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Abstract

The clique-transversal number τc(G) of a graph G is the minimum size of a set of
vertices meeting all the cliques. The clique-independence number αc(G) of G is the
maximum size of a collection of vertex-disjoint cliques. A graph is clique-perfect if
these two numbers are equal for every induced subgraph of G. Unlike perfect graphs,
the class of clique-perfect graphs is not closed under graph complementation nor
is a characterization by forbidden induced subgraphs known. Nevertheless, partial
results in this direction have been obtained. For instance, in [3], a characterization
of those line graphs that are clique-perfect is given in terms of minimal forbidden
induced subgraphs. Our main result is a characterization of those complements of
line graphs that are clique-perfect, also by means of minimal forbidden induced sub-
graphs. This implies an O(n2) time algorithm for deciding the clique-perfectness of
complements of line graphs and, for those that are clique-perfect, finding αc and τc.
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1 Introduction

A clique is an inclusion-wise maximal set of pairwise adjacent vertices. A
graph is called perfect if, for each of its induced subgraphs, the size of a largest
clique equals the minimum number of colors needed to assign different colors
to adjacent vertices. Like perfect graphs, clique-perfect graphs are defined by
the equality of two graph parameters. The clique-transversal number τc(G) of
a graph G is the minimum size of a set of vertices that meets all the cliques
of G and the clique-independence number αc(G) of G is the maximum size of
a collection of vertex-disjoint cliques of G. Clearly, αc(G) ≤ τc(G) for every
graph G. G is said to be clique-perfect if αc(G

′) = τc(G
′) for each induced sub-

graph G′ of G [11]. Not all clique-perfect graphs are perfect and not all perfect
graphs are clique-perfect, but graphs belonging to certain graph classes are
known to be clique-perfect; e.g., comparability graphs [1], distance-hereditary
graphs [14], and dually chordal graphs [7]. Unlike perfect graphs, the class of
clique-perfect graphs is not closed under graph complementation nor is a com-
plete characterization of clique-perfect graphs by forbidden induced subgraphs
known. Nevertheless, partial results in this direction have been obtained; i.e.,
characterizations of clique-perfect graphs by a restricted list of forbidden in-
duced subgraphs when the graph is known to belong to certain graph classes
[3,4,5]. For instance, in [3], a characterization of those line graphs that are
clique-perfect is given in terms of minimal forbidden induced subgraphs. Our
main result is a characterization of clique-perfect graphs within the comple-
ments of line graphs by minimal forbidden induced subgraphs. Another open
question about clique-perfect graphs is the complexity of the recognition prob-
lem. Our characterization implies an O(n2) time algorithm for deciding the
clique-perfectness of complements of line graphs.

In Section 2, we introduce some definitions and a preliminary result on
edge-coloring. In Section 3, we present our characterization of those com-
plements of line graphs that are clique-perfect and from this we derive the
existence of an algorithm that given G, the complement of a line graph, de-
cides whether G is clique-perfect and, if affirmative, finds αc(G) and τc(G).
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Fig. 1. Some graphs and some two-terminal graphs with terminals s and t

2 Definitions and preliminaries on edge-coloring

Graphs in this work are finite, undirected, without loops, and without multiple
edges. Let G be a graph. The vertex set of G is denoted by V (G) and the edge
set by E(G). For any set S, |S| denotes its cardinality. The set of neighbors
of a vertex v in G is denoted by NG(v) and NG[v] denotes NG(v) ∪ {v}. The
degree of v is |NG(v)| and v is pendant if its degree is 1. The maximum degree
of the vertices of G is denoted by ∆(G) and the complement of G by G. We say
that G contains H if H is a subgraph (induced or not) of G and G contains an
induced H if H is an induced subgraph of G. Cycles have no repeated vertices
(apart from the starting and ending vertices). Let C be a cycle. The length of
C is the number of edges joining two consecutive vertices of C and C is odd if
its length is odd. C is chordless if there is no edge joining two nonconsecutive
vertices of C. A hole is a chordless cycle of length at least 5 and an antihole
is the complement of a hole. The chordless cycle of length n is denoted by
Cn and the complete graph on n vertices by Kn. For each n ≥ 5, the length
of the antihole Cn is n. If H is a graph, the line graph L(H) of H has E(H)
as vertex set and e1, e2 ∈ E(H) are adjacent in L(H) if and only if e1 and e2
share exactly one endpoint. A graph G is a line graph if there exists a graph
H such that G = L(H); if so, H is called a root graph of G. Let G and H be
graphs with V (G) ∩ V (H) = ∅. The disjoint union G ∪H of G and H is the
graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). A matching
is a set of pairwise vertex-disjoint edges and a matching is maximal if it is
inclusion-wise maximal. For some graphs needed hereafter, see Figure 1.

The chromatic index χ′(G) of a graph G is the minimum number of colors
needed to color the edges of G so that no two incident edges receive the same
color. Clearly, χ′(G) ≥ ∆(G). In fact, Vizing [17] proved that for every graph
G either χ′(G) = ∆(G) or χ′(G) = ∆(G)+1. The problem of deciding whether
a graph G satisfies χ′(G) = ∆(G) is NP-complete even for graphs having only
vertices of degree 3 [13]. Our result below is a structural characterization
of those graphs that satisfy χ′ = ∆ restricted to graphs not containing a
bipartite-claw. Before stating it, we need to introduce the notion of circular
concatenation. A two-terminal graph is a triple Γ = (G, s, t), where s and t



are two vertices of G, called the terminals of Γ. For some two-terminal graphs,
see Figure 1. If Γ1 = (G1, s1, t1) and Γ2 = (G2, s2, t2) are two-terminal graphs,
the p-concatenation Γ1 &p Γ2 is the two-terminal graph (G, s1, t2) where G

arises from G1 ∪G2 by identifying t1 and s2 into one vertex u and attaching p

pendant vertices adjacent to u. If the two-terminal graph (G, s, t) is such that
NG[s]∩NG[t] = ∅, we define its p-closure as the graph that arises by identifying
s and t into one vertex u and then attaching p pendant vertices adjacent to
u. A circular concatenation of the two-terminal graphs Γ1,Γ2, . . . ,Γn is the
graph that arises as the pn-closure of Γ1&p1 Γ2&p2 . . .&pn−1

Γn for some pi ≥ 0,
i = 1, 2, . . . , n. Each of the Γi’s is called a link of the circular concatenation.
By exploiting the structure of the graphs not containing a bipartite-claw and
using results from [12] and [8], we prove the following.

Theorem 2.1 Let G be a connected graph not having a bipartite-claw as a
subgraph. Then, χ′(G) = ∆(G) if and only if none of the following holds:

(i) ∆(G) = 2 and G is an odd chordless cycle.

(ii) ∆(G) = 3 and G is the circular concatenation of a sequence of edges,
triangles, and rhombi, where the number of links that are edges equals
one plus the number of links that are rhombi.

(iii) ∆(G) = 4 and G = K5 − e, K5, L5, or SK5.

3 Clique-perfectness of complements of line graphs

In [3], clique-perfect graphs were characterized by minimal forbidden induced
subgraphs within the class of line graphs: a line graph G is clique-perfect if
and only if G contains no induced S3 and has no odd hole.

Our main result is the following characterization of clique-perfect graphs
among complements of line graphs by minimal forbidden induced subgraphs.

Theorem 3.1 Let G be the complement of a line graph. Then, G is clique-
perfect if and only if G contains no induced S3 and has no antihole Ck for
every k ≥ 5 such that k is not a multiple of 3.

Let G be the complement of the line graph of a graph H . In order to prove
Theorem 3.1, we profit from the correspondence between the cliques of G

and the maximal matchings of H . We define the matching-transversal number
τm(H) as the minimum number of edges meeting all the maximal matchings of
H and the matching-independence number αm(H) as the maximum number of
edge-disjoint maximal matchings of H . We say that a graph H is matching-
perfect if αm(H

′) = τm(H
′) for every subgraph H ′ (induced or not) of H .



Clearly, αc(G) = αm(H) and τc(G) = τm(H). Thus, G is clique-perfect if and
only if H is matching-perfect and Theorem 3.1 can be reformulated as follows.

Theorem 3.2 Let H be a graph. Then, H is matching-perfect if and only if
H contains no bipartite-claw and the length of each cycle of H is at most 4 or
is a multiple of 3.

In order to prove Theorem 3.2 it is enough to show that if H is a graph
containing no bipartite-claw and the length of each cycle of H is at most 4 or is
a multiple of 3 then αm(H) = τm(H). The proof splits into two parts according
to whether G has some cycle of length at least 5 or not. In both cases, we
obtain an upper bound on τm(H) and then produce a collection of edge-disjoint
maximal matchings of the same size and, therefore, αm(H) = τm(H). Most
of the times, this collection of maximal matchings arises as the set of color
classes of an edge-coloring (via Theorem 2.1) of a tailored subgraph of H .

We now discuss the derivation of the recognition algorithm. The reader
unfamiliar with the notions of treewidth or counting monadic second-order
(CMS) logic may consult [9, Ch. 2 & 5]. Since forbidding the bipartite-claw
as a subgraph or as a minor are equivalent, graphs containing no bipartite-claw
have bounded treewidth [16] and have a linear-time recognition algorithm [2].
Moreover, as “the length of each cycle is at most 4 or is a multiple of 3” can
be expressed by CMS logic, it can be evaluated in linear-time over graphs
within any graph class of bounded treewidth [6,10]. Thus, matching-perfect
graphs can be recognized in linear-time. Finally, if G is the complement of a
line graph, it can be decided in O(|V (G)|2) whether G is clique-perfect by first
finding a root graph H of G in O(|V (G)|2) time [15] and then determining
whether H is matching-perfect in O(|V (G)|) time. Since for matching-perfect
graphs the common value αm = τm can be shown to be linear-time computable:

Theorem 3.3 Deciding whether G, the complement of a line graph, is clique-
perfect and, if affirmative, finding αc(G) and τc(G), can be done in O(|V (G)|2).
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