting by the first two 
terms.

For each value of k, define f k
1 (S), . . . , f k

6 (S) as the six terms of f k(S). It can easily be seen that for i = 1, 2 and S, T
subsets of V \ (A1 ∪ An), it holds f k

i (S) + f k
i (T ) = f k

i (S ∪ T ) + f k
i (S ∩ T ). We will prove that for i = 3, . . . , 6, f k

i (S) + f k
i (T ) ≥

f k
i (S ∪ T ) + f k

i (S ∩ T ).
For S, T subsets of V \ (A1 ∪ An), and by decomposing S as (S \ T ) ∪ (S ∩ T ) (resp. T as (T \ S) ∪ (S ∩ T )); V \ S as 

(T \ S) ∪ (V \ (S ∪ T )) (resp. V \ T as (S \ T ) ∪ (V \ (S ∪ T ))); S ∪ T as (S \ T ) ∪ (T \ S) ∪ (S ∩ T ); and V \ (S ∩ T ) as 
(T \ S) ∪ (S \ T ) ∪ (V \ (S ∪ T )), it can be seen that

f k
3 (S) + f k

3 (T ) − f k
3 (S ∪ T ) − f k

3 (S ∩ T ) = 2
∑

v∈(S\T )∩A2k−1
u∈(T \S)∩A2k−1

w(vu) ≥ 0

because the weights are nonnegative, so f k
3 is submodular. The proof for f k

4 is identical.
Recall that f k

5 (S) = − 
∑

v∈S∩A2k,u∈S∩A2k+1
w(vu). By using again the decomposition S as (S \ T ) ∪ (S ∩ T ) (resp. T as 

(T \ S) ∪ (S ∩ T )); and S ∪ T as (S \ T ) ∪ (T \ S) ∪ (S ∩ T ), it can be seen that

f k
5 (S) + f k

5 (T ) − f k
5 (S ∪ T ) − f k

5 (S ∩ T ) =
∑

v∈(S\T )∩A2k
u∈(T \S)∩A2k+1

w(vu) +
∑

v∈(T \S)∩A2k
u∈(S\T )∩A2k+1

w(vu) ≥ 0

because the weights are nonnegative, so f k
5 is submodular. The proof for f k

6 is identical. Finally, the sum of submodular 
functions is submodular, and this completes the proof. �

A split graph is called complete if each vertex of the independent set is adjacent to all the vertices of the clique. By 
modifying the proof of Theorem 2.1 slightly, we can prove the following.

Theorem 5.2 (NP-completeness on weighted complete split graphs). The cluster deletion problem is NP-complete for weighted complete 
split graphs even if the weight of all the internal edges of the clique is 1.

Proof. We again use a reduction of the X3C problem. Let X = {x1, . . . , x3q} and C = {c1, . . . , cm} be an instance of the X3C 
problem where each element ci ∈ C is a 3-element subset of X , with m ≥ q ≥ 1. We want to know if there exists a subset 
C ′ ⊆ C with size q such that each element in X belongs to exactly one of the elements in C ′ . We construct an edge-weighted 
complete split graph G = (K X ∪ IC , E), where K X induces a clique with 3q vertices, IC induces an independent set with m
vertices, and each vertex of C is adjacent to every vertex in K X . To each element xi ∈ X we associate a vertex xi in K X , and 
to each 3-subset c j ∈ C we associate a vertex c j ∈ IC . The weight of the edges with both endpoints in K X is 1 and the weight 
of an edge xic j with xi in K X and c j in IC is β = (3q

2

)+3m(q −1) +1 if the element xi of X belongs to the set c j of C , and 1
otherwise. Clearly, its construction can be done in polynomial time from (X, C). Let W = (3q

2

) − 3q + 3(m − q)β + 3m(q − 1). 
We will show that there exists a subset C ′ ⊆ C , with |C ′| = q, exactly covering X if and only if G admits a clique partition 
where the sum of the weights of the edges outside the cliques is at most W . In other words, there exists a solution for the 
X3C problem if and only if there exists a clique partition of G with a weight of at most W .

Assume first that there exists C ′ ⊆ C , with C ′ = {c′
1, . . . , c

′
q} such that c′

i ∩ c′
j = ∅ whenever i �= j, and 

⋃
c′

j∈C ′ c′
j = X . We 

construct a clique partition of G as follows: for each c′
j ∈ C ′ , with c′

j = {x j1 , x j2 , x j3 }, choose the clique {c′
j, x j1 , x j2 , x j3 } in G . 

Each one of the remaining m − q vertices in IC forms a clique of size 1. It is easily seen that the sum of the edge weights 
outside those cliques is exactly equal to W .

Now assume conversely that G admits a clique partition with a weight of at most W . We will prove that there exists 
C ′ ⊆ C , with |C ′| = q, such that C ′ is an exact cover for X . To do this, we first analyze the structure of such a partition. Note 
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that β is greater than the number of edges of weight 1 in G , so a solution with weight W has as its external edges exactly 
3(m − q) edges of weight β . It cannot have less than 3(m − q) external edges of weight β because each K X vertex belongs 
to a clique of the partition with at most one vertex of IC . So, every vertex of K X belongs to a clique with exactly one vertex 
of IC , and is joined to that vertex by an edge of weight β . This means that all the edges of weight 1 and one endpoint in 
IC are external edges and that each clique of the partition contains at most three vertices of K X . By the value of W we can 
see that each clique should contain exactly three vertices of K X , and this solution, following the general lines of the proof 
of Theorem 2.1, is a solution of the X3C instance, thus ending the proof of the present theorem. �

Complete split graphs are also interval graphs but not (in general) unit interval graphs. Indeed, if the size of the inde-
pendent set is at least 3 and the clique is nonempty, we obtain a claw (the complete bipartite graph K1,3), that is not a unit 
interval graph. We therefore have the following corollary.

Corollary 5.3 (NP-completeness on weighted interval graphs). The cluster deletion problem is NP-complete for weighted interval 
graphs.

Turning now to the case of unweighted unit interval graphs, we will show that the cluster deletion problem is 
polynomial-time solvable. But first we must state some known results and prove a lemma describing the structure of an 
optimal solution.

Theorem 5.4. (See Roberts, 1969 [20].) A graph G is a unit interval graph if and only if its vertices can be linearly ordered such that, 
for each clique M of G, the vertices contained in M are consecutive.

Such an ordering is called a canonical ordering of the vertices.

Lemma 5.5 (Consecutiveness for unweighted unit interval graphs). Let G be an unweighted unit interval graph and v1, . . . , vn be a 
canonical ordering of the vertices of G. Then there is an optimal solution of the cluster deletion problem for G such that each clique of 
the solution consists of consecutive vertices in that ordering.

Proof. Let us define, for each clique B of an optimal solution S , m(B) = max{ j : v j ∈ B}. Now let B1, . . . , Bk be the cliques 
of the solution such that m(Bi) ≤ m(Bi+1), for i = 1, . . . , k − 1. Suppose that not all the cliques consist of consecutive 
vertices, and let i be a minimum such that either i < m(B1) and vi /∈ B1, or m(B j−1) < i < m(B j) but vi /∈ B j , for some j. 
Let j′ be such that vi ∈ B j′ . Then, by the choice of i, all the vertices of B j′ have subindex greater than i and j′ > j so 
that m(B j′ ) > m(B j). Since vi is adjacent to vm(B j′ ) and G is a proper interval graph with canonical ordering v1, . . . , vn , 
the vertices vi, . . . , vm(B j′ ) form a clique, and in particular, B j′ ∪ {vm(B j)} is a clique and vi is adjacent to vm(B j) . So, 
independently of i being greater or less than the minimum index of a vertex in B j , B j ∪ {vi} is a clique. Then, either 
|B j| ≥ |B ′

j | and S \ {B j, B j′ } ∪ {B j ∪ {vi}, B j′ \ {vi}} is a clique partition whose weight is less than w(S), or |B j | < |B ′
j | and 

S \ {B j, B j′ } ∪ {B j \ {vm(B j)}, B j′ ∪ {vm(B j)}} is a clique partition whose weight is less than w(S), which in both cases are 
contradictions. �
Theorem 5.6 (Polynomiality on unweighted unit interval graphs). The cluster deletion problem can be solved in polynomial time on 
unweighted unit interval graphs.

Proof. Using Lemma 5.5, we can easily develop a dynamic programming algorithm. For i = 0, 1, . . . , n, let f (i) be the value 
of an optimal cluster deletion solution for the subgraph of G induced by v1, . . . , vi . Then f (0) = f (1) = 0 and, for i > 1, 
f (i) is the minimum, over all j such that {v j, . . . , vi} is a clique (i.e., either j = i or v j vi ∈ E(G)) of f ( j − 1) plus the 
amount of vertices joining {v1, . . . , v j−1} with {v j, . . . , vi} (which is 0 if j = 1). By keeping the number j that yields the 
minimum f (i), we can also reconstruct the partition itself. �

A very similar approach is used in [19] to solve the cluster editing problem on unit interval graphs, where edge insertions 
and deletions can be performed in order to obtain a cluster graph.

General interval graphs do not have the same clique structure as unit interval graphs and for weighted unit interval 
graphs, Lemma 5.5 does not hold. An example of this is the graph P 2

6 , whose vertices are v1, . . . , v6 and vi is adjacent 
to v j if and only if 1 ≤ |i − j| ≤ 2. It is easily seen that the only possible canonical orderings for P 2

6 are v1, . . . , v6 or 
v6, v5, . . . , v1. Let w be defined on the edges of P 2

6 such that w(v2 v4) = w(v3 v5) = 100 and w(e) = 1 for every other 
edge e. Any solution to the cluster deletion problem that does not contain {v2, v4} and {v3, v5} as cliques has a weight of 
at least 100 so the optimal solution is to have {v2, v4}, {v3, v5} and isolated vertices with a weight of 7.

The example shows that the idea behind Theorem 5.6 cannot be generalized in a straightforward manner. Therefore, 
the computational complexity of the cluster deletion problem on unweighted interval graphs and on weighted unit interval 
graphs remains unknown.
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Complete split graphs are also cographs (i.e., P4-free graphs). The cluster deletion problem on unweighted cographs was 
solved in polynomial time by Gao et al. in [11]. As a corollary of Theorem 5.2, we have the following complexity result for 
the weighted case.

Corollary 5.7 (NP-completeness on weighted cographs). The cluster deletion problem is NP-complete for weighted cographs.

6. Further results and open problems

In Theorem 2.1 we showed that the cluster deletion problem is NP-complete for weighted 3-split graphs even if the 
weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and the independent set 
is uniform. We have seen also in Theorem 4.1 that the cluster deletion problem is polynomial-time solvable for weighted 
1-split graphs. As for 2-split graphs, we will now show that under the conditions of Theorem 2.1 (the weight of all the 
internal edges of the clique is 1 and the weight of the edges between the clique and the independent set is uniform), the 
problem is polynomial-time solvable.

Theorem 6.1 (Polynomiality on restricted weighted 2-split graphs). The cluster deletion problem is polynomial-time solvable for 
weighted 2-split graphs if the weight of all the internal edges of the clique is 1 and the weight of the edges between the clique and 
the independent set is uniform.

Proof. Let G be a 2-split graph with split partition (K , I) and β be the weight of the edges between K and I . Let us create 
a graph G ′ with vertex set K ′ , where K ′ is the subset of vertices of K that have at least one neighbor in I , such that two 
vertices are adjacent in G ′ if they have a common neighbor in I in the graph G . Minimizing the sum of the weights of 
the external edges of a clique partition of G is equivalent to maximizing the sum of the weights of the internal edges of 
the partition. Let S be an optimal solution to the cluster deletion problem in G . There are four possible classes of cliques 
in S: those containing one vertex of I and two vertices of K , those containing one vertex of I and one vertex of K , those 
that consist of a single vertex of I , and those completely included in K , and by optimality there is at most one clique 
that is completely included in K . Suppose S contains a cliques composed of one vertex of I and two vertices of K , and 
b cliques composed of one vertex of I and one vertex of K . Then the sum of the weights of the internal edges of S is 
a(2β + 1) + bβ + c(c − 1)/2 (∗), where 0 ≤ a ≤ ν(G ′) (ν(G ′) is the value of a maximum matching of G ′), 0 ≤ b ≤ |K ′| − 2a, 
and c = |K | − 2a − b. It is easily seen that in an optimal solution, either a = ν(G ′) or b = 0. In the first case, after the 
substitution a = ν(G ′), the coefficient of b in the expression (∗) is positive, so the maximum is attained either by b = 0 or 
by b = |K ′| − 2ν(G ′). In the second case, after the substitution b = 0, the coefficient of a in the expression (∗) is positive, so 
the maximum is attained either by a = 0 or by a = ν(G ′). The problem is therefore reduced to solving maximum matching 
in G ′ and then computing the value of (∗) for the three possible optimal solutions a = 0, b = 0; a = ν(G ′), b = 0; and 
a = ν(G ′), b = |K ′| − 2ν(G ′). �

We leave as an open problem the determination of the computational complexity of the cluster deletion problem in 
general weighted 2-split graphs, or in 2-split graphs when the weight of all the internal edges of the clique is 1 but the 
weights of the edges between the clique and the independent set is arbitrary and not necessarily uniform.
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