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Abstract

This article describes the optimization process used to schedule the First Division

of Argentina’s professional volleyball league. The teams in the league are grouped into

couples and matches are held on Thursdays and Saturdays. In every pair of consecutive

Thursday-Saturday matches, the two teams in each couple play against two teams from

another couple. Minimization of travel distances is critical since the teams’ home locations

are scattered throughout the country and teams do not return their home sites between

consecutive away matches, making this problem a variation of the well-known traveling

tournament problem. The coupled format gives rise to two key decisions: (a) how to

couple the teams and (b) how to schedule the matches. We apply integer programming

techniques and a tabu search heuristic to solve these issues. The resulting schedules

have been successfully used in the 2007-2008, 2008-2009, 2009-2010, and 2010-2011 league
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seasons, reducing the total travel distance while meeting all of the teams’ requirements.

This is the first reported application of the traveling tournament problem to a real-world

sports league in the optimization literature.

Key words: sports scheduling, integer programming, traveling tournament problem,

team couples, volleyball

1 Introduction

In recent years, sports scheduling has become a very active field in the operations research

community and a source of problems that are both interesting and challenging. In practice,

the associated combinatorial optimization problems are usually very difficult to solve, albeit

for reasons not yet fully understood. Moreover, for many sports leagues a central objective

is to minimize costs or travel distances, and this generates problems whose solution is much

harder still.

Applications of operations research techniques have been reported for many real-world

sports leagues such as soccer [1, 13, 19, 31], basketball [27, 42], hockey [17, 29] and cricket [41].

Since each league has its particular characteristics, different models, algorithms and method-

ological tools have been studied and proposed in the literature (see, e.g., [3, 5, 8, 9, 10, 11,

14, 18, 22, 28, 34, 36]). Informative surveys of sports scheduling can be found in [16, 24, 32]

and benchmark instances from some applications are given in [30].

A central issue in sports scheduling is the well-known traveling tournament problem (TTP)

[14]. Given a set of n teams and the travel distances between every pair of teams, the

problem consists in scheduling a double round-robin tournament (i.e., each team plays against

every other team exactly twice, once at home and once away) with 2(n − 1) time slots such

that no team plays fewer than L nor more than U home (resp. away) matches in a row

(typically, L = 1 and U = 3), no two teams play against each other in two consecutive time

slots, and the total travel distance is minimized. It is further assumed that no team returns

home between consecutive away matches. The TTP is an extremely hard combinatorial

optimization problem and there are open instances with only n = 12 teams [38]. Interestingly,

understanding the computational complexity of the TTP turns out to be a difficult task. The
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TTP is known to be NP-hard if L = 1 and U = 3 [37] and if L = 1 and U = ∞ [2]. The

complexity for other values of L and U is still open, however [39].

There have been a number of recent computational developments aimed at tackling the

TTP in practice. In [7] the author proposes a Benders approach that allows strong lower

bounds to be computed for benchmark instances. In [15, 23] an extensive formulation is

suggested that contains one variable for every path in a time-discrete network representing

each team’s road trips, and is solved by branch-and-price procedures. An application of the

DFS* search procedure to the TTP, presented in [40], exactly solves previously unsolved

instances with very good execution times. Instances of up to 6 teams can be successfully

handled using quite standard algorithmic machinery [38].

In this work we describe the model-based scheduling of the regular phase of the Argentine

men’s volleyball league First Division using integer programming and tabu search techniques.

League play is organized according to the coupled format in which the teams are divided

into couples that are geographically close and the matches are grouped into pairs of tempo-

rally close meetings. This arrangement has been previously addressed in the combinatorial

optimization literature only in [18], where some variations on this setup used by the Czech

national basketball league are examined.

Since the teams in the Argentine volleyball league are scattered throughout the country

and road trips are usually made by bus, the main objective of the league’s scheduling process

is to adequately manage the travel distances. Thus, the scheduling problem is a practical

application of the TTP. The schedules obtained by the integer programming and tabu search

techniques described in this work were successfully applied in the 2007-2008, 2008-2009, 2009-

2010, and 2010-2011 seasons and schedules based on similar techniques were employed for the

men’s Second Division and women’s First Division of the league. This is the first real-world

application of the TTP reported in the literature [39].

The remainder of this paper is organized as follows. Section The league describes in detail

the league format and the particular characteristics arising from the use of couples of teams

and pairs of matches. Section The scheduling process describes the planning process and

Section Results reports on the schedules obtained. The paper closes with some concluding
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remarks followed by two appendices setting out the complete integer programming models

and the tabu search techniques employed during the volleyball league scheduling process.

2 The league

The First Division of the Argentine volleyball league consisted of 12 teams until 2008-2009

when the number dropped to 11. For the 2010-2011 season, the league returned to 12 clubs.

The league season consists of a regular phase followed by playoffs. The regular phase is a

double round-robin tournament, the top eight teams qualifying for the first playoff series

which is a best-of-five quarter-finals. The winners proceed to the best-of-five semi-finals and

then a best-of-seven final to determine the champion.

A distinctive characteristic of the league is the coupling of teams. Under this system,

teams are grouped into geographically close pairs. In 2007-2008 and 2010-2011, when the

league had 12 teams, there were six such couples (see Figure 1 for the 2007-2008 couples). In

2008-2009 and 2009-2010 the 11 clubs were divided into five couples and one uncoupled team.

The team in a couple that placed higher in the regular phase of the previous season is called

the A-team, the other then being referred to as the B-team.

Matches are usually held on Thursdays and Saturdays and are also grouped into pairs,

each Thursday game and the one played on the immediately following Saturday forming a

weekend. Every weekend, half of the couples visit a couple from the other half, each visiting

couple team playing each of the two home couple teams that are hosting them. On the

Thursday, the A-team from each couple plays against the B-team from the other couple, and

on the Saturday the two B-teams and the two A-teams play each other. This prespecified

setup for the matches between the visiting and home couples on a given weekend is called

the visiting schema. In the case where n = 11, on a weekend when a couple plays against the

uncoupled team, each couple member plays exactly one match.

There are two special weekends, called intra-couple weekends, on which the two teams in

each couple play against each other. The coupled teams play only once on these weekends

and the five or six possible matches across the league (depending on whether there are 11 or

12 teams) are uniformly distributed between Thursday and Saturday. The uncoupled team,

4



Figure 1: Teams and team couples for the 2007-2008 season. The couples are FOR-MIS,

BEL-ROS, OSJ-UPC (located in the same city), BOV-RPL, CBJ-AVC and NQN-CHU. The

average distance between teams of the same couple is 342 kilometers while the longest intra-

couple distance (NQN-CHU) is 700 kilometers. The longest distance between any two teams

is the 2,365 kilometers separating FOR and CHU.
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meanwhile, has a bye. The regular phase of the season for each team will thus comprise either

20 matches (in the case of 11 teams) or 22 matches (in the case of 12 teams) played over a

span of 12 weekends.

The season format as just described is a variation on a double round-robin tournament

that we propose to call a coupled double round-robin. In 2007-2008 and 2008-2009, the intra-

couple weekends were played on weekends 1 and 7 and the schedule was mirrored (i.e., the

schedule for the second half of the regular phase was the same as for the first half but with

the teams’ home-away status reversed). In 2009-2010, the intra-couple weekends were held

on weekends 6 and 12 and a non-mirrored schedule was used. In 2010-2011, the schedule was

again mirrored and the intra-couple weekends were held on weekends 1 and 12.

A drawback with the format when there are an odd number of teams is that at any given

time the different teams will generally not have played the same number of matches so that

the standings may not properly reflect each team’s performance up to that point. This is so

because the standings are based on earned points rather than winning percentage. Thus, a

team may have won all of its matches yet will not necessarily be in first place.

In addition to the Argentine volleyball league, this coupled format is employed by Ar-

gentina’s first and second division basketball leagues and, with some minor modifications,

the highly ranked Brazilian professional volleyball league and the Czech national basketball

league [18]. Many American college sports leagues also use a coupled arrangement, the best-

known example being the Pacific-10 (PAC-10) college athletic conference. Three properties

of this format type are particularly interesting from a scheduling point of view:

• It reduces the manual/computational burden of generating a schedule. If we disregard

the intra-couple weekends, the task of generating a feasible coupled double round-robin

schedule for n teams is equivalent to generating a double round-robin schedule for n/2

teams (each couple treated as a single “team”). This feature is not only valuable for

defining schedules manually, but is also very helpful in that it allows solutions to be

found for many problems that would otherwise be computationally intractable such as

the design of a schedule minimizing total travel distance (recall that TTP instances

with 10 or more teams may be very hard to solve to optimality).
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• It introduces a simple but effective fair competition criterion. In the Argentine volleyball

league there are usually one to three very strong teams (usually Drean Boĺıvar, La

Unión de Formosa and UPCN Vóley, identified in Figure 1 as BOV, FOR and UPC,

respectively). If no couple has more than one strong team (which has been the case

in recent years), the coupled format ensures that no team will have to play against

two strong teams on the same weekend. This is a simple but very easily explained fair

competition feature. Note, however, that if two strong teams do form a couple, the

format for the remaining teams will be unbalanced. Such couplings should therefore be

avoided.

• It contributes to good management of travel distances. Although the coupled format

imposes an additional constraint on the league’s standard TTP format, assigning geo-

graphically close teams to each couple can help keep travel distances under control. In

our experience, the combination of reasonably designed couples and a carefully crafted

schedule generates acceptable travel distances. For the instances considered in this

work, the best (not necessarily optimal) solutions found by the tabu search heuristic

described in Appendix 2 for the standard uncoupled TTP with 12 teams are no more

than 1% better than the solutions that we found for the coupled TTP with 6 team cou-

ples. This provides empirical evidence that the travel distances are not greatly affected

by the coupling of teams.

In the last few years, interest in the national volleyball league among the general public

has increased significantly thanks to growing media coverage and the recent revitalization of

Argentina’s national teams. The junior and youth teams won bronze medals in their respective

2009 World Cups while the senior team achieved an all-time record 5th place finish in the

2009 World League and came in 9th at the 2010 World Cup, returning to the top ten after

an absence of 8 years. As a result, a number of provincial governments and private sponsors

have put up funding for competitive teams, which in turn have requested a transparent and

well-designed schedule.

The main objective of the schedule design is to minimize the total travel distance. For the

2009-2010 and 2010-2011 seasons, travel equity considerations were also taken into account.
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As already noted, travel distances are a constraining issue for the Argentine volleyball league

due to the scattered locations of the teams around the country. The maximum distance

between any two teams is that separating FOR and CHU (see Figure 1), which are 2,365 kilo-

meters apart (about the distance from New York City to Dallas or Madrid to Hamburg).

The teams usually travel by bus, and with a few exceptions do not return home between two

consecutive away weekends. This condition also holds in the standard setting of the TTP [14].

In addition, no team can play more than two consecutive home or two consecutive away

weekends (not counting intra-couple weekends) and no two couples may play each other twice

on consecutive weekends (in the case of a mirrored schedule this constraint is trivially satis-

fied). Disregarding the intra-couple weekend, this problem is a special case of the TTP, with

couples instead of teams and pairs of matches (i.e., weekends) instead of single matches. Un-

der this arrangement, L = 1 and U = 2 (at most, two consecutive home and away weekends).

Interestingly, the U = 2 condition appeared previously in [35].

3 The scheduling process

The Argentine volleyball league is managed by the Asociación de Clubes Liga Argentina de

Vóleibol (ACLAV), a nonprofit organization owned by the league teams themselves. The

Association employs a competition manager who is responsible for all organizational aspects

of the league including scheduling design. The competition manager reports to the ACLAV

Council which is composed of one representative from each team. The competition manager

is also ACLAV’s contact person for the authors of the present study, who are part of a team

of researchers based at the University of Buenos Aires and the National University of General

Sarmiento.

The scheduling of the league is built around two key decisions: (a) how to couple the teams,

and (b) how to schedule the matches between the team couples. One way of approaching these

decisions is to devise an integer programming model that addresses both of them at the same

time. However, a straightforward formulation that simultaneously attempts to (a) design

the team couples and (b) schedule the matches so as to minimize the total travel distance

performs very poorly with Cplex [21]; indeed, the software quite often fails to find feasible
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solutions even after several hours. Although the TTP for U = 2 is not known to be NP-hard,

we conjecture that this combined problem is computationally hard.

In light of the above observations, we did not explore the simultaneous approach further,

concentrating instead on an intuitive two-stage process. In Stage 1 we design the team couples

while in Stage 2 we schedule the matches for the couples specified in Stage 1. As we report in

the present section and Appendix 1, this method turned out to be computationally feasible in

the sense that each stage can be solved either to optimality (for the couple design problem, the

meaning of “optimality” must be precisely defined since finding a proper objective function

is a non-trivial task) or with near-to-optimal results. Furthermore, it has the advantage

that the computational procedure involved is readily explained to the team representatives,

a crucial issue in the interaction between the schedulers and the teams given the importance

of ensuring the overall process is transparent.

3.1 Stage 1: Designing the team couples

The first stage in the scheduling process must determine a coupling of the teams (a perfect

matching in the case of 12-team league, and a matching of 10 teams in the case of an 11-

team league) such that the second stage can generate a schedule with a minimum or near-

minimum total travel distance. The usual constraints for the first stage involve pairs of teams

that should not be coupled, typically to avoid long Thursday-Saturday trips for the visiting

teams, to keep strong teams in different couples, or incorporate certain public attendance

considerations. The latter would apply, for example, to pairs of teams whose home matches

attract many of the same spectators, as coupling them would force fans to choose just one of

the games whenever the pair played at home.

The simplest approach to team coupling is to determine the minimum-weight matching

on the complete graph whose vertices represent the teams and whose edge weights represent

the travel distances between them [26]. However, this approach only takes into account the

travel distances between teams in the same couple, failing to consider the travel distances

between different couples.

The best team coupling is clearly one that generates a minimum-distance schedule. How-
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ever, trying to find such an arrangement just amounts to attempting the combined approach

described above, which unfortunately could not be successfully carried through in practice.

Since the 2009-2010 season we have therefore resorted to a procedure that includes travel

distance considerations without guaranteeing that the resulting coupling yields a minimum-

distance schedule. In the previous editions, the coupling was perfomed manually by the

competition manager.

Let (A,B) be a team couple andM be the set of team couples for a league. Throughout the

season, couple (A,B) will make a number of tours on which it plays away matches against the

other couples. Each tour is composed of at most two consecutive weekends, after which couple

(A,B) must return home. Let γM (A,B) be the optimal travel distance for couple (A,B) in

M , i.e., the minimum possible sum of the travel distances to and from the away matches

played by A and B in any feasible schedule. If the distance matrix satisfies the triangle

inequality and there are 12 teams, then any two single-weekend tours can be combined into

one two-weekend tour without increasing the total travel distance. Therefore, the optimal

travel distance γM (A,B) for couple (A,B) can be obtained from a set of tours composed of

two four-match tours and one three-match tour, the latter comprising one away weekend and

the away intra-couple match.

We propose to search for a coupling M that minimizes γM :=
∑

(A,B)∈M γM (A,B). In

other words, we set out to find a coupling M such that the total travel distance of the optimal

tours for each couple in M is at a minimum. We call this problem the optimal-tour coupling

problem. Note that the optimal sets of tours (i.e., tours with distance γM (A,B) for each

couple (A,B) in M) in general cannot be combined into a feasible schedule, as in any feasible

schedule, at least one couple must perform two single-weekend tours and the optimal tours are

composed by three two-weekend tours. Hence, the value minM γM provides a lower bound

to the total travel distance in any feasible schedule. The model presented in Appendix 1

provides an integer programming formulation for the optimal-tour coupling problem which,

by minimizing γM over all possible couplings M , tries to obtain a good coupling for Stage 2.

Note that this problem is not equivalent to finding a perfect matching on a precomputed

graph, as the distance γM (A,B) traveled by a couple (A,B) depends on the complete cou-
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pling/matching M . For some instances the optimal solution will nevertheless coincide with

the optimal perfect matching in the graph representing the teams. Appendix 1 presents a

straightforward integer programming model for the optimal-tour coupling problem that pro-

duces computational results which, though reasonable, are not optimal. However, by adding

symmetry-breaking constraints [33] and families of valid equations to the initial formulation

we were able to find optimal solutions for 11 and 12 teams. An optimal solution to the prob-

lem provides a coupling that may not generate the optimal coupled schedule in terms of total

travel distance but will take into account inter-couple trips, which are not considered in a

simple minimum-weight matching.

In addition to the coupling generated by this integer programming approach, the compe-

tition manager and the team representatives usually propose alternative couplings that are

slight variations on the model-generated solution.

3.2 Stage 2: Scheduling the matches

For each team coupling considered, the procedures in Stage 2 attempt to generate a schedule.

Since the team couples are given and on each weekend each couple plays some other couple,

we can model this problem as a TTP with six “teams” (each corresponding to a couple), with

the additional feature that on certain prespecified dates (the intra-couple weekends) each

“team” must play at home. Note that the prespecified visiting schema allows us to make this

reduction to six “teams” without loss of generality.

More specifically, when the “team” representing couple (A1, B1) travels from (A2, B2) to

(A3, B3), team A1 travels from A2 to B3 for the Thursday match and from B3 to A3 for

the Saturday match while the team B1 travels from B2 to A3 for the Thursday match and

from A3 to B3 for the Saturday match (see Figure 2a). The total distance traveled by couple

(A1, B1) to play an away match against (A3, B3) is thus 2dA3,B3 + dA2,B3 + dB2,A3. If the

couple (A1, B1) plays a weekend at home and then travels to (A3, B3) then the total distance

admits a similar formula, i.e., the total distance is 2dA3,B3 + dA1,B3 + dB1,A3. On the other

hand, if (A1, B1) performs a trip back home after an away weekend at (A2, B2), then the

total distance equals dA2,A1 + dB2,B1 (see Figure 2b). Thus, the distance matrix between the
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Figure 2: Trips for couple (A1, B1) when, after playing (A2, B2), (a) it plays (A3, B3) or (b)

it returns home. The solid lines represent trips by team A1 and the dotted lines represent

trips by team B1.

six “teams” representing the couples is well-defined and the reduction to a six-team TTP can

be carried out effectively.

The home-away status of the teams on the intra-couple weekends is not modeled explicitly.

Rather, we specify beforehand that on the first such weekend the B-team of each couple plays

at home against the A-team and on the second one the opposite is the case. In practice, the

competition manager may change the home-away status of some of these matches in response

to special considerations without significantly affecting the total travel distance.

Various other constraints are typically included in the actual league scheduling, a reflec-

tion of the fluctuating conditions that generally prevail in the days immediately before the

announcement of the definitive schedule. The ability of the method to quickly generate new

schedules incorporating changes in the constraints proved to be a major benefit for the com-

petition manager. Selecting a suitable set of constraints involves experimenting with 10 to 20

models with different sets. Since some of the constraints will usually turn out to be mutually

exclusive, arriving at a set that meets the competition manager’s requirements while also

generating a feasible model is a process of trial-and-error. Examples of these requirements

include the following:

• Each couple must play one of weekends 2 and 3 at home and the other away. This

condition was applied in the 2007-2008 mirrored-format season. Since weekends 1 and 7

were the intra-couple weekends and there was a two-week holiday period before weekend
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7, this additional constraint ensured that no team played three consecutive weekends

away –including the intra-couple weekend– after the holiday period.

• Certain teams cannot use their stadium on prespecified weekends. Although this situa-

tion did not arise in 2009-2010, in the other seasons several teams were unable to play at

home on certain weekends. This usually occurred because some other local sports team

(e.g., basketball) had booked the stadium on those dates. In our experience with the

ACLAV instances, solution times tend to be much shorter when there are many such

constraints. This is a major advantage over manual scheduling procedures for which

the presence of this type of constraint can be a tremendous burden on the process of

generating a feasible result.

• The matches on a prespecified weekend must be played near a certain city. Since 2008-

2009 a special short tournament called the “Super 8” is held during the season, inter-

rupting the regular schedule for a week. Since this tournament takes place in one or

two cities and starts on a Tuesday, the scheduling process attempted to avoid setting

matches for the previous weekend located far from the Super 8 venues. The constraint

for this requirement can be written as a special case of the previous one.

The schedules for 2007-2008, 2008-2009, and 2010-2011 were mirrored formats with the

constraint that no team would play more than two consecutive away weekends. The restriction

did not apply to the intra-couple weekends, which were played on weekends 1 and 7. Since in

any intra-couple match one team plays away, some teams have to play at home or away on

up to three consecutive weekends including the intra-couple weekend 7. Unfortunately, this

situation is mathematically unavoidable for a coupled double round-robin mirrored schedule

with six team couples. Indeed, suppose that there exists such a mirrored schedule in which

no team plays three home or away consecutive weekends. The three couples playing at home

on weekend 2 must play away (resp. home) on weekend 5 (resp. 6) in order to avoid one

of the teams from each couple having to play at home (resp. away) on weekends 5, 6, and

7 (resp. 6, 7, and 8). Since these three couples have the same home-away status in the

weekends 2, 5, and 6, that leaves only weekends 3 and 4 for them to play each other in the
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first round, a contradiction as we need at least three weekends for three couples to confront

each other. As a result, a non-mirrored schedule was designed for the 2009-2010 league and

the condition imposing no more than two consecutive away weekends was extended to include

the intra-couple weekends.

Since both mirrored and non-mirrored schedules may be requested, we have implemented

both an integer programming approach and a tabu search metaheuristic for the match schedul-

ing problem. It turns out that the mirrored version is solvable to optimality with Cplex [21]

in anywhere from one minute to six hours (depending on the number of home-away con-

straints), but the inherent complexity of the non-mirrored case forces us to resort to heuristic

techniques. Our tabu search heuristic is adapted from the one used for the TTP posed in [6],

which was able to find optimal solutions for the non-mirrored six-team instances in [38] and

is therefore a reasonable choice for solving the non-mirrored case. In view of this we opted

not to turn to more sophisticated solution techniques such as those given in [4, 40]. Moreover,

the approaches we decided upon readily permit constraints such as those described above to

be added or removed, a crucial feature in a practical scheduling environment.

Several objective functions have been used in the scheduling of the various volleyball

league seasons:

• Minimize the total travel distance. This was applied for the 2007-2008 and 2008-2009

schedules and is the usual objective in TTP instances. As a minor variation, in 2008-

2009 distances in excess of 1,080 kilometers on all point-to-point travel were counted

double in order to penalize bus trips longer than 12 hours (the minimum time needed

to travel 1,080 kilometers given the legal limit of 90 kilometers per hour for intercity

buses in Argentina).

• Minimize the distance of the most traveled team. This objective, easily implemented in

an integer programming model, attempts to evenly distribute the travel distances of the

teams at the expense of total travel distance. The resulting schedules are usually not

acceptable since the solution only involves the travel of the outlying teams while the

travel patterns of the more centrally located teams are likely to be inefficient. Moreover,

the total travel distances tend to be larger. For these reasons, this objective function
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was not further explored.

• Minimize the distance gap between the most traveled team and the least traveled team.

Again, this objective function seeks to evenly distribute the travel distances, but usually

generates schedules with longer distances for the centrally located teams (to bring their

total up to the level of the outlying teams). Furthermore, the running times to opti-

mality tend to be much greater. On these grounds, this objective function was dropped

during preliminary experimentation.

• Minimize a combination of total travel distance and the distance of the most traveled

team. If the total travel distance is zTT , the distance of the most traveled team is

zMT and there are n teams, then the objective function is defined as z = zTT + n zMT .

This specification tries to optimize the total travel distances while maintaining a certain

degree of equity among the teams. It was used for the construction of the 2009-2010

and 2010-2011 schedules. We are not aware of previous works utilizing this formulation

for the TTP.

Our integer programming models have been implemented with the zimpl modeling lan-

guage [25] and solved using Cplex 9.1 [21]. The tabu search heuristic was coded in C++ in

the Microsoft Visual C++ environment. To generate the instances and analyze the model

results, a Microsoft Windows application was developed for carrying out tasks such as man-

aging the team and distance matrix data, writing the zimpl file, executing Cplex, reading the

results and displaying the schedule and trips on a graphical interface (see Figure 3).

In the non-mirrored case, schedules obtained in just a few minutes by the tabu search were

on average 3% better (although not necessarily optimal) than the best solutions obtained by

Cplex after up to 10 hours of running time. Unfortunately, the dual bounds obtained by

Cplex are very poor so we are not able to provide meaningful optimality guarantees for the

feasible schedules.
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Figure 3: Computational application for managing the teams, the distance matrix and the

generated schedules.

4 Results

In this section we present the results of the final schedules for the 2007-2008, 2008-2009, 2009-

2010 and 2010-2011 seasons and a comparison between the manually-designed and model-

generated schedules for the 2005-2006 and 2006-2007 seasons. In 2005-2006 and 2006-2007

the manually-designed schedules were implemented whereas the model-generated schedules

were used from 2007-2008 to the present. The 2007-2008, 2008-2009 and 2010-2011 schedules

are mirrored, optimal, and were produced by the integer programming model; the 2009-2010

schedule is non-mirrored and was obtained using the tabu search metaheuristic.

Figure 4 summarizes the results of the schedule solutions for each season. It should be

kept in mind that the set of teams varied from one year to the next because of relegations

and promotions to and from the Second Division. For 2005-2006 the coupling proposed by

the model is different from the manually-designed couples, but for 2006-2007 the model and

manual couples coincide. The model-based schedules achieve a 22.34 percent reduction in

total travel distance compared to the manual one for 2005-2006 and a corresponding 15.41
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percent reduction for 2006-2007, a global saving for the teams of close to US $ 60,000 in annual

travel costs. Even more importantly, the reduction in travel distances would give the players

more resting time before the matches. No comparisons for the years following 2006-2007 can

be made since manually-designed schedules after that season were no longer developed.

A result that requires further explanation relates to 2008-2009, when the most traveled

team logged a much greater total distance than the most traveled teams in the other seasons.

This was due to a combination of the team’s location in the far north of the country and the

set of three home-away conditions it requested, which strongly affected its trip pattern. A

similar situation holds for the 2010-2011 league.

The solution times for the integer programming model range from one minute to six hours

on a PC with an Intel Core 2 Duo CPU running at 2.1 GHz and 2 GB of RAM. As mentioned

previously, running times tend to be smaller when there are more home-away constraints

(specifying that certain couples must play either home or away matches on certain weekends),

which are precisely the most difficult cases to schedule manually. Execution time for the tabu

heuristic typically varies between one and eight minutes, the best solutions usually found

within the first minute although in such cases there is no guarantee of optimality.

The schedules generated by our techniques achieved a much smaller distance gap between

the most traveled and the least traveled team, even though until the 2008-2009 league the

objective function only minimized the total travel distance.

An important benefit of our computational tool is the possibility of generating different

scenarios in the days prior to the schedule announcement, allowing for extensive testing with

many different team couplings or even with different lists of teams (if the set of teams is not

yet finalized). This last feature is significant as in most years some teams do not confirm their

participation until just before the deadline. In such cases, efficient generation of schedules is

crucial. The ability to determine whether all of the conditions requested by the teams can

be incorporated into a feasible schedule is also considered to be a valuable feature by the

competition manager.

The mathematical programming approach presented in this study has been successfully

applied for the last four years, and the schedules generated for all four seasons were used by the
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Manual schedule

Season Teams Total distance Max. travel Min. travel

2005-2006 12 135,677 15,441 9,089

2006-2007 12 135,299 13,282 9,574

Model-based schedule

Season Teams Total distance Max. travel Min. travel

2005-2006 12 105,356 10,723 7,670

2006-2007 12 114,445 11,017 8,333

2007-2008 12 135,043 12,702 9,649

2008-2009 11 119,245 15,284 8,541

2009-2010 11 123,244 12,938 9,535

2010-2011 12 150,334 15,770 10,442

Figure 4: Results of the manually-designed and model-generated schedules. For each season

the number of teams, the total travel distance in kilometers and the travel distances of the

“most traveled” and “least traveled” teams are indicated.
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league. All the proposed constraints were satisfied in the cases were this was mathematically

possible. Where some constraint sets turned out to be mutually contradictory the integer

programming model helped to identify them, and they were then relaxed or dropped entirely

in coordination with the competition manager.

Commenting on this collaborative effort with ACLAV, Association president Leonardo

Carod stated that “The results were very much appreciated, especially considering the rapid

solutions and the various proposals submitted for our analysis. We are extremely satisfied

and expect to continue using this mathematical system in cooperation with the University

and their research team.”

As for future research, the model as presented here could be enhanced to take into account

accommodation costs as well as travel distances in order to optimize total costs instead of

just travel times.
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Appendix 1: The models

In this appendix we review the integer programming models employed in the scheduling

process. We begin with a description of the model used to design the team couples and then

describe a straightforward model for designing the schedule.

Integer programming model for designing the team couples

The optimal-tour coupling problem introduced in Section 3.1 is modeled as follows. Let

P = {1, . . . , n} be the set of teams. We assume that the travel distances between the teams

satisfy the triangle inequality. For ease of exposition we assume n to be even, though a similar

model could also be given for an odd n. By the observations in Section 3.1, there exists an

optimal solution such that the set of tours for each couple consists of a certain number of two-

weekend trips and at most one single-weekend trip (or exactly one if the number of couples is

odd). For example, if n = 12 then the optimal solution involves three two-weekend trips for

each couple, one of them including the intra-couple match and thus consisting of just three

matches.

To specify the model’s objective function, we must explicitly represent a set of tours for

each couple. We therefore assume that the matches take place in certain time slots. A set of
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Figure 5: Representation of trips in the integer programming model for designing team cou-

ples. Figure (a) shows the m = 15 time slots for n = 12 teams and the trips made by one

team. Figure (b) depicts the trip graph for n = 12 and team i, with a possible feasible path

through the graph indicated by the black edges.

“away time slots” is defined for the away matches and a set of “home time slots” for sets of

consecutive home matches. As an example, Figure 5(a) depicts the tours through the time

slots for a single team in the n = 12 case. Slots 2 to 5 represent a two-weekend tour followed

by a sequence of home matches in slot 6 (note that we do not explicitly model these home

matches). Slots 7 to 10 represent a second two-weekend tour and slots 12 to 14 represent the

last three-match trip including the intra-couple match as the last away match. Since, on the

first trip, two other couples are visited, we must impose that in slots 2 and 3 (resp. 4 and 5)

the two teams from each couple visit the two teams from the same couple.

Such a representation for the tours performed by a team does not introduce an additional

constraint to the formulation (hence does not restrict the optimal solution) as, e.g., in a

24



12-team setting any optimal tour is composed by two four-match tours and one three-match

tour. The same representation of a set of tours is designed for all of the teams, each of

which will be assigned trips according to this structure. The time slots in the model do not

correspond to specific dates throughout the tournament (i.e., the indices of the time slots do

not correspond to the weekend indices); rather, they represent only the away matches and

sequences of home matches. Furthermore, since in this problem we are not seeking a feasible

schedule but minimizing the lower bound on tour costs instead, there are no constraints

forcing a team to remain home when some other team visits its venue. On the contrary, in

this representation all teams play away in time slots 2–5, 7–10, etc., and return home for time

slots 6, 11, etc.

Let T = {1, . . . ,m} be the set of time slots, where m = n+ d(n− 1)/4e. By the previous

description, we assume that every team plays home matches in slots k ∈ H, where H =

{k : k = min(m, 5t + 1) for t = 0, . . . , n/4, t ∈ Z}. We define W = {k : k = 5t + 2, k =

5t + 4 for t = 0, . . . , b(n − 1)/4c, t ∈ Z} in such a way that, for each k ∈ W , slots k and

k+1 represent the two matches on a weekend. With these definitions, each couple must play

against some other couple in slots k and k + 1, for k ∈ W .

For i, j ∈ P , i < j, we introduce the binary coupling variable wij such that wij = 1 if and

only if i and j belong to the same couple. For notational convenience we assume wji = wij

for i, j ∈ P , i < j. For i, j, k ∈ P and t ∈ T , we introduce the binary trip variable yijkt such

that yijkt = 1 if and only if team i travels from j to k after slot t. For each team i ∈ P , the

trips made by team i can be interpreted as a path in a layered graph (see Figure 5(b)) in

which the edges are the variables yijkt for j, k ∈ P and t ∈ T . This will motivate the inclusion

of flow constraints in the model. Using these variables, the integer programming model is as

follows:

min
∑

i∈P

∑

j∈P

∑

k∈P

∑

t∈T

djk yijkt

∑

j∈P,i<j

wij = 1 ∀ i ∈ P (1)
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yijk1 = 0 ∀ i, j, k ∈ P, i 6= j (2)

yijkm = 0 ∀ i, j, k ∈ P, i 6= k (3)

∑

k∈P

yikjt =
∑

k∈P

yijk,t+1 ∀ i, j ∈ P, ∀ t ∈ T\{m} (4)

∑

k∈P

yikit = 1 ∀ i ∈ P, ∀ t ∈ H (5)

∑

k∈P

∑

t∈T

yikjt = 1 ∀ i, j ∈ P, i 6= j (6)

yijkt ≤ wjk ∀ i, j, k ∈ P, ∀ t ∈ W, j < k (7)

yikpt +wij − 1 ≤ yjpkt ∀ i, j, k, p ∈ P, ∀ t ∈ W i < j (8)

yijkt ∈ {0, 1} ∀ i, j, k ∈ P, ∀ t ∈ T (9)

wij ∈ {0, 1} ∀ i, j ∈ P, i < j (10)

Constraints (1) impose a matching among the teams. Constraints (2)-(3) ensure that

each team starts and ends a trip at home. Constraints (4) are the usual flow conservation

constraints. Constraints (5) ensures that each team returns home after every 4-match trip,

i.e., for every time slot in H. Constraints (6) require each team to visit each other team

exactly once. Constraint (7) asserts for every i ∈ P that on each weekend team i must visit

two teams from a single couple, and constraint (8) requires that the team coupled with i must

visit the same two teams but in the opposite order. Finally, constraints (9) and (10) force the

y- and w-variables to be binary. For 12 teams the model has 24,336 binary variables, 84,960

constraints and 339,156 nonzero elements.

Integer programming model for scheduling the matches

Let C = {1, . . . , dn/2e} be the set of couples (considering the uncoupled team, if there is one,

as a “couple”) and let W = {1, . . . , 2dn/2e} be the set of weekends. For i, j ∈ C and k ∈ W we

introduce the binary match variable xijk such that xijk = 1 if couple i plays at home against

couple j on weekend k, otherwise xijk = 0. For i ∈ C and k ∈ W , the variable xiik = 1

represents the intra-couple match for couple i. For i, j, h ∈ C and k ∈ W ∪ {0}, we introduce

the binary trip variable zijhk such that zijhk = 1 only if couple i plays away at couple j on

weekend k and then away at couple h on weekend k+1. If couple i stays at home on weekends
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k and k + 1, then we set ziiik = 1. We assume that each team returns home before and after

each intra-couple match. This assumption is reasonable since the intra-couple distances are

usually small.

For i ∈ C, assume that couple i is composed of teams iA ∈ P and iB ∈ P , with iA 6= iB

and iA being the A-team of the couple. We denote the intra-couple weekends k1 ∈ W and

k2 ∈ W and assume that k1 + 1 < k2 (i.e., these weekends are not consecutive). For i ∈ C

and k ∈ W , the distance vAi (resp. vBi ) traveled by iA (resp. iB) on the weekend k is given by:

vAik =















































∑

j∈C(diAjB + djBjA)xjik if k = 1 6= k1
∑

j∈C

∑

h 6=i(djAhB
+ dhBhA

)zijh,k−1 +
∑

j∈C djAiAziji,k−1 if k 6= 1, k1, k2

diAiB + diBiA if k = k1 = 1
∑

j∈C djAiAziji,k−1 + (diAiB + diBiA) if k = k1 6= 1
∑

j 6=i djAiAziji,k−1 if k = k2

vBik =















































∑

j∈C(diBjA + djAjB)xjik if k = 1 6= k1
∑

j∈C

∑

h 6=i(djBhA
+ dhAhB

)zijh,k−1 +
∑

j∈C djBiBziji,k−1 if k 6= 1, k1, k2

0 if k = k1 = 1
∑

j∈C djBiBziji,k−1 if k = k1 6= 1
∑

j 6=C djBiBziji,k−1 + (diB iA + diAiB ) if k = k2

Let k be a weekend which is not an intra-couple weekend. If k = 1 then the distance

traveled by iA on weekend k is diAjB + djBjA if couple i plays away against couple j (given

that iA travels from home to the B-team of couple j, i.e., jB , and then from jB to the A-team

of couple j, i.e., jA), and is 0 if couple i stays at home. On the other hand, if k > 1 then we

cannot assume that iA starts its trip from its home city as iA may have played an away match

on weekend k − 1. This implies that for k > 1, the distance traveled by iA is djAhB
+ dhBhA

if couple i played couple j on weekend k− 1 and couple h on weekend k (i.e., if zijh,k−1 = 1),

and djAiA if couple i played couple j on weekend k−1 and returned home for weekend k (i.e.,

if ziji,k−1 = 1).

Consider now the first intra-couple weekend k1 (recall that iA plays away at iB on the

weekend k1 and iA plays home against iB on the weekend k2). If k1 = 1 then iA travels to iB
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(to play iB) and returns home, hence the trip distance at k1 is diAiB + diBiA (and iB stays

at home, so vBik1 = 0 in this case). On the other hand, if k1 > 1 then we must also consider

the trip from jA back to iA (since we assume every team returns home before and after each

intra-couple match) if couple i played an away weekend against couple j on weekend k − 1

(i.e., if ziji,k−1 = 1). Note that if couple i played at home on weekend k− 1, then ziii,k−1 = 1

and no additional term is added. For the second intra-couple weekend k2, only the trip back

home must be considered for team iA as it stays home for a match against iB . A symmetrical

analysis holds for the definition of vBik.

Note that the definitions of vAik and vBik involve linear expressions in the x- and z-variables

and can therefore be incorporated into the integer programming model. With these defi-

nitions, the following integer programming model represents the problem of scheduling the

matches with the minimum total travel distance. The other objective functions discussed

previously can be modeled similarly.

min
∑

i∈C

∑

k∈W

vAik + vBik

∑

k≤|W |/2

(xijk + xjik) = 1 ∀i, j ∈ C, i 6= j (11)

xiik = 1 ∀i ∈ C, k = k1, k2 (12)

xiik = 0 ∀i ∈ C, k ∈ W\{k1, k2} (13)

xijk = 0 ∀i ∈ C, i 6= j, k = k1, k2 (14)

xij,k+|W |/2 = xjik ∀i, j ∈ C, i 6= j, k ≤ |W |/2 (15)

∑

j 6=i

2
∑

t=0

xij,k+t ≤ 2 ∀i ∈ C,∀k ∈ W :

{k, k + 1, k + 2} ⊆ W\{k1, k2} (16)

∑

j 6=i

2
∑

t=0

xji,k+t ≤ 2 ∀i ∈ C,∀k ∈ W :

{k, k + 1, k + 2} ⊆ W\{k1, k2} (17)

zijhk ≥ xjik + xhi,k+1 − 1 ∀i, j, h ∈ C,∀k ∈ W (18)

ziihk ≥ xijk + xhi,k+1 − 1 ∀i, j, h ∈ C,∀k ∈ W (19)
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zijik ≥ xjik + xih,k+1 − 1 ∀i, j, h ∈ C,∀k ∈ W (20)

ziiik ≥ xijk + xih,k+1 − 1 ∀i, j, h ∈ C,∀k ∈ W (21)

xijk ∈ {0, 1} ∀i, j ∈ C,∀k ∈ W (22)

zijhk ∈ {0, 1} ∀i, j, h ∈ C,∀k ∈ W (23)

Constraints (11) ensure that each match is played exactly once in the first half. Constraints

(12)-(14) impose that intra-couple matches are played on weekends k1 and k2 only. Constraints

(15) were used with the mirrored schedules and were dropped for the 2009-2010 season.

Constraints (16) (resp. (17)) ensure that no couple plays more than two home (resp. away)

weekends, and constraints (18)-(21) define the trip variables in terms of the match variables.

Note that constraints (19)-(21) can be equivalently replaced by a smaller set of constraints by

aggregating over the teams j and h (where suitable). In our experience with the Argentine

volleyball league instances, such replacement does not seem to affect the Cplex solution times

in a significative way. Finally, constraints (22)-(23) force the variables to be binary. For

6 team couples the model consists of 3,168 binary variables, 10,104 constraints and 35,098

nonzero elements.

Appendix 2: The tabu search heuristic

In this appendix we describe the implementation of a tabu search heuristic for the TTP,

taking into account the particular features of the Argentine volleyball league.

The search space is given by all of the solutions that satisfy all the constraints except those

requiring that every team play no more than two consecutive home (resp. away) weekends.

Whenever a team violates this constraint a penalty is added to the objective function. Our

experiments suggest that such a search space is more effective than one involving only the

feasible solutions. We construct initial feasible solutions following the procedure proposed

in [12]. This procedure starts with an empty schedule and randomly adds matches to this

schedule, taking care of avoiding repeated matches.

We utilize the following neighborhoods throughout the search process, allocating different

amounts of running time to each one according to their effectiveness:

29



• Partial weekend exchange. This neighborhood consists in picking two couples c1, c2 and

two weekends w1, w2 such that there exist two couples c3 and c4 satisfying that c1 plays

c3 (resp. c4) on w1 (resp. w2) and c2 plays c4 (resp. c3) on w1 (resp. w2). We swap

the matches of c1 and c2 on weekends w1 and w2 so that c1 plays c4 (resp. c3) on w1

(resp. w2) and c2 plays c3 (resp. c4) on w1 (resp. w2), and consider all 24 combinations

of home-away status for these four matches. This neighborhood turned out to be the

most effective one, and is thus used in most of the search process.

• Weekend exchange. This neighborhood consists of all the schedules obtained by ex-

changing all the matches on weekend w1 with all the matches on weekend w2 for any

w1 6= w2. Note that this neighborhood is composed of O(n2) solutions.

• Couple exchange. This neighborhood consists of all the schedules obtained by exchang-

ing couples c1 and c2 for any c1 6= c2, i.e., if couple c1 (resp. c2) plays c
′
1(k) (resp. c

′
2(k))

on weekend k, then in the neighborhood couple c1 (resp. c2) plays c
′
2(k) (resp. c

′
1(k)) on

weekend k for every weekend k.

• Home/away exchange. This neighborhood consists of all the schedules obtained by

exchanging the home-away condition of the two matches between couples c1 and c2 for

any c1 6= c2.

The tabu list is managed with a standard FIFO procedure and includes the last t = 8

movements performed on the incumbent solution. The intensification strategy affects the

search process by randomly selecting values of t from {4, 5, 6, 7} every 15,000 iterations. This

strategy turned out to be very effective in our experiments. On the other hand, the diversi-

fication strategy, which is applied after a certain number of iterations with no improvements

in the best solution, consists in performing several consecutive partial weekend exchanges in

order to construct feasible solutions with major differences from the current solution.
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