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Abstract

The clique-transversal number 7.(G) of a graph G is the minimum size of a set of
vertices meeting all the cliques. The clique-independence number a.(G) of G is the
maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if
these two numbers are equal for every induced subgraph of GG. Unlike perfect graphs,
the class of clique-perfect graphs is not closed under graph complementation nor
is a characterization by forbidden induced subgraphs known. Nevertheless, partial
results in this direction have been obtained. For instance, in [3], a characterization
of those line graphs that are clique-perfect is given in terms of minimal forbidden
induced subgraphs. Our main result is a characterization of those complements of
line graphs that are clique-perfect, also by means of minimal forbidden induced sub-
graphs. This implies an O(n?) time algorithm for deciding the clique-perfectness of
complements of line graphs and, for those that are clique-perfect, finding . and ..
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1 Introduction

A clique is an inclusion-wise maximal set of pairwise adjacent vertices. A
graph is called perfect if, for each of its induced subgraphs, the size of a largest
clique equals the minimum number of colors needed to assign different colors
to adjacent vertices. Like perfect graphs, clique-perfect graphs are defined by
the equality of two graph parameters. The clique-transversal number 7.(G) of
a graph G is the minimum size of a set of vertices that meets all the cliques
of G and the clique-independence number a.(G) of G is the maximum size of
a collection of vertex-disjoint cliques of G. Clearly, a.(G) < 7.(G) for every
graph G. G is said to be clique-perfect if a.(G") = 7.(G") for each induced sub-
graph G’ of G [11]. Not all clique-perfect graphs are perfect and not all perfect
graphs are clique-perfect, but graphs belonging to certain graph classes are
known to be clique-perfect; e.g., comparability graphs [1], distance-hereditary
graphs [14], and dually chordal graphs [7]. Unlike perfect graphs, the class of
clique-perfect graphs is not closed under graph complementation nor is a com-
plete characterization of clique-perfect graphs by forbidden induced subgraphs
known. Nevertheless, partial results in this direction have been obtained; i.e.,
characterizations of clique-perfect graphs by a restricted list of forbidden in-
duced subgraphs when the graph is known to belong to certain graph classes
[3,4,5]. For instance, in [3], a characterization of those line graphs that are
clique-perfect is given in terms of minimal forbidden induced subgraphs. Our
main result is a characterization of clique-perfect graphs within the comple-
ments of line graphs by minimal forbidden induced subgraphs. Another open
question about clique-perfect graphs is the complexity of the recognition prob-
lem. Our characterization implies an O(n?) time algorithm for deciding the
clique-perfectness of complements of line graphs.

In Section 2, we introduce some definitions and a preliminary result on
edge-coloring. In Section 3, we present our characterization of those com-
plements of line graphs that are clique-perfect and from this we derive the
existence of an algorithm that given GG, the complement of a line graph, de-
cides whether G is clique-perfect and, if affirmative, finds a.(G) and 7.(G).
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Fig. 1. Some graphs and some two-terminal graphs with terminals s and ¢
2 Definitions and preliminaries on edge-coloring

Graphs in this work are finite, undirected, without loops, and without multiple
edges. Let G be a graph. The vertex set of G is denoted by V(G) and the edge
set by E(G). For any set S, |S| denotes its cardinality. The set of neighbors
of a vertex v in G is denoted by Ng(v) and N¢[v] denotes Ng(v) U {v}. The
degree of v is |Ng(v)| and v is pendant if its degree is 1. The maximum degree
of the vertices of G is denoted by A(G) and the complement of G by G. We say
that G contains H if H is a subgraph (induced or not) of G and G contains an
induced H if H is an induced subgraph of GG. Cycles have no repeated vertices
(apart from the starting and ending vertices). Let C' be a cycle. The length of
C'is the number of edges joining two consecutive vertices of C' and C'is odd if
its length is odd. C'is chordless if there is no edge joining two nonconsecutive
vertices of C. A hole is a chordless cycle of length at least 5 and an antihole
is the complement of a hole. The chordless cycle of length n is denoted by
C), and the complete graph on n vertices by K,. For each n > 5, the length
of the antihole C,, is n. If H is a graph, the line graph L(H) of H has E(H)
as vertex set and ey, ey € E(H) are adjacent in L(H) if and only if e; and e
share exactly one endpoint. A graph G is a line graph if there exists a graph
H such that G = L(H); if so, H is called a root graph of G. Let G and H be
graphs with V/(G) NV (H) = 0. The disjoint union GU H of G and H is the
graph with vertex set V(G) UV (H) and edge set E(G)U E(H). A matching
is a set of pairwise vertex-disjoint edges and a matching is mazimal if it is
inclusion-wise maximal. For some graphs needed hereafter, see Figure 1.

The chromatic index x'(G) of a graph G is the minimum number of colors
needed to color the edges of G so that no two incident edges receive the same
color. Clearly, X'(G) > A(G). In fact, Vizing [17] proved that for every graph
G either X'(G) = A(G) or X'(G) = A(G)+1. The problem of deciding whether
a graph G satisfies x'(G) = A(G) is NP-complete even for graphs having only
vertices of degree 3 [13]. Our result below is a structural characterization
of those graphs that satisfy x’ = A restricted to graphs not containing a
bipartite-claw. Before stating it, we need to introduce the notion of circular
concatenation. A two-terminal graph is a triple I' = (G, s, t), where s and ¢



are two vertices of GG, called the terminals of I'. For some two-terminal graphs,
see Figure 1. If I'y = (G4, s1,t1) and 'y = (G, 9, t2) are two-terminal graphs,
the p-concatenation I'y &, I'y is the two-terminal graph (G, s1,ts) where G
arises from G'; U Gy by identifying ¢; and s, into one vertex u and attaching p
pendant vertices adjacent to u. If the two-terminal graph (G, s, t) is such that
Ng[s|NNg[t] = 0, we define its p-closure as the graph that arises by identifying
s and t into one vertex u and then attaching p pendant vertices adjacent to
u. A circular concatenation of the two-terminal graphs I';,I's,...,T", is the
graph that arises as the p,-closure of I'1 &, I'2 &, .. . &,, , I', for some p; > 0,
1 =1,2,...,n. Each of the I';’s is called a link of the circular concatenation.
By exploiting the structure of the graphs not containing a bipartite-claw and
using results from [12] and [8], we prove the following.

Theorem 2.1 Let G be a connected graph not having a bipartite-claw as a
subgraph. Then, X' (G) = A(G) if and only if none of the following holds:

(i) A(G) =2 and G is an odd chordless cycle.

(i) A(G) = 3 and G is the circular concatenation of a sequence of edges,
triangles, and rhombi, where the number of links that are edges equals
one plus the number of links that are rhombi.

(111) A(G) =4 and G = K5 — €, K5, L5, or SK5

3 Clique-perfectness of complements of line graphs

In [3], clique-perfect graphs were characterized by minimal forbidden induced
subgraphs within the class of line graphs: a line graph G is clique-perfect if
and only if G contains no induced S3 and has no odd hole.

Our main result is the following characterization of clique-perfect graphs
among complements of line graphs by minimal forbidden induced subgraphs.

Theorem 3.1 Let G be the complement of a line graph. Then, G is clique-
perfect if and only if G contains no induced Ss and has no antihole Cy for
every k > 5 such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove
Theorem 3.1, we profit from the correspondence between the cliques of G
and the maximal matchings of H. We define the matching-transversal number
Tm(H) as the minimum number of edges meeting all the maximal matchings of
H and the matching-independence number oy, (H) as the maximum number of
edge-disjoint maximal matchings of H. We say that a graph H is matching-
perfect if ayn(H') = 1,(H') for every subgraph H’ (induced or not) of H.



Clearly, a.(G) = an(H) and 7.(G) = 7n(H). Thus, G is clique-perfect if and
only if H is matching-perfect and Theorem 3.1 can be reformulated as follows.

Theorem 3.2 Let H be a graph. Then, H is matching-perfect if and only if
H contains no bipartite-claw and the length of each cycle of H is at most 4 or
is a multiple of 3.

In order to prove Theorem 3.2 it is enough to show that if H is a graph
containing no bipartite-claw and the length of each cycle of H is at most 4 or is
a multiple of 3 then oy, (H) = 7, (H). The proof splits into two parts according
to whether GG has some cycle of length at least 5 or not. In both cases, we
obtain an upper bound on 7,,,( H) and then produce a collection of edge-disjoint
maximal matchings of the same size and, therefore, o, (H) = 7,(H). Most
of the times, this collection of maximal matchings arises as the set of color
classes of an edge-coloring (via Theorem 2.1) of a tailored subgraph of H.

We now discuss the derivation of the recognition algorithm. The reader
unfamiliar with the notions of treewidth or counting monadic second-order
(CMS) logic may consult [9, Ch. 2 & 5]. Since forbidding the bipartite-claw
as a subgraph or as a minor are equivalent, graphs containing no bipartite-claw
have bounded treewidth [16] and have a linear-time recognition algorithm [2].
Moreover, as “the length of each cycle is at most 4 or is a multiple of 3”7 can
be expressed by CMS logic, it can be evaluated in linear-time over graphs
within any graph class of bounded treewidth [6,10]. Thus, matching-perfect
graphs can be recognized in linear-time. Finally, if G is the complement of a
line graph, it can be decided in O(|V(G)]?) whether G is clique-perfect by first
finding a root graph H of G in O(|V(G)]?) time [15] and then determining
whether H is matching-perfect in O(|V(G)]) time. Since for matching-perfect
graphs the common value oy, = 73, can be shown to be linear-time computable:

Theorem 3.3 Deciding whether G, the complement of a line graph, is clique-
perfect and, if affirmative, finding a.(G) and 7.(G), can be done in O(|V(G)|?).
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