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1 Introduction

A clique in a graph is a complete subgraph maximal with respect to
inclusion. The clique number of a graph G is the cardinality of a maximum
clique of G and is denoted by ω(G).

The chromatic number of a graph G is the smallest number of colours
that can be assigned to the vertices of G in such a way that no two adjacent
vertices receive the same colour. An obvious lower bound is the clique number
of G.

Berge [2] called a graph G perfect whenever the chromatic number of every
induced subgraph H of G is equal to ω(H). Perfect graphs are very interesting
from an algorithmic point of view. While determining the clique number and
the chromatic number of a graph are NP-complete problems, they are solvable
in polynomial time for perfect graphs [19]. For more background information
on algorithms on perfect graphs see [18].

A sequence v1, . . . , vk of distinct vertices (k ≥ 3) is a cycle in a graph
G if (v1, v2), . . . , (vk−1, vk), (vk , v1) are edges of G. These edges are called
the edges of the cycle. The length of the cycle is the number k of its edges.
An odd cycle is a cycle of odd length. In subsequent expressions concerning
cycles, all index arithmetic is done modulo the length of the cycle.

A chord of a cycle is an edge between two vertices of the cycle that is not
an edge of the cycle. A cycle is chordless if it contains no chords. Chordless
cycles of length greater than 3 are called holes.

A sequence v1, E1, . . . , vk, Ek of distinct vertices v1, . . . , vk and distinct
hyperedges E1, . . . , Ek of a hypergraph H is a special cycle of length k if
k ≥ 3, vi, vi+1 ∈ Ei and Ei ∩ {v1, . . . , vk} = {vi, vi+1}, for each i, 1 ≤ i ≤ k.

Let A be a 0-1 matrix. We say that the row i is included in the row k if
for every column j, A(i, j) = 1 implies A(k, j) = 1.

Let M1, . . . , Mk and v1, . . . , vn be the cliques and vertices of a graph G,
respectively. We define AG, a clique matrix of G, as a 0-1 matrix whose entry
(i, j) is 1 if vj ∈ Mi, and 0 otherwise.

A 0-1 matrix M is balanced if it does not contain the vertex-edge incidence
matrix of an odd cycle as a submatrix. A 0-1 matrix M is totally balanced if
it does not contain the vertex-edge incidence matrix of a cycle as a submatrix.

In 1969 (c.f. [14]), Berge defined a hypergraph to be balanced if its inci-
dence matrix is balanced, or equivalently, if it contains no special cycles of
odd length. See [3,4]. Applying this concept to graphs, one obtains the class
of balanced graphs, formed by those graphs having a balanced clique matrix.
Note that balanced graphs are well defined, since if the clique matrix of a
graph is balanced then all its clique matrices are balanced. Balanced graphs
were considered in [13].

The clique hypergraph of a graph G has the same vertex set as G and all
cliques of G as hyperedges. Clearly, a graph G is balanced if and only if its
clique hypergraph is balanced.

Let v, w be vertices of G. Denote by M(G) the set of cliques of G, by
M(v) the set of cliques of G that contain v, and by M(v, w) the set of cliques
of G that contain v and w. Vertices that belong to exactly one clique will be
called simplicial vertices.
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The neighborhood of a vertex v in a graph G is the set NG(v) consist-
ing of all the vertices that are adjacent to v. The closed neighborhood of v
is NG[v] = NG(v) ∪ {v}. The common neighborhood and the closed com-
mon neighborhood of an edge e = (v, w) are NG(e) = NG(v) ∩ NG(w) and
NG[e] = NG[v]∩NG[w], respectively, and, in a more general way, the common
neighborhood and the closed common neighborhood of a non empty subset
of vertices W are NG(W ) =

⋂
w∈W NG(w) and NG[W ] =

⋂
w∈W NG[w],

respectively. We define NG(∅) = NG[∅] = V (G).
A clique-transversal of a graph G is a subset of vertices intersecting all

the cliques of G. A clique-independent set is a subset of pairwise disjoint
cliques of G. Denote by τc(G) and αc(G) the cardinalities of the minimum
clique-transversal and maximum clique-independent set of G, respectively. A
graph G is clique-perfect when τc(H) = αc(H), for every induced subgraph
H of G [20].

A family of subsets satisfies the Helly property when every subfamily of it
consisting of pairwise intersecting subsets has a common element. A graph is
clique-Helly when its cliques satisfy the Helly property. A graph is hereditary
clique-Helly (HCH) when H is clique-Helly for every induced subgraph H
of G.

Consider a finite family of non-empty sets. The intersection graph of this
family is obtained by representing each set by a vertex, two vertices being
connected by an edge if and only if the corresponding sets intersect.

The clique graph K(G) of G is the intersection graph of the cliques of G.
We can define Kj(G) as the j-th iterated clique graph of G, where K1(G) =
K(G) and Kj(G) = K(Kj−1(G)), j ≥ 2.

Let H be a class of graphs. The notation K(H) means the class of clique
graphs of the graphs in H, and K−1(H) the class of graphs whose clique
graphs are in H.

Let C be a set of cliques of G. The clique subgraph of a graph G generated
by C is the graph formed by the vertices and edges of C. A clique subgraph
of G is not necessarily an induced subgraph of G.

A graph G is an interval graph if G is the intersection graph of a finite
family of intervals of the real line.

A graph G is trivially perfect if for all induced subgraphs H of G, the
cardinality of the maximum stable set of H is equal to the number of cliques
of H .

A 0-1 matrix M is totally unimodular if the determinant of each square
submatrix of M is 0, 1 or -1.

A graph G is totally unimodular if its clique matrix is totally unimodular.
Since the determinant of the vertex-edge incidence matrix of an odd cycle

is ±2, totally unimodular matrices are balanced matrices and then totally
unimodular graphs are balanced graphs.

Interval graphs and trivially perfect graphs are totally unimodular graphs
[18] and, therefore, they are balanced graphs.

A graph is bipartite when it contains no cycles of odd length. A graph
is strongly chordal when it is chordal and each of its cycles of even length
at least 6 has an odd chord [16]. Such a class corresponds exactly to totally
balanced graphs, i.e., graphs whose clique matrices are totally balanced [1].
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Bipartite graphs and strongly chordal graphs form important subclasses of
balanced graphs.

The organization of the paper is the following. In Section 2, we describe
background properties of balanced graphs.

In Section 3, new characterizations of balanced graphs are presented. One
of them is by forbidden subgraphs and the other is by clique subgraphs.

In Section 4, four subclasses of balanced graphs are introduced using
simple properties of domination. We analyse the inclusion relations between
them. Two of these classes are characterized using 0-1 matrices and the char-
acterizations lead to polynomial recognition algorithms. In the final part of
this section, we present a combinatorial algorithm for the maximum stable
set problem for one of these subclasses.

Finally, in the last section, we study the clique graphs of balanced graphs
and these four subclasses. As a corollary of these results, we deduce the
existence of combinatorial algorithms for the maximum clique-independent
set and the minimum clique-transversal problems for one of these subclasses
of balanced graphs.

2 Preliminaries

A characterization of hereditary clique-Helly graphs can be formulated in
the following way:

Theorem 1 [26] A graph G is hereditary clique-Helly if and only if AG does
not contain a vertex-edge incidence matrix of a 3-cycle as a submatrix.

This theorem implies the following result.

Corollary 1 Let G be a balanced graph. Then G is hereditary clique-Helly.

In [26], it is also proved that no connected hereditary clique-Helly graph
has more cliques than edges. Then this result holds.

Corollary 2 Let G be a connected balanced graph. Then the number of
cliques of G is at most the number of edges of G.

There exists an algorithm which calculates all the cliques of a graph in
O(mnk) time where m is the number of edges, n the number of vertices and
k the number of cliques [30] (the algorithm generates each clique sequentially
in O(mn) time). So a clique matrix of a hereditary clique-Helly graph can be
computed in polynomial time in the size of the graph. On the other hand,
Conforti, Cornuéjols, and Rao formulated a polynomial-time recognition al-
gorithm for balanced 0-1 matrices [10]. These two algorithms and the fact
that hereditary clique-Helly graphs have no more than m cliques imply the
following result.

Corollary 3 [13] There is a polynomial-time recognition algorithm for ba-
lanced graphs.
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It should be mentioned that clique matrices where characterized by P. C.
Gilmore in the 60’s, c.f. [12].

It is not difficult to see that the clique matrix of a graph G and the clique
matrix of an induced subgraph of G are related in the following way:

Lemma 1 Let G be a graph and H an induced subgraph of G. Then AH is
the submatrix of AG obtained by keeping the columns corresponding to the
vertices of H and removing the included rows.

On the other hand, for hereditary clique-Helly graphs, the clique matrix
of a graph G and the clique matrix of a clique subgraph of G are related in
the following way:

Theorem 2 [26] Let G be a hereditary clique-Helly graph and S a subset
of its cliques. Let H be the clique subgraph of G formed by the vertices and
edges of S. Then AH is the submatrix of AG obtained by taking the rows cor-
responding to the cliques in S and the columns corresponding to the vertices
of these cliques.

Since a submatrix of a balanced matrix is also balanced, these results
imply that balanced graphs are closed under induced subgraphs and clique
subgraphs.

Let ek be a vector with k 1’s. A matrix M ∈ Rk×n is perfect if the
polyhedron P (M) = {x/x ∈ Rn, Mx ≤ ek, x ≥ 0} has only integer extrema.

Fulkerson, Hoffman and Oppenheim [17] proved the following result which
implies that balanced matrices are perfect matrices.

Theorem 3 [17] If M is a balanced matrix, then the polyhedra P (M) =
{x/x ∈ Rn, Mx ≤ ek, x ≥ 0} and Q(M) = {x/x ∈ Rn, Mx ≥ ek, x ≥ 0}
have only integer extrema.

On the other hand, Chvátal [8] proved the theorem below that connects
perfect matrices with perfect graphs.

Theorem 4 [8] A graph G is perfect if and only if its clique matrix is
perfect.

By Theorems 3 and 4, balanced graphs are perfect graphs.
A 0-1 matrix A is k-colorable if there exists a k-coloring of its columns

such that for every row i that has at least two 1s in columns corresponding
to colors J and L, there are entries aij = ail = 1, where column j has color
J and column l has color L.

Berge proved the following theorem.

Theorem 5 [5] A 0-1 matrix A is balanced if and only if every submatrix of
A is k-colorable for every k.

Based on the proof of Theorem 5 and using the bicoloring algorithm of
Cameron and Edmonds [7], a balanced matrix can be efficiently k-colored
[11]. Since it is not difficult to see that for a graph G a χ(G)-coloring of AG

gives an χ(G)-coloring of G, and in a balanced graph G a χ(G)-coloring of
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G is equivalent to a ω(G)-coloring of G and ω(G) can be easily calculated,
so there exists a polynomial time combinatorial algorithm to find an optimal
coloring of a balanced graph [9].

Berge and Las Vergnas proved in [6] a theorem about balanced hyper-
graphs which can be formulated in terms of graphs in the following way:

Theorem 6 [6] If G is a balanced graph then τc(G) = αc(G).

Corollary 4 Balanced graphs are clique-perfect.

Moreover, the clique-transversal number τc(G) (and hence the clique-in-
dependence number αc(G)) of a balanced graph G can be determined poly-
nomially by linear programming [13].

3 New characterizations of balanced graphs

In this section, two new characterizations of balanced graphs are pre-
sented. The first one, by forbidden subgraphs and the second one, by clique
subgraphs.

A sun (or trampoline) is a chordal graph G on 2r vertices whose vertex set
can be partitioned into two sets, W = {w1, . . . , wr} and U = {u1, . . . , ur},
such that W is a stable set and for each i and j, wj is adjacent to ui if and
only if i = j or i ≡ j + 1 (mod r). A sun is odd if r is odd.

Some subclasses of balanced graphs are characterized by forbidden sub-
graphs. We can see that in the following two theorems.

Theorem 7 [16] A graph is strongly chordal if and only if it is sun-free
chordal.

Theorem 8 [24] A graph is chordal and balanced if and only if it is odd
sun-free chordal.

An extended odd sun is an odd cycle C and a subset of pairwise adjacent
vertices We ⊆ NG(e)\C for each edge e of C, such that NG(We)∩NG(e)∩C =
∅ and |We| ≤ |NG(e) ∩ C|.

Clearly, odd suns are extended odd suns. The smallest extended odd sun
is the Hajös graph (Figure 1).

Fig. 1 Hajös graph.

Other examples of extended odd suns appear in Figure 2. Note that the
subsets We and Wf , corresponding to the edges e and f respectively, may
overlap.
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Fig. 2 Two examples of graphs that are not balanced. In the first one, We1
=

We7
= {w1}, We2

= {w2}, We3
= {w3} and We4

= We5
= We6

= ∅. In the second
one, We1

= {w1, w2}, We2
= {w3}, We3

= {w4}, We4
= {w5} and We5

= We6
=

We7
= ∅.

Theorem 9 A graph is balanced if and only if it does not contain an extended
odd sun as an induced subgraph.

Proof Let G be a graph. Suppose that G has the following extended odd
sun: an odd cycle C = {v1, . . . , v2k+1} and a subset of pairwise adjacent
vertices Wi ⊆ NG(ei) \ C for each edge ei = (vi, vi+1) of C, such that
NG(Wi) ∩ NG(ei) ∩ C = ∅.

Let ei = (vi, vi+1) be an edge of C. Then {vi, vi+1} ∪ Wi is contained in
a clique Mi of G, and Mi ∩ C = {vi, vi+1} because N(ei) ∩ N(Wi) ∩ C = ∅.

Now, if we choose the rows of AG corresponding to M1, . . . , M2k+1 and
the columns of AG corresponding to v1, . . . , v2k+1, we have a vertex-edge in-
cidence matrix of an odd cycle as a submatrix of AG. So, AG is not balanced,
and thus G is not balanced.

Conversely, suppose that G is not a balanced graph, and then AG is not
a balanced matrix. So, we have the following submatrix A′ in AG, where
M1, . . . , M2k+1 are cliques of G and v1, . . . , v2k+1 are vertices of G:

v1 v2 v3 . . . v2k+1

M1 1 1 0 . . . 0
M2 0 1 1 . . . 0
M3 0 0 1 . . . 0
. . . . . .
. . . . . .
. . . . . .

M2k+1 1 0 0 . . . 1

Fig. 3 Vertex-edge incidence matrix of an odd cycle.

Thus v1, . . . , v2k+1 is an odd cycle C of G and Mi is a clique such that
Mi∩C = {vi, vi+1}. Let ei be the edge (vi, vi+1). Then either NG(ei)∩C = ∅
and then we define Wi to be the empty set, or for each v ∈ NG(ei)∩C there
is a vertex w in Mi non-adjacent to v, and those vertices form a subset of
pairwise adjacent vertices Wi ⊆ NG(ei)\C such that NG(Wi)∩NG(ei)∩C = ∅
and |Wi| ≤ |NG(ei) ∩ C|. ut
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Fig. 4 An extended odd sun which is not minimal.

Remark 1 Extended odd suns are not necessarily minimal. The Hajös graph
is an induced subgraph of the extended odd sun of Figure 4.

Theorem 10 A graph G is balanced if and only if G is hereditary clique-
Helly and does not contain a clique subgraph with an odd hole.

Proof ⇒) Let G be a balanced graph. By Corollary 1, G is HCH . Let H be a
clique subgraph of G. Since balancedness is hereditary for clique subgraphs,
H is balanced. Since induced subgraphs of G are also balanced, H can not
contain an odd chordless cycle of length ≥ 5 as an induced subgraph.

⇐) Suppose that G is not a balanced graph, thus AG is not a balanced
matrix. If AG contains the vertex-edge incidence matrix of a 3-cycle as a
submatrix, then G is not HCH . Otherwise, G is HCH and AG contains the
vertex-edge incidence matrix of an odd hole as a submatrix A′ (Figure 3,
with k ≥ 2). Let H be the clique subgraph of G formed by the cliques of G
corresponding to the rows of A′, and let H ′ be the subgraph of H induced by
the vertices corresponding to the columns of A′ (these vertices are vertices
of H by the construction of A′). By Theorem 2, the clique matrix AH is the
submatrix of AG obtained by keeping the rows of A′ and then removing the
null columns. Now, by Lemma 1, the clique matrix AH′ is A′. Thus H ′ is an
odd hole. ut

4 Graph Classes: V E, EE, V V and EV

In this section, we define and study four classes of graphs, based on simple
domination properties. These graphs form natural subclasses of balanced
graphs.

Let v, w be vertices and e, f edges of a graph G. Say that vertex v (edge
e) dominates vertex w (edge f) when NG[v] ⊇ NG[w] (NG[e] ⊇ NG[f ]).
Similarly, vertex v (edge e) dominates edge f (vertex w) when NG[v] ⊇ NG[f ]
(NG[e] ⊇ NG[w]).

A graph G is a V E graph if any odd cycle of G contains a vertex that
dominates some edge of the cycle, where the edge is non-incident to the
vertex.

A graph G is an EV graph if any odd cycle of G contains an edge that
dominates some vertex of the cycle.

Finally, a graph G is a V V (EE) graph if any odd cycle of it contains a
vertex (edge) that dominates some other vertex (edge) of the cycle.
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4.1 Inclusion relations

Let us see the inclusion relations between these graph classes.

Theorem 11 Let G be an EV graph. Then G is an EE graph and a V V
graph.

Proof Let C = {v1, . . . , v2j+1} be an odd cycle of G. By hypothesis, as G is
an EV graph, there is an edge e = (vi, vi+1) of C that dominates a vertex vk

of C. Then e = (vi, vi+1) dominates e1 = (vk−1, vk) and e2 = (vk , vk+1), and
at least one of these edges is not equal to e. So, G is an EE graph. On the
other hand, vi and vi+1 dominate vk, and at least one of them is different
from vk. In consequence, G is a V V graph too. ut

Theorem 12 Let G be an EE graph. Then G is a V E graph.

Proof Let C = {v1, . . . , v2j+1} be an odd cycle of G. By hypothesis, as G
is an EE graph, there is an edge e = (vi, vi+1) that dominates an edge
f = (vk , vk+1) of C (e 6= f). We may suppose that vi 6= vk+1, so vi dominates
f = (vk , vk+1), which implies that G is a V E graph. ut

Theorem 13 Let G be a V V graph. Then G is a V E graph.

Proof Let C = {v1, . . . , v2j+1} be an odd cycle of G. By hypothesis, as G is
a V V graph, there is a vertex vi that dominates a vertex vk (vi 6= vk). We
may suppose that vk 6= vi−1, so vi dominates f = (vk, vk+1), which implies
that G is a V E graph. ut

Finally, we can determine that these classes of graphs are balanced graphs.

Theorem 14 Let G be a V E graph. Then G is a balanced graph.

Proof Suppose that AG is not a balanced matrix. So, we have the matrix of
Figure 3 as a submatrix A′ in AG, where M1, . . . , M2k+1 are cliques of G and
v1, . . . , v2k+1 are vertices of G. Then v1, . . . , v2k+1 is an odd cycle of G and
Mi is a clique that contains the edge (vi, vi+1) (Mi ∈ M(vi, vi+1)). But Mi

does not contain another vertex vj of the cycle, otherwise there would be a
1 in the position (i, j) of A′. So Mi /∈ M(vj) for j 6= i, i+1. This fact implies
that NG[(vi, vi+1)] 6⊆ NG[vj ] for j 6= i, i + 1, for any edge (vi, vi+1) of the
cycle, thus G is not a V E graph. ut

Corollary 5 V E, EE, V V and EV graphs are perfect graphs.

Note: Figure 5 shows examples of minimal graphs belonging to the possi-
ble intersections defined by the inclusions among these classes. The examples
can be checked with no difficulty. We can see in this figure that the inclusions
are proper.

Remark 2 Bipartite graphs are EV graphs.

Remark 3 V E, EE, V V and EV graphs are hereditary classes of graphs.
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Fig. 5 Intersection between all the classes.

4.2 Matrix characterizations

Let e1, . . . , em and v1, . . . , vn be the edges and vertices of a graph G,
respectively. Denote by w1i and w2i the endpoints of the edge ei. We define
two matrices in {0, 1}m×n:

– AV E(G), whose entry (i, j) is 1 if NG[ei] ⊆ NG[vj ], and 0 otherwise.
– AV V (G), whose entry (i, j) is 1 if NG[w1i] ⊆ NG[vj ] or NG[w2i] ⊆ NG[vj ],

and 0 otherwise.

Clearly, both matrices can be constructed in polynomial time.

Theorem 15 A graph G is a V E graph if and only if AV E(G) is a balanced
matrix.

Proof ⇒) Suppose that AV E(G) is not a balanced matrix. So, we have the
following submatrix A′ in AV E(G), where e1, . . . , e2k+1 are edges of G and
v1, . . . , v2k+1 are vertices of G:
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v1 v2 v3 . . . v2k+1

e1 1 1 0 . . . 0
e2 0 1 1 . . . 0
e3 0 0 1 . . . 0
. . . . . .
. . . . . .
. . . . . .

e2k+1 1 0 0 . . . 1

Fig. 6 Vertex-edge incidence matrix of an odd cycle.

Let 1 ≤ i ≤ 2k + 1. Since NG[ei] ⊆ NG[vi] ∩ NG[vi+1], vi and vi+1 are
adjacent, and then v1, . . . , v2k+1 is an odd cycle of G. Let fi be the edge
(vi, vi+1). Then NG[ei] ⊆ NG[fi]. So, if the vertex vj dominates the edge
fi, then it also dominates the edge ei and, therefore, there must be a 1 in
the position (i, j) of A′. So the vertex vj does not dominate the edge fi for
j 6= i, i + 1, for any edge fi of the cycle. Thus G is not a V E graph.

⇐) Suppose that G is not a V E graph. Then there is an odd cycle C =
{v1, . . . , v2k+1} such that, for any ei = (vi, vi+1) and any j 6= i, i+1, NG[ei] 6⊆
NG[vj ].

Now, if we choose the rows of AV E(G) corresponding to e1, . . . , e2k+1 and
the columns of AV E(G) corresponding to v1, . . . , v2k+1, we have a vertex-edge
incidence matrix of an odd cycle as a submatrix of AV E(G), so it is not a
balanced matrix. ut

Corollary 6 There is a polynomial-time recognition algorithm for V E graphs.

Theorem 16 A graph G is a V V graph if and only if AV V (G) is a balanced
matrix.

Proof ⇒) Suppose that AV V (G) is not a balanced matrix. So, we have the
matrix of Figure 6 as a submatrix A′ in AV V (G), where e1, . . . , e2k+1 are
edges of G and v1, . . . , v2k+1 are vertices of G.

Let 1 ≤ i ≤ 2k+1. By definition of AV V (G), NG[ei] ⊆ NG[vi]∩NG[vi+1],
and therefore vi and vi+1 are adjacent. Then v1, . . . , v2k+1 is an odd cycle of
G.

Note that, if the vertex vj dominates the vertex vi, there must be a 1
in the position (i, j) of A′ and a 1 in the position (i − 1, j) of A′ (the sums
must be understood modulo 2k+1). However, the latter does not occur. So
the vertex vj does not dominate the vertex vi for any j 6= i. Thus G is not a
V V graph.

⇐) Suppose that G is not a V V graph. Then there is an odd cycle C =
{v1, . . . , v2k+1} such that, for any i 6= j, NG[vi] 6⊆ NG[vj ]. If we choose the
rows of AV V (G) corresponding to e1, . . . , e2k+1 and the columns of AV V (G)
corresponding to v1, . . . , v2k+1, we have a vertex-edge incidence matrix of an
odd cycle as a submatrix of AV V (G), so it is not a balanced matrix. ut

Corollary 7 There is a polynomial-time recognition algorithm for V V graphs.
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4.3 A combinatorial algorithm for the maximum stable set in V V graphs

The maximum stable set problem can be solved in polynomial time for
perfect graphs [19] (and in consequence for balanced graphs and its subclasses
too), but the algorithm is based on linear programming. We present here a
polynomial time purely combinatorial algorithm (i.e. non LP-based) for the
problem of determining the maximum stable set in V V graphs.

Lemma 2 Let G be a graph and v, w two vertices of G such that v dominates
w. Then there exists a maximum stable set S of G such that v does not belong
to S.

Proof Let S be a maximum stable set in G. If v does not belong to S, the
lemma holds. Otherwise, w cannot belong to S because it is adjacent to v. As
v dominates w, S \ {v}∪ {w} is a maximum stable set that does not contain
v. ut

Theorem 17 There exists a polynomial time combinatorial algorithm to find
a maximum stable set for V V graphs.

Proof Let G be a V V graph. If there exists a vertex v that dominates another
vertex w, then remove v. This procedure is repeated until no more dominating
vertices exist. We obtain an induced subgraph G′ that can be constructed in
polynomial time. As V V graphs are hereditary, G′ lies in this class. So, G′

has no odd cycle (and in consequence is a bipartite graph). By Lemma 2, a
maximum stable set in G′ is a maximum stable set in G. Such a set can be
found in O(n5/2) time [22]. ut

5 Clique graphs of balanced graphs

Clique graphs of several classes of graphs have been already characterized.
Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs and
Helly circular-arc graphs are some of them [29]. In this section we see that the
class of balanced graphs and the class of totally unimodular graphs are fixed
classes under the clique operator, i.e. K(BALANCED) = BALANCED and
K(TOTALLY UNIMODULAR) = TOTALLY UNIMODULAR, and finally
we present a characterization of clique graphs of V E, EE, V V and EV
graphs.

First some definitions and lemmas are needed. Let At
G be the transpose

matrix of AG. The following lemma is clear.

Lemma 3 Let G be a clique-Helly graph. Then AK(G) is the submatrix of

At
G obtained by removing the included rows.

Define the graph H(G) where V (H(G)) = {q1, . . . , qk, w1, . . . , wn}, each
qi corresponds to the clique Mi of G, and each wi corresponds to the vertex vi

of G. The edges of H(G) are the following: the vertices q1, . . . , qk induce the
graph K(G), the vertices w1, . . . , wn induce a stable set and wj is adjacent
to qi if and only if vj belongs to the clique Mi in G.
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Theorem 18 [21] Let G be a clique-Helly graph and H(G) as defined above.
Then the cliques of H(G) are induced by NG[wi] for each i, wi is a simplicial
vertex of H(G) for every i, and K(H(G)) = G.

Let A ∈ Rn×m and B ∈ Rn×k be two matrices. We define the matrix
A|B ∈ Rn×(m+k) by (A|B)(i, j) = A(i, j) for i = 1, . . . , n, j = 1, . . . , m and
(A|B)(i, m + j) = B(i, j) for i = 1, . . . , n, j = 1, . . . , k. Let In be the n × n
identity matrix.

Theorem 19 Let G be a clique-Helly graph and |V (G)| = n. Then AH(G) =

At
G|In.

Proof It follows immediately from the previous theorem. ut

From Lemma 3 we can deduce the following result, proved in [4] too:

Theorem 20 If G is a balanced graph then K(G) is also balanced.

Theorem 21 A graph G is balanced if and only if G is clique-Helly and
H(G) is balanced.

Proof ⇒) If G is a balanced graph, then by Corollary 1, G is a clique-Helly
graph. So, we have that AH(G) = At

G|In (Theorem 19), and AG is balanced,

so At
G is balanced. On the other hand, all the columns of the vertex-edge

incidence matrix of an odd cycle have two nonzero entries, so AH(G) is bal-
anced.

⇐) If G is a clique-Helly graph and H(G) is balanced, G = K(H(G))
(Theorem 18) and then G is balanced (Theorem 20). ut

The following corollary, mentioned in [25], follows from Theorem 20,
Corollary 1 and Theorem 21.

Corollary 8 The class of balanced graphs is fixed under K, that is,
K(BALANCED) = BALANCED.

Next, we show that similar results hold for the class of totally unimodular
graphs.

Theorem 22 If G is a totally unimodular graph then K(G) is also totally
unimodular.

Proof If G is a totally unimodular graph then G is a balanced graph and then
G is a clique-Helly graph (Corollary 1). So Lemma 3 holds. If AG is a totally
unimodular matrix, then At

G is totally unimodular too, since for every square
matrix M , det(M) = det(M t). And every submatrix of a totally unimodular
matrix is totally unimodular. So, AK(G) is a totally unimodular matrix. ut

Theorem 23 A graph G is totally unimodular if and only if G is clique-Helly
and H(G) is totally unimodular.
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Proof ⇒) If G is a totally unimodular graph then G is a balanced graph
and consequently G is a clique-Helly graph (Corollary 1). We have that
AH(G) = At

G|In (Theorem 19), and AG is totally unimodular, so At
G is to-

tally unimodular. Every square submatrix M of AH(G) can be written as

M = M1|M2, where M1 is a submatrix of At
G and M2 is a submatrix of

In. So, using determinant properties, M is singular or det(M) = ±det(M3),
where M3 is a square submatrix of M1. Then, in both cases, det(M) = 0 or
±1. Therefore H(G) is totally unimodular.

⇐) If G is a clique-Helly graph and H(G) is totally unimodular, G =
K(H(G)) (Theorem 18) and then G is totally unimodular (Theorem 22). ut

Corollary 9 The class of totally unimodular graphs is fixed under K, i.e.,
K(TOTALLY UNIMODULAR) = TOTALLY UNIMODULAR.

Finally, we present a characterization of clique graphs of V E, EE, V V
and EV graphs.

Let S = {M1, . . . , M2k+1} be an odd set of cliques of G, where Mr inter-
sects Mr+1 for r = 1, . . . , 2k + 1 (all the sums must be understood modulo
2k+1).

A graph G is a dually EE graph (DEE graph) if for any such a set S
there exist i, j, 1 ≤ i, j ≤ 2k + 1, i 6= j, such that Mi ∩ Mi+1 ⊆ Mj ∩ Mj+1.

A graph G is a dually VE graph (DV E graph) if for any such a set S
there exist i, j, 1 ≤ i, j ≤ 2k +1, i 6= j, i+1 6= j, such that Mi ∩Mi+1 ⊆ Mj .

Theorem 24 Let G be a DEE graph. Then G is a DV E graph.

Proof Let S = {M1, . . . , M2k+1} a set of cliques of G, where Mi intersects
Mi+1 for i = 1, . . . , 2k + 1. By hypothesis, as G is a DEE graph, there are
cliques Mi, Mi+1, Mj , Mj+1 such that Mi ∩ Mi+1 ⊆ Mj ∩ Mj+1 (i 6= j).
So Mi ∩ Mi+1 ⊆ Mj , and if i + 1 = j then i 6= j + 1, i + 1 6= j + 1 and
Mi ∩ Mi+1 ⊆ Mj+1, which implies that G is a DV E graph. ut

Theorem 25 Let G be a DV E graph. Then G is a balanced graph.

Proof Suppose that AG is not a balanced matrix. So, we have the matrix
of Figure 3 as a submatrix A′ in AG, where M1, . . . , M2k+1 are cliques of G
and v1, . . . , v2k+1 are vertices of G. Then {M1, . . . , M2k+1} is an odd set of
cliques of G where Mi intersects Mi+1 for i = 1, . . . , 2k + 1. On the other
hand, vi is a vertex that belongs to Mi ∩ Mi+1 but vi does not belong to
another clique Mj of the set, otherwise there would be a 1 in the position
(j, i) of A′. So vi /∈ Mj for j 6= i, i+1. This fact implies that Mi∩Mi+1 6⊆ Mj

for j 6= i, i + 1, for any i = 1, . . . , 2k + 1, thus G is not a DV E graph. ut

Theorem 26 Let G be a graph.

– If G is a DV E graph then K(G) is V E.
– If G is a DEE graph then K(G) is EE.
– If G is a V E graph then K(G) is DV E.
– If G is a EE graph then K(G) is DEE.
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Proof Let G be a graph. Classes DV E, DEE, V E and EE are subclasses
of balanced graphs, and balanced graphs are clique-Helly. So, if G belongs to
some of these classes, then G is a clique-Helly graph. The vertices of K(G)
are the cliques of G, and by Lemma 3 we know that the cliques of K(G) are
some M(v) with v ∈ V (G).

Let {M1, . . . , M2k+1} be an odd cycle in K(G), then Mi intersects Mi+1

in G, for i = 1, . . . , 2k + 1.
If G is a DV E graph, there are cliques Mi, Mi+1, Mj such that Mi ∩

Mi+1 ⊆ Mj (i, i + 1 6= j). Let M(v) be a clique of K(G) that contains Mi

and Mi+1. Then, in G, v lies in Mi ∩ Mi+1 implying that v is in Mj and
therefore M(v) contains Mj too. So, in K(G), the vertex Mj dominates the
edge (Mi, Mi+1) and, as a consequence, K(G) is in V E.

If G is a DEE graph, there are cliques Mi, Mi+1, Mj , Mj+1 such that
Mi ∩ Mi+1 ⊆ Mj ∩ Mj+1 (i 6= j). Let M(v) be a clique of K(G) that
contains Mi and Mi+1, then, in G, v lies in Mi ∩ Mi+1 implying that v is in
Mj ∩Mj+1 and therefore M(v) contains Mj and Mj+1 too. So, in K(G), the
edge (Mj , Mj+1) dominates the edge (Mi, Mi+1) and, in consequence, K(G)
is in EE.

Now, let {M(v1), . . . , M(v2k+1)} be an odd set of cliques in K(G), where
M(vi) intersects M(vi+1) for i = 1, . . . , 2k + 1. Then for each i there exists
a clique Mi of G such that vi and vi+1 belong to Mi, and then vi and vi+1

are adjacent in G, so v1, . . . , v2k+1 is an odd cycle in G.
If G is in V E, there is a vertex vj of the cycle that dominates the edge

(vi, vi+1) with j 6= i, i + 1. Let M be a vertex of K(G), M lies in M(vi) ∩
M(vi+1) in K(G), vi and vi+1 belong to M in G, and therefore vj belongs
to M too. So M ∈ M(vj), and in consequence M(vi) ∩ M(vi+1) ⊆ M(vj).
Then K(G) is a DV E graph.

If G is in EE, there is an edge (vj , vj+1) of the cycle that dominates the
edge (vi, vi+1) with j 6= i. Let M be a vertex of K(G), M lies in M(vi) ∩
M(vi+1) in K(G), vi and vi+1 belong to M in G, and therefore vj and vj+1

belong to M too. So M ∈ M(vj) ∩ M(vj+1), and in consequence M(vi) ∩
M(vi+1) ⊆ M(vj) ∩ M(vj+1). Then K(G) is a DEE graph. ut

Theorem 27 Let G be a clique-Helly graph.

– G is a DV E graph if and only if H(G) is V E.
– G is a DEE graph if and only if H(G) is EE.
– G is a V E graph if and only if H(G) is DV E.
– G is a EE graph if and only if H(G) is DEE.

Proof Let G be a clique-Helly graph and H(G) as defined in Theorem 18,
with V (H(G)) = {q1, . . . , qk, w1, . . . , wn}, each qi corresponds to the clique
Mi of G, and each wi corresponds to the vertex vi of G. By Theorem 18, the
cliques of H(G) are NH(G)[wi] for each i. Then wi and all its incident edges
are dominated between themselves, and every vertex in NH(G)(wi) dominates
wi and all its incident edges.

Let C be an odd cycle in H(G). If there is a vertex wi in C, then C
contains an edge that dominates another edge, and a vertex that dominates
an edge non incident to it.
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EE

DEE

H

Fig. 7 Intersection between the dual classes EE and DEE.

If there is not such a vertex, C is an odd cycle {qr1
, . . . , qr2s+1

} that
corresponds to an odd set of cliques {Mr1

, . . . , Mr2s+1
} of G, such that Mri

intersects Mri+1
for i = 1, . . . , 2s + 1.

If G is a DV E graph, there are cliques Mri
, Mri+1

, Mrj
such that Mri

∩
Mri+1

⊆ Mrj
(i, i + 1 6= j). Let NH(G)[wl] be a clique of H(G) that contains

qri
and qri+1

. Then, in G, vl lies in Mri
∩ Mri+1

implying that vl is in Mrj

and therefore, in H(G), NH(G)[wl] contains qrj
too. So, in H(G), the vertex

qrj
dominates the edge (qri

, qri+1
) and, in consequence, H(G) is V E.

If G is a DEE graph, there are cliques Mri
, Mri+1

, Mrj
, Mrj+1

such that
Mri

∩Mri+1
⊆ Mrj

∩Mrj+1
(i 6= j). Let NH(G)[wl] be a clique of H(G) that

contains Mri
and Mri+1

. Then, in G, vl belongs to Mri
∩Mri+1

implying that
vl belongs to Mrj

∩ Mrj+1
. Therefore, in H(G), NH(G)[wl] contains qrj

and
qrj+1

too. So, in H(G), the edge (qrj
, qrj+1

) dominates the edge (qri
, qri+1

)
and, in consequence, H(G) is EE.

Now, let {NH(G)[wr1
], . . . , NH(G)[wr2s+1

]} be an odd set of cliques in
H(G), where NH(G)[wri

] intersects NH(G)[wri+1
] for i = 1, . . . , 2s + 1. Then

for each i there exists a vertex q ∈ NH(G)[wri
] ∩ NH(G)[wri+1

]. So vri
and

vri+1
belong to the corresponding clique M of G, and then vri

and vri+1
are

adjacent in G, so vr1
, . . . , vr2s+1

is an odd cycle in G.
If G is a V E graph, there is a vertex vrj

of the cycle that dominates
the edge (vri

, vri+1
) with j 6= i, i + 1. Let ql be a vertex of H(G), ql lies in

NH(G)[wri
]∩NH(G)[wri+1

] in H(G), vi and vi+1 belong to Ml in G, and there-
fore vj belongs to Ml too. So ql belongs to NH(G)[wrj

], and in consequence
NH(G)[wri

] ∩ NH(G)[wri+1
] ⊆ NH(G)[wrj

]. Then H(G) is DV E.
If G is a EE graph, there is an edge (vrj

, vrj+1
) of the cycle that dom-

inates the edge (vri
, vri+1

) with j 6= i. Let ql be a vertex of H(G), ql lies
in NH(G)[wri

] ∩ NH(G)[wri+1
] in H(G), vri

and vri+1
belong to Ml in G,

and therefore vrj
and vrj+1

belong to Ml too. So ql belongs to NH(G)[wrj
] ∩

NH(G)[wrj+1
] in H(G), and in consequence NH(G)[wri

] ∩ NH(G)[wri+1
] ⊆

NH(G)[wrj
] ∩ NH(G)[wrj+1

]. Then H(G) is DEE.
The converse properties follow from Theorem 18 and Theorem 26 applied

to H(G). ut
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Fig. 8 Intersection between the dual classes V E and DV E.

Corollary 10 K(DEE) = EE and K(EE) = DEE.

Corollary 11 K(DV E) = V E and K(V E) = DV E.

The following result by Escalante is needed to analyse clique graphs of
V V graphs.

Theorem 28 [15] If G is a clique-Helly graph then K2(G) is the subgraph
of G obtained by removing the dominated vertices.

Theorem 29 Let G be a graph. If G is a V V graph then K2(G) is a bipartite
graph.

Proof If G is a V V graph then G is clique-Helly (Corollary 1). Every odd
cycle of G has a dominated vertex, and therefore, by Theorem 28, K2(G) is
a bipartite graph. ut

Theorem 30 Let G be a graph. Then K(G) is a bipartite graph if and only
if G is a clique-Helly graph and H(G) is an EV graph.

Proof ⇒) Let G be a graph, V (G) = {v1, . . . , vn} and M(G) = {M1, . . . , Mk}.
Since K(G) is a bipartite graph, G is clique-Helly because any set of pair-
wise intersecting cliques has at most two elements. Clearly, V (H(G)) =
V (K(G))∪{w1, . . . , wn} as in the definition of H(G). Also, K(G) is a bipar-
tite graph and by the definition of H(G), every odd cycle C of H(G) must
contain a vertex wi from {w1, . . . , wn}. By Theorem 18, wi is a simplicial
vertex, so the edges of C incident to wi dominate the vertex wi, and then
H(G) is an EV graph.

⇐) If G is a clique-Helly graph and H(G) is an EV graph, it is a V V
graph too. So by Theorem 29, K2(H(G)) = K(G) is a bipartite graph. ut

Corollary 12 K2(V V ) = K2(EV ) = the class of bipartite graphs.

Proof We will prove that K2(EV ) ⊆ K2(V V ) ⊆ BIPARTITE ⊆ K2(EV )
and therefore the three classes are the same. The first inclusion holds because
EV ⊆ V V . The second inclusion follows from Theorem 29. Now, for every
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bipartite graph G we have that K(H(G)) = G and by Theorem 30 applied to
H(G), H2(G) is an EV graph and K2(H2(G)) = G. So the third inclusion
holds too. ut

The class K−1(BIPARTITE ) has been analysed and characterized by
forbidden subgraphs in [27].

Corollary 13 K(V V ) = K(EV ) = K−1(BIPARTITE ).

Proof Let G be a V V graph. By the last corollary, K2(G) = K(K(G)) is bi-
partite so K(G) belongs to K−1(BIPARTITE ). Therefore K(EV ) ⊆ K(V V )
⊆ K−1(BIPARTITE ). On the other hand, let G be a graph belonging to
K−1(BIPARTITE ), then by Theorem 30 H(G) is EV and G = K(H(G)).
So K−1(BIPARTITE ) ⊆ K(EV ) ⊆ K(V V ) ⊆ K−1(BIPARTITE ) and we
have that the three sets are equal. ut

As a consequence of this result, we deduce the existence of pure combina-
torial algorithms to find a maximum clique-independent set and a minimum
clique-transversal for V V graphs.

Corollary 14 There exists a polynomial time combinatorial algorithm to
find a maximum clique-independent set and a minimum clique-transversal
for V V graphs.

Proof Let G be a V V graph. Then K(G) belongs to K−1(BIPARTITE )
and can be constructed in polynomial time. Moreover, a maximum clique-
independent set of G can be obtained from a maximum stable set of K(G),
and a minimum clique-transversal of G can be constructed from a minimum
clique covering of K(G). Since the graphs K−1(BIPARTITE ) are K1,3-free
[27] there exists a polynomial time combinatorial algorithm for maximum
stable set in these graphs [28]. As K(G) is also perfect, we can use the
polynomial time combinatorial algorithm for minimum clique covering in
K1,3-free perfect graphs [23]. So, the result holds. ut

Finally, we can see that K−1(BIPARTITE ) graphs are a subclass of
DEE.

Theorem 31 K−1(BIPARTITE ) ⊆ DEE.

Proof Let G ∈ K−1(BIPARTITE ). Suppose that there exists an odd set S =
{M1, . . . , M2k+1} of cliques of G, where Mi intersects Mi+1 for i = 1, . . . , 2k
and M2k+1 intersects M1. Then the corresponding vertices in K(G) form an
odd cycle, but K(G) is a bipartite graph, so such a set does not exist, and
G is DEE. ut

Note 1 In Figure 9, we can see that all these inclusions are proper.
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6. Berge, C., Las Vergnas, M.: Sur un théorème du type König pour hypergraphes.

Ann. N.Y. Acad. Sci. 175, 32–40 (1970)
7. Cameron, K., Edmonds, J.: Existentially polytime theorems. DIMACS, Ser.

Discrete Math. Theor. Comput. Sci. 1, 83–100 (1990)
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