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Abstract

A new class of graphs related to perfect graphs is defined in this
work: coordinated graphs. A graph G is coordinated if the cardinality
of a maximum set of cliques of H with a common vertex is equal to
the cardinality of a minimum partition of the cliques of H into clique-
independent sets, for every induced subgraph H of G. A graph G is
K-perfect when its clique graph K(G) is perfect. The concept of special
clique subgraph is defined, which leads us to the notion of c—coordinated
graphs (coordination relative to these clique subgraphs). We prove that
coordinated graphs are a subclass of perfect graphs and relate K-perfect
graphs with c—coordinated graphs. Finally, clique graphs of clique-Helly
and hereditary clique-Helly perfect graphs are analyzed.

Key words: clique graphs, clique-Helly graphs, coordinated graphs, hereditary
clique-Helly graphs, K-perfect graphs, perfect graphs.

1 Introduction

Let G be a finite undirected graph, V(G) and E(G) the vertex and edge sets
of G, respectively. Denote |V(G)| = n. A clique in a graph is a complete
subgraph maximal under inclusion. A stable set in a graph is a subset of pairwise
non-adjacent vertices of it. The stability number «(G) is the cardinality of a
maximum stable set of G. The neighbourhood of a vertex v is the set N(v)

consisting of all the vertices which are adjacent to v. The closed neighbourhood
of vis N[v] = N(v) U {v}.

Let C(G) be the set of cliques of G. Denote |C(G)| = k. Let v and w be
vertices of G. Let C((v,w)) and C(v) be the sets of cliques containing the
edge (v, w) and the vertex v, respectively. Vertices which belong to exactly one
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clique will be called simplicial vertices. A vertex v dominates a vertex w in G
if C(w) C C(v). Two vertices v and w are twins if C'(v) = C(w).

The chromatic number of a graph G is the smallest number of colors that can
be assigned to the vertices of G in such a way that no two adjacent vertices
receive the same color, and is denoted by x(G). An obvious lower bound is the
maximum cardinality of the cliques of GG, the clique number of G, denoted by
w(G).

Berge [2] proposed to call a graph G perfect whenever x(H) = w(H) for every in-
duced subgraph H of G. Perfect graphs are very interesting from an algorithmic
point of view. While determining the clique number and the chromatic number
of a graph are NP-complete problems, they are solvable in polynomial time for
perfect graphs [14]. Besides, it has been proved recently that perfect graphs can
be characterized by forbidden subgraphs [6] and recognized in polynomial time
[7]. For more background information on perfect graphs see [13].

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint
cliques. The clique-transversal number and clique-independence number of G,
denoted by 7¢(G) and ac(G), are the sizes of a minimum clique-transversal
and a maximum clique-independent set of G, respectively. It is easy to see
that 7¢(G) > ac(G) for any graph G. As it is defined in [15], a graph G is
clique-perfect if 7« (H) = ac(H) for every induced subgraph H of G.

A family of subsets S satisfies the Helly property when every subfamily of it
consisting of pairwise intersecting subsets has a common element. A graph
is clique-Helly (CH) when its cliques satisfy the Helly property. A graph G
is hereditary clique-Helly (HCH) when H is clique-Helly for every induced
subgraph H of G. Both classes of graphs can be recognized in polynomial
time [25, 21]. An interesting survey on clique-Helly and hereditary clique-Helly
graphs appears in [12].

Let My, ..., My and vy, ..., v, be the cliques and vertices of a graph G, respec-
tively. A clique matrix Ag € RF*™ of G is a 0-1 matrix whose entry a;; is 1 if
v; € M;, and 0, otherwise.

Consider a finite family of non-empty sets. The intersection graph of this family
is obtained by representing each set by a vertex, two vertices being connected
by an edge if and only if the corresponding sets intersect. The clique graph
K(G) of G is the intersection graph of the cliques of G. The graph K2(G) is
the clique graph of K(G). A graph G is K-perfect if its clique graph K(G) is
perfect.

Let A € R"™*" be a 0-1 matrix having no zero columns. The derived graph of A
is the intersection graph of its columns, that is, a graph of n vertices vy, ..., v,
where v; is adjacent to v; if there exists a row { in A such that a;; = a;; = 1.

We define a new class of graphs related to perfect graphs: coordinated graphs.
Let v be a vertex of a graph G. Denote m(v) = |C(v)|. Let M(G) be the
maximum m(v) for any v in G. Let F(G) be the cardinality of a minimum
partition of the cliques of G into clique-independent sets, that is, the smallest
number of colors that can be assigned to the cliques of G' so that intersecting
cliques have different colors. Note that F(G) > M(G) for any graph G. We
say that a graph G is coordinated if F(H) = M (H), for every induced subgraph
H of G.

The concept of special clique subgraph is defined in this work, which leads us



to the notion of coordination relative to these clique subgraphs. A graph G is
c—coordinated if F(H) = M (H) for every special clique subgraph H of G.

Let H be a class of graphs and K(#) be the class of clique graphs of graphs
in H. If K(H) = H, we say that H is fixed under the clique operator K.
Clique-Helly and hereditary clique-Helly graphs are classes with this property
[11, 21]. Two classes of graphs H and £ are dual-clique classes if K(H) = £
and K (L) = H. Examples of dual-clique graph classes appear in several works
(see [3, 4, 5, 22, 26]).

A characterization for the class of clique graphs was formulated by Roberts and
Spencer [23], inspired by a paper of Hamelink [16], but no efficient algorithm is
known based on this characterization. In fact, it is an open problem whether or
not the problem of recognizing clique graphs is NP-complete. Clique graphs of
several classes of graphs have already been studied in the literature: trees [17],
interval graphs [18], Helly circular-arc graphs [9], disk-Helly graphs [1], chordal
graphs [26], are some of them. An interesting survey on clique graphs can be
found in [24].

In this paper, we prove that coordinated graphs are a subclass of perfect graphs.
Furthermore, a characterization of HCH K-perfect graphs using clique sub-
graphs is formulated. Finally, clique graphs of clique-Helly and hereditary
clique-Helly perfect graphs are studied. We prove that (hereditary) clique-Helly
perfect graphs and (hereditary) clique-Helly K-perfect graphs are dual-clique
classes of graphs.

2 Coordinated graphs

Coordinated graphs are perfect graphs. In order to prove this, we need some
previous results.

Clearly, Cs,4+1 is not coordinated for r > 2, because M (Cary1) = 2 while
F(CQT+1) - 3

Let C,,, with n > 5, be the complement of an induced cycle vy, ..., v,, that is,
v; and v; are adjacent if and only if j # 4 —1,i+1 (from now on, all the indices
must be understood modulo n).

We will prove that C,, is not coordinated for n > 5, n # 6. We need some results
related to M(C)) and |C(C,)| in order to conclude that F(Cy) > M(C),) for
n >>5 n#6.

Let A, be the number of sequences [a1, ..., as] where a; € {2,3} and Y7 | a; =
n.

Lemma 2.1 In C,, there is a one-to-one correspondence between the cliques in
the set C'(v;) and the sequences [a1, . ..,as] such that a; € {2,3} and 2;21 a; =
n. Therefore |C(v;)| = Ap.

Proof:  Without loss of generality, suppose i = 1. Let D € C(v1), D =
{viy,..,vi,}, 1 = i1 < -+ < is. Given two consecutive vertices v;, vi+1
in C,, every clique contains at most one of them. So ij4; —i; > 2 and
is < n — 1. On the other hand, by maximality, given three consecutive ver-
tices v;, v;41 and vy in C,, every clique contains at least one of them. So
ij+1 —t; < 3 and i, > n — 2. Then, we can assign to D the sequence



S(D) = [iz —i1,-..,is —is—1,n + 1 — ig], where every element is equal to 2
or 3 and its sum is (ix — 1) + -+ (s —is—1) + (n+1—is) =n+1—i; =n.

Conversely, let S = [a, ..., as] be a sequence such that a; € {2,3} and 2;21 a; =
n. We can assign to this sequence the set of vertices D(S) = {vi,, ..., v;, } where
iv =1land i; =41 +a;_ for j =2,...,s. To verify that D(S) is a clique,
observe that since 1 = 4; < -+- <4, ¢j41—i; =2o0r3,and i, <n+l-2=n-1,
there are not two consecutive vertices in D(S). Therefore, D(S) is complete.
Let v; be a vertex different from v;,,...,v;,. Then, there is an index j such that
ij <@ <ijt1,0r iy <% < n. In the first case, as ij41 —i; = 2 or 3, it follows
that ¢ =4;41 — 1 or ¢ =4; + 1. In the second case, as i, >n+1-3 =n—2,
then i = is + 1 or i = n. In both cases, D(S) U {v;} does not induce a complete
subgraph. Then, D(S) induces a complete maximal subgraph.

Finally, observe that this correspondences are dual, that means D(S(D)) = D
and S(D(S)) = S. Therefore, |C(v;)| = As. ]

Lemma 2.2 In C,, there is a one-to-one correspondence between the cliques
in the set C((vi,vir3)) and the sequences [a1,. .., as] such that a; € {2,3} and
Z;Zl aj =n—3. As a consequence, |C(y, v, 5)| = An—3.

Proof: Without loss of generality, we can assume that ¢ = 1. Consider the
assignment of sequences in the proof of Lemma 2.1. Let D € C(vy). Then D €
C((v1,v4)) if and only if a; = 3 in S(D), otherwise a; = 2 and vz € D, which
would imply that vy € D, which is a contradiction. Then, there is a one-to-one
correspondence between the cliques in the set C'((v;,vi43)) and the sequences
[a1,...,as] such that a; € {2,3}, a1 = 3 and 2;21 a; = n, or equivalently, the
sequences [a1,...,a:] such that a; € {2,3} and Zz.:l a; = n — 3. Therefore,
|C(Uiyvi+3)| =Ap_s. u

Theorem 2.1 M(C,) = A, and |C(C,)| = 24,, + A, _3.

Proof: By lemma 2.1, for every i = 1,...,n it holds that mg (v;) = |C(v;)| =
A,. Then M(C,) = A,. Since the set of cliques of C,, is the disjoint union of

C((’Ui, Ui+3)), C(UH_l) and C(’UH_z), the fact that |C(Cn)| =2A, + A, _3 follows
directly from Lemma 2.1 and Lemma 2.2. [

Clearly, the following lemma holds.

Lemma 2.3 Let P be a partition of the cliques of C,, into clique-independent
sets. Every cliqgue of C(v;) whose assigned sequence has aj = 2 for some j,
belongs to a set of cardinality at most 2 in P.

Using this facts, this theorem can be proved.

Theorem 2.2 The graph C,, is not coordinated for n > 5, n # 6.

Proof: Let us see that for n > 5,n # 6, F'(Cp) > M(Cy). Let P be a minimum
partition of the cliques of C,, into clique-independent sets. Let D be a clique in
C(v;) and [aq,...,as] be the sequence associated to D given by Lemma 2.1.



If n is not a multiple of 3, there must be some index j such that a; = 2. As we
observed before, the subset of the partition P that contains the clique D has
at most one more clique. Since D is an arbitrary clique, we conclude that the
cardinality of every set in the partition is at most 2. Then, it holds:

F(Cy) =1IP| 2 > Ap = M(Ch),

IC(Ch)| 240+ Ans
2 2

forn >5, A,_3 > 0.

If n = 3t, where t > 3, then there are exactly three cliques in C,, that can be rep-
resented with sequences such that a; = 3 for every j: My = {vi,v4,...,vn—2},
My = {v2,vs,...,v,—1} and M3 = {v3,vs,...,v,}. This means that there is at
most one set of three independent cliques in the partition P, and the cardinality
of the other sets must be at most two. Using the fact that Az;_3 > 1 for ¢t > 3,
we obtain:

PR 1 _
F(C3t) = |P| > > A3t = M(C3t)

C(C30)| =1 _ 245 + Ag—s —
2 2

Corollary 2.1 Coordinated graphs are perfect graphs.

Proof: Tt is a direct consequence of the fact that Cs,1 is not coordinated for
r > 2, Theorem 2.2, and the Strong Perfect Graph Theorem [6], which claims
that a graph is perfect if and only if it contains neither an induced odd cycle of
length at least five nor its complement. ]
From the proof of Theorem 2.2 it follows that, for n > 5,

Ap_s—1

F(Cy) = M(Cp) 2 == —,

and since {A, },>0 grows in an exponential way, the family {C_n}n27 turns to
be a family of highly non-coordinated graphs (the difference between F(G) and
M (G) can be arbitrarily large).

In this sense, this family is similar to the family of highly imperfect graphs
presented by Mycielski [20], and to the family of highly clique-imperfect graphs
presented in [10], where the differences between x(G) and w(G), and between
7c(G) and ac(G) respectively, can be arbitrarily large.

3 K-perfect graphs
Coordinated graphs and K-perfect graphs are related by the following theorem.

Theorem 3.1 Let G be a graph. Then:
(i) F(G) = x(K(G)).

(i) M(G) < w(K(G)).
(i) If G is clique-Helly then M (G) = w(K(Q)).



Proof:

(i) Let F1,...,Fp() be a partition of the cliques of G into clique-indepen-
dent sets. This partition induces a partition of the vertices of K(G) into
stable sets, which gives a coloring for K (G). Then, x(K(G)) < F(G).
Analogously, let Fll, . F;((K(G)) be the partition of the vertices of K(G)
into stable sets induced by an optimal coloring of K (G). Considering the
vertices of K(G) as cliques in G, we obtain a partition of the cliques of G
into clique-independent sets. Then F(G) < x(K(G)).

(ii) Observe that m(v) < w(K(G)), Vv € V(G), since all the vertices that
correspond to the m(v) cliques containing v induce a complete subgraph
in K(G). In particular, M(G) < w(K(Q)).

(iii) We only need to prove that if G is clique-Helly, then w(K(G)) < M(G).
Let L be a maximum clique of K(G) and My, ..., M, be the cliques of
G that correspond to the vertices of L. Since G is a clique-Helly graph,
there is at least one vertex vy in G which belongs to the intersection of
all the r cliques. So, it is easy to see that M (G) > m(vy) = w(K(G)). =

Let G be a graph, {Mi,..., My} be the cliques of G, and {iy,...,is} be a
subset of {1,...,k}. The graph G, ;,, formed by the vertices and edges of
M;,, ..., M;,, is a clique subgraph of G. We say that G, ... ;, is a special clique
subgraph of G if all the cliques of G, .. ;, are cliques of G, and that the graph G
is cliqual if, for every subset {i1,...,i5} of {1,...,k}, the cliques of G;, .. ;, are
exactly M, ,...,M;,. Clearly, if the graph G is cliqual, every clique subgraph
is special.

Theorem 3.2 Let G be a graph. Ewvery clique subgraph of G is an induced
subgraph of G if and only if G does not have either Py or Cy as induced subgraph
(Figure 1).

Py G
Figure 1: P, and Cy.

Proof: =) Suppose that either P, or Cy is an induced subgraph of G. As we
can observe in Figure 2, the edge (v,w’) belongs to a clique M; and the edge
(v',w) belongs to a clique Mj. Clearly, G; ; is a clique subgraph of G with the
edge (v, w) missing. Then G has a clique subgraph which is not induced.

<) Suppose G has a clique subgraph H which is not induced. That means there
exists an edge (v, w) which belongs to E(G) but not to E(H), with v and w
belonging to V(H). Then, there must be a clique M; of G containing v but not
w, and a clique M; of G containing w but not v.

As the vertex w does not belong to M; but is adjacent to v in G, there must be
a vertex w’ in M; such that (w,w’) is not in E(G). Analogously, there exists a
vertex v’ in M;, with (v,v') not in E(G). Finally, either (v',w') € E(G) and v',
w, v, w' induce the graph Cy, or v/, w, v, w' induce the graph P;. ]



Figure 2: A clique subgraph of G which is not induced.

Remark 3.1 Graphs which do not have either Py or Cy as induced subgraphs
are called trivially perfect graphs [13].

Our next result relates hereditary clique-Helly graphs to cliqual graphs. The
following characterization of hereditary clique-Helly graphs given by Prisner is
needed [21].

Theorem 3.3 A graph G is hereditary clique-Helly if and only if it does not
contain the following graphs as induced subgraphs:

B AR

Figure 3: Hajos graphs.

Theorem 3.4 Let G be a graph. Then G is cliqual if and only if G is an
hereditary clique-Helly graph.

Proof: =) By Theorem 3.3, if G is not hereditary clique-Helly, it must contain
any of the following graphs as an induced subgraph:

A ARG

Figure 4: Forbidden subgraphs for hereditary clique-Helly graphs.

Then, there exist three cliques in G, M;,, M;, and M;,, containing triangles 77,
T5 and T3, respectively. It is clear that Ty is included in none of them. We can
see that the subgraph Gj, i,,:, contains Ty. This complete subgraph belongs to
a clique in Gy, i,,:; which is different from M;,, M;, and M;,. Then G is not
cliqual.

<) Suppose that G is not cliqual. This means that there exist a set of indices
{i1,...,1s} such that the set of cliques of the subgraph G;, .. ;, properly includes
the cliques M;,,...,M;,. Let H = Gy, ,...;, and F = {M;,,...,M;, }. Let M
be a clique of H not belonging to F and m = |M|. Consider the set A = {j :
1<j<m/ VYU C M, |U| =4, U is covered by a clique of F}. Since every



vertex of H belongs to some clique of F, A is bounded and not empty. Let
r =max;{j € A}. Observe that, as every subset of M with cardinality two is
an edge of H contained in some clique of F, r > 2. Also, it holds that r < m,
otherwise the clique M would be covered by a clique of F, which leads to a
contradiction. Then there exist some subset R C M of cardinality r + 1 which
cannot be covered by any clique of 7. Asr+1 > 3, let u, v and w be three
different vertices of R. As r € A, R — {u} is covered by a clique M, of F.
Clearly, u ¢ M,, otherwise R would be covered by a clique of F, which is a
contradiction. This means that there is a vertex u' € M, which is not adjacent
to w in G. Analogously, R — {v} is covered by a clique M, of F such that
v ¢ My, R— {w} is covered by a clique M,, of F with w ¢ M,,, and there are
two vertices v’ € M, and w' € M, which are not adjacent in G to v and w,
respectively.

Figure 5: Scheme of adjacency relations between vertices u, v, w, u', v and w'.

Finally, u, v, w, ', v' and w', depending on whether u', v' and w' are adjacent
in G or not (as it can be seen in Figure 5), induce in G some of the forbidden
subgraphs for hereditary clique-Helly graphs, according to Theorem 3.3. ]

A property is clique-hereditary when, if it holds for G, it holds for every clique
subgraph of G. Note that the clique-Helly property and the cliqual property
are clique-hereditary. Being equivalent to the hereditary clique-Helly property,
the cliqual property is also hereditary.

Special clique subgraphs of G' and induced subgraphs of K(G) are related. The
following theorem enables to relate c—coordinated graphs to K-perfect graphs.

Theorem 3.5 Let G be a graph:

(i) If H is a special clique subgraph of G, then K(H) is an induced subgraph
of K(G).

(ii) If G is an hereditary clique-Helly graph, then every induced subgraph of
K(QG) is the clique graph of a special cliqgue subgraph of G.

Proof:

(i) Let H be a special clique subgraph of G and M;,, ..., M;, be its cliques.
Since they are cliques of G, let U be the subgraph of K(G) induced by
their corresponding vertices wy,, ..., w;.. Then w;, is adjacent to wi, in
U if and only if M;, intersects Mij, in G, if and only if M;; intersects Mij,
in H. So U is isomorphic to K (H).

(ii) Let U be an induced subgraph of K(G) and w;,,...,w;, be its vertices.
Let M;,,...,M;, be the cliques of G' that correspond to those vertices.



Consider the subgraph G;,,. ;.. As G is hereditary clique-Helly, by theo-
rem 3.4, G is cliqual. Thus, the cliques of G;, ... ;, are exactly M;,,..., M;,
and G, ..., is a special clique subgraph. Analogously to the proof of item
(i), it follows that U is isomorphic to K (G5, ... i,)- |

Theorem 3.6 Let G be a clique-Helly K-perfect graph. Then G is c—coordina-
ted.

Proof: Let H be a special clique subgraph of G. As the clique-Helly property
is clique-hereditary, H is clique-Helly. By Theorem 3.5, K(H) is an induced
subgraph of K(G) and thus, K(H) is perfect. By Theorem 3.1, we conclude
that M (H) = F(H). |

Remark 3.2 If G is not a clique-Helly graph but a K-perfect graph, then it
still holds that, for every special clique subgraph H of G, F(H) is equal to the
mazimum number of pairwise intersecting cliques in H.

Corollary 3.1 Let G be a perfect clique-Helly graph. Then K(G) is c¢—coordi-
nated.

Proof: 1f G is a clique-Helly graph, K(G) is clique-Helly and K?(G) is an
induced subgraph of G [11]. Then, if G is perfect, K?(G) is perfect too. So K (G)
is K-perfect and clique-Helly, and by Theorem 3.6, K (G) is c—coordinated. m

Corollary 3.2 If G is K-perfect and clique-Helly, then the induced subgraph of
G obtained by identifying twin vertices and then removing dominated vertices is
c—coordinated.

Proof: If G is clique-Helly, then K2(G) is the induced subgraph of GG obtained
identifying twin vertices and then removing dominated vertices [11]. Corollary
3.1 completes the proof. [

Now, we are able to characterize hereditary clique-Helly K-perfect graphs by
clique subgraphs.

Theorem 3.7 Let G be an hereditary clique-Helly graph. Then the following
statements are equivalent:

(i) G is K-perfect.
(ii) G is c—coordinated.

(iii) |C(H)| < ac(H)M(H) for every clique subgraph H of G.

Proof: By Theorem 3.6, item (i) implies item (ii).

(i) = (i) Let U be an induced subgraph of K(G). By Theorem 3.5, there
exists a clique subgraph H of G such that K(H) = U. As G is c—coordinated,
F(H) = M(H). By hypothesis, G is hereditary clique-Helly and therefore, H
is hereditary clique-Helly too. Theorem 3.1 implies that x(U) = w(U).



(i) = (iii) By the Perfect Graph Theorem [19], a graph G is perfect if and only
if, for every induced subgraph H of G, |V(H)| < a(H)w(H).

Let H be a clique subgraph of G. By Theorem 3.5, K (H) is an induced subgraph
of K(G). As K(G) is perfect, |V(K(H))| < a(K(H))w(K(H)). By Theorem
31w(K(H)) = M(H), and since |V(K(H))| = |C(H)| and a(K(H)) = ac(H),
it follows that |C(H)| < ac(H)M(H).

(iii) = (i) Let U be an induced subgraph of K(G). By Theorem 3.5, there
exists a clique subgraph H of G such that K(H) = U. Then, by Theorem 3.1
w(U) = M(H), and since |[V(U)| = |C(H)| and a(U) = ac(H), it follows that
[V(U)| < a(U)w(U). Therefore, by the Perfect Graph Theorem [19], K(G) is
perfect. ]

4 Clique graphs of clique-Helly perfect graphs

The following theorem due to P.C. Gilmore (see [8]) characterizes clique matri-
ces.

Theorem 4.1 Let A be a 0-1 matriz. Then A is a clique matriz if and only if:

(i) A does not have dominated rows.
(ii) A does not contain zero columns.

(iii) The family of columns of A satisfy the Helly property.

The classes of clique graphs of clique-Helly and hereditary clique-Helly perfect
graphs are analyzed.

Cousider the graph H(G) as it is defined in [16], where V(H(G)) = {q1,- - -, qx,
wi,...,w,}, each g; corresponds to the clique M; of G, and each w; corresponds
to the vertex v; of G. The edges of H(G) are the following: the vertices qi, ..., g
induce the graph K(G), the vertices ws,...,w, induce a stable set and w; is
adjacent to g; if and only if v; belongs to the clique M; in G.

Let A € R"™™ and B € R™ " be two matrices. We define the matrix 4 |
B € RV(mtk) as (A | B)(i,j) = A(i,j) fori = 1,...,n, j = 1,...,m and
(A B)(i,m+j)=B(,j)fori=1,....n,j=1,...,k. Let I, be the n xn
identity matrix.

Theorem 4.2 [16] Let G be a clique-Helly graph and H(G) as it was defined
above. Then the cliques of H(G) are N|w;] for each i, w; is a simplicial vertex
of H(G) for every i, and K(H(G)) = G.

Corollary 4.1 IfG is a clique-Helly graph such that |V (G)| = n, then Agq) =
AL L.

Proof: Tt follows from the previous theorem and the definition of H(G). |

Theorem 4.3 H is an injective operator from CH to CH that maps HCH on
HCH and CH\ HCH on CH\ HCH.

10



Proof: Let G and G5 be clique-Helly graphs such that H(G1) = H(G2). Then,
by Theorem 4.2, G; = K(H(G1)) = K(H(G>)) = Gs.

Let G be a clique-Helly graph. Then Ag ) = AL | I, is a clique matrix of
H(G). Observe that a family of rows {iy,...,is} of Ap(g) has a common in-
tersection if and only if the family of columns {iy,...,is} of Ag has a common
intersection. Since, by Theorem 4.1, the columns of A¢ verify the Helly prop-
erty, then the rows of Ap g verify the Helly property too. Therefore, H(G) is
a clique-Helly graph.

Now, let G be an hereditary clique-Helly graph. Then Ag(g) = AL | L, is a
clique matrix of H(G). A graph is HCH if and only if its clique matrix does
not contain a vertex-edge incidence matrix of a triangle as a submatrix [21].
Suppose that A ) contains a vertex-edge incidence matrix B of a triangle
as a submatrix. Since B has two 1’s by column, it follows that B must be a
submatrix of A%, and then B! is a submatrix of Ag, which is a contradiction,
because G is an HCH graph. Hence, H(G) is an HCH graph.

If G e CH\HCH, then Ag contains a vertex-edge incidence matrix of a triangle
as a submatrix and, in consequence, one of these matrices is contained by Ag(q)
too. Therefore, H(G) € CH \ HCH. [

Lemma 4.1 Let G be a graph and v be a vertex of G such that N[v] induces a
complete subgraph in G. Then G is perfect if and only if G — {v} is perfect.

Proof:
=) G — {v} is an induced subgraph of G, and therefore is perfect.

<) Let H be an induced subgraph of G. If v does not belong to H, then H is
an induced subgraph of G — {v} and therefore w(H) = x(H). If v belongs to H,
H — {v} is an induced subgraph of G — {v} and then w(H — {v}) = x(H — {v}).
The neighbourhood of v in H is complete, so |N(v)| < w(H — {v}). There are
two possible cases:

- If|IN(W)| < w(H—{v}), then w(H) = w(H —{v}) and any optimal coloring
of H — {v} can be extended to an optimal coloring of H with the same
number of colors. Hence, x(H) = x(H — {v}) = w(H — {v}) = w(H).

- If |[N(v)] = w(H = {v}), then w(H) = w(H — {v}) + 1 and any optimal
coloring of H — {v} can be extended to an optimal coloring of H giving to
v a new color, and so x(H) = x(H — {v}) + 1l =w(H — {v}) + 1 = w(H).
]

Theorem 4.4 Let G be a graph. G is K-perfect if and only if H(G) is perfect.

Proof: Let G be a graph and Gy = H(G) as it was defined, where V(H(G)) =
{¢1,---,qx, w1, ..., wy}, the vertices g1, ..., g induce the graph K (G), the ver-
tices wy,...,w, induce a stable set and w; is adjacent to ¢; if and only if
vj belongs to the clique M; in G. We define Gy = Go — {wi}, ..., Gp, =
Gn-1 —{wp} = K(G). By Theorem 4.2, for every 1 < i < n, N[w;] is complete
in G;—1. So by Lemma 4.1, for every 1 < ¢ < n, G; is perfect if and only if G;_1
is perfect. Therefore H(G) = G is perfect if and ouly if G,, = K(G) is perfect.
|
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Lemma 4.2 Let H be a class of graphs and let £ be a class of clique-Helly
graphs such that:

(1) If G belongs to H then K(G) belongs to L.
(ii) If F belongs to L then H(F) belongs to H.

Then K(H) = L.

Proof: Ttem (i) implies that K(H) C £. On the other hand, let F' be a graph
in £. By item (ii), H(F') belongs to . And since F' is a clique-Helly graph, by
Theorem 4.2 K(H(F)) = F. Therefore, £ C K(#), which completes the proof.
[

Now, we can prove the main results of this section.

Theorem 4.5 The classes clique-Helly perfect and clique-Helly K-perfect are
dual-clique classes of graphs.

Proof: Let H be the class of clique-Helly perfect graphs and £ be the class
of clique-Helly K-perfect graphs. Let G € H. Then K(G) is clique-Helly and
K?(@) is an induced subgraph of G [11], so K(G) € L. By Theorems 4.4 and
4.3,if F € L then H(F) € H. Therefore, by Lemma 4.2, K(H) = L.

It follows immediately that if G € £ then K(G) € H. By Theorem 4.3, if F € ‘H
then H(F) is clique-Helly and since K(H(F)) = F, it follows that H(F) € L.
Hence, by Lemma 4.2, K(£) = H. |

HCH graphs

Figure 6: Dual-clique classes HCH perfect and HCH c-coordinated.

Theorem 4.6 The classes HC H perfect and HCH K-perfect are dual-clique
classes of graphs.

Proof: 1t is analogous to the proof of Theorem 4.5 replacing clique-Helly for
HCH.

This theorem and the partial characterization of K-perfect graphs (Theorem
3.7) imply the following corollary.

12



Corollary 4.2 The classes HCH perfect and HCH c-coordinated are dual-
clique classes of graphs.

Acknowledgement: To the anonymous referee for his/her valuable suggestions
which improved this work.
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