# Clique-perfectness of complements of line graphs 

Flavia Bonomo ${ }^{\text {a,b,1,4 }}$ Guillermo Durán ${ }^{\text {a,c,d, }, 2,3,4}$<br>Martín D. Safe ${ }^{\text {a,b,e, } 3,4}$ Annegret K. Wagler ${ }^{\text {f,4 }}$<br>a CONICET, Argentina<br>b Depto. de Computación, FCEN, Universidad de Buenos Aires, Argentina<br>c Depto. de Matemática, FCEN, Universidad de Buenos Aires, Argentina<br>${ }^{\text {d }}$ Depto. de Ingeniería Industrial, FCFM, Universidad de Chile, Chile<br>${ }^{\text {e }}$ Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina<br>f ISIMA-CNRS, Université Clermont-Ferrand II (Blaise Pascal), France


#### Abstract

The clique-transversal number $\tau_{\mathrm{c}}(G)$ of a graph $G$ is the minimum size of a set of vertices meeting all the cliques. The clique-independence number $\alpha_{\mathrm{c}}(G)$ of $G$ is the maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if these two numbers are equal for every induced subgraph of $G$. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a characterization by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained. For instance, in [3], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of those complements of line graphs that are clique-perfect, also by means of minimal forbidden induced subgraphs. This implies an $O\left(n^{2}\right)$ time algorithm for deciding the clique-perfectness of complements of line graphs and, for those that are clique-perfect, finding $\alpha_{\mathrm{c}}$ and $\tau_{\mathrm{c}}$.


Keywords: clique-perfect graphs, edge-coloring, line graphs, maximal matchings

## 1 Introduction

A clique is an inclusion-wise maximal set of pairwise adjacent vertices. A graph is called perfect if, for each of its induced subgraphs, the size of a largest clique equals the minimum number of colors needed to assign different colors to adjacent vertices. Like perfect graphs, clique-perfect graphs are defined by the equality of two graph parameters. The clique-transversal number $\tau_{\mathrm{c}}(G)$ of a graph $G$ is the minimum size of a set of vertices that meets all the cliques of $G$ and the clique-independence number $\alpha_{\mathrm{c}}(G)$ of $G$ is the maximum size of a collection of vertex-disjoint cliques of $G$. Clearly, $\alpha_{c}(G) \leq \tau_{c}(G)$ for every graph $G$. $G$ is said to be clique-perfect if $\alpha_{\mathrm{c}}\left(G^{\prime}\right)=\tau_{\mathrm{c}}\left(G^{\prime}\right)$ for each induced subgraph $G^{\prime}$ of $G$ [11]. Not all clique-perfect graphs are perfect and not all perfect graphs are clique-perfect, but graphs belonging to certain graph classes are known to be clique-perfect; e.g., comparability graphs [1], distance-hereditary graphs [14], and dually chordal graphs [7]. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a complete characterization of clique-perfect graphs by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained; i.e., characterizations of clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph is known to belong to certain graph classes [3,4,5]. For instance, in [3], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of clique-perfect graphs within the complements of line graphs by minimal forbidden induced subgraphs. Another open question about clique-perfect graphs is the complexity of the recognition problem. Our characterization implies an $O\left(n^{2}\right)$ time algorithm for deciding the clique-perfectness of complements of line graphs.

In Section 2, we introduce some definitions and a preliminary result on edge-coloring. In Section 3, we present our characterization of those complements of line graphs that are clique-perfect and from this we derive the existence of an algorithm that given $G$, the complement of a line graph, decides whether $G$ is clique-perfect and, if affirmative, finds $\alpha_{\mathrm{c}}(G)$ and $\tau_{\mathrm{c}}(G)$.

[^0]

Fig. 1. Some graphs and some two-terminal graphs with terminals $s$ and $t$

## 2 Definitions and preliminaries on edge-coloring

Graphs in this work are finite, undirected, without loops, and without multiple edges. Let $G$ be a graph. The vertex set of $G$ is denoted by $V(G)$ and the edge set by $E(G)$. For any set $S,|S|$ denotes its cardinality. The set of neighbors of a vertex $v$ in $G$ is denoted by $N_{G}(v)$ and $N_{G}[v]$ denotes $N_{G}(v) \cup\{v\}$. The degree of $v$ is $\left|N_{G}(v)\right|$ and $v$ is pendant if its degree is 1 . The maximum degree of the vertices of $G$ is denoted by $\Delta(G)$ and the complement of $G$ by $\bar{G}$. We say that $G$ contains $H$ if $H$ is a subgraph (induced or not) of $G$ and $G$ contains an induced $H$ if $H$ is an induced subgraph of $G$. Cycles have no repeated vertices (apart from the starting and ending vertices). Let $C$ be a cycle. The length of $C$ is the number of edges joining two consecutive vertices of $C$ and $C$ is odd if its length is odd. $C$ is chordless if there is no edge joining two nonconsecutive vertices of $C$. A hole is a chordless cycle of length at least 5 and an antihole is the complement of a hole. The chordless cycle of length $n$ is denoted by $C_{n}$ and the complete graph on $n$ vertices by $K_{n}$. For each $n \geq 5$, the length of the antihole $\bar{C}_{n}$ is $n$. If $H$ is a graph, the line graph $L(H)$ of $H$ has $E(H)$ as vertex set and $e_{1}, e_{2} \in E(H)$ are adjacent in $L(H)$ if and only if $e_{1}$ and $e_{2}$ share exactly one endpoint. A graph $G$ is a line graph if there exists a graph $H$ such that $G=L(H)$; if so, $H$ is called a root graph of $G$. Let $G$ and $H$ be graphs with $V(G) \cap V(H)=\emptyset$. The disjoint union $G \cup H$ of $G$ and $H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. A matching is a set of pairwise vertex-disjoint edges and a matching is maximal if it is inclusion-wise maximal. For some graphs needed hereafter, see Figure 1.

The chromatic index $\chi^{\prime}(G)$ of a graph $G$ is the minimum number of colors needed to color the edges of $G$ so that no two incident edges receive the same color. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$. In fact, Vizing [17] proved that for every graph $G$ either $\chi^{\prime}(G)=\Delta(G)$ or $\chi^{\prime}(G)=\Delta(G)+1$. The problem of deciding whether a graph $G$ satisfies $\chi^{\prime}(G)=\Delta(G)$ is NP-complete even for graphs having only vertices of degree 3 [13]. Our result below is a structural characterization of those graphs that satisfy $\chi^{\prime}=\Delta$ restricted to graphs not containing a bipartite-claw. Before stating it, we need to introduce the notion of circular concatenation. A two-terminal graph is a triple $\Gamma=(G, s, t)$, where $s$ and $t$
are two vertices of $G$, called the terminals of $\Gamma$. For some two-terminal graphs, see Figure 1. If $\Gamma_{1}=\left(G_{1}, s_{1}, t_{1}\right)$ and $\Gamma_{2}=\left(G_{2}, s_{2}, t_{2}\right)$ are two-terminal graphs, the $p$-concatenation $\Gamma_{1} \&_{p} \Gamma_{2}$ is the two-terminal graph ( $G, s_{1}, t_{2}$ ) where $G$ arises from $G_{1} \cup G_{2}$ by identifying $t_{1}$ and $s_{2}$ into one vertex $u$ and attaching $p$ pendant vertices adjacent to $u$. If the two-terminal graph $(G, s, t)$ is such that $N_{G}[s] \cap N_{G}[t]=\emptyset$, we define its $p$-closure as the graph that arises by identifying $s$ and $t$ into one vertex $u$ and then attaching $p$ pendant vertices adjacent to $u$. A circular concatenation of the two-terminal graphs $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ is the graph that arises as the $p_{n}$-closure of $\Gamma_{1} \&_{p_{1}} \Gamma_{2} \&_{p_{2}} \ldots \&_{p_{n-1}} \Gamma_{n}$ for some $p_{i} \geq 0$, $i=1,2, \ldots, n$. Each of the $\Gamma_{i}$ 's is called a link of the circular concatenation. By exploiting the structure of the graphs not containing a bipartite-claw and using results from [12] and [8], we prove the following.
Theorem 2.1 Let $G$ be a connected graph not having a bipartite-claw as a subgraph. Then, $\chi^{\prime}(G)=\Delta(G)$ if and only if none of the following holds:
(i) $\Delta(G)=2$ and $G$ is an odd chordless cycle.
(ii) $\Delta(G)=3$ and $G$ is the circular concatenation of a sequence of edges, triangles, and rhombi, where the number of links that are edges equals one plus the number of links that are rhombi.
(iii) $\Delta(G)=4$ and $G=K_{5}-e, K_{5}, L_{5}$, or $S K_{5}$.

## 3 Clique-perfectness of complements of line graphs

In [3], clique-perfect graphs were characterized by minimal forbidden induced subgraphs within the class of line graphs: a line graph $G$ is clique-perfect if and only if $G$ contains no induced $S_{3}$ and has no odd hole.

Our main result is the following characterization of clique-perfect graphs among complements of line graphs by minimal forbidden induced subgraphs.
Theorem 3.1 Let $G$ be the complement of a line graph. Then, $G$ is cliqueperfect if and only if $G$ contains no induced $S_{3}$ and has no antihole $\bar{C}_{k}$ for every $k \geq 5$ such that $k$ is not a multiple of 3 .

Let $G$ be the complement of the line graph of a graph $H$. In order to prove Theorem 3.1, we profit from the correspondence between the cliques of $G$ and the maximal matchings of $H$. We define the matching-transversal number $\tau_{\mathrm{m}}(H)$ as the minimum number of edges meeting all the maximal matchings of $H$ and the matching-independence number $\alpha_{\mathrm{m}}(H)$ as the maximum number of edge-disjoint maximal matchings of $H$. We say that a graph $H$ is matchingperfect if $\alpha_{\mathrm{m}}\left(H^{\prime}\right)=\tau_{\mathrm{m}}\left(H^{\prime}\right)$ for every subgraph $H^{\prime}$ (induced or not) of $H$.

Clearly, $\alpha_{\mathrm{c}}(G)=\alpha_{\mathrm{m}}(H)$ and $\tau_{\mathrm{c}}(G)=\tau_{\mathrm{m}}(H)$. Thus, $G$ is clique-perfect if and only if $H$ is matching-perfect and Theorem 3.1 can be reformulated as follows.

Theorem 3.2 Let $H$ be a graph. Then, $H$ is matching-perfect if and only if $H$ contains no bipartite-claw and the length of each cycle of $H$ is at most 4 or is a multiple of 3 .

In order to prove Theorem 3.2 it is enough to show that if $H$ is a graph containing no bipartite-claw and the length of each cycle of $H$ is at most 4 or is a multiple of 3 then $\alpha_{\mathrm{m}}(H)=\tau_{\mathrm{m}}(H)$. The proof splits into two parts according to whether $G$ has some cycle of length at least 5 or not. In both cases, we obtain an upper bound on $\tau_{\mathrm{m}}(H)$ and then produce a collection of edge-disjoint maximal matchings of the same size and, therefore, $\alpha_{\mathrm{m}}(H)=\tau_{\mathrm{m}}(H)$. Most of the times, this collection of maximal matchings arises as the set of color classes of an edge-coloring (via Theorem 2.1) of a tailored subgraph of $H$.

We now discuss the derivation of the recognition algorithm. The reader unfamiliar with the notions of treewidth or counting monadic second-order (CMS) logic may consult [9, Ch. 2 \& 5]. Since forbidding the bipartite-claw as a subgraph or as a minor are equivalent, graphs containing no bipartite-claw have bounded treewidth [16] and have a linear-time recognition algorithm [2]. Moreover, as "the length of each cycle is at most 4 or is a multiple of 3 " can be expressed by CMS logic, it can be evaluated in linear-time over graphs within any graph class of bounded treewidth $[6,10]$. Thus, matching-perfect graphs can be recognized in linear-time. Finally, if $G$ is the complement of a line graph, it can be decided in $O\left(|V(G)|^{2}\right)$ whether $G$ is clique-perfect by first finding a root graph $H$ of $\bar{G}$ in $O\left(|V(G)|^{2}\right)$ time [15] and then determining whether $H$ is matching-perfect in $O(|V(G)|)$ time. Since for matching-perfect graphs the common value $\alpha_{\mathrm{m}}=\tau_{\mathrm{m}}$ can be shown to be linear-time computable:
Theorem 3.3 Deciding whether $G$, the complement of a line graph, is cliqueperfect and, if affirmative, finding $\alpha_{\mathrm{c}}(G)$ and $\tau_{\mathrm{c}}(G)$, can be done in $O\left(|V(G)|^{2}\right)$.

## References

[1] Balachandran, V., P. Nagavamsi and C. Pandu Rangan, Clique transversal and clique independence on comparability graphs, Inform. Process. Lett. 58 (1996), pp. 181-184.
[2] Bodlaender, H. L., A linear time algorithm for finding tree-decompositions of small treewidth, Technical report RUU-CS-92-27, Utrecht University (1992).
[3] Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of clique-
perfect graphs I: Subclasses of claw-free graphs, Discrete Appl. Math. 156 (2008), pp. 1058-1082.
[4] Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of cliqueperfect graphs II: Diamond-free and Helly circular-arc graphs, Discrete Math. 309 (2009), pp. 3485-3499.
[5] Bonomo, F., G. Durán, F. Soulignac and G. Sueiro, Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs, Discrete Appl. Math. 157 (2009), pp. 3511-3518.
[6] Borie, R. B., R. Gary Parker and C. A. Tovey, Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families, Algorithmica 7 (1992), pp. 555-581.
[7] Brandstädt, A., V. D. Chepoi and F. F. Dragan, Clique r-domination and clique r-packing problems on dually chordal graphs, SIAM J. Discrete Math. 10 (1997), pp. 109-127.
[8] Cariolaro, D. and G. Cariolaro, Colouring the petals of a graph, Electron. J. Combin. 10 (2003), \#R6.
[9] Courcelle, B., Graph Structure and Monadic Second-Order Logic, book to be published by Cambridge University Press.
URL http://www.labri.fr/perso/courcell/Book/CourGGBook.pdf
[10] Courcelle, B., The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput. 85 (1990), pp. 12-75.
[11] Guruswami, V. and C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Appl. Math. 100 (2000), pp. 183-202.
[12] Hilton, A. J. W. and C. Zhao, The chromatic index of a graph whose core has maximum degree two, Discrete Math. 101 (1992), pp. 135-147.
[13] Hoyler, I., The NP-completeness of Edge-Coloring, SIAM J. Comput. 10 (1981), pp. 718-720.
[14] Lee, C.-M. and M.-S. Chang, Distance-hereditary graphs are clique-perfect, Discrete Appl. Math. 154 (2006), pp. 525-536.
[15] Lehot, P. G. H., An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (1974), pp. 569-575.
[16] Robertson, N. and P. D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory, Ser. B 35 (1983), pp. 39-61.
[17] Vizing, V. G., On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), pp. 25-30.


[^0]:    ${ }^{1}$ Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533 and UBACyT Grants X069 and 20020090300094 (Argentina)
    ${ }^{2}$ Partially supported by FONDECyT Grant 1080286 and Millennium Science Institute "Complex Engineering Systems" (Chile)
    ${ }^{3}$ Partially supported by ANPCyT PICT-2007-00518, UBACyT Grant X069, and CONICET PIP 112-200901-00178 (Argentina)
    ${ }^{4}$ Email addresses: fbonomo@dc.uba.ar (Flavia Bonomo), gduran@dm.uba.ar (Guillermo Durán), msafe@ungs.edu.ar (Martín D. Safe), wagler@isima.fr (Annegret K. Wagler)

