Clique-perfectness of complements of line graphs

Flavia Bonomo^{a,b,1,4} Guillermo Durán^{a,c,d,2,3,4} Martín D. Safe^{a,b,e,3,4} Annegret K. Wagler^{f,4}

^a CONICET, Argentina

^b Depto. de Computación, FCEN, Universidad de Buenos Aires, Argentina

^c Depto. de Matemática, FCEN, Universidad de Buenos Aires, Argentina

^d Depto. de Ingeniería Industrial, FCFM, Universidad de Chile, Chile

^e Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina

^f ISIMA-CNRS, Université Clermont-Ferrand II (Blaise Pascal), France

Abstract

The clique-transversal number $\tau_{\rm c}(G)$ of a graph G is the minimum size of a set of vertices meeting all the cliques. The clique-independence number $\alpha_{\rm c}(G)$ of G is the maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if these two numbers are equal for every induced subgraph of G. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a characterization by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained. For instance, in [3], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of those complements of line graphs that are clique-perfect, also by means of minimal forbidden induced subgraphs. This implies an $O(n^2)$ time algorithm for deciding the clique-perfectness of complements of line graphs and, for those that are clique-perfect, finding $\alpha_{\rm c}$ and $\tau_{\rm c}$.

Keywords: clique-perfect graphs, edge-coloring, line graphs, maximal matchings

1 Introduction

A *clique* is an inclusion-wise maximal set of pairwise adjacent vertices. A graph is called *perfect* if, for each of its induced subgraphs, the size of a largest clique equals the minimum number of colors needed to assign different colors to adjacent vertices. Like perfect graphs, clique-perfect graphs are defined by the equality of two graph parameters. The *clique-transversal number* $\tau_{\rm c}(G)$ of a graph G is the minimum size of a set of vertices that meets all the cliques of G and the *clique-independence number* $\alpha_{\rm c}(G)$ of G is the maximum size of a collection of vertex-disjoint cliques of G. Clearly, $\alpha_{\rm c}(G) \leq \tau_{\rm c}(G)$ for every graph G. G is said to be *clique-perfect* if $\alpha_{\rm c}(G') = \tau_{\rm c}(G')$ for each induced subgraph G' of G [11]. Not all clique-perfect graphs are perfect and not all perfect graphs are clique-perfect, but graphs belonging to certain graph classes are known to be clique-perfect; e.g., comparability graphs [1], distance-hereditary graphs [14], and dually chordal graphs [7]. Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation nor is a complete characterization of clique-perfect graphs by forbidden induced subgraphs known. Nevertheless, partial results in this direction have been obtained; i.e., characterizations of clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph is known to belong to certain graph classes [3,4,5]. For instance, in [3], a characterization of those line graphs that are clique-perfect is given in terms of minimal forbidden induced subgraphs. Our main result is a characterization of clique-perfect graphs within the complements of line graphs by minimal forbidden induced subgraphs. Another open question about clique-perfect graphs is the complexity of the recognition problem. Our characterization implies an $O(n^2)$ time algorithm for deciding the clique-perfectness of complements of line graphs.

In Section 2, we introduce some definitions and a preliminary result on edge-coloring. In Section 3, we present our characterization of those complements of line graphs that are clique-perfect and from this we derive the existence of an algorithm that given G, the complement of a line graph, decides whether G is clique-perfect and, if affirmative, finds $\alpha_{\rm c}(G)$ and $\tau_{\rm c}(G)$.

 $^{^1\,}$ Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533 and UBACyT Grants X069 and 20020090300094 (Argentina)

 $^{^2\,}$ Partially supported by FONDECyT Grant 1080286 and Millennium Science Institute "Complex Engineering Systems" (Chile)

 $^{^3\,}$ Partially supported by ANPCyT PICT-2007-00518, UBACyT Grant X069, and CONICET PIP 112-200901-00178 (Argentina)

⁴ Email addresses: fbonomo@dc.uba.ar (Flavia Bonomo), gduran@dm.uba.ar (Guillermo Durán), msafe@ungs.edu.ar (Martín D. Safe), wagler@isima.fr (Annegret K. Wagler)

Fig. 1. Some graphs and some two-terminal graphs with terminals s and t

2 Definitions and preliminaries on edge-coloring

Graphs in this work are finite, undirected, without loops, and without multiple edges. Let G be a graph. The vertex set of G is denoted by V(G) and the edge set by E(G). For any set S, |S| denotes its cardinality. The set of neighbors of a vertex v in G is denoted by $N_G(v)$ and $N_G[v]$ denotes $N_G(v) \cup \{v\}$. The degree of v is $|N_G(v)|$ and v is pendant if its degree is 1. The maximum degree of the vertices of G is denoted by $\Delta(G)$ and the complement of G by G. We say that G contains H if H is a subgraph (induced or not) of G and G contains an induced H if H is an induced subgraph of G. Cycles have no repeated vertices (apart from the starting and ending vertices). Let C be a cycle. The *length* of C is the number of edges joining two consecutive vertices of C and C is odd if its length is odd. C is *chordless* if there is no edge joining two nonconsecutive vertices of C. A hole is a chordless cycle of length at least 5 and an *antihole* is the complement of a hole. The chordless cycle of length n is denoted by C_n and the complete graph on n vertices by K_n . For each $n \geq 5$, the length of the antihole \overline{C}_n is n. If H is a graph, the line graph L(H) of H has E(H)as vertex set and $e_1, e_2 \in E(H)$ are adjacent in L(H) if and only if e_1 and e_2 share exactly one endpoint. A graph G is a *line graph* if there exists a graph H such that G = L(H); if so, H is called a root graph of G. Let G and H be graphs with $V(G) \cap V(H) = \emptyset$. The disjoint union $G \cup H$ of G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. A matching is a set of pairwise vertex-disjoint edges and a matching is *maximal* if it is inclusion-wise maximal. For some graphs needed hereafter, see Figure 1.

The chromatic index $\chi'(G)$ of a graph G is the minimum number of colors needed to color the edges of G so that no two incident edges receive the same color. Clearly, $\chi'(G) \ge \Delta(G)$. In fact, Vizing [17] proved that for every graph G either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G)+1$. The problem of deciding whether a graph G satisfies $\chi'(G) = \Delta(G)$ is NP-complete even for graphs having only vertices of degree 3 [13]. Our result below is a structural characterization of those graphs that satisfy $\chi' = \Delta$ restricted to graphs not containing a bipartite-claw. Before stating it, we need to introduce the notion of circular concatenation. A two-terminal graph is a triple $\Gamma = (G, s, t)$, where s and t are two vertices of G, called the *terminals* of Γ . For some two-terminal graphs, see Figure 1. If $\Gamma_1 = (G_1, s_1, t_1)$ and $\Gamma_2 = (G_2, s_2, t_2)$ are two-terminal graphs, the *p*-concatenation $\Gamma_1 \&_p \Gamma_2$ is the two-terminal graph (G, s_1, t_2) where Garises from $G_1 \cup G_2$ by identifying t_1 and s_2 into one vertex u and attaching ppendant vertices adjacent to u. If the two-terminal graph (G, s, t) is such that $N_G[s] \cap N_G[t] = \emptyset$, we define its *p*-closure as the graph that arises by identifying s and t into one vertex u and then attaching p pendant vertices adjacent to u. A circular concatenation of the two-terminal graphs $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ is the graph that arises as the p_n -closure of $\Gamma_1 \&_{p_1} \Gamma_2 \&_{p_2} \ldots \&_{p_{n-1}} \Gamma_n$ for some $p_i \ge 0$, $i = 1, 2, \ldots, n$. Each of the Γ_i 's is called a link of the circular concatenation. By exploiting the structure of the graphs not containing a bipartite-claw and using results from [12] and [8], we prove the following.

Theorem 2.1 Let G be a connected graph not having a bipartite-claw as a subgraph. Then, $\chi'(G) = \Delta(G)$ if and only if none of the following holds:

- (i) $\Delta(G) = 2$ and G is an odd chordless cycle.
- (ii) $\Delta(G) = 3$ and G is the circular concatenation of a sequence of edges, triangles, and rhombi, where the number of links that are edges equals one plus the number of links that are rhombi.
- (iii) $\Delta(G) = 4$ and $G = K_5 e$, K_5 , L_5 , or SK_5 .

3 Clique-perfectness of complements of line graphs

In [3], clique-perfect graphs were characterized by minimal forbidden induced subgraphs within the class of line graphs: a line graph G is clique-perfect if and only if G contains no induced S_3 and has no odd hole.

Our main result is the following characterization of clique-perfect graphs among complements of line graphs by minimal forbidden induced subgraphs.

Theorem 3.1 Let G be the complement of a line graph. Then, G is cliqueperfect if and only if G contains no induced S_3 and has no antihole \overline{C}_k for every $k \geq 5$ such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove Theorem 3.1, we profit from the correspondence between the cliques of G and the maximal matchings of H. We define the matching-transversal number $\tau_{\rm m}(H)$ as the minimum number of edges meeting all the maximal matchings of H and the matching-independence number $\alpha_{\rm m}(H)$ as the maximum number of edge-disjoint maximal matchings of H. We say that a graph H is matchingperfect if $\alpha_{\rm m}(H') = \tau_{\rm m}(H')$ for every subgraph H' (induced or not) of H. Clearly, $\alpha_{\rm c}(G) = \alpha_{\rm m}(H)$ and $\tau_{\rm c}(G) = \tau_{\rm m}(H)$. Thus, G is clique-perfect if and only if H is matching-perfect and Theorem 3.1 can be reformulated as follows.

Theorem 3.2 Let H be a graph. Then, H is matching-perfect if and only if H contains no bipartite-claw and the length of each cycle of H is at most 4 or is a multiple of 3.

In order to prove Theorem 3.2 it is enough to show that if H is a graph containing no bipartite-claw and the length of each cycle of H is at most 4 or is a multiple of 3 then $\alpha_{\rm m}(H) = \tau_{\rm m}(H)$. The proof splits into two parts according to whether G has some cycle of length at least 5 or not. In both cases, we obtain an upper bound on $\tau_{\rm m}(H)$ and then produce a collection of edge-disjoint maximal matchings of the same size and, therefore, $\alpha_{\rm m}(H) = \tau_{\rm m}(H)$. Most of the times, this collection of maximal matchings arises as the set of color classes of an edge-coloring (via Theorem 2.1) of a tailored subgraph of H.

We now discuss the derivation of the recognition algorithm. The reader unfamiliar with the notions of *treewidth* or *counting monadic second-order* (CMS) logic may consult [9, Ch. 2 & 5]. Since forbidding the bipartite-claw as a subgraph or as a minor are equivalent, graphs containing no bipartite-claw have bounded treewidth [16] and have a linear-time recognition algorithm [2]. Moreover, as "the length of each cycle is at most 4 or is a multiple of 3" can be expressed by CMS logic, it can be evaluated in linear-time over graphs within any graph class of bounded treewidth [6,10]. Thus, matching-perfect graphs can be recognized in linear-time. Finally, if G is the complement of a line graph, it can be decided in $O(|V(G)|^2)$ whether G is clique-perfect by first finding a root graph H of \overline{G} in $O(|V(G)|^2)$ time [15] and then determining whether H is matching-perfect in O(|V(G)|) time. Since for matching-perfect graphs the common value $\alpha_m = \tau_m$ can be shown to be linear-time computable:

Theorem 3.3 Deciding whether G, the complement of a line graph, is cliqueperfect and, if affirmative, finding $\alpha_{\rm c}(G)$ and $\tau_{\rm c}(G)$, can be done in $O(|V(G)|^2)$.

References

- Balachandran, V., P. Nagavamsi and C. Pandu Rangan, *Clique transversal and clique independence on comparability graphs*, Inform. Process. Lett. 58 (1996), pp. 181–184.
- [2] Bodlaender, H. L., A linear time algorithm for finding tree-decompositions of small treewidth, Technical report RUU-CS-92-27, Utrecht University (1992).
- [3] Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of clique-

perfect graphs I: Subclasses of claw-free graphs, Discrete Appl. Math. 156 (2008), pp. 1058–1082.

- [4] Bonomo, F., M. Chudnovsky and G. Durán, Partial characterizations of cliqueperfect graphs II: Diamond-free and Helly circular-arc graphs, Discrete Math. 309 (2009), pp. 3485–3499.
- [5] Bonomo, F., G. Durán, F. Soulignac and G. Sueiro, Partial characterizations of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs, Discrete Appl. Math. 157 (2009), pp. 3511–3518.
- [6] Borie, R. B., R. Gary Parker and C. A. Tovey, Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families, Algorithmica 7 (1992), pp. 555–581.
- [7] Brandstädt, A., V. D. Chepoi and F. F. Dragan, *Clique r-domination and clique r-packing problems on dually chordal graphs*, SIAM J. Discrete Math. **10** (1997), pp. 109–127.
- [8] Cariolaro, D. and G. Cariolaro, Colouring the petals of a graph, Electron. J. Combin. 10 (2003), #R6.
- [9] Courcelle, B., Graph Structure and Monadic Second-Order Logic, book to be published by Cambridge University Press. URL http://www.labri.fr/perso/courcell/Book/CourGGBook.pdf
- [10] Courcelle, B., The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput. 85 (1990), pp. 12–75.
- [11] Guruswami, V. and C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Appl. Math. 100 (2000), pp. 183–202.
- [12] Hilton, A. J. W. and C. Zhao, The chromatic index of a graph whose core has maximum degree two, Discrete Math. 101 (1992), pp. 135–147.
- [13] Hoyler, I., The NP-completeness of Edge-Coloring, SIAM J. Comput. 10 (1981), pp. 718–720.
- [14] Lee, C.-M. and M.-S. Chang, Distance-hereditary graphs are clique-perfect, Discrete Appl. Math. 154 (2006), pp. 525–536.
- [15] Lehot, P. G. H., An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (1974), pp. 569–575.
- [16] Robertson, N. and P. D. Seymour, Graph minors. I. Excluding a forest, J. Comb. Theory, Ser. B 35 (1983), pp. 39–61.
- [17] Vizing, V. G., On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), pp. 25–30.